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Abstract. Let G be a compact semisimple Lie group, g its Lie algebra, (,) an
Adg-invariant inner product on g, and M an adjoint orbit in g. In this article, if
(M, (, )| ) 1s Kéhler with respect to its canonical complex structure, then we give, for
a closed minimal Lagrangian submanifold L = M, upper bounds on the first positive
eigenvalue A;(L) of the Laplacian 4;, which acts on C*(L), and lower bounds on the
volume of L. In particular, when (M, (,),,,) is Kdhler-Einstein, (p = cw, where p and
 are Ricci form and Kéhler form of (M, (,),,) with respect to the canonical complex
structure respectively, and ¢ is a positive constant,) we prove 4;(L) <c¢. Combining
with a result of Oh [5], we can see that L is Hamiltonian stable if and only if 4, (L) = c.

1. Introduction.

Let CP" be the n-dimensional complex projective space and g be the Fubini-
Study metric of CP" with its holomorphic sectional curvature 1. In [6], A. Ros
gave upper bound of the first positive eigenvalue of the Laplacian and lower
bound of the volume of closed CR-minimal submanifolds of CP". The tech-
nique used in that paper is as follows; let HM(n+1)={Aegl(n+1;C)|4 =
‘A} and define an inner product (,) on HM(n+1) as (4, B) = 2trace(A4B).
Then (CP",g) is isometrically embedded in (HM(n+1),(,)), and using esti-
mates for the total mean curvature of a closed Riemannian manifold isometrically
embedded in a Euclidean space, proved by B.-Y. Chen in [2], [3], the desired
bounds were obtained. In this article, we will apply this technique to closed
minimal Lagrangian submanifolds in adjoint orbits.

Let G be a compact semisimple Lie group, g its Lie algebra, (,) an Adg-
invariant inner product on g, and M an adjoint orbit in g. Suppose that the Lie
group G acts on M effectively. (In this paper, when we say “adjoint orbit”, we
suppose that it satisfies this condition.) Then M has canonical complex structure
J, and canonical symplectic form F, which is Kdhler with respect to J, see [1] or
section 3 below. We regard that M is isometrically embedded in (g,(,)). The
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2-form associated with (,);), and J, which is defined by w(X, Y) := (JX, Y), is
not always Kidhler. But, when this associated 2-form is equal to « times the
canonical symplectic form for a positive constant «, we get the following bounds.

THEOREM 1.1. Let G be a compact semisimple Lie group, g its Lie algebra,
(,) an Adg-invariant inner product on g, and M*" an adjoint orbit in g with the
associated 2-form being equal to o times the canonical symplectic form for a
positive constant o, i.e. o(X,Y):= (JX,Y) =oF(X,Y). If L =M is a closed
minimal Lagrangian submanifold, then

2 2\"/2
Vol(L) > <%> Cms

where s is the scalar curvature of (,)| y and ¢y, is the volume of unit m-sphere.
Moreover, if (,)| v 18 Kdhler-Einstein with respect to the canonical complex
structure J, and its Ricci form equals to cw for a positive constant c, we have

Vol(L) > (T>M/2cm.

c
THEOREM 1.2.  Suppose that the situation is the same as Theorem 1.1. Then

S

/ll(L) < o’

where A\(L) is the first positive eigenvalue of the Laplacian Ay, which acts on
C*(L). Letl:L — g denote the embedding. Then the equality holds if and only
if there is a constant vector d in g such that, | —d is an embedding of order 1,
namely, for a fixed basis of g, all of its coordinate functions I/ —d’ are iy(L)-
eigenfunctions. (This property is independent of the choice of the basis.) Also the
dimension of the space of A\(L)-eigenfunctions is greater than m.

Moreover, if (,)| v 18 Kdhler-Einstein with respect to the canonical complex
structure J, and its Ricci form equals to cw for a positive constant ¢, we have

j~1 (L) < ¢,
and the constant d € g above is equal to 0.

