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Abstract. We give a strong unique continuation theorem for time harmonic Max-

well’s equations in inhomogeneous anisotropic media of three dimensional space. The

components of the matrices in the constitutive relations are supposed to be Hölder con-

tinuous. Furthermore, they are supposed to be di¤erentiable except at one point where

they may have critical singularities of Coulomb type. These assumptions prevent us to

use the usual second order approach, so that we have to utilize a certain nice structure

of Maxwell’s equations as the first order system.

1. Introduction.

There is a long history about the strong unique continuation property. It

goes back to the works due to T. Carleman, C. Müller, E. Heinz, N. Aronszajn

and H. O. Cordes. After their works many advances have been obtained.

Among them the di¤erential inequalities with critical singularities as well as sub-

critical ones are intensively investigated in connection with the absence of positive

eigenvalues in the continuous spectrum [1], [7] and [4]. Contrary to this, only few

attempts have so far been made at studying about unique continuation property

for systems [5], [9], [10], [3] and [6].

In this paper we are concerned with Maxwell’s equations in continuous

medium U HR
3:

qtBþ curlE ¼ 0; divB ¼ 0,

�qtDþ curlH ¼ J; divD ¼ r:

�

ð1:1Þ

In this system the vector-valued functions Eðx; tÞ, Bðx; tÞ, Dðx; tÞ and Hðx; tÞ are

unknown. They are called respectively the electric field, the magnetic induction,
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the electric induction and the magnetic field. rðx; tÞ is supposed known and

called the charge density. On the other hand, the vector-valued function Jðx; tÞ

is often supposed to be unknown, which are called the current density.

The constitutive relations are given by

D ¼ eE; H ¼ m�1
B; J ¼ sE:ð1:2Þ

In isotropic and homogeneous media we assume that e and m are positive

constants characteristic of the medium considered, called respectively the permit-

tivity (or the dielectric constant) and magnetic permeability. Furthermore, in this

case, s is a nonnegative constant called the constant of conductivity. The third

relation of (1.2) is called Ohm’s law.

In inhomogeneous anisotropic media such as crystals, e and m are symmetric

matrices depending only on the position x. Moreover, s is also a nonnegative

symmetric matrix, called conductivity tensor (cf. [2]).

The problem in which we are interested here is the stationary one. Let U be

a connected open subset of R
3 containing the origin and

Eðx; tÞ ¼ E0ðxÞe
ilt
; Bðx; tÞ ¼ B0ðxÞe

ilt
;ð1:3Þ

where l is a non-zero real constant. Substituting these functions into the equa-

tions (1.1), we obtain the time harmonic Maxwell equations in an anisotropic

inhomogeneous medium U:

�curlE ¼ ilmðxÞH;

curlH ¼ ileðxÞE þ sðxÞE:

�

ð1:4Þ

Here, mðxÞ, eðxÞ and sðxÞ denote 3� 3 nonnegative real symmetric matrix-

valued functions in U, and l A Rnf0g. In what follows, we call them constitutive

matrices. (1.4) is a 6� 6 system with a weakly coupling lower order terms. Its

principal part is not elliptic. In fact, the characteristic polynomial of the symbol

of

0 �curl

curl 0

� �

is equal to t2ðt� ijxjÞ2ðtþ ijxjÞ2.

The usual approach for studying (1.4) is to transform them into second order

systems. Temporarily we assume that the three constitutive matrices are scalar.

We shall use the following notation when there is no confusion:

eðxÞ ¼ eðxÞI3; mðxÞ ¼ mðxÞI3; sðxÞ ¼ sðxÞI3:

As a direct consequence of (1.4), we have

divðmðxÞHÞ ¼ divððileðxÞ þ sðxÞÞEÞ ¼ 0:ð1:5Þ
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Using the identity

curl curlH ¼ �hH þ grad divHð1:6Þ

and

divH ¼ �
X3

j¼1

m�1ðqjmÞHj ;

we have the second order system:

�hH þ grad
X3

j¼1

m�1ðqjmÞHj ¼ curlðileþ sÞE:

Likewise,

�hE þ grad
X3

j¼1

ðleþ s~eeÞ�1ðqjðleþ sÞÞEj ¼ �curlðilmHÞ:

However, this method requires the di¤erentiability of m, e and s up to the second

order.

Instead of this second order approach, we will take advantage of a nice

structure as the first order system (1.4).

Denote the smallest eigenvalue of mð0Þ and eð0Þ by mmin and emin, respectively.

We shall assume that sðxÞ1 0 in the nonisotropic case. In addition, we require

that all the component of mjkðxÞ, ejkðxÞ and sjkðxÞ belong to C dðUÞVC1ðUnf0gÞ

with d < 1, and that there exist positive constants C1 and C2 such that for any j

and k ¼ 1; 2; 3,

lim
r!0

sup
0<jxj<r

jxjkj‘mjkðxÞjaC1mmin; lim
r!0

sup
0<jxj<r

jxjkj‘ejkðxÞjaC2eminð1:7Þ

with ka 1. Here, for any nonnegative number da 1, C dðUÞ denotes the class

of all Hölder continuous functions f defined in U such that

bC > 0; Ex and y A U ; j f ðxÞ � f ðyÞjaCjx� yjd:

Needless to say, these assumptions prevent us to employ the usual second

order approach.

Subcritical cases ðk < 1Þ has been studied, under the additional condition

eð0Þ ¼ mð0Þ ¼ I , by V. Vogelsang [10] where he used a skillful technique based on

the symbol calculus. On the other hand, the critical cases ðk ¼ 1Þ require more

precise techniques based on the operational calculus. This often causes some

di‰culties in studying general system of inequalities. Fortunately the Maxwell

system as well as the Dirac operator has a nice structure that we shall see later.

For the sake of this fact, we can show that under a certain condition the Maxwell
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system with the critical singularities has the strong unique continuation property

if the constants C1 and C2 are zero (Corollary 2.2). In addition, we can relax

the condition for the isotropic case (Theorem 2.3). Finally, we remark that the

Maxwell equations in a vacuum can be written in the form analogous to the Dirac

equation (O8). Therefore, a part of our results for isotropic cases can be covered

by the previous work [3]. However, we shall give an independent proof for that

result.

2. Statement of results.

2.1. Main result.

Let U be a connected open subset of R
3 containing the origin and _UU be

Unf0g. First of all, for a C
3-valued function u, we investigate the following

di¤erential inequalities, called the Maxwell type.

jcurl ujaA1juj=jxj

jdivðauÞjaA2juj=jxj; x A _UU

�

ð2:1Þ

where Aj, j ¼ 1; 2 are positive constants and aðxÞ is a 3� 3 real positive sym-

metric matrix defined in U.

