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Abstract. Let {y,},., and {¢,},., be the families of operator monotone func-
tions on [0,00) satisfying W, (x"g(x)) = x", ¢,(x"g(x)) = x"h(x), where g and & are
continuous and g is increasing. Suppose g, and g, are the corresponding operator
connections. We will show that if 4%y B>1 (a>0), then 4’6y B and A"gy B are
both increasing for r > a, and then we will apply this to the geometric operator means
to get a simple assertion from which many operator inequalities follow.

1. Introduction.

In this paper we denote bounded positive semidefinite operators on a Hilbert
space by 4, B, C and so on. A real valued continuous function ¢(x) on [0, 00) is
called an operator monotone function if 0 < A < B implies ¢(A4) < p(B). The
fact that x* (0 <a <1) is operator monotone is called the Ldwner-Heinz
inequality.

In [8] (see p. 76 of [9] for the relevant topics) a quadratic operator equation
B = XAX was studied and it was shown that if 4 is nonsingular, then there is
a solution T with 0 < 7T <1 if and only if (4'/2BAY?)"? < 4 and that T is
then given by the formula T = A~ /2(41/2BA'?)"2 4712 if 4 is invertible. The
solution of B = XA~!'X is therefore given by Al/z(A_l/zBA_l/z)1/2/11/2. On the
other hand, in it was shown that if 4 is invertible, the maximum of all X

such that
A X
>0
(¥ )

equals A2(471/2BA~1%) 12412 which is called the geometric mean of A and
B and denoted by A#B. Therefore, by using this symbol, the solution 7 of
B=XAX is given by T=A""4B if A is invertible. For 0 <A< 1 and for
invertible 4 the weighted geometric mean is defined as:

AﬂB = A1/2(A71/2BA71/2)/1A1/2'
A

2000 Mathematics Subject Classification. Primary 47A63; Secondary 15A39.
Key Words and Phrases. positive semidefinite operator, operator inequality, operator mean.



198 M. UcHIYAMA

Furuta [3], [4] showed that 4 < B implies for 1 <s,p and 0 <r
AH—V < (Ar/ZBpAI‘/Z)(1+I”)/([7+r), (1)
Al—t—H’ < {Ar/z(A—I/ZBPA—Z/2)SAr/2}(171+r)/(psfts+r) (O <t< l,t < l"). (2)
Further, in [1], [2], it was shown that 4 < B implies for 0 < p,r

erA < (erA/ZepBerA/2)r/(r+p). (3)

These inequalities can be rewritten with the symbol f; for instance, (1) is equiv-

alent to 4 <A™ t  BP.
(147)/(p+r)
Now let us state a simple fact on numerical weighted geometric means: For

positive numbers a,b,¢,x and y, if (x4)?/(@09)(,0ya/(@+0) <1 then for any d
with —a < d < be, (x7)0 D) () itd)/450) ¢ ecreasing for r > a and for
s >b. We will show that this result is true even if x and y are replaced by A
and B and that (1), (2) and (3) follow simply from it.

We study in a more general situation. Namely, we treat operator connec-
tions (or means) which include every weighted geometric mean. Kubo and Ando
[6] defined a connection, which is denoted by o, and showed that there is a one
to one correspondence between ¢ and an operator monotone function ¢ > 0 on
[0,00) by the formula

AcB = A'Pp(A7 V2 BA72) 412 (4)

if A is invertible; o is called an operator mean if AcA = A, which is equivalent
to p(1) =1. The operator mean corresponding to ¢(x) = x!/? is clearly geo-
metric mean.

The properties of a connection ¢ which we will need in this paper are the
following:

(i) A4<C and B< D imply AoB < CaD;

(i) C(AoB)C = (CAC)a(CBC) if C is invertible;
(iii) (A,0B,) | (AeB) if A, | A and B, | B in the strong topology;
(iv) AoB= Bg'A , where ¢' is the connection corresponding to x¢(1/x).
In this paper we write g, for o corresponding to ¢. In [11], to extend (1) and
(3) we constructed a family {¢,(x)},., of non-negative operator monotone func-
tions which satisfies

b(g(x)f(x)) = f(0)7" (0<e<]),

where ¢g and f are appropriate increasing functions; here by replacing f(x) by x
and g(f~!(x)) by another function g(x), ¢, satisfies ¢,(g(x)x") = x"x¢. In
we also studied the operator monotone function ¢, ,(x) defined by

By o (x) = xXTCTOL (TN e, 4, (x7xT) = XTf(x),
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where f > 0 is a given operator monotone function and r > 0 and ¢ > 0. These
investigations have led us to set up a pair of operator monotone functions {,}
and {¢,} with the following situation:

B(g() = X7, L Xy g(0) =1, (5
¢, (x"g(x)) = x"h(x), ie., x"o49(x)=nh(x). (6)

In this situation, ¥, may be considered to be the subsidiary function of ¢,.