For minimal Lagrangian submanifolds in a Ké&hler manifold (X,w), Y.-G.
Oh defined a Hamiltonian stability in as follows. Let 1:L— X be a
Lagrangian embedding and V' be a normal variation vector along L. Since L
is totally real and 2dim L = dim M, we can regard *(V | w) as a 1-form on L.
When the 1-form *(V | w) is exact, V' is called a Hamiltonian variation vector.
A smooth family {1} of embeddings of L into X is called a Hamiltonian
deformation, if its derivative is Hamiltonian. Note that Hamiltonian defor-
mations leave Lagrangian submanifolds Lagrangian. We say that a minimal
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Lagrangian submanifold is Hamiltonian stable, if, for any Hamiltonian varia-
tion V/, the second variation along V' of the volume functional is non-negative.
When (X,w) is Kéhler-Einstein with a positive scalar curvature and its Ricci
form satisfies p = cow, Oh proved that a compact minimal Lagrangian sub-
manifold L is Hamiltonian stable if and only if 1;(L) > c.

So we have the following corollary.

CorOLLARY 1.3. The situation being as in Theorem 1.1, suppose that (),
is Kdhler-Einstein with respect to the canonical complex structure J, and its Ricci
form equals to cw for a positive constant c. Then the following three conditions
are equivalent;

(1) L is Hamiltonian stable.

@) AL =c

(3) All of the coordinate functions 1" are Ai(L)-eigenfunctions.

The auther would like to express his hearty thanks to Professor Akito Futaki
who gave him valuable advices.

2. Estimates on volume and /.

Let an m-dimensional Riemannian manifold (X™,g) be isometrically
embedded in a Euclidean space (R*,(,)), and Y” = X be a closed minimal
submanifold. Then we can obtain the upper bound of the first positive eigen-
value 4;(Y) of the Laplacian 4y, which acts on C*(Y), and the lower bound of
the volume of Y as follows.

For the embeddings X — R*, ¥ — X and Y — R*, we denote their second
fundamental forms o, @ and & respectively. Then, from the definition of the
second fundamental forms, we have

(2.1) 6x(A,B) =Gx(A,B) + 0.(4,B) for xe Y, A, BeT,Y.

We can think of (2.1) as the decomposition of ¢ to the component tangent to X,
which is &, and the one normal to X, which is . Since Y — X is minimal, the
mean curvature vector H of embedding ¥ < R* is obtained by

~ T
(2.2) He=H, = ;Z ax(¢j, ¢)),
=1

where x e Y and {ej}J’?:l is an orthonormal basis of 7.Y.
To get the bounds of 4;(Y) and volume of Y, we use next two theorems by

B.-Y. Chen and [3]).

THeOREM 2.1 (Chen [2]). Let M be an m-dimensional closed submanifold of
a Euclidean space (R*,(,)), and H be its mean curvature vector. Then we have
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(2.3) J (H,H)"*dv > ¢y,
M

where ¢, is the volume of unit m-sphere. The equality holds if and only if M is
embedded as the standard m-sphere in an affine (m+ 1)-space.

THEOREM 2.2 (Chen [3]). Let x: (M™,g) — (R*,(,)) be an isometric immer-
sion of a closed m-dimensional Riemannian manifold into a Euclidean space, and H
be its mean curvature vector. Then we have

m/2
(2.4) J (H,H)"* dv > (LM)> / Vol(M),
M m
where J1(M) is the first positive eigenvalue of the Laplacian Ay. The equality
holds if and only if there is a vector ¢ in R such that x — ¢ is an embedding of
order 1, namely, its j-th coordinate function x/ — ¢/ is the first eigenfunction of Ay,
for each j.

We apply these theorems to the case x : (X", g) — (R¥,(,)) is an isometric
embedding and Y" < X is a closed minimal submanifold.

COROLLARY 2.3. Let (X, g) be an m-dimensional Riemannian manifold and
Y" < X be a closed n-dimensional minimal submanifold. Suppose that there is an
isometric embedding x : (X, g) — (R*,(,)) of X into the Euclidean space (R¥,()).
Then we have

Cn

~ . ~1 )
max,ey(H, , H, )2

(2.5) Vol(Y) >
where ﬁ; = (1/n) 3  0,(ej,¢)), o is the second fundamental form of embedding
x,yeY, and {ej}j’;l is an orthonormal basis of T,Y.

COROLLARY 2.4. Notation being as in Corollary 2.3, we have

IY(I:IL,I:IL)"/Zdv 2/n
(2.6) /II(Y)<n( Vol(T) ) .

