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Abstract. We give a strong unique continuation theorem for time harmonic Max-
well’s equations in inhomogeneous anisotropic media of three dimensional space. The
components of the matrices in the constitutive relations are supposed to be Holder con-
tinuous. Furthermore, they are supposed to be differentiable except at one point where
they may have critical singularities of Coulomb type. These assumptions prevent us to
use the usual second order approach, so that we have to utilize a certain nice structure
of Maxwell’s equations as the first order system.

1. Introduction.

There is a long history about the strong unique continuation property. It
goes back to the works due to T. Carleman, C. Miiller, E. Heinz, N. Aronszajn
and H. O. Cordes. After their works many advances have been obtained.
Among them the differential inequalities with critical singularities as well as sub-
critical ones are intensively investigated in connection with the absence of positive
eigenvalues in the continuous spectrum [T], [7] and [4]. Contrary to this, only few
attempts have so far been made at studying about unique continuation property
for systems [5], [9], [10], and [6].

In this paper we are concerned with Maxwell’s equations in continuous
medium U < R*:

(L1) {6IB+curlE:0, div B =0,

—0;D+curlH =J, divD =p.

In this system the vector-valued functions E(x,?), B(x,t), D(x,t) and H(x,t) are
unknown. They are called respectively the electric field, the magnetic induction,
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the electric induction and the magnetic field. p(x, ) is supposed known and
called the charge density. On the other hand, the vector-valued function J(x, ¢)
is often supposed to be unknown, which are called the current density.

The constitutive relations are given by

(1.2) D=¢E, H=u'B, J=0¢E.

In isotropic and homogeneous media we assume that ¢ and u are positive
constants characteristic of the medium considered, called respectively the permit-
tivity (or the dielectric constant) and magnetic permeability. Furthermore, in this
case, g is a nonnegative constant called the constant of conductivity. The third
relation of is called Ohm’s law.

In inhomogeneous anisotropic media such as crystals, ¢ and u are symmetric
matrices depending only on the position x. Moreover, ¢ is also a nonnegative
symmetric matrix, called conductivity tensor (cf. [2]).

The problem in which we are interested here is the stationary one. Let U be
a connected open subset of R® containing the origin and

(1.3) E(x,t) = Eo(x)e™, B(x,1) = By(x)e™,

where A is a non-zero real constant. Substituting these functions into the equa-
tions (1.1}, we obtain the time harmonic Maxwell equations in an anisotropic
inhomogeneous medium U:

(1.4) { —curl E = iu(x)H,

curl H = ile(x)E + a(x)E.
Here, u(x), ¢(x) and o(x) denote 3 x 3 nonnegative real symmetric matrix-
valued functions in U, and 42 € R\{0}. In what follows, we call them constitutive

matrices. is a 6 x 6 system with a weakly coupling lower order terms. Its
principal part is not elliptic. In fact, the characteristic polynomial of the symbol

of
0 —curl
curl 0

is equal to 72(r — i|¢])*(t + i|¢])*.

The usual approach for studying is to transform them into second order
systems. Temporarily we assume that the three constitutive matrices are scalar.
We shall use the following notation when there is no confusion:

e(x) = e(x)h,  pu(x) = pu(x)h,  o(x) = o(x)L.
As a direct consequence of [1.4), we have
(1.5) div(u(x)H) = div((ile(x) + a(x))E) = 0.
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Using the identity
(1.6) curlcurl H = —AH + graddivH

and
3
divH = =) u ' (u)H;,
=1
we have the second order system:

3
—AH + grad Z'“il (Oju)H; = curl(ide + o)E.
=1
Likewise,

3
— AE + grad Z(ia +o8)"! (0j(Ae+0))E; = —curl(iiuH).
=1

However, this method requires the differentiability of x, ¢ and ¢ up to the second
order.

Instead of this second order approach, we will take advantage of a nice
structure as the first order system [1.4).

Denote the smallest eigenvalue of #(0) and ¢(0) by u,,;, and &min, respectively.
We shall assume that (x) = 0 in the nonisotropic case. In addition, we require
that all the component of s (x), & (x) and gy (x) belong to C°(U) N C'(U\{0})
with 0 < 1, and that there exist positive constants C; and C; such that for any j
and k=1,2,3,

(17 dim sup [x|*[Viy (x)] < Ciptin,  lim sup - |x|* Ve (x)] < Coemin

=0 0<|x|<r =0 0<|x|<r
with k¥ < 1. Here, for any nonnegative number § < 1, C°(U) denotes the class
of all Holder continuous functions f defined in U such that

3C>0, Vxand yeU, [f(x)—f(») < Clx—y|’.

Needless to say, these assumptions prevent us to employ the usual second
order approach.

Subcritical cases (x < 1) has been studied, under the additional condition
¢(0) = u(0) =1, by V. Vogelsang where he used a skillful technique based on
the symbol calculus. On the other hand, the critical cases (x = 1) require more
precise techniques based on the operational calculus. This often causes some
difficulties in studying general system of inequalities. Fortunately the Maxwell
system as well as the Dirac operator has a nice structure that we shall see later.
For the sake of this fact, we can show that under a certain condition the Maxwell
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system with the critical singularities has the strong unique continuation property
if the constants C; and C, are zero (Corollary 2.2). In addition, we can relax
the condition for the isotropic case (Theorem 2.3). Finally, we remark that the
Maxwell equations in a vacuum can be written in the form analogous to the Dirac
equation (§8). Therefore, a part of our results for isotropic cases can be covered
by the previous work [3]. However, we shall give an independent proof for that
result.

2. Statement of results.

2.1. Main result.

Let U be a connected open subset of R® containing the origin and U be
U\{0}. First of all, for a C>-valued function u, we investigate the following
differential inequalities, called the Maxwell type.

2.1) { lcurlu| < Aq|u|/|x|

\div(ow)| < Aalu|/|x], xeU

where A;, j=1,2 are positive constants and o(x) is a 3 x 3 real positive sym-
metric matrix defined in U.

In what follows, C!(U) denotes the subset of C'(U) consisting of all func-
tions f satisfying

(2.2) lim sup {|x||Vif(x)|} =0.

P=0 0<|x|<p
We assume that for some 0 <o < 1,
(2.3) a(x) e CO(UYNCHD).

In what follows, o, and o respectively stand for the smallest and the largest
eigenvalue of «(0), which are positive by our assumption. We say that a function

ue L} (U) vanishes of infinite order at the origin if
(2.4) m%fNJ ul*dx =0, VNeN.
r— ‘X|SV

THEOREM 2.1.  Let o satisfy (2.3).  Suppose u € {HILC(U)}3 satisfies (2.1) with

(2.5) Ammrh@<“ﬁﬂ

If u vanishes of infinite order at the origin, then u is identically equal to zero in U.