In what follows, C1
� ð

_UUÞ denotes the subset of C 1ð _UUÞ consisting of all func-

tions f satisfying

lim
r!0

sup
0<jxj<r

fjxj j‘x f ðxÞjg ¼ 0:ð2:2Þ

We assume that for some 0 < d < 1,

aðxÞ A C dðUÞVC1
� ð

_UUÞ:ð2:3Þ

In what follows, amin and amax respectively stand for the smallest and the largest

eigenvalue of að0Þ, which are positive by our assumption. We say that a function

u A L2
locðUÞ vanishes of infinite order at the origin if

lim
r!0

r�N

ð

jxjar

juj2 dx ¼ 0; EN A N :ð2:4Þ

Theorem 2.1. Let a satisfy (2.3). Suppose u A fH 1
locðUÞg3 satisfies (2.1) with

A1amax þ A2 <
amin

2
:ð2:5Þ

If u vanishes of infinite order at the origin, then u is identically equal to zero in U.

When the last statement in Theorem 2.1 holds, we say that the system has

the strong unique continuation property in U.

T. Ōkaji92



As an application of Theorem 2.1, we can see that Maxwell’s equations

have this property. Keep the same notation as in the previous section.

Corollary 2.2. Let sðxÞ1 0. Suppose that mðxÞ and eðxÞ are real, strictly

positive and symmetric in U such that

mð0Þ ¼ l0eð0Þ; bl0 > 0:ð2:6Þ

In addition, we assume that every component of these two matrices belongs to

C dðUÞVC1
� ð

_UUÞ with 0 < d < 1. Then, the time harmonic Maxwell equations (1.4)

have the strong unique continuation property in a neighborhood of the origin.

Theorem 2.3. Suppose that m, e and s are scalar functions belonging to

C 0ðUÞVC1ð _UUÞ. Let ~eeðxÞ ¼ leðxÞ� isðxÞ. In addition, we assume that there exist

positive constants Mj, j ¼ 1; 2 such that

lim
r!0

sup
0<jxj<r

jxj jmðxÞj�1j‘mðxÞjaM1;

lim
r!0

sup
0<jxj<r

jxj j~eeðxÞj�1j‘~eeðxÞjaM2:

8

>

>

<

>

>

:

ð2:7Þ

If maxðM1;M2Þ < 1=2, then the time harmonic Maxwell equations (1.4) have the

strong unique continuation property in U.

The proof for the nonisotropic case is much more di‰cult than for the

isotropic case. We, at first, consider the isotropic cases in the section 4. Our

strategy for proving the isotropic cases (Theorems 2.3) is as follows. First, we

shall reduce the system (1.4) into two 3� 3 elliptic systems of the Maxwell type

(2.1) with a scalar matrix aðxÞ. Introducing the polar coordinates, we shall

transform the new system into a system having a nice radial and an angular part

(Proposition 4.4). Thanks to their nice structure, we can obtain a precise infor-

mation on the spectrum of its angular part to derive a so-called Carleman in-

equality by using a basic principle, which is described in the section 3.

The proof for the nonisotropic cases (Theorem 2.1 and Corollary 2.2) is

given in the section 5. It is strongly connected to the theory of elliptic systems

with variable coe‰cients. We will approximate it by the isotropic system and

utilize two type of weight functions so that Carleman estimates hold.

3. Carleman estimates for the model equations.

We are now going to describe a basic principle which yields Carleman esti-

mates for the equations with critical singularities. Let d be a positive integer.

Suppose that G is a selfadjoint operator in fL2ðS 2Þgd with DðGÞI fCyðS 2Þgd
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and there exists in fL2ðS 2Þgd a complete orthonormal basis ffjg
þy

j¼�y consisting

of eigenvectors of G :

Gfj ¼ ljfj; j A Z;

where lj, j A Z, are numbered in nondecreasing order such that

� � � a l�2a l�1 < 0a l0a l1a � � � :

Define S ¼ flj; j ¼ 1; 2; . . .g, which is a subset of positive real numbers.

Proposition 3.1. In addition to the above conditions, suppose

lim
R!y

inffjx� yj : x0 y; x; y A SV ½R;yÞg ¼ d > 0:

Then we can find a sequence fgjg
y

j¼1 of positive numbers which tends to y as

j ! y such that

ð

jxj�2gj�3j � rqruþ Guj2 dxb
d

2
�
1

j

� �2ð

jxj�2gj�3juj2 dxð3:1Þ

for any u A fCy
0 ð0 < jxj < 1Þgd and any su‰ciently large j A N . In particular, if

there exists a positive number R0 such that

inffjx� yj : x0 y; x; y A SV ½R;yÞg ¼ d; ER > R0;ð3:2Þ

then the similar estimate to (3.1) without its error term �1=j holds.

Proof. From the hypothesis, it follows that

uðxÞ ¼
X

j AZ

ujðrÞfjðoÞ in fL2ðSÞ2g3:ð3:3Þ

Set y ¼ log r and I ¼ ð�y; 0Þ. The next lemma gives a crucial step for esti-

mating each coe‰cients ujðrÞ of the eigenfunction expansion (3.3).

Lemma 3.2. Let n, g A R.

ð

I

e�2gy �
d

dy
f þ nf

�

�

�

�

�

�

�

�

2

dy ¼

ð

I

ð�gþ nÞ2je�gyf ðyÞj2 þ
d

dy
ðe�gyf ðyÞÞ

�

�

�

�

�

�

�

�

2
( )

dy

for any f A Cy
0 ðIÞ.

Proof. This identity can be easily verified by use of an integration by

parts. r
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We now continue the proof of Proposition 3.1. Applying this lemma with

n ¼ lj A Z and f ðyÞ ¼ ujðe
yÞ, we obtain

ð

r�2g�3j�rqruj þ ljuj j
2
r2 drb ð�gþ ljÞ

2

ð

r�2g�3jujj
2
r2 drð3:4Þ

for any positive g.

We define a sequence fnkgk AN of positive numbers as ðlk þ lkþ1Þ=2 for

k A N . Let N0 be a positive integer satisfying d� 2=N0 > 0. From the defi-

nition of d, it follows that there exists a subsequence fn1kg of fnkg such that for

any k A N ,

min
j AZ

j�n1k þ lj jb
d

2
�

1

N0 þ 1
:

Likewise, we can find a subsequence fn2kg of fn1kg such that for any k A N ,

min
j AZ

j�n2k þ lj jb
d

2
�

1

N0 þ 2
:

Proceeding in the same manner, we can find a subsequence fnNk g of fnN�1
k g such

that for any k A N ,

min
j AZ

j�nNk þ ljjb
d

2
�

1

N0 þN
:

Define a sequence fgkgk AN as fnkkg. Then,

ð

r�2gk�3j�rqruj þ Gujj
2
r2 drb

d

2
�

1

N0 þ k

� �2ð

r�2gj�3juj j
2
r2 drð3:5Þ

for any k A N and j A Z. Let Br 0 ¼ fx A R
3
: jxja r 0g. In view of the identity

kuðxÞk2L2ðBr 0 Þ
¼

X

j AZ

ð r 0

0

jujðrÞj
2
r2 dr;

(3.1) follows from (3.5). If (3.2) holds, the proof becomes much simpler. So we

omit it. This completes the proof of Proposition 3.1. r

In the subsequent sections we shall use the simple case in Proposition

3.1. In order to apply it, we have to reduce our system to the canonical form

and investigate the spectrum of G. There is, however, a large di¤erence in their

treatment between the isotropic cases and the nonisotropic ones. First, we will

consider the isotropic ones in the section 4 where we will give a beautiful struc-

ture of Maxwell’s equations. In the section 5 we will treat the nonisotropic cases

by use of perturbation method which is developed in the theory of single elliptic

equations with variable coe‰cients (cf. [8]).
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4. Isotropic cases.