The equality holds if and only if there is a constant vector ¢ € R* such that the
embedding xjy —c:Y — R* is an embedding of order 1.

In section 4, we will apply these corollaries to the case of the adjoint orbits.

3. The adjoint orbits of compact semisimple Lie groups.

In this section, we review the chapter 8 of [1].
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Let G be a compact semisimple Lie group, g its Lie algebra, (,) an Adg-
invariant inner product on g, and M an adjoint orbit in g. Suppose that the Lie
group G acts on M effectively. In this paper, when we say ‘“‘adjoint orbit”, we
assume that it satisfies this condition. For U € g, the fundamental vector field
attached to U, Xy is defined by

(3.1) Xu(w)=[U,w] (we M),

under the identification g ~ 7,,g > T'yM, (we M). Since G acts on M tran-
sitively, any tangent vector in 7,,M 1is written as the value of a fundamental
vector field, and we can identify

TwM ~Im(ad, : g—g) =M, (weM).
Similarly, we have an identification
N.M ~Ker(ad, :g—g)=:L,, (weM),

where N,,M is the normal space of M — g at we M.

Next, we will define the canonical complex structure J on M. For we M,
let G, :={ge G|Ad(g)w =w}, S, the connected center of G,, and s, the Lie
algebra of S,. Note that wes,. Then M, is preserved by Adg, and adg,.
Since the restriction of the adjoint action of G,, on M, to S, is completely
reducible, we have an Adg, invariant orthogonal direct sum decomposition

(3.2) M,=S"E,; (dimM =2m),

vl

1

J

where each E, ; is a real 2-dimensional vector space isomorphic, as a -
representation space, to the irreducible representation [, : S, — GL(2, R) defined
by

(33) I, (exp(s)) = (cosaj(S) —Sinaj(S)> (s€50).

sinaj(s)  cosaj(s)

Here g; € 5, is the weight of I, (via (,), . @ may be viewed as an element of
s,). We choose each g; so that a;(w) > 0. Then E, ; is oriented by the basis
for which the action of S, is represented by I7,. The almost complex structure
J on TM 1is defined as

(3.4) J X =——[w,X] (weM, XekE,)).

aj(w)

This almost complex structure is integrable and G-invariant, see [I]. We call J
the canonical complex structure of M.
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Finally, we define two G-invariant closed 2-forms, canonical symplectic form
and G-invariant Ricci form. Let the 2-form F on M be defined by

(3.5) Fo(X,Y)=(w,[U.V]) (weM, X,YeT,M),

where U,V € g such that X = [U,w|, Y =[V,w]. Then it is proved that F is
the G-invariant Kdhler form of a G-invariant Kdhler struture compatible with
the canonical complex structure of M, see [I]. We refer to F as the canonical
symplectic structure of M.

There is unique, up to multiplication by a positive constant, G-invariant
volume form € on M, which is the volume form of (,),,. Since the Ricci form
of a Kéhler metric depends only on the complex structure and the volume form,
the Ricci form of any G-invariant Kdhler metric on M relative to the canonical
complex structure equals to Cp, where p is the G-invariant Ricci form deter-
mined by J and 2, C is a positive constant. This G-invariant Ricci form p is
computed as

(3.6) pu(X, Y) = (w), [UV]) (weM, X,YeT,M),

where U,V eg such that X =[U,w], Y =[V,w], s, 3y(w) =" [X;,JX],
{X;,JX;} is a positively oriented orthonormal basis of E, ;. Note that p is
positive definte, see [1].

4. The Proofs of Theorem 1.1 and 1.2.

In the same setting as in the previous section, we define the 2-form w by
o(X,Y):=(JX,Y). In general, this 2-form is positive definite and type (1, 1)
with respect to J but not closed. We have the following lemma.

LeMMA 4.1. For a positive constant o, o =oF if and only if a;(w)=
ap(w) = o for some we M and any j k.