When the last statement in [Theorem 2.1 holds, we say that the system has
the strong unique continuation property in U.
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As an application of [Theorem 2.1, we can see that Maxwell’s equations
have this property. Keep the same notation as in the previous section.

COROLLARY 2.2. Let a(x) =0. Suppose that u(x) and &(x) are real, strictly
positive and symmetric in U such that

(2.6) 21(0) = Z02(0), 3o > 0.

In addition, we assume that every component of these two matrices belongs to
CO(UYNCH(U) with 0 <5 < 1. Then, the time harmonic Maxwell equations (1.4)
have the strong unique continuation property in a neighborhood of the origin.

THEOREM 2.3. Suppose that u, ¢ and o are scalar functions belonging to
CO(UYNCY(U). Let &x) = Ae(x) —io(x). In addition, we assume that there exist
positive constants M;, j=1,2 such that

lim sup |x| [u(x)|~ Va(x)| < My,
=Y 0<x|<r

(2.7) ' e
lim sup |x||e(x)] |VE(x)| < Ma.

r=0 o< |x|<r

If max(My, M) < 1/2, then the time harmonic Maxwell equations (1.4) have the
strong unique continuation property in U.

The proof for the nonisotropic case is much more difficult than for the
isotropic case. We, at first, consider the isotropic cases in the section 4. Our
strategy for proving the isotropic cases (Theorems 2.3) is as follows. First, we
shall reduce the system into two 3 x 3 elliptic systems of the Maxwell type
with a scalar matrix «(x). Introducing the polar coordinates, we shall
transform the new system into a system having a nice radial and an angular part
(Proposition 4.4). Thanks to their nice structure, we can obtain a precise infor-
mation on the spectrum of its angular part to derive a so-called Carleman in-
equality by using a basic principle, which is described in the section 3.

The proof for the nonisotropic cases (Theorem 2.1 and [Corollary 2.2) is
given in the section 5. It is strongly connected to the theory of elliptic systems
with variable coefficients. We will approximate it by the isotropic system and
utilize two type of weight functions so that Carleman estimates hold.

3. Carleman estimates for the model equations.

We are now going to describe a basic principle which yields Carleman esti-
mates for the equations with critical singularities. Let d be a positive integer.
Suppose that G is a selfadjoint operator in {L2(S%)}? with D(G) > {C*(S%)}*
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+00

= consisting

and there exists in {L2(S%)}¢ a complete orthonormal basis {9,
of eigenvectors of G:

Go; = 1id;, JEZ,
where 4;, j € Z, are numbered in nondecreasing order such that
< Aa<ig<0< iS4 <
Define 2 = {4;; j=1,2,...}, which is a subset of positive real numbers.
ProposITION 3.1. In addition to the above conditions, suppose

Igim inf{|[x—y|:x#y, x,ye ZN[R,0)} =0 > 0.

Then we can find a sequence {yj}joil of positive numbers which tends to oo as
j — oo such that

A 1\’
(3.1) x| 7273 = réu+ Gul* dx > é—f x| 72072 |u| ® dx
2

for any ue {Cy (0 < |x| < )Y and any sufficiently large je N. In particular, if
there exists a positive number Ry such that

(3.2) inf{lx—y|:x#y, x,yeZN[R, 0)} =J, VR > Ry,
then the similar estimate to (3.1) without its error term —1/j holds.

Proor. From the hypothesis, it follows that

(3.3) u(x) =Y w(rg;(@) in {L(S)°}.

jeZ

Set y =logr and I = (—00,0). The next lemma gives a crucial step for esti-
LEMMA 3.2. Let v, y€R.
J e 2
I

mating each coefficients u;(r) of the eigenfunction expansion (3.3).
2
for any fe Cy(I).

Proor. This identity can be easily verified by use of an integration by
parts. L]

Ay ar= [ s enror + [ e rron
dy I dy
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We now continue the proof of [Proposition 3.1. Applying this lemma with
v=/4e€Z and f(y)=u(e’), we obtain

(3.4) Jr_zy‘3|—r5ruj + /ljuj|2r2 dr > (—y+ /lj)z Jr_z"/_3|uj|2r2 dr

for any positive j.

We define a sequence {vi},.y of positive numbers as (4x + Ax+1)/2 for
keN. Let Ny be a positive integer satisfying 6 —2/Ny > 0. From the defi-
nition of 4, it follows that there exists a subsequence {v}} of {v;} such that for
any ke N,

0 1

: 1
- > - .
min|=ve + 41 = 5 - 5

Likewise, we can find a subsequence {vZ} of {v}} such that for any k € N,

min |- + 4| > o |
jeZ k J -2 N0+2

Proceeding in the same manner, we can find a subsequence {v)'} of {v}~!} such
that for any ke N,
) 1

: N
— > — .
%?|W+M—2 No+ N

Define a sequence {y;}, .y as {vf}. Then,

o 1\’
(3.5) Jrzyk3|—r(3,ﬂuj + Guj|2r2 dr > <5 R k) Jr2yj3|uj|2r2 dr

for any ke N and je Z. Let B, ={xeR>:|x| <r'}. In view of the identity

!

()5, = zj (1) P dr.

jeZ 0

follows from (3.5). If holds, the proof becomes much simpler. So we
omit it. This completes the proof of [Proposition 3.1|. ]

In the subsequent sections we shall use the simple case in
3.1. In order to apply it, we have to reduce our system to the canonical form
and investigate the spectrum of G. There is, however, a large difference in their
treatment between the isotropic cases and the nonisotropic ones. First, we will
consider the isotropic ones in the section 4 where we will give a beautiful struc-
ture of Maxwell’s equations. In the section 5 we will treat the nonisotropic cases
by use of perturbation method which is developed in the theory of single elliptic
equations with variable coefficients (cf. [8]).
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4. Isotropic cases.

In this section we consider the case where all the matrices ¢ and u are scalar
ones, which is called the isotropic case. The Carleman inequality we would like
to show is the followings.

THEOREM 4.1. Let Q be any nonempty open ball with center at the origin of
R®. Then,

1 12 12 12
E{J|x|2y2|u|2dx} S{J|x|2y|cur1u|2dx} —I—{J|x|2y|divu|2dx}

for any ue {C{ (Q)}3 and any large positive y € Z.
The proof of this result is given in Section 4.1 and 4.2.

4.1. The polar coordinates and the canonical form.
We use the polar coordinates: x = rmw, where

(4.1) w(0,p) = E)C' = (sin 0 cos ¢, sin fsin ¢, cos 0).