In this section we consider the case where all the matrices e and m are scalar

ones, which is called the isotropic case. The Carleman inequality we would like

to show is the followings.

Theorem 4.1. Let W be any nonempty open ball with center at the origin of

R
3. Then,

1

2

ð

jxj�2g�2juj2 dx

� �1=2

a

ð

jxj�2gjcurl uj2 dx

� �1=2

þ

ð

jxj�2gjdiv uj2 dx

� �1=2

for any u A fCy

0 ð _WWÞg3 and any large positive g A Z.

The proof of this result is given in Section 4.1 and 4.2.

4.1. The polar coordinates and the canonical form.

We use the polar coordinates: x ¼ ro, where

oðy; jÞ ¼
x

jxj
¼ ðsin y cos j; sin y sin j; cos yÞ:ð4:1Þ

The gradient operator is represented by

‘ ¼ oqr þ
1

r
W; W ¼ ðqyoÞqy þ ðqjoÞ

1

sin2 y
qj ¼ o5L:

Here, iL ¼ ðiL1; iL2; iL3Þ are the angular momentum operators:

L1 ¼ x2q3 � x3q2; L2 ¼ x3q1 � x1q3; L3 ¼ x1q2 � x2q1:

They are written in the polar coordinates as follows.

L ¼
1

sin y
fðqyoÞqj � ðqjoÞqyg:

It holds that

�L2 ¼ �
1

sin y
qyðsin yqyÞ þ

1

sin2 y
q2j

� �

;ð4:2Þ

which is the Laplace-Beltrami operator on S
2. We introduce an important

matrix J defined as Ja ¼ o5a:

J ¼

0

B

@

0 �o3 o2

o3 0 �o1

�o2 o1 0

1

C

A
:
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At the final stage of our proof, we shall use the inequality

jJuja juj;ð4:3Þ

which follows from the fact that the eigenvalues of J are 0, Gi. Thus,

Lemma 4.2.

curl a ¼ ‘5a ¼ o5qraþ
1

r
W5að4:4Þ

¼ Jqraþ
1

r
W5a;

div a ¼ S
3
j¼1ojqraj þ S

3
j¼1

1

r
Wjaj:

In addition,

o �W ¼ 0; W � o ¼ 2:

A direct calculation implies the following relation.

Lemma 4.3.

J 2 ¼ �I þ

0

B

@

o1 0 0

0 o2 0

0 0 o3

1

C

A

0

B

@

o1 o2 o3

o1 o2 o3

o1 o2 o3

1

C

A
:

Taking the nice relation between W and o into consideration, we obtain the

beautiful identity.

Proposition 4.4.

J curl a ¼ �qraþ
1

r
Gaþ Fðo; aÞ;

where

G ¼

0

B

@

0 �L3 L2

L3 0 �L1

�L2 L1 0

1

C

A
and Fðo; aÞ ¼ div a

0

B

@

o1

o2

o3

1

C

A
:

Proof. From Lemmas 4.2 and 4.3, it follows that

J curl a ¼ �qraþ
1

r

0

B

@

o1 0 0

0 o2 0

0 0 o3

1

C

A

0

B

@

�SWjaj

�SWjaj

�SWjaj

1

C

A
þ

1

r
JðW5aÞð4:5Þ

þ

0

B

@

o1 0 0

0 o2 0

0 0 o3

1

C

A

0

B

@

div a

div a

div a

1

C

A
:
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A simple calculation gives us

0

B

@

o1 0 0

0 o2 0

0 0 o3

1

C

A

0

B

@

�SWjaj

�SWjaj

�SWjaj

1

C

A
¼

0

B

@

�o1W1 �o1W2 �o1W3

�o2W1 �o2W2 �o2W3

�o3W1 �o3W2 �o3W3

1

C

A

0

B

@

a1

a2

a3

1

C

A
ð4:6Þ

and

ð4:7Þ

JðW5aÞ ¼

0

B

@

�o2W2 � o3W3 o2W1 o3W1

o1W2 �o1W1 � o3W3 o3W2

o1W3 o2W3 �o1W1 � o2W2

1

C

A

0

B

@

a1

a2

a3

1

C

A
:

Using the relations

o2W1 � o1W2 ¼ �L3; o3W2 � o2W3 ¼ �L1; o1W3 � o3W1 ¼ �L2;

and

X

3

j¼1

ojWj ¼ 0;

we see that the sum of the right hand sides in (4.6) and (4.7) is equal to

0

B

@

0 �L3 L2

L3 0 �L1

�L2 L1 0

1

C

A
:

Thus, Proposition 4.4 has been proved. r

Since G � ¼ G in ðL2ðS 2ÞÞ3, we can apply Proposition 3.1 if we check the

spectral property of G. This will be done in the next subsection.

4.2. Spectrum of the angular part.

To prove the Carleman inequality, we look into the spectrum of the operator

G. To investigate this, we use the spherical harmonics expansion of the square

integrable function on S
2. Let fY m

l
: m A Z; jmja l; l ¼ 0; 1; 2; . . .g be the se-

quence of spherical harmonics. This is an orthonormal basis of L2ðS 2Þ. Any

u A L2ðR3Þ can be expanded as follows.

uðxÞ ¼
X

y

l¼0

X

l

m¼l

ul;mðrÞY
m
l
ðy; jÞ; r ¼ jxj;
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where

Y m
l
ðy; jÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2lþ 1

4p

ðl�mÞ!

ðlþmÞ!

s

e imjPm
l
ðcos yÞ; for lbmb 0;

Pm
l
ðxÞ ¼

ð�1Þm

2ll!
ð1� x2Þm=2 dmþl

dxmþl
ðx2 � 1Þl and

Y�m
l

¼ ð�1ÞmY m
l

for �lam < 0:

Lemma 4.5.

ðL1 þ iL2ÞY
m
l

¼ �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðlþmþ 1Þðl�mÞ
p

Y mþ1
l

ðL1 � iL2ÞY
m
l

¼ �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðl�mþ 1ÞðlþmÞ
p

Y m�1
l

L3Y
m
l

¼ �imY m
l

ðL2
1 þ L2

2 þ L2
3ÞY

m
l

¼ �lðlþ 1ÞY m
l
; jmja l:

8

>

>

>

<

>

>

>

:

ð4:8Þ

Define the subspace El of fL2ðS 2Þg3 whose components are spanned by

fY m
l
gjmjal

. From Lemma 4.5, it follows that

Proposition 4.6. For each n, En is invariant under G: GEn HEn.