From now on, we assume that {y,},., and {¢,},., are families of non-
negative functions on [0,00) satisfying (5) and (6) respectively, where g and &
are continuous and ¢ is increasing and that y, and ¢, are both operator mono-
tone for every r which is not less than a non-negative real number. Note that
W, is strictly increasing on [0, co) with 1,(0) =0 and ,(c0) = oo, so the inverse
function y, ' on [0, c0) exists. We remark that /(x) is not necessarily increasing
and that the region of r for which i, is operator monotone is not necessarily
coincident with that of r for which ¢, is: for instance, in (5) and (6) set g(x) = x'
for a fixed >0 and h(x) = x~!, then v, (x) = x"/(""") is operator monotone for
r > 0; on the other hand ¢,(x) = x("1*/(47) s operator monotone for r > 1.

In the next section we show a fundamental principle, from which we can
derive easily (1), (2) and (3): to be precise, we show that if 4“6, B>1 (a > 0),
then A"oy B and A'cy B are both increasing for r > a; we deal with geometric
means and give a very useful theorem in the third section; in the last section, we
explain how easily we can get (1), (2) and (3).

2. Criteria for monotonicity.

Tueorem 2.1, Let {{,},~, (a>0) be a family of non-negative and operator
monotone functions satisfying (5). Then the following hold:
(a) if A%y B>1, then A"ay B is increasing for r > a;
(b) if A and B are invertible and if A“cy B <1, then A"y B is decreasing
for r > a.

Proor. To prove the first statement (a), it suffices to show
A’oy B>1 for some s>a= A"oy B> A'cy B for every re s, 2s].

Indeed, from A%y B >1 it follows that A"s, B is increasing in [a,2a] and hence
not less than 1; by the mathematical induction, we can see the statement. Since
A" = (4%)"", we may show that

Aoy B>1 for some s >a= A"/So-l/,rB > Aoy B for every rels,2s]. (7)

Notice (A +¢)oy (B+e) > Aoy B>1 for &>0. If we could show
(A+e)" ‘oy, (B+¢) > (A +¢)ay (B+¢), then by (iii) in the preceding section we
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would get (7) as ¢ — +0. We therefore assume that 4 and B are invertible. Put
y=x"in Y (x*g(x)) = x* and ¥,(x"g(x)) = x". Then, by setting b = (r —s)/s,
we obtain

UM () = 0ty e, 3 Pay b () = . (8)

The assumption Aagy B > 1 implies y,(A~1/2BA~/%) > 4~!. Here, denote the left-
hand side by H and the right-hand side by K. Since H > K and 0 <b <1, by
the Lowner-Heinz inequality, K= > H=". Hence by (i) in Section 1 we have

here the last equality follows from (8). Multiplying the above from the left and
the right with 4'/? yields, by (ii) in Section 1,

AbHO'er > AO'%B.

Consequently, we have (7). We next show the second statement (b). Let A4
and B be invertible. To see

Aoy B<1= A"0y B< A0y B (s <r < 2s),
it is sufficient to show
Aoy B<1= A0y B< Aoy B (s <r<2s).
It is not difficult to get this in a fashion similar to the above. ]

In the second statement (b) of the above theorem, we assumed A and B are
invertible, because the norm of (4 +¢)“oy (B +¢) may not necessarily converge
to that of A%sy B as ¢ — +0. We do not know if the ivertibility of 4 and B
can be removed.

TueorEM 2.2, Let {y,},., and {¢.},., (a>0) be families of non-negative
operator monotone functions satisfying (5) and (6). Then the following hold:
(a) if A%y B> 1, then Aoy B is increasing for r > a;
(b) if A and B are invertible and if Aoy B <1, then A"ay B is decreasing
for r > a.