The gradient operator is represented by

1 1
V=wi+-2, Q= (0pw)ip+ (0yw)———0,=0wAL.
r sin” 0

Here, iL = (iL;,iL,,iL3) are the angular momentum operators:
Ly = x203 — X302, Ly =x301 —x103, L3=x102—x201.

They are written in the polar coordinates as follows.

L= .L{(agw)@(p — (0p)0p}.

sin 0
It holds that
(4.2) SR R (sin 60g) + L p
. B sin f 0 sin?0 ?)’

which is the Laplace-Beltrami operator on S2. We introduce an important
matrix J defined as Ja = A a:
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At the final stage of our proof, we shall use the inequality

(4.3) [Jul < ful,

which follows from the fact that the eigenvalues of J are 0, +i.

LemMma 4.2.

1
(4.4) curla:V/\a:w/\(?,cH—;Q/\a

1
=Jo,a+-Q A a,
r

. 1
diva = Zjileﬁraj + 213:1 ;Qjaj.
In addition,
w-2=0 Q- -w=2.

A direct calculation implies the following relation.

LeMMA 4.3.
1 0 0 w1 W)
JZ =1+ 0 wr, O W W)
0 0 ws W] W)

3
w3
3

Thus,

97

Taking the nice relation between Q and w into consideration, we obtain the

beautiful identity.
PROPOSITION 4.4.
1
Jeurla = —0,a+-Ga+ F(w,a),
r

where

0 -1y L,

w1

G=| Lj 0 -1 and F(w,a) =diva| w,

—L, L 0

Proor. From Lemmas and [4.3, it follows that

1 w1 0 0 —Z.Q]a]
(4.5) Jeurla = —0,a+ " 0 w2 O —2Qa;
0 0 3 —Z.dej

w; 0 0 diva
+1 0 wy O diva
0 0 w; diva

3

1
+-J(R2 nra)

r
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A simple calculation gives us

w1 0 0 —ZQjaj —a)l.Q1 —a)l.Qz —601.93 ai
(46) 0 (00)) 0 —ZQjaj = —C()z.Ql —COz.QQ —602.93 ar
0 0 3 —ZQjaj —603.(21 —603.92 —CO3.Q3 as
and
(4.7)
—0)292 — CO3.Q3 602.91 6!)3.91 a1
J(.Q A a) = Cl)le —601.91 — 0)393 CO3.Q2 ar
CO].Q3 602Q3 —0)1.Q1 — COQQQ ajz

Using the relations

COZQI - leZ - _L3, C()3Qz — 60293 = _Lla 60193 — w391 — _L27

and
3
Z —

we see that the sum of the right hand sides in (4.6) and (4.7) is equal to

0 —Ls L,
Ls 0 -1
—-L, L, 0
Thus, [Proposition 4.4 has been proved. ]

Since G* = G in (L2(S?))’, we can apply [Proposition 3.1 if we check the
spectral property of G. This will be done in the next subsection.

4.2. Spectrum of the angular part.

To prove the Carleman inequality, we look into the spectrum of the operator
G. To investigate this, we use the spherical harmonics expansion of the square
integrable function on S°. Let {Y".-meZ,|m| </,/=0,1,2,...} be the se-
quence of spherical harmonics. This is an orthonormal basis of L*(S?). Any
ue L*(R®) can be expanded as follows.

o /£
ZZW’” )Y, "(0,0), r=|x|,

(=0 m=/,
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where
m 2/+1 (/—I’l’l)' imp pm
Y/ (0,9) \/ e (/_|_m)!e ?P"(cosl), for />m =0,
m (_l)m m dm+/ ‘
B (x) =5 (1= 27) /2 o (= 1) and
Y, " =(-1)"Y)" for -/ <m<0.
LemmA 4.5.
(Ly +iLy) Y)" = —in/(/ +m+ 1)/ —m) ¥/
(43) (Ly — L) Y = —i\/({ —m+1)({ +m) Y !

L3 Y/m — —l'l’l’lY/m
(L2 + L3+ L)Y =~/(/+ )Y, |m| </

Define the subspace E, of {L*(S*)}® whose components are spanned by
{Y/"}yj<,- From Lemma 4.5, it follows that

ProrosITION 4.6.  For each n, E, is invariant under G: GE, c E,.

Thus, our problem is reduced to the linear transformation G| on the finite
dimensional vector space.
The following relations are very useful in the subsequent argument.

Lemma 4.7.
We introduce an auxiliary operator:
3
divp u = Z Liu;.
=1

In view of [Lemma 4.7, a direct calculation gives a remarkable property of the
eigenfunctions of G.

PROPOSITION 4.8. Let ue C*(S?). Then,
div; Gu = divy u.
Hence, if Gu= Au with A # 1, then
divy u = 0.

Furthermore, this nice property leads to the following conclusion.
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PROPOSITION 4.9. Suppose that ue C*(8*) satisfies Gu=ju with 1 # 1.
Then,

G*u=—-L*u+Gu, G(G—IDu=—Lu.
Proor. By a direct calculation we see that
L 0 0 Ly L, Lj

G*=-L I+ 0 L, 0 L, L, L
0 0 L3/ \L L, Ls

0 Lo, Li] [Ls, L]
+ | [L1,Ls] 0 [L3, L]
[Ly,Ls] [La, Ls] 0

In the last expression we use [Lemma 4.7 and [Proposition 4.§ to arrive at the
conclusion. ]

As a simple consequence of Propositions 4.6 and 4.9, we obtain the following
result.

PrROPOSITION 4.10. The spectrum of the operator G is a subset of Z.

ReEmARK 4.1. In the subsequent argument we do not require a complete
information on the spectrum of G. The important thing is an estimate on the
gaps in its spectrum.

Since [Proposition 4.4 and imply that

|(=r0; + G)u| < r|J curlu| + r|divu| < rlcurlu| + r|divul,

is a direct consequence of |Proposition 3.1 and [Proposition 4.10)
because the width of two adjacent spectrum of G is equal to one.

4.3. Proof of Theorem 2.3.

We are now in a position to prove the unique continuation property for
the isotropic case. follows directly from [Theorem 4.1. The space
HOI’OO(Q) denotes the set of all functions belonging to H{ () and vanishing of
infinite order at the origin. Then, we note that is valid for ue
H) . (Q). By taking the limit, the statement of [Theorem 4.1 is true for
ue Hj(U)if UA0. Let @ e Cy(B(1)), 0 <y <1 be a cut-off function such that
®(x) =1 if |[x[ <1/3 and & =0 if |x| > 1/2. Suppose that ue H; , (). Let
®,(x) = &(nx). We apply to = (1 —®,(x))uand let n — oo. In
view of [2.4], we see that

lim {J x| |[curl, @,]u|? dx + J x| |[div, @,ul? dx} =0.

n— o0
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From this fact, we can easily verify that the inequality in [Theorem 4.1 holds for w.
Let £ and H € {H] (U )}* be a solution to vanishing of infinite order at
the origin.
Let p be a positive number satisfying

1
(49) 3p < 5 — max(Ml, Mz).