Thus, our problem is reduced to the linear transformation GjEn
on the finite

dimensional vector space.

The following relations are very useful in the subsequent argument.

Lemma 4.7.

½L1;L2� ¼ L3; ½L2;L3� ¼ L1; ½L3;L1� ¼ L2:

We introduce an auxiliary operator:

divL u ¼
X

3

j¼1

Ljuj:

In view of Lemma 4.7, a direct calculation gives a remarkable property of the

eigenfunctions of G.

Proposition 4.8. Let u A C2ðS 2Þ. Then,

divL Gu ¼ divL u:

Hence, if Gu ¼ lu with l0 1, then

divL u ¼ 0:

Furthermore, this nice property leads to the following conclusion.
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Proposition 4.9. Suppose that u A CyðS 2Þ satisfies Gu ¼ lu with l0 1.

Then,

G 2u ¼ �L2uþ Gu; GðG � IÞu ¼ �L2u:

Proof. By a direct calculation we see that

G 2 ¼ �L2I þ

0

B

@

L1 0 0

0 L2 0

0 0 L3

1

C

A

0

B

@

L1 L2 L3

L1 L2 L3

L1 L2 L3

1

C

A

þ

0

B

@

0 ½L2;L1� ½L3;L1�

½L1;L2� 0 ½L3;L2�

½L1;L3� ½L2;L3� 0

1

C

A
:

In the last expression we use Lemma 4.7 and Proposition 4.8 to arrive at the

conclusion. r

As a simple consequence of Propositions 4.6 and 4.9, we obtain the following

result.

Proposition 4.10. The spectrum of the operator G is a subset of Z.

Remark 4.1. In the subsequent argument we do not require a complete

information on the spectrum of G. The important thing is an estimate on the

gaps in its spectrum.

Since Proposition 4.4 and (4.3) imply that

jð�rqr þ GÞuja rjJ curl uj þ rjdiv uja rjcurl uj þ rjdiv uj;

Theorem 4.1 is a direct consequence of Proposition 3.1 and Proposition 4.10

because the width of two adjacent spectrum of G is equal to one.

4.3. Proof of Theorem 2.3.

We are now in a position to prove the unique continuation property for

the isotropic case. Theorem 2.3 follows directly from Theorem 4.1. The space

H 1
0;yðWÞ denotes the set of all functions belonging to H 1

0 ðWÞ and vanishing of

infinite order at the origin. Then, we note that Theorem 4.1 is valid for u A

H 1
0;yðWÞ. By taking the limit, the statement of Theorem 4.1 is true for

u A H 1
0 ðUÞ if U 6 C 0. Let F A Cy

0 ðBð1ÞÞ, 0a wa 1 be a cut-o¤ function such that

FðxÞ ¼ 1 if jxja 1=3 and F ¼ 0 if jxjb 1=2. Suppose that u A H 1
0;yðWÞ. Let

FnðxÞ ¼ FðnxÞ. We apply Theorem 4.1 to ~uu ¼ ð1�FnðxÞÞu and let n ! y. In

view of (2.4), we see that

lim
n!y

ð

jxj�2gj½curl;Fn�uj
2
dxþ

ð

jxj�2gj½div;Fn�uj
2
dx

� �

¼ 0:
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From this fact, we can easily verify that the inequality in Theorem 4.1 holds for u.

Let E and H A fH 1
locð

_UUÞg3 be a solution to (1.4) vanishing of infinite order at

the origin.

Let r be a positive number satisfying

3r <
1

2
�maxðM1;M2Þ:ð4:9Þ

We can see that

jcurlEjaC1jHj=jxj; jcurlHjaC2jEj=jxj; x A U ;

where the constants C1 and C2 are given by

C1 ¼ sup
U

jxj kmðxÞk; C2 ¼ sup
U

jxj k~eeðxÞk:

In view of the boundedness of m and ~ee, the constants C1 and C2 can be taken to

be an arbitrarily small positive number if the domain U is shrunk enough. We

choose U so that U HB1ð0Þ and

C1 þ C2a r:

Since m and ~ee are scalar functions, (1.5) implies that

divE ¼ �
X3

j¼1

~ee�1ðxÞðqj~eeÞðxÞEjð4:10Þ

and

divH ¼ �
X3

j¼1

m�1ðxÞðqjmÞðxÞHj :ð4:11Þ

From the assumption (2.7), it follows that there exists a positive number r0 such

that Br0ð0ÞHU and

jdivHja ðM1 þ rÞjHj=jxj; jdivEja ðM2 þ rÞjEj=jxj

if jxja r0.

Let w A Cy

0 ðUÞ, 0awa1 be a cut-o¤ function such that wðxÞ ¼ 1 if jxja r0=3

and w ¼ 0 if jxjb r0=2. It holds that for any u A fH 1
locðB1ð0ÞÞg

3,

ð
U

jxj�2gj j½curl; w�uj2 dxa 4maxj‘wj2C2

ð
jxjbr0=3

jxj�2gj juj2 dx

and ð
U

jxj�2gj j½div; w�uj2 dxamaxj‘wj2
ð
jxjbr0=3

jxj�2gj juj2 dx:
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If we apply Theorem 4.1 to wE and wH, we see that there exists a positive

constant C independent of g such that

1

2

ð

U

jxj�2gj�2jwEj2 dx

� �1=2

aC1

ð

U

jxj�2gj�2jwHj2 dx

� �1=2

ð4:12Þ

þ ðM2 þ rÞ

ð

U

jxj�2gj�2jwEj2 dx

� �1=2

þ C

ð

jxjbr0=3

jxj�2gj jEj2 dx

( )1=2

and

1

2

ð

U

jxj�2gj�2jwHj2 dx

� �1=2

aC2

ð

U

jxj�2gj�2jwEj2 dx

� �1=2

ð4:13Þ

þ ðM1 þ rÞ

ð

U

jxj�2gj�2jwHj2 dx

� �1=2

þ C

ð

jxjbr0=3

jxj�2gj jHj2 dx

( )1=2

:

Summing up these two inequalities, we obtain

1

2
�M1 � r� C1

� �
ð

U

jxj�2gj�2jHj2 dx

� �1=2

ð4:14Þ

þ
1

2
�M2 � r� C2

� �
ð

U

jxj�2gj�2jEj2 dx

� �1=2

a 2C

ð

jxjbr0=3

jxj�2gj jEj2 dx

( )1=2

þ 2C

ð

jxjbr0=3

jxj�2gj jHj2 dx

( )1=2

:

