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Abstract. We show that a so called split Anosov R
n-action on a closed oriented

ð2nþ 1Þ-dimensional manifold is Cy conjugate to the suspension of a split hyperbolic

a‰ne representation of Z
n on the ðnþ 1Þ-dimensional torus.

1. Introduction.

Let M be a closed oriented 2nþ 1 dimensional Cy manifold, equipped with

a Cy Riemannian metric, and let

c : M � R
n ! M

be a locally free R
n-action on M. We frequently use the notation

cxðxÞ ¼ cðx; xÞ

for x A M and x A R
n.

Definition 1.1. The action c is called a split Anosov R
n-action if there is

a continuous splitting of the tangent bundle TM of M

TM ¼ TR
n
lE1 l � � �lEnþ1;

with the following properties, where TR
n denotes the tangent bundle of the orbit

foliation of the action c.

1. Each line bundle Ei is invariant by the derivative cx
� for any x A R

n.

2. There are elements xi A R
n ði ¼ 1; 2; . . . ; nþ 1Þ, and constants l > 0 and

C > 0 such that

kc txiðvÞkbCeltkvk; Ev A Ei; Et > 0;

kc txiðvÞkaC�1e�ltkvk; Ev A Ej; ð j0 iÞ Et > 0:
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The set of split Anosov actions forms an open subset in the space of R
n-

actions with the Whitney C1 topology. Henceforth we assume n > 1. The

purpose of this paper is to show a classification result of such actions up to Cy

conjugacy (Theorem 3.1). Our method strongly depends on an argument of A.

Katok and J. Lewis in [KL] for the local rigidity, and the topological classifi-

cation of codimension one Anosov di¤eomorphisms due to J. Franks and S. E.

Newhouse.

2. Split Anosov Z
n-actions.

In this section we prepare a global rigidity of so called split Anosov Z
n-

actions, which is a slight generalization of Theorem 4.12 of [KL].

Let us begin with exposing a well known fact about maximal rank abelian

subgroups of SLðnþ 1;ZÞ consisting of hyperbolic matrices.

Proposition 2.1. The following statements concerning a representation

r : Z
n ! SLðnþ 1;ZÞ are equivalent.

(1) The representation r is faithful and its image rðZ nÞ is generated by

hyperbolic matrices.

(2) For any nonzero b A Z
n, rðbÞ is hyperbolic.

(3) There exist elements a1; a2; . . . ; anþ1 of Z
n and a direct sum decompo-

sition

R
nþ1 ¼ V1 l � � �lVnþ1

such that each one dimensional subspace Vi is invariant by rðZ nÞ and that

rðaiÞ is expanding along Vi and contracting along Vj ð j0 iÞ.

The proof that (1) implies (3) can be found in [KL], while it is an easy

exercise in linear algebra to show that (3) implies (2).

Let us denote by A¤þðT
nþ1Þ the group of the orientation preserving a‰ne

transformations of T nþ1. An a‰ne representation

R : Z
n ! A¤þðT

nþ1Þ

is called split hyperbolic if its linear part

R� : Z
n ! SLðnþ 1;ZÞ

satisfies the conditions of Proposition 2.1.

Let N be a closed oriented nþ 1 dimensional Cy manifold and let us

denote by Di¤y

þ ðNÞ the group of the orientation preserving Cy di¤eomorphisms

of N.
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Definition 2.2. A homomorphism

S : Z
n ! Di¤y

þ ðNÞ

is called a split Anosov Z
n-action if there are a continuous splitting

TN ¼ E1 l � � �lEnþ1

invariant by the derivative SðZ nÞ�, and elements a1; . . . ; anþ1 of Z n such that, for

any i ð1a ia nþ 1Þ, SðaiÞ is an Anosov di¤eomorphism, expanding along Ei

and contracting along Ej ð j0 iÞ.