We can see that
lcurl E| < C|H|/|x|, |curlH| < CylE|/|x|, xe U,
where the constants C; and C, are given by

G = sup e el Cr = sup el [l&(x)]]-

In view of the boundedness of u and &, the constants C; and C, can be taken to
be an arbitrarily small positive number if the domain U is shrunk enough. We
choose U so that U < B;(0) and

Ci+ Cy <p.
Since u and & are scalar functions, implies that

3
(4.10) divE =-) & '(x)(98)(x)E
j=1
and
3
(4.11) divH = — Zu‘l(x)(ajﬂ)(x)fé-

From the assumption [2.7), it follows that there exists a positive number ry such
that B,,(0) =« U and

|div H| < (M) +p)|H|/|x[, |divE| < (M5 + p)|E[/|x]

if |x| < ro.
Let y € Cy(U), 0 <y <1 be a cut-off function such that y(x) =1if |x| <ry/3
and y =0 if |x| >ry/2. It holds that for any ue {HILC(Bl(O))}3,

J x| 2| [curl, y]u|* dx < 4max|V)(|2C2J x| 2 |u]® dx
U

|x|>ro/3

and

J x| 2 |[div, ylu|* dx < max|V)(|2J x| 2 ul* dx.
U

|x|>ro/3
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If we apply [Theorem 4.1 to yE and yH, we see that there exists a positive
constant C independent of y such that

1 1/2 1/2
(4.12) E{J |x|_2V./‘_2|XE|2dx} gq“ |x|_271‘2\XH|2dx}
U U

12
+ (M, —I—p){J |x|_2yf_2|)(E|2dx}
U

12
e J x| || dx
|x|>ro/3

and

1/2

1/2
(4.13) < CQ{J |x|2V12|XE|2dx}
U

{J |x|2yf2|xH|2dx}
U

Do —

12
+ (M, —I—p){J |x|_2y./_2’)(H‘2dx}
U

1/2
e J X2 H P dx b
|x|>ro/3

Summing up these two inequalities, we obtain

| 12
(4.14) <§_M1 —p—Cl){JU ]x’2yj2’H|2dX}
1 1/2
+ <§ — My —p— Cz> {J IX|_2y/_2|E|2dx}
U

1/2
<2C J x| EPdx y  +2C J x| 2 |H|? dx
Ix[>ro/3 x| >ro/3

Finally, we conclude that

1/2 1/2
(4.15) & J x| H P dx s+ 0 J x| 722 |E|* dx
|x| <ro/4 |x|<ro/4

1/2
<2C J x| EPdx y  +2C J x| 2| H|* dx
|x|>r0/3 |x|>r0/3

1/2

1/2
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for any positive integer y. Since |x| ™22 is strictly decreasing function, we see
that

1 —y
I L2y <roay + IEN L2 <o) < (200)™ Cro(4/3)77.

Letting ; — oo in the last inequality, we can conclude that E and H are identi-
cally equal to zero in B, 4. This leads to the conclusion of [Theorem 2.3. [

5. Non-isotropic cases.

When «(x) is a positive symmetric matrix-valued function, we shall use a
perturbation method that is effective in the treatment of elliptic operators with
variable coefficients (cf. [8]). Suppose that there exist a positive constant A4y such
that

\ \ 5y 1/2
(5.1) sup{ Y x> dyo(x) < Ay,
xeU | k=1 j=1
and
(5.2) sup [|(x, V)a(x) || < Bo.
xeU
Here and in what follows, the symbol | - | denotes the norm of matrices as a

multiplication on C?.

First of all, we shall transform o(0) into the identity matrix. It is well
known that the operator curl is invariant under any orthogonal matrix on R’
whose determinant is equal to one. Namely, let {ej}]-3:1 and { f]-};:l be two
orthonormal basis of R® such that the determinant of the orthogonal matrix
A = (ajr) defined by the relation

3
]9: Zajkelm J= 1v273
k=1

is equal to one. The point P of R® can be written in these basis as follows.

3 3
I)::jz:xyef::jgj)yI}
j=1 j=1

It follows that y = Ax and
Acurl, 4 = curl,.
In a similar manner we see that

(5.3) divy(om) = Vy - (o) = AV, - (0'AAu) =V, - Aa'A(Au).
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Therefore, we may assume that A«(0)'4 is a diagonal matrix. Actually, it has
the positive entries by our assumption:

xm©) 0 0
Aw(0)4 = 0 w0 0 |, «(0)>0 j=123.
0 0 a(0)

Furthermore, we can transform our system into a new one for which «(0) is
the identity matrix. Indeed, making the following transformations

(5.4) Y =1/%(0)z;, vi(x) =/0(0)%, j=1,2,3 with 4= Au,

we see that

divy(a(x)u) = div(a(z)v), @(z) = o do(A™ el *2) Aoy,

where
0’ (0) 0 0
o = 0 %R0 0
0 0 2/*0)

Needless to say, it holds that a(0) = /5. At the same time, the transformations
(5.4) implies

. a1(0) 0 0
curl, u = 0 a2(0) 0 curl. v.
v/ 1(0)a2(0)az3(0) 0 0 =)

Let U be the image of U under the map z = % 4% As a consequence,
we see that is transformed into

(5.5) curlo| < Dylol/)z|,  |div(av)| < Dalol/)z], ze U,
with

Dy = Ay%max/%min, D2 = Aa/%min-
The hypothesis implies

(56) sup (2, V)i(2)| < Ds

xelU

with D3 = Boy/otmin.
In what follows, the bracket (-,-) stands for the standard inner product of
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C’. We denote the k-th row of the matrix a by a) and the j-th column by
a'/). Tt holds that

3
div(@) = (0, (o > A%) ), ey 28).
k=1

In view of

3
(5.7) Y 0s (g P Aw) gy = (div(og Z Ao) ™ div(oy? 40) ), div(og 2 A42) D)
k=1

= (div, oV, div, o, div, oc(?’)),

the assumption (5.1) implies

1/2
3 303 2
~1/2 1/2 1/2
(5.8) D0 A (2)] < § ST (@) (o) < Ao/|o)*z].
j=1 k=11j=1
Therefore, we can conclude that
2 1/2 1/2
(5.9) [div(3E)] = | > (9 (o ) gy Aoty 7€) | < oty Aolél/I2]-
k=1

Hereafter, we denote oc;}nAo by Dy.
Henceforth, we drop the symbol ~ for & and use the symbols x and u for z
and v, respectively. Then, we have the following intermediate estimate.