Finally, we conclude that

d0

ð

jxjar0=4

jxj�2gj�2jHj2 dx

( )1=2

þ d0

ð

jxjar0=4

jxj�2gj�2jEj2 dx

( )1=2

ð4:15Þ

a 2C

ð

jxjbr0=3

jxj�2gj jEj2 dx

( )1=2

þ 2C

ð

jxjbr0=3

jxj�2gj jHj2 dx

( )1=2
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for any positive integer g. Since jxj�2gj�2 is strictly decreasing function, we see

that

kHkL2ðjxjar0=4Þ
þ kEkL2ðjxjar0=4Þ

a ð2d0Þ
�1
Cr0ð4=3Þ

�gj :

Letting gj ! y in the last inequality, we can conclude that E and H are identi-

cally equal to zero in Br0=4. This leads to the conclusion of Theorem 2.3. r

5. Non-isotropic cases.

When aðxÞ is a positive symmetric matrix-valued function, we shall use a

perturbation method that is e¤ective in the treatment of elliptic operators with

variable coe‰cients (cf. [8]). Suppose that there exist a positive constant A0 such

that

sup
x A _UU

X

3

k¼1

jxj2
X

3

j¼1

qxjajkðxÞ

�

�

�

�

�

�

�

�

�

�

2
8

<

:

9

=

;

1=2

aA0;ð5:1Þ

and

sup
x A _UU

kðx;‘ÞaðxÞkaB0:ð5:2Þ

Here and in what follows, the symbol k � k denotes the norm of matrices as a

multiplication on C
3.

First of all, we shall transform að0Þ into the identity matrix. It is well

known that the operator curl is invariant under any orthogonal matrix on R
3

whose determinant is equal to one. Namely, let fejg
3
j¼1 and f fjg

3
j¼1 be two

orthonormal basis of R
3 such that the determinant of the orthogonal matrix

A ¼ ðajkÞ defined by the relation

fj ¼
X

3

k¼1

ajkek; j ¼ 1; 2; 3

is equal to one. The point P of R
3 can be written in these basis as follows.

P ¼
X

3

j¼1

xjej ¼
X

3

j¼1

yj fj:

It follows that y ¼ Ax and

A curlx
tA ¼ curly:

In a similar manner we see that

divxðauÞ ¼ ‘x � ðauÞ ¼
tA‘y � ða

tAAuÞ ¼ ‘y � Aa
tAðAuÞ:ð5:3Þ
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Therefore, we may assume that Aað0Þ tA is a diagonal matrix. Actually, it has

the positive entries by our assumption:

Aað0Þ tA ¼

0

B

@

a1ð0Þ 0 0

0 a2ð0Þ 0

0 0 a3ð0Þ

1

C

A
; ajð0Þ > 0; j ¼ 1; 2; 3:

Furthermore, we can transform our system into a new one for which að0Þ is

the identity matrix. Indeed, making the following transformations

yj ¼
ffiffiffiffiffiffiffiffiffiffi

ajð0Þ
q

zj; vjðxÞ ¼
ffiffiffiffiffiffiffiffiffiffi

ajð0Þ
q

~uuj; j ¼ 1; 2; 3 with ~uu ¼ Au;ð5:4Þ

we see that

divxðaðxÞuÞ ¼ divzð~aaðzÞvÞ; ~aaðzÞ ¼ a
�1=2
0 AaðA�1

a
1=2
0 zÞ tAa

�1=2
0 ;

where

a
1=2
0 ¼

0

B

B

@

a
1=2
1 ð0Þ 0 0

0 a
1=2
2 ð0Þ 0

0 0 a
1=2
3 ð0Þ

1

C

C

A

:

Needless to say, it holds that ~aað0Þ ¼ I3. At the same time, the transformations

(5.4) implies

curlx u ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a1ð0Þa2ð0Þa3ð0Þ
p

0

B

B

@

ffiffiffiffiffiffiffiffiffiffiffi

a1ð0Þ
p

0 0

0
ffiffiffiffiffiffiffiffiffiffiffi

a2ð0Þ
p

0

0 0
ffiffiffiffiffiffiffiffiffiffiffi

a3ð0Þ
p

1

C

C

A

curlz v:

Let ~UU be the image of U under the map z ¼ a
�1=2
0 Ax. As a consequence,

we see that (2.1) is transformed into

jcurl vjaD1jvj=jzj; jdivð~aavÞjaD2jvj=jzj; z A
_~UU~UU ;ð5:5Þ

with

D1 ¼ A1amax=amin; D2 ¼ A2=amin:

The hypothesis (5.2) implies

sup
x A

_~UU~UU

kðz;‘Þ~aaðzÞkaD3ð5:6Þ

with D3 ¼ B0=amin.

In what follows, the bracket ð�; �Þ stands for the standard inner product of
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C
3. We denote the k-th row of the matrix a by aðkÞ and the j-th column by

að jÞ. It holds that

divð~aaxÞ ¼
X

3

k¼1

ðqzk ða
�1=2
0 AaÞðkÞ;

tAa
�1=2
0 xÞ:

In view of

X

3

k¼1

qzk ða
�1=2
0 AaÞðkÞ ¼ ðdivða

�1=2
0 AaÞð1Þ; divða

�1=2
0 AaÞð2Þ; divða

�1=2
0 AaÞð3ÞÞð5:7Þ

¼ ðdivx a
ð1Þ; divx a

ð2Þ; divx a
ð3ÞÞ;

the assumption (5.1) implies

X

3

j¼1

qzj ða
�1=2
0 AaÞð jÞðzÞ

�

�

�

�

�

�

�

�

�

�

a

X

3

k¼1

X

3

j¼1

ðqxjajkÞða
1=2
0 zÞ

�

�

�

�

�

�

�

�

�

�

2
8

<

:

9

=

;

1=2

aA0=ja
1=2
0 zj:ð5:8Þ

Therefore, we can conclude that

jdivð~aaxÞj ¼
X

3

k¼1

ðqzk ða
�1=2
0 aÞðkÞ;

tAa
�1=2
0 xÞ

�

�

�

�

�

�

�

�

�

�

a a�1
minA0jxj=jzj:ð5:9Þ

Hereafter, we denote a�1
minA0 by D0.

Henceforth, we drop the symbol ~ for ~aa and use the symbols x and u for z

and v, respectively. Then, we have the following intermediate estimate.

Theorem 5.1. Let U be any nonempty open ball with center at the origin of

R
3. Suppose that a A C dðUÞVC1

� ð
_UUÞ satisfies

jdivðaxÞjaD0jxj=jxj; Ex A _UU ; Ex A C
3:

Then, there exists a positive constant C such that

1

2

ð

jxj�2g�2juj2 dx

� �1=2

ð5:10Þ

a

ð

jxj�2gjJ curl uj2 dx

� �1=2

þ

ð

jxj�2g�2juj2 dx

� �1=2

þ

ð

jxj�2gjdivðauÞj2 dx

� �1=2

þ C

ð

jxj�2gþ2dðj‘xuj
2 þ juj2Þ dx

� �1=2

for any u A fCy

0 ð _UUÞg3 and any large positive g A Z.