Proor. We show the second statement (b). By [Theorem 2.1, from
A%y B <1 it follows that 4%y, B <1 for s >a. Thus, it sufficies to show

A’oy B<1 for some s >a= A"0y B< A’cy B for every rels,2s|.
Further, it is clearly sufficient to show that

Aoy B<1 for some s>a= A" 6, B < Aay, B for every re[s,2s].
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Aoy B <1 implies
Y (A71PBA™YE) < A7

Here put the left-hand side by H and the right-hand side by K. In (5) and (6),
putting y = x* and b = (r —s)/s we obtain

60" () =" () (v > 0). ©)
Since H <K and 0 < b < 1, we have K~ < H™”, which gives
K6y (H) < H oy Y (H) = H¢,(H Y, (H)).
By (9), H"¢,(H ", ' (H)) = ¢,(;'(H)). Thus the above inequality gives
Abay (A7V2BAT?) < ¢ (A71*BATV2).
Multiplying the above from the left and the right with A'/? yields
Ab+lo¢rB < Aay B.

Consequently, the proof of the second statement is complete. To see the first
statement we may assume that 4 and B are invertible as in the proof of
2.1. Then one can show it in the same way as above. O

TueorREM 2.3.  Let {y,},., and {¢,.},., be families of non-negative operator
monotone functions satisfying (5) and (6). If A< B or if logA <logB for
invertible A and B, then for r >0

A" < (APg(B)AT?), i (BPg(A)B*) < B, (10)
APh(B) A < ¢,(4"g(B)A"?),  ¢,(B*g(4)B?) < B*h(4)B">. (1)

PrOOF. Suppose first A < B. Since the functions given in the theorem are
all continuous, by replacing 4 and B by 4+ ¢ and B+ ¢ respectively if nec-
essary, we may assume that 4 and B are both invertible. Since B~ < A~ for
0<a<l, A%y g(B) > B %oy g(B)=1 and A~ ‘g4 g(B) > B “c, g(B) = h(B).
By the above theorems we get 47"y, g(B) > 1 and A7 "g, g(B) > h(B) for r > a;
by letting a take over all 0 < a < 1, these hold for all » > 0. Thus we get
A" <, (A?g(B)A"?) and A"Ph(B)A"? < ¢,(A"?g(B)A"/?) for r> 0, that is,
the first inequalities of both (10) and (11). From B~ < 47“ it also follows that
B~y g(A) < A™%0y, g(4) <1 and B o4 g(A) < h(A4). Thus we get the second
inequalities of both (10) and (11).

Suppose next logA4 <logB and 4 and B are invertible. Upon replacing
B by B+ ¢ if necessary, we may assume logA4 + ¢ <logB for some ¢ > 0.
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By taking the uniform derivatives of 4’ and B’ at t=0 there is a d >0 so
that 4 < B* for every a € (0,0). Thus the same argument leads us to (10)
and (11). [

We have already shown (10) in [II]. The functions ,(x) = x"/(*+9 and
¢,(x) = xr+P)/(r+4) satisfies the condition of the preceding theorem with g(x) = x4
and h(x) =x? for (0 <p <g). So, (10) and (11) imply

A< (Ar/2BqAr/2)r/(r+q)7 (Br/2AqBr/2)r/(r+q) < Br,
Ar/ZBpAr/Z < (Ar/ZBqAr/z)(;~+p)/(r+q)’ (Br/2AqBr/2)(r+p)/(r+q) < Br/ZApBr/Z.
One can see that these are extensions of (1) and (3); indeed, by putting p =1 in
the third inequality one get (1).

RemARK 2.1. In the above theorems, we assumed that the families {y,},.,
and {¢,},., satisfy (5) and (6) respectively. However their proofs are still valid
if (8) and (9) hold. Therefore, theorems are true even if we assume that i, and
¢, are non-negative operator monotone functions on [0, 00) with ¥,(0) =0 and
,(c0) = oo and that for all r and s with r > 5> 0

U (0, () 0x) = gy () and (0 (%) x) = () g ()

instead of (5) and (6); because they satisfy

V(YT () =07 and g (Y () = 0 (T (),
from which (8) and (9) follow.

Remark 2.2. Let {4,},., be a weakly continuous semi-group of positive
semidefinite operators, that is, 4, = A,4;. Then we get (4,)" = A4,, for a > 0.
Thus from [Theorem 2.2 we obtain

(a) if Auoy, B> 1, then A,oy, B is increasing for r > 1;

(b) if Auoy,B <1 for invertible A, and B, then Aoy, B is decreasing for

r>1.

3. Weighted geometric means.

Our objective in this section is to apply the results we got in the preceding
section to the weighted geometric means. As we mentioned in the first section
the symbols # and o,. express the same weighted geometric mean for 0 < A < 1.