THEOREM 5.1. Let U be any nonempty open ball with center at the origin of
R®. Suppose that o.e CO(U)NCH(U) satisfies

|div(al)| < Do|é|/|x|, VYxeU, VYéeC’.

Then, there exists a positive constant C such that

1 1/2
(5.10) 5{J|x|2“|u|2azx}

1/2 1/2
< {J\x|—2"/ucur1u|2dx} + {J yx|—2V—zyu|2dx}

1/2
' {j |x|2y|div<au>|2dx} n c{j 22 (e + ) dx}

for any u e {C{;O(U)}3 and any large positive y € Z.

1/2

Proor. We introduce the polar coordinates:
x=(ro), r=Ix/, o=x/|x|
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For a scalar function A(x) and a vector-valued function g(x) defined in a neigh-
borhood U of the origin, ((h(x))g(x) denotes a vector-valued function R(x) sat-
isfying that

[R(x)| < Cla(x)|lg(x)], ¥xeU
with some positive constant C.
Then, the same procedure as in the isotropic case yields that

|
(5.11) Jeurlyu = —0,u+ - Gu + div(oau)ow + div((1 — o)u)w.

Since 2(0) =1 and «(z) is Holder continuous, Leibniz’s rule implies that
div((1 - a)u) = —div(aé)|._, + O(|x|°)|Vu|.
The first term of the above equation satisfies
[div(ag)|._,| < Dolul /||

Since the principal part in (5.11) is the same as in the isotropic case, the argument

for proving Theorem 4.1 implies the assertion of [Theorem 3.1. ]

In order to estimate the last term of the right hand side of (5.10), we shall
require an inequality of elliptic type.

LEMMA 5.2. Suppose that the same hypothesis as in Theorem 5.1. If U is
sufficiently small, there exists a positive constant C such that

(5.12) Jymz dx < C{J lcurl £]% dx + J \div of |* dx + D? J yxr2|f|2dx}

holds for all f e Cl(U).

ProoF. It is easily verified that

513 >[I0 = [leurd P+ [laiv s v e (ci)y

Jj=1

and

Vi1 = o P+ L e D).

Since

3 3
> [l =3[l do, v eclis)

Jj=1 Jj=1
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it follows that for any f e {C}(U )}
3

(5.14) J|6yf|2eydyda)—|—ZJ|ij|zeydydw
=

< cJe3y{|€Jﬂf|2 + |div £} dyde

< cje3y{|c’1?r1f\2 T |div(ef)|?) dydes

3
+ CJeyez‘SyZ |ij|2dydco + (,’Jey{62(5y|6yf|2 +e ¥ ||} dvdow.
=1

Here, div and curl denote the representation of the operators div and curl with
respect to the coordinates (y, ), respectively. If the support of f is sufficiently
small, we arrive at the conclusion. ]

Note that [V, x| /Ju = O(y|x| 7 u,
lcurl, [x| 7Ju= O(yx| 7 u and [div, |x| |u= O¢|x|7u.

Shrinking U and applying (5.12) to f = |x| 7u, we obtain the following weighted
estimate of elliptic type.

LemMa 5.3.  Suppose that a(0) = 1. Then, there exists a positive constant K
such that for any y > 1 and any u e {C(}(U)}3

1/2

1/2
(5.15) y—l{J|x|-2"/|\7u|2dx} gKy—l{J|x|-2V|cur1u|2dx}
1/2
—I—K{yl{J|x2y|div(ocu)2dx}
1/2
+{J|x|_2y_2|u|2dx} }

From [Theorem 5.1 and [Lemma 5.3, we shall show that the function u e
{CI(U)}3 satisfying the system of differential inequalities vanishes expo-
nentially at the origin if it vanishes of infinite order at the origin.

if U is sufficiently small.

PROPOSITION 5.4. Let ue {HIE)C(U)}3 satisfy the system (5.5) and vanish of
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infinite order at the origin. Suppose that Dy + Dy + Dy < 1/2.  Then, there exist
positive constants ¢y and C such that

J | (|u]* + |Vu|*) dx < Cexp(—cor™)
x| <r

for any small positive r.

Proor. Let x(r) be a nonnegative function belonging to CJ((—o0,2)) such
that y(r) = 1 when r < 1. Set @i(x) = y(My'|x|)u(x). Here, M is a large pos-
itive parameter, which will be defined later. Note that

eurl, (M3 Pl = O(My" ) and  [div, z(M || = €(by

We can apply Theorem 5.1 and [Lemma 5.3 for u € Hj ,, (U). To verify this, we
apply them to (1 — y(jx))a, which belongs to H}(K) with a compact subset of

U. In view of and [5.5), if we let j — oo in the obtained inequality, we
arrive at the conclusion because for each v,

lim J X[V, (1 — ()il dx = 0

J—o

and

(5:16)  Jim [ ] 2 (ourl(1 — )il + div(1 — £(i0)il?) d

_ J X2 {|curl @) + [div i} dx.

Since ||J|| < 1, [Theorem 5.1 and [Lemma 5.3 imply that for any positive N,
1/2 1/2
(5.17) ﬁ{Jyx\—2y—2\a\2dx} —|—y‘1N_1{J\x|_27\Vﬁ\2dx}

1/2
< C{J x|~ 20 (val® + |al?) dx}

1/2
+C’My1/5J x| u)?dx b
2> Myd|x|>1

p Z%— (D1 + Dy)(1 +K(Ny)71) — Dy —%.

where

From our assumptions, it holds that f is positive if we take N and y to be large
enough.
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Now, we choose M large enough such that CM~% < 1/(4N), which implies
that

Clx|* <y72/(2N), if x e suppy(My'’|x|).
If we take y to be large so that

sup  (Cx|"*) < /2,

x| <2/(My?)
then (5.17) implies
(5.18) p J x| %72 |ul* dx + (2y2N)_1J x|~ |Vu|* dx
2 )y B(2/(My1%))
< C'My1/5J x| 722 {ul? dx.
U\B(1/(My!/%))

From this inequality, we find that

(5.19) (2My1/5)2VJ

{5 ul* + (2y°N) ™! yvu|2} dx
B(1/2ay) (2

< C’M(My1/5)2y+2J lu|* dx.
U\B(1/(My"/))

As a result, we obtain

J (lul? + 22 N)7ul?} dx < C’M3y3/52‘2yj ] dx
B(1/(2My'?)) u

for any large positive y € N. This leads to the desired estimate in
5.4. O

IProposition 5.4 enables us to choose a more singular weight with which a
Carleman inequality holds.