Theorem 2.3. Let S be a split Anosov Z
n-action on an nþ 1 dimensional

closed oriented manifold N. Then there exist a Cy di¤eomorphism h : N ! T nþ1

and a split hyperbolic a‰ne representation

R : Z
n ! A¤þðT

nþ1Þ

such that h � SðbÞ ¼ RðbÞ � h for any b A Z
n.

The rest of this section is devoted to the proof of this theorem. First of all

extending the result of J. Franks [F ], S. Newhouse [N] obtained the following

topological classification of codimension one Anosov di¤eomorphisms.

Theorem 2.4. Any codimension one Anosov di¤eomorphism is topologically

conjugate to a hyperbolic toral automorphism.

We also need the following lemma.

Lemma 2.5. Let g be a homeomorphism of T nþ1, homotopic to the identity,

which commutes with a hyperbolic toral automorphism A. Then g is a rational

translation.

Proof. The point 0, as well as gð0Þ, is a fixed point of A. An easy

computation shows that the translation by gð0Þ commutes with A. Thus one

needs only to show that g is the identity assuming gð0Þ ¼ 0. Let F s (resp. Fu)

denotes the stable (resp. unstable) foliation of f . The homomorphism g leaves

these foliations invariant. As is well known, all the leaves of F
s and F

u

are dense in the torus. Let ~FF
s (resp. ~FF

u) be the lift of F
s (resp. Fu) to the

universal covering space R
nþ1. Then the action of p1ðT

nþ1Þ on the quo-

tient space R
nþ1= ~FF

s (resp. R
nþ1= ~FF

u) has the property that all the orbits are

dense. Now since g is homotopic to the identity, a lift ~gg of g satisfying ~ggð0Þ ¼ 0

commutes with all the deck transformations. Therefore the transformations on

the quotient spaces R
nþ1= ~FF

s and R
nþ1= ~FF

u induced from ~gg leaves the points

of the p1ðT
nþ1Þ-orbit of 0 fixed, and hence is the identity. This shows that ~gg is

the identity. r
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Proof of Theorem 2.3. Let S be a split Anosov Z
n-action on N, with

a1; . . . ; anþ1 A Z
n chosen as in the definition. Then by Theorem 2.4, there are

a homeomorphism h : N ! T nþ1 and a hyperbolic toral automorphism A1 such

that h � Sða1Þ ¼ A1 � h.

For any element b A Z
n, define B A SLðnþ 1;ZÞ by

B ¼ ðh � SðbÞ � h�1Þ� : H1ðT
nþ1

;ZÞ ! H1ðT
nþ1

;ZÞ:

Then B�1 � h � SðbÞ � h�1 is a homeomorphism, homotopic to the identity, which

commutes with A1. By virtue of Lemma 2.5, h � SðbÞ � h�1 is an a‰ne trans-

formation. That is, we obtain a homomorphism

R : Z
n ! A¤þðT

nþ1Þ

by RðbÞ ¼ h � SðbÞ � h�1 ðb A Z
nÞ. Clearly R is a split hyperbolic a‰ne rep-

resentation. Now an argument in the proof of Theorem 4.2 of [KL] shows that

h is a Cy di¤eomorphism. The proof of Theorem 2.3 is complete. r

3. Main theorem.

Let R : Z
n ! A¤þðT

nþ1Þ be a split hyperbolic a‰ne representation. There

is defined a suspension manifold

MR ¼ T nþ1 � R
n=ðx; xÞ@ ðRðaÞx; x� aÞ;

where a A Z
n. An R

n-action ðx; xÞ � x 0 ¼ ðx; xþ x 0Þ on T nþ1 � R
n induces an

R
n-action cR on MR.

Now let us state the main theorem of this paper.

Theorem 3.1. Any split Anosov R
n-action c on a closed oriented 2nþ 1

dimensional manifold M is Cy conjugate to the action cR on MR for some split

hyperbolic a‰ne representation R, i.e. there are a Cy di¤eomorphism h : M ! MR

and an automorphism F of R
n such that h � cx ¼ c

FðxÞ
R � h for any x A R

n.

We will use the notations in Definition 1.1. Let us define four foliations

associated with the flow cxit.