A
By (iv) we have AfB=B { A.
) 1-2

Lemma 3.1. Let a>0, ¢>0 and ¢ >d. Then the following hold.
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(@) if A and B are invertible and if A* § B<1, then A" § B is

decreasing for r > max(a, —d); af(ate) (r+d)/(r+¢)
(b) if A 4 B=>1, then A~ § B is increasing for r > max(a,—d).
af(a+c) (r+d)/(r+c)

Proor. The functions y,(x) = x"/0+<) and ¢,(x) = xU+9/+) gatisfy (5) and
(6) with g(x) = x¢ and h(x) = x?. , is operator monotone for r >0 and so
is ¢, for r > max(0, —d). We show only the first statement. By

A ¢  B<1 for a; :=max(a,—d). Thus by A" 4  Bis
ar/(a1+c) (r+d)/(r+c)
decreasing for » > a;. This implies the desired result. O

THEOREM 3.2. For a given ¢ > 0 define a function F(r,s) by

F(r,s)=A" & B for r>0,5s>0. (12)
r/(r+sc)

Then, for r >a >0, s>b >0 the following hold:
(@) if A and B are both invertible and F(a,b) <1, then F(r,s) < F(a,b);
(b) if F(a,b) =1, then F(r,s) > F(a,b).

Proor. We show only the first statement. From it follows that

1>F(a,b)>F(r,b)=4" 4 B'=B" ¢ A =B" ¢ 4

r/(r+bc) be/(r+be) b/(b+r/c)
>B 4 A =A" 4 B'=A4" t B =F(s). 0
s/(s+r/c) (r/c)/(s+r/c) r/(r+sc)

By using the above theorem twice, from F(a,b) < 1 it follows that F(r,,s,) <
F(ri,s1) < F(a,b) for r; >r; > a and for s, > 51 > b.
The case 4 = 1/2 of the following corollary resembles the result shown in [I].

COROLLARY 3.3. For a given 4 as 0 < A< 1 the following hold:
(a) if A]jB <1 for invertible A and B, then A" ljB’ is decreasing for r > 1;

(b) if Ath > 1, then A" jjB’ is increasing for r > 1.

PrOOF. Define ¢ by A =1/(1 +¢) and use to get this. [

Now we treat a quadratic equation B = XAX given in the first section.
Assume that 4 and B are invertible. Then the solution is given by A~'4B. By
(Corollary 3.3 we get:

(a) if A4 B > 1 then the solution A~ 4 B" of B" = XA'X is increasing for

r>1;

(b) if A"'4B <1 then A" B’ is decreasing for r> 1.

The following is the main theorem of this section.
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THEOREM 3.4. For real numbers ¢ >0 and d, define F(r,s) by (12) and
G(r,s) by

, d
G(r,s) = A’ t B forr>0,s>0 with 0< s
(r+d)/ (r+s0) r+sc

<1.  (13)

Let a>0,b>0and —a <d <bc. Then for ry >r > a and for s, > 51 > b the
following hold-
(a) if A and B are both invertible and F(a,b) < 1, then G(ry,5) < G(r1,s1);
(b) if F(a,b) > 1, then G(ry,s,) = G(r1,s1).

ProoF. We show only the first statement. Theorm 3.2 implies F(ry,s1) <
F(a,b) < 1. Therefore, it is sufficient to prove G(r,s) < G(a,b) for r > a and
for s > b. Suppose r >a and s > b. Since r > a > —d, by [Lemma 3.1, we have
G(r,b) < G(a,b) and F(r,b) < F(a,b). The latter fact yields

1>4" 4 B'=B" ¢ 4"=B" ¢ 4,
r/(r+bc) be/(r+bc) b/(b+r/c)

from which, by Lemma 3.1, it follows that

U

B* i A" < B’ i A" because of s>b> —.
(s=d/c)/(str/c) (b=d/c)/(b+r/c) ¢

Since the right-hand side in the above inequality equals

B’ i A"=A" ¢ B =G(rb),
(be—d)/(be+r) (r+d)/(r+bc)

and since the left-hand side equals

B’ i A"=A4" ¢t B =G(ns),
(sc—d)/(sc+r) (r+d)/(r+sc)

the above inequality means G(r,s) < G(r,b). Consequently, we get G(r,s) <
G(a,b). ]

The above theorem says that if F(a,b) <1, G(a,b) < K then G(r,s) < K
for r > a, s > b; moreover, if F(a,b) =1 then G(r,s) is constant, though this
directly follows from the definitions of F(r,s) and G(r,s). Notice that G(r,s) =
F(r,s) if d=0.