THEOREM 5.5.  Suppose that o(0) =1 and (2.2). There exist a positive con-
stant C and a sufficiently small neighborhood U of the origin such that

(5.20) yJ|x|2}log|x||ey(1°g|x|)2|u|2|x|zdx
< Cjey(logpc)2 lcurl ul?[x| 2 dx + Jey(1°g|x)2 \div (o) |*|x| % dx

for any ue {CSO(U)}3 and any large y > 0.

To prove this theorem, we require several preparations.
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Instead of the differential operator 0, in the radial direction, we shall use a
scalar operator Q defined as

Ou = (0w, )~ (w, 20y )u.
We decompose curlu into its radial and angular parts:
curlu=w AQu+Lu, Lu=VAu—owAQu,

which has been firstly used in [10]. By a direct calculation, it is easily verified
that for any f e C'([0,)), ue C'(U) and ¢ € C'(S?), we have

(5.21) Qf (r) = f'(r), L(f(r)u) = f(r)Lu
and

(5.22) QW (w)u) = O~ )u
because

Qu—0, = (O(|x!6)\Vu\

To make the subsequent equations simpler, we shall prepare several notations.
For each & e R’, we define the matrix J: as

Jsu=¢Anu and Jyu=VAu.

R_i[u,v] denotes a function satisfying that for every small p > 0, there exists a
small neighborhood U of the origin such that

v

Rl el <

u[|v] xeU.

Furthermore, if a vector-valued function R(x) satisfies that for every small # > 0,
there exists a neighborhood V' of the origin such that

[R(x)| < nlh(x)|lg(x)], ¥xeV,

then, we write

Finally, we denote the inner product and the norm of L2(S%)* by ¢-,-> and || - |,
respectively.
The next lemma is an analogue to and Lemma 3.3 in [10].

LEMMA 5.6.  Suppose that o(0) = I, (2.3) holds. For any u,ve C(U), f,ge€
{C(}(U)}3 and h e {Cg(U)}3, the following three statements hold.
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i)
(5.23) J(Qu, vy dr = —J {u, Quydr — 2 J Cu,r oy dr + JR_l (14, v] dx.
if)
524) [ Argrar=|<slpar-|<r o ng s |[Ralfgdr
iii)
(525)  QLh=LOh—r""Lh+ O(|x|°""YOh + o(r ") |Vh| + o(|x| )h.

Proor. Let x(x) = (a(x)w,w). Since

K1) = 1= O,
it holds that

[<ouvar=[awovran

where
3
(5.26) Qv=—-Qv+{(w,V)x}v— Z 0j (o) ;v
=1
+ 0(1x"){(@, V)" Yo + O(x°) D o(ao) 0.
=1
In view of

—divw = -2r 71,

the identity implies the statement i). The statement ii) follows from the
definition of L and i). To prove iii), we see that

O(wAh)=wAQh+(0w) Ah
(5.27) 0*(@ A h) = Q(® A Oh) + (Qw) A Oh+ (Q°w) A h.
We note that
Qv =0(Ix""), Q%w=o(x?).
In addition,
(5.28) 8y, Qhy = Q0 hy — r 1w Qhy + 1 i} iak,jax,h/ +o(r 1)|Vh|
=

= —r_lkah/ + r‘léxkh/ + 0|Vh‘
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It follows from the last identity that
(5.29) VAQh=Q(VAh) +r ' (VAh—0Q(w Ah)+ o ))|Vh +o(r2)h.
Subtracting from (5.29), we obtain iii). O

COROLLARY 5.7. Under the same assumption as in Lemma 5.6, it holds that

(5.30) J (Qu, v)|x|* dx = —J (1, Qv)|x| 2 dx + JRl [u, v]| x| % dx.
The next is essentially obtained in (cf. Lemma 3.4). We modify it in our
setting and give its proof because this identity is crucial in proving [Theorem 3.3.

LemmA 5.8. Suppose the same assumption as in the previous lemma holds.
For g e {CYU)}, we have

L((0w) A g) = (div g)ow — (Q(, g))ow — ™ (w, g)aw — r~ g+ o(r)g.

Proor. For proving [Lemma 5.8, we shall use the vector rule
(5.31) falgnh)=(fh)g—(f 9)h

We observe that

(g9,00)(aw) = rtag — r Hw,g)aw + o(r g, o= x/|x|
and
div(aw) = 2r ' +0(r™Y), Qaw) = o(r™).

For the sake of these equations, the relation implies that
(532) VA (0w A g) = (divg, am) — (0w, 0)0g — r g — r Y w, g)aw + o(r g
and
(5.33) O(w A (4) A g) = (Q(w, )2 — (2w, ) Qg + o(r ' )g.
Subtracting (5.33) from (5.32), we arrive at the conclusion of [Lemma 35.8. []

From [Lemma 3.8, we can derive an analogue to the canonical form of
IProposition 4.4,

PROPOSITION 5.9.
(5.34) Ty, curlu = —Q(ow) 4 {oay L — LT y0}u + (div o) o
+ (0w, Qu) (o — ow — r~1u + Joerd (1 -y Qott

— 1 N, u)o + o(r Hu.
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ProoOF. Since
curl = Q(Ju) — Lu = J,Qu — Lu + 0(r°"u,
and
JAu=—|EPu+ (Eu)E, Ve R,
it follows that

(5.35)  Jy,curlu = JO(2 Qu + Jyo Lu + Jsod (1-2)0 QU + o(r " u

= —|ow|* Qu + (e, Qu) (0w) + Jye Lt + Joer (1-2)0 QU + o(r u.

On the other hand, and ii) of imply

(5.36)  —LJyou = —(divou)aw + (Q(w, o) )aw — r~'u — (o, ou)ow + o(r " u.,

Combining (5.35) with (5.36), we arrive at the conclusion. O
Now, we are in a position to prove [Theorem 5.3. Define

G = oy (L — 110, = (L — r 1) Ty
and

Rou = (o —1)Qu + (aw, Qu) (ot — 1)ow + Jyd (1 -0, Qotlt.
Then, it holds that

(5.37) 0y curlu = —Qu + Gu + (div au)ow + Rou + O(r~u,

J(Gu, o dr = J(u, Gv}fz dr + Jo(r1)||u|| ||1J||r*2 dr
and

j<Qu, o> dr = —j<u, 0v5r 2 dr + jo<r—1>||u|| ol dr.