: The strong unstable foliation V
u

i , tangent to Ei.

: The weak unstable foliation W
u
i , tangent to TR

n
lE i.

: The strong stable foliation V
s

i , tangent to E1 l � � �lEi�1 lEiþ1 l

� � �lEnþ1.

: The weak stable foliation W
s
i , tangent to TR

n
lE1 l � � �lEi�1 l

Eiþ1 l � � �lEnþ1.
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Remark 3.2. All the above foliations are continuous foliations by Cy

leaves and the Cy structures of leaves vary continuously along the transverse

direction. The tangential distributions of these foliations are Hölder continuous.

For the first statement, see [HPS]. The last statement can be shown using

an argument in Section 19.1 of [KH]. Notice also the action cx preserves all

the above foliations.

Lemma 3.3. There is a Cy foliation F tangent to E1 l � � �lEnþ1 and

invariant by cx ðEx A R
nÞ.

Proof. First of all by an argument analogous to that for Anosov flows one

can verify that two points x and y lie on the same leaf of V
s

i if and only if

dðcxitðxÞ;cxitðyÞÞ tends to 0 as t tends to y. This shows that Vs
i is the unique

foliation tangent to E1 l � � �lEi�1 lEiþ1 l � � �lEnþ1, and therefore that V
u

j

is a subfoliation of V
s

i if i0 j.

Consider the two dimensional foliation G1;2 obtained as the transverse

intersection of V
s

3 ;V
s

4 ; . . . ;V
s

nþ1. Then the two one dimensional foliations V
u

1

and V
u

2 are subfoliations of G1;2. Let j t
i be a nonsingular flow tangent to V

u
i

such that kðd=dtÞj tðxÞk ¼ 1 for any t A R and x A M. Then for any x A M and

any small s; t A R, there are s 0 ¼ s 0ðx; s; tÞ and t 0 ¼ t 0ðx; s; tÞ such that

j t
1j

s
2ðxÞ ¼ j s 0

2 j
t 0

1 ðxÞ:

Of course the same thing holds for any other pair of indices.

Let BðaÞ be a small open metric ball centered at a A M. For any per-

mutation s of the indices 1; 2; . . . ; nþ 1, define a submanifold F ðaÞ of BðaÞ

consisting of those points x which can be represented as

x ¼ j t1
sð1Þj

t2
sð2Þ � � � j

tnþ1

sðnþ1ÞðaÞ; jtij < k;

for some k > 0. Choosing the ball BðaÞ and the constant k appropriately, one

gets that F ðaÞ is a connected subset of BðaÞ, which is independent of the choice

of the permutation s. This shows that FðaÞ is tangent to E1 l � � �lEnþ1. It

is clear from the construction that the family fFðaÞ j a A Mg defines a foliation,

which is denoted by F. Notice that for any x A R
n, the map cx preserves the

foliation F. For small e > 0, let

Dða; eÞ ¼ fy A M jc�xðyÞ A FðaÞ; jxj < eg:

Define a map p : Dða; eÞ ! R
n by pðyÞ ¼ x if c�xðyÞ A FðaÞ.

Now according to [J], a continuous function on a Cy manifold is Cy if
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it is Cy along leaves of two transverse foliations of complementary dimension

which satisfy the conditions of Remark 3.2.

Therefore on each leaf of Wu
1 , the function p is Cy. On the other hand on

each leaf of Vs
1 , the function p is constant. This shows that p is a Cy function,

proving that F is a Cy foliation. r

Let X1; . . . ;Xn be a linear basis of Rn. Via the action c, they induce vector

fields on M, which are denoted by the same letters by some abuse. Let Y be

an arbitrary vector field tangent to the foliation F. Then ½Xi;Y � is also tangent

to F, since F is preserved by cx. Define 1-forms o1; . . . ;on by

oijTF
¼ 0; oiðXjÞ ¼ dij; i; j ¼ 1; 2; . . . ; n;

where TF denotes the tangent bundle of F. They are linearly independent

closed 1-forms and the foliation F is characterized by

TF ¼ Kerðo15� � �5onÞ:

Let o 0
i be a nonsingular closed 1-form near oi in the C1 topology which rep-

resents a rational cohomology class. Then the foliation F
0 defined by

TF
0 ¼ Kerðo 0

15� � �5o 0
nÞ

is a bundle foliation. In particular all the leaves of F
0 are compact.