Proor. For weM, X;eE,; XceE,, with j#k, we have
[(1/(aj(#)))JuX;, W] = X; and thus

Ru6,3) = (i [ﬁm o] )

1
— T ([w, JuXj], 1 Xe)

—0,

where the second equality is derived from the Adg invariance of inner product
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(,) on g, and the third one is derived from [w,J,Xj| € E,; and J, Xi € E, .
Similarly, we have [—(1/(a;(w)))X;,w| =J,,X; and thus

1 |
EV(X'aij') = (W, l—leX'a_—X']>
e a;(w)" " )

aj(w

gty Y

1
:WW(X/‘»JXJ)-

Since a;(w) is Adg-invariant, follows immediately. O

LEMMA 4.2. Let M — g be an adjoint orbit with w = aF, and o, H be
the second fundamental form and the mean curvature vector of embedding M < g
respectively. Then, for each we M, we have

(4.1) ow(X, Y)=p.([V,[U,w]]) (X,Y are vector fields on M),

(4.2) ow(JX,JY)=0,(X,Y),
3) Hy=— )
. w= y\w),
(4.4) (H,H) = %sz (s is the scalar curvature of () ),

where U,V € g such that X(w)=[U,w|, Y(w)=1[V,w|, and p,:g— L, is the
orthogonal projection.

Proor. For the equation (4.1), since o is tensor, it is sufficient that we prove
(4.1) for fundamental vector fields Xy, Xp. But we easily see that Dy, Xy (w) =
[V,[U,w]], where D is the Levi-Civita connection of (g,(,)). So, by the def-
inition of the second fundamental form, we have proved the equation (4.1).

From the equation (4.1), we have

ow(JX,JY) =0,(JY,JX)

==X ()
0, :JYOEW) ,X(W)]

=au(X,Y).
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Let {e;,Je;} be the orthonormal basis of E, ;j « M,. Then

1 m

Hy =5 {oule;¢) +oulJe;, Je)))

2m 4
J=1

= %Z{%’(eﬁej)}

- %pw (; l? ) ej] >

The last equality holds since y(w) € s, < L,,.
Finally, from the direct computation, we have

z( H)

— (W), y(w)). O

COROLLARY 4.3. Let x: M — g be a closed adjoint orbit with w = aF.
Moreover, suppose that (M,w) is Kdhler-Einstein with respect to the canonical
complex structure J and that its Ricci form equals to cw for a positive constant c.
Then x is the embedding of order 1.

Proor. We apply to the embedding x: M — g. Then we
have 41(M) < 2¢, by [Lemma 4.2. On the other hand, since the Lie algebra of
Killing vector fields on M is non trivial, by Theorem of Matsushima [4] (see also
Theorem 11.52 of [1]), we have 4;(M) =2¢c. By [3.5), and the assumption
p = cow = acF, we have y(x) = acx. So, by [4.3], we have

Ay x = —2mH,

—1
= -2m <— occx)
mo.
= 2¢x. L]

Let Lc M be a Lagrangialn submanifold. Then H= of the embeddings L <
M c g, the definition of H being in Section 2, is equal to H.
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PROPOSITION 4.4. Let M < g be an adjoint orbit with w = oF, and H be

the mean curvature vector of embedding M < g. For a Lagrangian submanifold
Lc M, we have

H, =H, (wel).

Proor. Let {ey,...,e,} be an orthnormal basis of 7),L. Then {ej,Jwej};’:’l

is the orthonormal basis of 7,,M, since L is totally real. So, by the definition
of A and (4.2), we have

1
= %Z{aw(ej, €j) + O-W(Jej7 Jej)}
=1

- Hw- L]

Proor OfF THEOREM 1.1. Let (M?" (,),,) be an adjoint orbit with @ = oF
and L™ < M a closed minimal Lagrangian submanifold. Then we have
_ m
(B )"

2m? m/2
@)
S

by [Corollary 2.3, [Proposition 4.4 and (4.4). ]

Vol(L) >

ProOF OF THEOREM 1.2. Let (M*",(,),,,) be an adjoint orbit with & = oF
and L™ < M a closed minimal Lagrangian submanifold. Then we have

(L) <m(H H)

s
2m’

by [Corollary 2.4, [Proposition 4.4 and (4.4).

Moreover, if (M, (,),) is Kahler-Einstein, we have
Al = —mH; (H: the mean curvature vector of L c M)
L
=-mH; (by (2.2))
= —mH; (by |Proposition 4.4))
= ¢l (by |Corollary 4.3). ]
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5. Example.

In this section, as an example, we investigate the case G = SU(n), g = su(n),
and (X,Y)= —trace XY, X, Y e su(n).