For v =e?"u and ¢’ = (d/dr)p(r), we see that

e’Qu= (0 -9\, e’Lu=Lv
and
(5.38) e’ Rou= Rov— ¢'{(2 — 1)v+ (0, v)(x — 1)oreo + Joerd (1 - )20}
Defining
Sv = (o — v+ (0w, v) (o — 1)ow + Joeod (1-5) 00,
we obtain

e’V curl = —(Q — ¢")o + Gov + ") (div aw)ow + Rov + ¢'Sv + O(r .

We write the right hand side of the last identity as the sum of the following two
terms:

P(/,(l)v = —(Q0—¢')v+ Gv+¢'Sv
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and

") (A -1
Bﬂ(z)v = ¢’V (div ow)ouw + Rov + O(|x| " )v.

It follows that

(5.39) J le?" o, curlu| x| 2 dx > J'P u|2|x|2dx—J|1;,<2>v|2|x|2dx

(5.40) J PO dx = J 0o x| 2 dx + J 1Go — o'v+ ¢/ So |2 dx

—2Re J (Qv, Gv + ¢'v+ ¢’ Sv)|x| 2 dx
and

(5.41) J|Ep(2)v|2|x|2 dx < 2Je2(/’(’)|div ot *|x| 2 dx

; c{ [ @20+ [ ol

—I-J]x\_z\v|2|x|_2dx}.

In order to estimate the third term in the last expression, we shall utilize
Lemma 5.6.

LemmA 5.10.

(5.42) 2ReJ(Qv, Gv)|x| 2 dx = Jo(yxrl)w o] || dx

T Jo<|x|—1>|Qv| o] dx + jco<|x|-2>|v|2|x|—2 dx

ProoF. Let L =1 — ¥ 'J,,. Then, we note that the statement iii) of
is still valid for L. By and [Corollary 5.7, it holds that

(5.43) J(Qv, 0y L0) | x| dx
= —j (v, o(|x|” ) Lo)| x| dx — J(v, 0y QL) |x| 7% dx
v, 0y LOV)|x| 7 dx + J (Ix| "o, e L) | x| 2 dx

o(Ix| 7)ol x|

mer“ ol 10v] x| dx — jo<|x|1>|v||\7v||x|2dx
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and
—J (0, 0y LOV) x| dx = J(anau, Ov)|x| 2 dx + J0(|x\1)\v| |Ov| | x| 2 d.
Likewise,

(5.44) J (Qv, —LJ,gv0)| x| 2 dx
_ —J (L0, o) x| 2 dx — J(o(]x]l)Qv, o) x| 2 dx
= —J (OLv, Jyow)|x| % dx + J (x| Lo, Jyeow)| x| 2 dx
- [ iel vl 2  [o(ixi el e ] d
- [t 1ePag 2
= J (e Lv, Q)| x| dx + J (0, x| L o) | x| 2 dx
= [ iel vl 2 [o(ixi el e ]

N2 =2
—Jo<rx| )ol[x| 2 dx.
Thus, we obtain

(5.45) 2ReJ(Qv, Gv)|x| " dx
= [ttty ol 2 + [ (Go. Qo2 v~ [ (0. 0G|
= | (el et Lol [, L) o]
+ [olbal vl el by -+ (bl el ol 2

n jo<|x|2>|v|2|x|2 dx.

Since «(0) =1 and the Holder continuity of o imply that
oy — Juwt = O(|x[),
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we note that
(5.46) —J (Ix| "0, Lyoow)|x] 2 dx + J (Ix| "o, 0o L) | x| % dx
=jwwﬁ*WMvmur%a+jdur%wﬂﬂ”dm

As a result, we arrive at the assertion of [Lemma 5.10l
Similarly,

LEmMmaA 5.11.
(5.47) 2ReJ(QU, v — ¢ So)|x| P dx > J(1 — O g o x| dx
~ [otbei et = [t a
Proor. We see that
(548) -2 ReJ(Qv, ¢'v)|x| 7 dx > J(/)”|v|2|>6|2 dx — J0(|X|1)|¢)’| [0 [x| % .
Since Sv = O(|x|°)v and Qv — d,v = O(|x|°)|Vv|, it holds that
(549) 2Re J (Qu, ¢'Sv)|x| % dx = —J (v, 9" Sv)|x| "% dx — J (v, ¢’ QSv)|x| % dx

+jmuWIWMwmu|%u

and
(5.50) 0Sv = SOv + (8,S)v + O(|x|° ).

From the definition, it follows that
(5.51)  (8,8)v = (8,%)v + (0w, 1) (3,2)0® — Jyeod (3,000000 + O(|x]° 0]

— (0,2)0 + (@, 1) (3:2)® — Jud 3,900 + O(|x[*~)]0].

Thus, we obtain

(5.52) 1(0:8)0] < 3)|0,2]| [o] + O(|x]° ") o].
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From (5.49)—(5.52), it holds that

)

(5.53) 2ReJ(Qv, ' Sv)|x| % dx > —Jo(r1)|(p'] 10| x| 2 dx
=[Oty P2 = [Pl

From (5.47) and (5.53), we arrive at the conclusion of [Lemma 5.11. O
Combining with [Cemma 3.11, we can conclude that

(5.54) —2ReJ(Qv, Gv + ¢'v+ ¢'Sv)|x| " dx

> J{w"u —O(P)) — ol )Y ol 2 dx
- jo(|x|—1>|\7v| o] x| 2 dx — jo<|x|‘2>|v|2|x|-2 dx.

We choose ¢(r) = p(logr)*/2. Then,
" 1,/

p" =y 2flogr|(1+ [logr[™), r ¢’ =y logr.

If we use the inequality ab < {ya®+y~'h%}/2, it holds that

1 -
ol Vul < E{Vfl\logrl o] + 7 flog r| V0,
r o] |Qu] < r~?[logr| [o]* + [log | Qo]

In view of (5.39), (5.40), (5.41) and (5.54), we see that for every small 6 > 0,
there exist a small neighborhood U of the origin and a positive constant C such
that

1
(5.55) (1 — Dy — 4D5) J x| | log]|x[| [v]*]x] 7 dx + §J |Ov|*|x| % dx

N~

< C{Jez‘”|occurlu|2|x|_2 dx + Jez‘/’|div(ocu)|2|x|_2 dx}

3
077> [ toglal|” oot 2

J=1

for all ve C(U). The terms with the first order derivatives in the right hand
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side of the last estimate are harmless. To see this, we shall use [Lemma 5.2 and
the fact that