So far, we have seen that F(a,b) <1 (or F(a,b) > 1) has a great influ-
ence on G(r,s). Now we give a sufficient condition on G(r,s) in order that
F(a,b) <1 (or F(a,b) >1).

ProrosiTION 3.5. Let A and B be invertible. Let a >0 and ¢ > d > 0.
Then the following hold:
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A 4 B<A9=4° ¢ B<I,;
(a+d)/(a+c) a/(a+c)

A 4 B>A4%=4° § B>1.
(a+d)/(a+c) af(a+c)

ProoF. The first assumption implies

(A—a/ZBA—a/z)(a+d)/(a+c) < A_(‘H'd)

Y

from which, by the Lowner-Heinz inequality, it follows that

(A79*BA=?) @) < g~ and hence A § B<1. ]
a/(a+c)

4. Applications.

We mentioned after that (10) and (11) are extensions of (1)
and (3). However we give simple proofs of (1) and (3) to explain how
3.4 is useful, and we give an extension of (2).

(1): We may assume 4 and B are invertible. From A < B it follows that
A" > B~ for every a with 0 < a < 1. Substitute 47! for 4 in (12) and (13),
and put c=1 and d =1. Then

Fla,)=4 ¢ B>B“ t B=1, Ga1)=4° t B=B8
a/(a+1) a/(a+1) (a+1)/(a+1)

Thus by Theorm 3.4

G(r,s)=4" ¢ B
(r+1)/(r+s)

is increasing for r > a and for s > 1; especially, G(r,s) > G(a,1) = B> A. Since
a is arbitrary, we have G(r,s) > A for r >0,s > 1. Replace p for s to get
(1). O

(3): We show, by using Theorem 3.4, the stronger result:
A<B= erA/2epBerA/2 < (erA/2querA/2)(r+p)/(r+q) (r S 0,q >p> 0)

Upon replacing B by B+ ¢ if necessary, we may assume that 4 +& < B for
some ¢ > 0. By taking the uniform derivatives of ¢4 and e® at ¢t =0, there is
a 0 >0 so that e < e® for all a with 0 <a <d. Put

F(r,s)=e™ 4 &8 Gu,s)=e™ ¢ o5
r/(r+s) (r+p)/ (r+9)

Then we get
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Fla,p)=e § elB>e 8 4 oB=1,
a/(a+p) af(a+p)

Gla,p)=e § el =erB
(a+p)/(a+p)

Thus G(r,s) is increasing for r>0 and for s> p, since
This implies especially G(r,q) > G(r, p), from which we can
result.

a 1s arbitrary.
get the desired

]

Now we give an extension of (2). By putting B= A in the following we

get (2).

ProrosITION 4.1. If A < B < C and if B is invertible, then for 0 <t <1,

t<r,1<pand 1 <s

A1t < {Ar/2(Bft/ZCprt/Z)sAr/2}(1—H—r)/(ps—ts—)—r)7

{Cr/2(sz/2ApB—t/2)sCr/2}(1—t+r)/(ps—ts+r) < leHr.

Proor. If 1=0, reduces to (1). So we assume 0 < ¢
without loss of generality, assume A is invertible. Put

K =B"*CrB',
Then is equivalent to

(14)

<1. We may,

At <47 i KS (t<r1<p,1<ys).
(r+1=1)/(r+ps—ts)
Put
F(r,s)=A4" ¢ K’ and G(r,s)=4" i K.
r/(r+ps—ts) (r+1=1)/(r+ps—ts)

B! > A' yields A'?B~'A"? < 1; since x'/? is operator concave (see [5]) we obtain

AZ‘/QB—Z/Z(CP)I/PB—Z/ZAI/Z < (AI/ZB—Z/Zch—I/2A1/2)1/[7,

from which 1t follows that

Ft,)=A" ¢ K'>B?C'B"? > 1,
i/p

G(t,1)=47" ¢ K!' > B/>CB™"* > B'"' > 4",
1/p

By virtue of Theorem 3.4, G(r,s) is therefore increasing for r > ¢ and for s > 1;
in particular, G(r,s) > A'~". Thus we get [14]. The second inequality follows

from by taking the inverse of it.

]
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CoMmMENTS. After this paper was accepted, the author heard that the
essentially same result as (a) has been already gotten by T. Furuta,
T. Yamazaki, M. Yanagida in “Operator functions implying generalized Furuta
inequality” Math. Inequal. Appl. (1998). Their proof depends on (1); however,
ours does not depend on (1).
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