Proof. We introduce the polar coordinates:

x ¼ ðr;oÞ; r ¼ jxj; o ¼ x=jxj:

Strong uniqueness for time harmonic Maxwell’s equations 105



For a scalar function hðxÞ and a vector-valued function gðxÞ defined in a neigh-

borhood U of the origin, OðhðxÞÞgðxÞ denotes a vector-valued function RðxÞ sat-

isfying that

jRðxÞjaCjhðxÞj jgðxÞj; Ex A _UU

with some positive constant C.

Then, the same procedure as in the isotropic case yields that

J curlx u ¼ �qruþ
1

r
Guþ divðauÞoþ divðð1� aÞuÞo:ð5:11Þ

Since að0Þ ¼ 1 and aðzÞ is Hölder continuous, Leibniz’s rule implies that

divðð1� aÞuÞ ¼ �divðaxÞjx¼u þ OðjxjdÞj‘uj:

The first term of the above equation satisfies

jdivð~aaxÞjx¼ujaD0juj=jxj:

Since the principal part in (5.11) is the same as in the isotropic case, the argument

for proving Theorem 4.1 implies the assertion of Theorem 5.1. r

In order to estimate the last term of the right hand side of (5.10), we shall

require an inequality of elliptic type.

Lemma 5.2. Suppose that the same hypothesis as in Theorem 5.1. If U is

su‰ciently small, there exists a positive constant C such that

ð

j‘f j2 dxaC

ð

jcurl f j2 dxþ

ð

jdiv af j2 dxþD2
0

ð

jxj�2j f j2 dx

� �

ð5:12Þ

holds for all f A C1
0 ð

_UUÞ.

Proof. It is easily verified that

X

3

j¼1

ð

jqxj f j
2 ¼

ð

jcurl f j2 þ

ð

jdiv f j2; Ef A fC1
0 ðUÞg3ð5:13Þ

and

j‘f j2 ¼ jqr f j
2 þ

1

r2
jLf j2; Ef A C1ðUÞ:

Since

X

3

j¼1

ð

jLj f j
2
do ¼

X

3

j¼1

ð

jWj f j
2
do; Ef A C1ðS 2Þ;
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it follows that for any f A fC 1
0 ð

_UUÞg3

ð
jqy f j

2
ey dydoþ

X3

j¼1

ð
jWj f j

2
ey dydoð5:14Þ

aC

ð
e3yfjgcurlcurl f j2 þ jfdivdiv f j2g dydo

aC

ð
e3yfjgcurlcurl f j2 þ jfdivdivðaf Þj2g dydo

þ C

ð
eye2dy

X3

j¼1

jWj f j
2
dydoþ C

ð
eyfe2dyjqy f j

2 þ e�2yj f j2g dydo:

Here, fdivdiv and gcurlcurl denote the representation of the operators div and curl with

respect to the coordinates ðy;oÞ, respectively. If the support of f is su‰ciently

small, we arrive at the conclusion. r

Note that ½‘; jxj�g�u ¼ Oðgjxj�g�1Þu,

½curl; jxj�g�u ¼ Oðgjxj�g�1Þu and ½div; jxj�g�u ¼ Oðgjxj�g�1Þu:

Shrinking _UU and applying (5.12) to f ¼ jxj�g
u, we obtain the following weighted

estimate of elliptic type.

Lemma 5.3. Suppose that að0Þ ¼ I . Then, there exists a positive constant K

such that for any g > 1 and any u A fC1
0 ð

_UUÞg3

g�1

ð
jxj�2gj‘uj2 dx

� �1=2
aKg�1

ð
jxj�2gjcurl uj2 dx

� �1=2
ð5:15Þ

þ K

(
g�1

ð
jxj�2gjdivðauÞj2 dx

� �1=2

þ

ð
jxj�2g�2juj2 dx

� �1=2)

if _UU is su‰ciently small.

From Theorem 5.1 and Lemma 5.3, we shall show that the function u A

fC 1ðUÞg3 satisfying the system of di¤erential inequalities (5.5) vanishes expo-

nentially at the origin if it vanishes of infinite order at the origin.

Proposition 5.4. Let u A fH 1
locðUÞg3 satisfy the system (5.5) and vanish of
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infinite order at the origin. Suppose that D0 þD1 þD2 < 1=2. Then, there exist

positive constants c0 and C such that

ð

jxjar

ðjuj2 þ j‘uj2Þ dxaC expð�c0r
�dÞ

for any small positive r.

Proof. Let wðrÞ be a nonnegative function belonging to C1
0 ðð�y; 2ÞÞ such

that wðrÞ ¼ 1 when r < 1. Set ~uuðxÞ ¼ wðMg1=djxjÞuðxÞ. Here, M is a large pos-

itive parameter, which will be defined later. Note that

½curl; wðMg1=djxjÞ�u ¼ OðMg1=dÞu and ½div; wðMg1=djxjÞ�u ¼ OðMg1=dÞu:

We can apply Theorem 5.1 and Lemma 5.3 for u A H 1
0;yðUÞ. To verify this, we

apply them to ð1� wð jxÞÞ~uu, which belongs to H 1
0 ðKÞ with a compact subset of

_UU . In view of (2.4) and (5.5), if we let j ! y in the obtained inequality, we

arrive at the conclusion because for each g,

lim
j!y

ð

jxj�2gj½‘; ð1� wð jxÞÞ�~uuj2 dx ¼ 0

and

lim
j!y

ð

jxj�2gfjcurlð1� wð jxÞÞ~uuj2 þ jdivð1� wð jxÞÞ~uuj2g dxð5:16Þ

¼

ð

jxj�2gfjcurl ~uuj2 þ jdiv ~uuj2g dx:

Since kJka 1, Theorem 5.1 and Lemma 5.3 imply that for any positive N,

b

ð

jxj�2g�2j~uuj2 dx

� �1=2

þ g�1N�1

ð

jxj�2gj‘~uuj2 dx

� �1=2

ð5:17Þ

aC

ð

jxj�2gþ2dðj‘~uuj2 þ j~uuj2Þ dx

� �1=2

þ C 0Mg1=d
ð

2bMg djxjb1

jxj�2gjuj2 dx

( )1=2

;

where

b ¼
1

2
� ðD1 þD2Þð1þ KðNgÞ�1Þ �D0 �

K

N
:

From our assumptions, it holds that b is positive if we take N and g to be large

enough.
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Now, we choose M large enough such that CM�2d < 1=ð4NÞ, which implies

that

Cjxj2da g�2=ð2NÞ; if x A supp wðMg1=djxjÞ:

If we take g to be large so that

sup
jxja2=ðMg dÞ

ðCjxjdþ1Þa b=2;

then (5.17) implies

b

2

ð

Bð2=ðMg1=dÞÞ

jxj�2g�2juj2 dxþ ð2g2NÞ�1

ð

Bð2=ðMg1=dÞÞ

jxj�2gj‘uj2 dxð5:18Þ

aC 0Mg1=d
ð

U nBð1=ðMg1=dÞÞ

jxj�2g�2juj2 dx:

From this inequality, we find that

ð2Mg1=dÞ2g
ð

Bð1=ð2Mg1=dÞÞ

b

2
juj2 þ ð2g2NÞ�1j‘uj2

� �

dxð5:19Þ

aC 0MðMg1=dÞ2gþ2

ð

U nBð1=ðMg1=dÞÞ

juj2 dx:

As a result, we obtain

ð

Bð1=ð2Mg1=dÞÞ

fjuj2 þ ð2g2NÞ�1j‘uj2g dxaC 0M 3g3=d2�2g

ð

U

juj2 dx

for any large positive g A N . This leads to the desired estimate in Proposition

5.4. r

Proposition 5.4 enables us to choose a more singular weight with which a

Carleman inequality holds.