(5.56) llog|x|| "V (e?u) = V([log|x||"*v) + [V, [log|x]|~*]e”u
[V, [log]x|| *"Je"u] < C|x|*1|1og|x||‘3/2|v|
(5.57) curl(}10g|x||_l/
— [tog|x||™"* curl v+ (x|~ [log]x||~*)lv|
— |10g|x|\_ *e? curlu + yO(|x|” 'log|x|| Y2+ o] Hlog|x||” 2y
and
(5.58)  div([log|x|| " *aw
= |10g\x|‘_1/2 divew + O(|x| ™! ‘10g|xH_3/2)]v|
— [toglx||™*e? divau + y0(|x| " loglx]|'*)o + O(|x| " loglx] |
Therefore, applying the identity (5.13) to f = ‘10g|x||_1/ *e%u, we see that for any
ue {Cy(O)Y,
- 1A 12 -2
(5.59) 5 ZJ]log]xH 19;021%| 2 dx
=1
< C{ J|log|x|\_ e (|div(ow)|* + |curl u|*)|x|” dx}

+Cy [ [1oglal| [+l 1| d

Combining (5.55) with (5.59), we finally conclude that there exists a positive
constant C such that if U is small enough,

Je2¢(|div(om)|2 +[eurlul®)[x| * dx > ch |log|x]| |x| e |ul?|x| > dx
for any u e {C}(U)}’. This completes the proof of MTheorem 3.3. O

6. Proof of Theorem 2.1.

With aid of [Proposition 3.4, Theorem 2.1 follows from by use
of the standard procedure. Indeed, let u e {H] (U )}? satisfy and vanish of
infinite order at the origin. and y be the same cut-off function as in Section 4.3.
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In view of [Proposition 5.4, we can apply to 4 = y(x)u(x). It fol-
lows that

yJ x| 7| log]x||e? [ul*|x| > dx < CJ > [ x| 2 dx.
|x| <ro |x|>ro/3

Since (log r)2 is a strictly decreasing function, we have
1(ro/4) *log ro /4] J | dx < O’ o 10g(r0/3))*~(log(ro/4))*}

Thus, letting y — oo, we conclude that u =0 in B, ;4(0). This completes the
proof of [Theorem 2.1. O]

7. Proof of Corollary 2.2.

In this section we shall prove |Corollary 2.2/ and keep the same notation as
in Section 4.3 except for the cut-off function. Since Z0¢(0) = u(0), by using the

mapping

E=i,'"E, H=H,
we see that
—curl E = i3y PuH, curl H = ij2) ¢E.
Therefore, without loss of generality, we may assume that
1(0) = &(0).

As in the beginning of Section 5, we can transform them into &(0) = u(0) =1
simultaneously. Let x(r) be a nonnegative function belonging to C}((—o0,2))
such that y(r) =1 when r < 1. Set y, = y(My'°|x|). Here, M is a large pos-
itive parameter, which will play the same role in the proof of [Proposition 5.4|
Applying to y,E, we see that for every small positive number p, if
we shrink U enough, there exists a positive constant C independent of y such that

1 —2y-2 ,
(7.1) 7~ Ma—p x| B dx
U
1/2
SP{J |XI_2y_2|xyH|de} +CMV1/5{J
U

12
; c{ I 7220z, 1 4 1 1 dx} .

1/2
xz"’Eza’X}

U\B(1/My?)
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Similarly, an application of Theorem 5.1 to y,H implies

1 29-2 2 1/2
020 (5= m=p){| I o)

12 ‘
<p{| el i) ol | ] d
U U\B(1/My°)

‘ 12
; c{ [t 22, 4 b dx} .

1/2

If we take the sum of (7.1) and (7.2), it follows that

29—-2 2 1/2 29—-2 2 1/2
(7.3) pl{jUrxr = dx} m{jvrxr 2l dx}

1/2
< CMy'° J x| ¥ |E|? dx
U\B(1/M;?)

1/2
+ oMyl J x| H|? dx
0\B( /M)

. 12
' c{ |22V, EP + [, EP) dx}

1/2
+c{ |x|‘2y+”<|vxxyH|2+|xyH|2>dx} |

where

1 1
P = <§—Mz—p—pl<1) >0, py= <§—M1—p—pKz> > 0.

Deducing in the same manner as in the proof of Proposition 5.1, we conclude

ProrosITION 7.1.  If max(M;, M) < 1/2, then there exist positive constants
co and C such that

J (|E|2 + |H|2) dx < Cexp(—cor_(s)
B(r)

for all small positive number r.

Now, we are in the final stage for proving Theorem 2.1. Let @ € Cy°(U),
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0 <@ <1 be a cut-off function such that @(x) =1 if |x| <ry/3 and & =0 if
|x| > ro/2. If we apply to ®E and ®H, it follows that

(7.4) yJ|x|_2|10g|x|‘ey(logx|)2|d5E|2|x|_2dx

<C J e71°8)* | @ 712 x| 2 dx + J e7108 )" E12 x| 72 dx
U\B(r/3)
and

(7.5) yJ\x|—2\1og|x||eV<1°glx>2|q>H|2|x|—2dx
= CJ e8| o x| 7 d + J 108 | 12 x| 2 dx.

U\B(ro/3)
Adding (7.4) to (7.5), we see that

1 _ -
EyJ W *|loglxl[e =V (| BEL + [@H ) x| dx
X|<rp

<C J e 1)’ (| £12 1 | H1) ]2 dix
U\B(r0/3)

if rp is small enough and y is sufficiently large. Since ¢(r) = (log r)2 is strictly
decreasing when 0 < r < 1, there exists a positive constant Cy independent of y
such that

(7.6)

J (1E)> + |H|?) dx < Coe?#r/3-9(r0/4)
|X|<}0/4
Letting y — oo, we conclude that £ and H are equal to zero in B(ry/3). [

8. An appendix.

Finally, we would like to give a remark on a similarity between the Dirac
equation and the Maxwell equation in a vacuum:

curl E + (1/¢)0,H = 0, divH =0,
curl H — (1/¢)0,E = (4n/c)J, divE = 4np.

This system can be written in the form analogous to the Dirac equation

——Zockﬁvkt,b———cb

Indeed, we define the components of  as

lﬂOIO, lpk:Hk—iEk, Qoch, @k:jk, k:1,2,3
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and

T. OrAI
Xo=ct, X] =X, X =y, x3 =z. Furthermore, we have
1 0 0 O 0O -1 0 O
B 01 0 O B -1 0 0 0
“Zloo 1o T lo 0o 0 =il
0 0 0 1 0 0O 7 O
0 0O -1 0 O 0 0 -1
o o o o 0o -i o
2712100 0 ol BT o i o0 o
0O —i 0 o0 -1 0 O 0

Then, it is easily seen that if k, /=1,2,3,

(8.1)

and
(8.2)

[1]

ooy + ooy = 20,1

w0 = oy, OOy = oy, 030 = i00.
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