Let wy € su(n) be

i, 0
wO_( X Mn_p) oEeR, h—u>0, pi+(n—phu=0),

where I, € gl(p,R), I,—, € gl(n — p, R) are the identity matrixes. We consider the
orbit M < su(n) of wy.

The orbit M is identified with the Grassmann manifold Gr, ,(C) by
(5.1) X = i(Ap) =y € su(n)  (x € Gr, ,(C)),

where, if x is represented by a complex p-dimensional subspace in C" spanned by
orthonormal vectors (ayj,...,a,) € C" (j=1,...,p), Ay is defined as

(5.2) Ajj:(/l_ﬂ)(|ajl|2‘|‘"'+|ajp|2)+/la
(53) Ajk = (j, — ﬂ)(djlakl + -t ajpdkp).

In this example, geometrical objects at wy (tangent space, canonical complex
structure, and so on) are

o= {( 0 #) caun]

~ {X e su(n)|ad,, X = (1 — w)JoX},

(L, 0
=5 )

the canonical complex structure at wy is the left multiplication by Jy,

where

Sy = SpanR<W0>7
and
o= (A-pF.

Since dims,, =1 and o = (A — w)F, (M, (,),,) is Kéhler-Einstein. So, by Cor-
ollary 4.3,

x — idj € su(n) (x e Gr, ,(C))

is the embedding of order 1.
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LemmA 5.1. If the Ricci form of () equals to cow, then

Proor. Let X 0 Y 0 B Then
) e = _ = _ )
-4 0) —'B 0

Wy, (X, Y) = —trace Jy XY
= i(trace A'B — trace 'AB).
On the other hand, it is easily seen that
y(WO)i<(”—P)Ip 0 )
0 —pl,—p

So we have

Puy(X,Y) = — trace(y(wo)[Jo X, Jo Y])

(h—p’

5 (trace A'B — trace 4B). ]

(4 —u)
For example, by [Lemma 5.1, when we regard the Grassmann manifold
Gr, ,(C) ~ M as the Hermitian symmetric space SU(n)/S(U(p) x U(n — p)),
with the metric induced from the Killing form of su(n), we have

—2ntrace UV = (Xu, Xy) = —(4 — u)* trace UV,

where U,V e T;,SU(n)/S(U(p) x U(n—p)) < su(n), so ¢=1/2.

In [5], Oh gave some examples of Hamiltonian stable closed minimal
Lagrangian submanifolds in Hermitian symmetric spaces.

Let o:Gr, ,(C) — Gr,,(C) be an involutive anti-holomorphic isometry
defined as x+— X, where, for xeGr,,(C) which is represented by a p-
dimensional subspace in C" spanned by orthonormal vectors (ayj,...,a,) € C"
(j=1,...,p), X is represented by the subspace spanned by {(&U,...,dnj)}f:l.
Then the fixed point set of o

L={xeGr,,(C)|x=0(x)}

is a totally geodesic Lagrangian submanifold, by Proposition 6.1 of [5] or Lemma
1.1 of [7]. Moreover, in [7], it was proved that A;(L) =1/2, when we regard
the Grassmann manifold Gr, ,(C) ~ M as the Hermitian symmetric space
SU(n)/S(U(p) x U(n— p)) with the metric induced from the Killing form of
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su(n). So L is the Hamiltonian stable totally geodesic Lagrangian submanifold
in M. The element x e L is represented by a p-dimensional subspace in C”
spanned by orthogonal vectors (ayj,...,a,) e R" < C" (j=a,...,p). Applying
(Corollary 1.3 to L, we see that

Lsxw—ajap + -+ apay

are the eigenfunctions of A;(L).
Another example is the Clifford torus L embedded in CP" defined as

L={[z0: - :2)) € CP"||zo| = - = |z4|}.

In particular, if the representative z = (zy,...,z,) € C 1 satisfies |z| = 1, then
the norm of each component z; is 1/y/n+ 1. The Clifford torus L is a mini-
mal Lagrangian submanifold in CP", [5]. Moreover, by computing 4;(L), Oh
proved that, in [5], L is Hamiltonian stable. So, by [Corollary 1.3,

Lazo: 1z, Rezz (j#k)
and
Lazo: iz Imzz (j#k)

are the eigenfunctions of (L), where |zj]2 =1/(n+1) for j=0,...,n.
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