Theorem 5.5. Suppose that að0Þ ¼ I and (2.2). There exist a positive con-

stant C and a su‰ciently small neighborhood U of the origin such that

g

ð

jxj�2
�

�logjxj
�

�egðlogjxjÞ
2

juj2jxj�2
dxð5:20Þ

aC

ð

egðlogjxjÞ
2

jcurl uj2jxj�2
dxþ

ð

egðlogjxjÞ
2

jdivðauÞj2jxj�2
dx

for any u A fCy
0 ð _UUÞg3 and any large g > 0.

To prove this theorem, we require several preparations.
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Instead of the di¤erential operator qr in the radial direction, we shall use a

scalar operator Q defined as

Qu ¼ ðao;oÞ�1ðo; aqxÞu:

We decompose curl u into its radial and angular parts:

curl u ¼ o5Quþ ~LLu; ~LLu ¼ ‘5u� o5Qu;

which has been firstly used in [10]. By a direct calculation, it is easily verified

that for any f A C 1ð½0;yÞÞ, u A C1ðUÞ and c A C 1ðS 2Þ, we have

Qf ðrÞ ¼ f 0ðrÞ; ~LLð f ðrÞuÞ ¼ f ðrÞ~LLuð5:21Þ

and

QðcðoÞuÞ ¼ Oðr�1þ dÞuð5:22Þ

because

Qu� qr ¼ OðjxjdÞj‘uj:

To make the subsequent equations simpler, we shall prepare several notations.

For each x A R
3, we define the matrix Jx as

Jxu ¼ x5u and J‘u ¼ ‘5u:

R�1½u; v� denotes a function satisfying that for every small r > 0, there exists a

small neighborhood U of the origin such that

jR�1½u; v�ðxÞja
r

jxj
juj jvj x A _UU :

Furthermore, if a vector-valued function RðxÞ satisfies that for every small h > 0,

there exists a neighborhood V of the origin such that

jRðxÞja hjhðxÞj jgðxÞj; Ex A _VV ;

then, we write

RðxÞ ¼ oðhðxÞÞgðxÞ:

Finally, we denote the inner product and the norm of L2ðS 2Þ3 by h�; �i and k � k,

respectively.

The next lemma is an analogue to Lemma 3.2 and Lemma 3.3 in [10].

Lemma 5.6. Suppose that að0Þ ¼ I , (2.3) holds. For any u; v A C1
0 ðUÞ, f ; g A

fC 1
0 ðUÞg3 and h A fC2

0 ðUÞg3, the following three statements hold.
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i)

ð
hQu; vi dr ¼ �

ð
hu;Qvi dr� 2

ð
hu; r�1vi drþ

ð
R�1½u; v� dx:ð5:23Þ

ii)

ð
h~LLf ; gi dr ¼

ð
h f ; ~LLgi dr�

ð
h f ; 2r�1

o5gi drþ

ð
R�1½ f ; g� dx:ð5:24Þ

iii)

Q~LLh ¼ ~LLQh� r�1 ~LLhþ Oðjxjd�1ÞQhþ oðr�1Þj‘hj þ oðjxj�2Þh:ð5:25Þ

Proof. Let kðxÞ ¼ ðaðxÞo;oÞ. Since

k
�1ðxÞ � 1 ¼ OðjxjdÞ;

it holds that ð
hQu; vi dr ¼

ð
hu;Q�vi dr;

where

Q�v ¼ �Qvþ fðo;‘Þkgv�
X3

j¼1

qjðaoÞð jÞvð5:26Þ

þ OðjxjdÞfðo;‘Þk�1gvþ OðjxjdÞ
X3

j¼1

qjðaoÞð jÞv:

In view of

�divo ¼ �2r�1
;

the identity (5.26) implies the statement i). The statement ii) follows from the

definition of ~LL and i). To prove iii), we see that

Qðo5hÞ ¼ o5Qhþ ðQoÞ5h

Q2ðo5hÞ ¼ Qðo5QhÞ þ ðQoÞ5Qhþ ðQ2
oÞ5h:ð5:27Þ

We note that

Qo ¼ Oðjxjd�1Þ; Q2
o ¼ oðjxj�2Þ:

In addition,

qxkQhl ¼ Qqxkhl � r�1
okQhl þ r�1

k
�1

X3

j¼1

ak; jqxjhl þ oðr�1Þj‘hjð5:28Þ

¼ �r�1
okQhl þ r�1

qxkhl þ oj‘hj:
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It follows from the last identity that

ð5:29Þ ‘5Qh ¼ Qð‘5hÞ þ r�1ð‘5h�Qðo5hÞÞ þ oðr�1Þj‘hj þ oðr�2Þjhj:

Subtracting (5.27) from (5.29), we obtain iii). r

Corollary 5.7. Under the same assumption as in Lemma 5.6, it holds that

ð
ðQu; vÞjxj�2

dx ¼ �

ð
ðu;QvÞjxj�2

dxþ

ð
R�1½u; v�jxj

�2
dx:ð5:30Þ

The next is essentially obtained in [10] (cf. Lemma 3.4). We modify it in our

setting and give its proof because this identity is crucial in proving Theorem 5.5.

Lemma 5.8. Suppose the same assumption as in the previous lemma holds.

For g A fC1ð _UUÞg3, we have

~LLððaoÞ5gÞ ¼ ðdiv gÞao� ðQðo; gÞÞao� r�1ðo; gÞao� r�1gþ oðr�1Þg:

Proof. For proving Lemma 5.8, we shall use the vector rule

f 5ðg5hÞ ¼ ð f ; hÞg� ð f ; gÞh:ð5:31Þ

We observe that

ðg; qxÞðaoÞ ¼ r�1
ag� r�1ðo; gÞaoþ oðr�1Þg; o ¼ x=jxj

and

divðaoÞ ¼ 2r�1 þ oðr�1Þ; QðaoÞ ¼ oðr�1Þ:

For the sake of these equations, the relation (5.31) implies that

‘5ðao5gÞ ¼ ðdiv g; aoÞ � ðao;oÞQg� r�1g� r�1ðo; gÞaoþ oðr�1Þgð5:32Þ

and

Qðo5ðaoÞ5gÞ ¼ ðQðo; gÞÞao� ðao;oÞQgþ oðr�1Þg:ð5:33Þ

Subtracting (5.33) from (5.32), we arrive at the conclusion of Lemma 5.8. r

From Lemma 5.8, we can derive an analogue to the canonical form of

Proposition 4.4.