Define vector fields X 0
1; . . . ;X

0
n tangent to TR

n by

o 0
i ðX

0
j Þ ¼ dij ði; j ¼ 1; 2; . . . nÞ:

They commute with each others and define an R
n-action c 0. The orbit foliation

of c 0 is the same as that of c, and c 0 x preserves the bundle foliation F
0. Since

we have chosen o 0
i su‰ciently close to oi, the R

n-action c 0 is also split Anosov.

Now let N be a leaf of F
0 and let

G ¼ fx A R
n jc 0 xðNÞ ¼ Ng:

Then G is a discrete cocompact subgroup of R
n, and is isomorphic to Z

n. To

show that G is cocompact, notice that c 0 induces a locally free R
n action on the

base space M=F, which is an n dimensional manifold.

Now the restriction of c 0 to G defines a homomorphism

S : G ! Di¤y

þ ðNÞ;

which is split Anosov. Using Theorem 2.3, one can show that S is conjugate to a

split hyperbolic a‰ne representation on T nþ1. In particular the manifold M is

a T nþ1-bundle over T n with hyperbolic monodromies. Now succesive com-

putations of Wang sequences show
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Homðp1ðMÞ;RÞ ¼ H 1ðM;RÞGR
n:

With this in mind, let us return to the study of the original foliation F.

Since F is defined by the closed 1-forms o1; . . . ;on, F is a Riemannian foliation,

i.e. admits a holonomy invariant transverse Riemannian metric. Furthermore

the foliation F is without holonomy, i.e. the leafwise holonomy group of any

leaf is trivial. As a consequence F satisfies the following property. Let us

denote by Dn the unit disc in R
n. For any leaf L of F, there is a Cy sub-

mersion.

H : L�Dn ! M;

such that

: Hðx; 0Þ ¼ x ðEx A LÞ,

: HðL� fygÞ ðEy A DnÞ is contained in a leaf of F,

: Hðfxg �DnÞ ðEx A LÞ is contained in an orbit of the action c and is a

unit disc centered at x w.r.t. the holonomy invariant transverse metric.

Consider the lift ~FF (resp. ~ooi) of F (resp. oi) to the universal covering

space ~MM of M. Let pi : ~MM ! R be a primitive of ~ooi. The foliation ~FF is

defined by the submersion

p ¼ ðp1; . . . ; pnÞ : ~MM ! R
n:

The above property of the Riemannian foliation F implies that p is a locally

trivial bundle map onto R
n. Consider the quotient space M ¼ ~MM= ~FF and the

map q : M ! R
n induced from p. Then q is a covering map and thus a

homeomorphism. That is, the bundle p : ~MM ! R
n has a connected fiber.

Since the deck transformation of p1ðMÞ leaves the 1-forms ~ooi invariant,

there is defined a homomorphism

y : p1ðMÞ ! R
n

such that

pðg � xÞ ¼ pðxÞ þ yðgÞ; g A p1ðMÞ; x A ~MM:

The image yðp1ðMÞÞ must be cocompact, since otherwise the map p induces a

continuous map from a compact set M ¼ p1ðMÞn ~MM onto a noncompact set

Clðyðp1ðMÞÞÞnRn.

But this shows that the image yðp1ðMÞÞ is discrete in R
n, since we have

Homðp1ðMÞ;RÞGR
n. That is, for any leaf L of F, the image pðp�1ðLÞÞ is

discrete, where p is the universal covering map. This implies that the leaves of

the foliation F are compact. Applying the previous argument once again to the

action c, the proof of Theorem 3.1 is complete.
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