Proposition 5.9.

aJao curl u ¼ �QðauÞ þ faJao ~LL� ~LLJaoaguþ ðdiv auÞaoð5:34Þ

þ ðao;QuÞða� 1Þao� r�1uþ JaoJð1�aÞoQau

� r�1ðo; uÞoþ oðr�1Þu:
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Proof. Since

curl ¼ QðJouÞ � ~LLu ¼ JoQu� ~LLuþ Oðrd�1Þu;

and

J 2
x u ¼ �jxj2uþ ðx; uÞx; Ex A R

3;

it follows that

Jao curl u ¼ J 2
aoQuþ Jao ~LLuþ JaoJð1�aÞoQuþ oðr�1Þuð5:35Þ

¼ �jaoj2Quþ ðao;QuÞðaoÞ þ Jao ~LLuþ JaoJð1�aÞoQuþ oðr�1Þu:

On the other hand, Lemma 5.8 and ii) of Lemma 5.6 imply

�~LLJaoau ¼ �ðdiv auÞaoþ ðQðo; auÞÞao� r�1u� ðo; auÞaoþ oðr�1Þu:ð5:36Þ

Combining (5.35) with (5.36), we arrive at the conclusion. r

Now, we are in a position to prove Theorem 5.5. Define

~GG ¼ aJaoð~LL� r�1JoÞ � ð~LL� r�1JoÞJaoa

and

RQu ¼ ða� 1ÞQuþ ðao;QuÞða� 1Þaoþ JaoJð1�aÞoQau:

Then, it holds that

aJao curl u ¼ �Quþ ~GGuþ ðdiv auÞaoþ RQuþ Oðr�1Þu;ð5:37Þ

ð
h ~GGu; vir�2 dr ¼

ð
hu; ~GGvir�2 drþ

ð
oðr�1Þkuk kvkr�2 dr

and ð
hQu; vir�2 dr ¼ �

ð
hu;Qvir�2 drþ

ð
oðr�1Þkuk kvkr�2 dr:

For v ¼ ejðrÞu and j 0 ¼ ðd=drÞjðrÞ, we see that

ejðrÞQu ¼ ðQ� j 0Þv; ejðrÞ ~LLu ¼ ~LLv

and

ejðrÞRQu ¼ RQv� j 0fða� 1Þvþ ðao; vÞða� 1Þaoþ JaoJð1�aÞoavg:(5.38)

Defining

Sv ¼ ða� 1Þvþ ðao; vÞða� 1Þaoþ JaoJð1�aÞoav;

we obtain

ejðrÞaJao curl ¼ �ðQ� j 0Þvþ ~GGvþ ejðrÞðdiv auÞaoþ RQvþ j 0Svþ Oðr�1Þv:

We write the right hand side of the last identity as the sum of the following two

terms:

Pð1Þ
j v ¼ �ðQ� j 0Þvþ ~GGvþ j 0Sv
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and

Pð2Þ
j v ¼ ejðrÞðdiv auÞaoþ RQvþ Oðjxj�1Þv:

It follows that
ð

jejðrÞaJao curl uj2jxj�2
dxb

1

2

ð

jPð1Þ
j vj2jxj�2

dx�

ð

jPð2Þ
j vj2jxj�2

dx;ð5:39Þ

ð

jPð1Þ
j vj2jxj�2

dx ¼

ð

jQvj2jxj�2
dxþ

ð

j ~GGv� j 0vþ j 0Svj2jxj�2
dxð5:40Þ

� 2Re

ð

ðQv; ~GGvþ j 0vþ j 0SvÞjxj�2
dx

and
ð

jPð2Þ
j vj2jxj�2

dxa 2

ð

e2jðrÞjdiv auj2jxj�2
dxð5:41Þ

þ C

�
ð

ðj 0Þ2jxj2djvj2jxj�2
dxþ

ð

jxj2djQvj2 dx

þ

ð

jxj�2jvj2jxj�2
dx

�

:

In order to estimate the third term in the last expression, we shall utilize

Lemma 5.6.

Lemma 5.10.

2Re

ð

ðQv; ~GGvÞjxj�2
dx ¼

ð

oðjxj�1Þj‘vj jvj jxj�2
dxð5:42Þ

þ

ð

oðjxj�1ÞjQvj jvj dxþ

ð

Oðjxj�2Þjvj2jxj�2
dx:

Proof. Let L̂L ¼ ~LL� r�1Jao. Then, we note that the statement iii) of

Lemma 5.6 is still valid for L̂L. By Lemma 5.6 and Corollary 5.7, it holds that
ð

ðQv; aJaoL̂LvÞjxj
�2

dxð5:43Þ

¼ �

ð

ðv; oðjxj�1ÞL̂LvÞjxj�2
dx�

ð

ðv; aJaoQL̂LvÞjxj�2
dx

¼ �

ð

ðv; aJaoL̂LQvÞjxj�2
dxþ

ð

ðjxj�1
v; aJaoL̂LvÞjxj

�2
dx

�

ð

Oðjxjd�1Þjvj jQvj jxj�2
dx�

ð

oðjxj�1Þjvj j‘vj jxj�2
dx

�

ð

oðjxj�2Þjvj2jxj�2
dx

T. Ōkaji114



and

�

ð
ðv; aJaoL̂LQvÞjxj�2

dx ¼

ð
ðL̂LJaoav;QvÞjxj�2

dxþ

ð
oðjxj�1Þjvj jQvj jxj�2

dx:

Likewise,

ð
ðQv;�L̂LJaovaÞjxj

�2
dxð5:44Þ

¼ �

ð
ðL̂LQv; JaovaÞjxj

�2
dx�

ð
ðoðjxj�1ÞQv; vÞjxj�2

dx

¼ �

ð
ðQL̂Lv; JaoavÞjxj

�2
dxþ

ð
ðjxj�1

L̂Lv; JaoavÞjxj
�2

dx

�

ð
Oðjxjd�1Þjvj jQvj jxj�2

dx�

ð
oðjxj�1Þjvj j‘vj jxj�2

dx

�

ð
Oðjxj�2Þjvj2jxj�2

dx

¼

ð
ðaJaoL̂Lv;QvÞjxj�2

dxþ

ð
ðv; jxj�1

L̂LJaoavÞjxj
�2

dx

�

ð
Oðjxjd�1Þjvj jQvj jxj�2

dx�

ð
oðjxj�1Þjvj j‘vj jxj�2

dx

�

ð
oðjxj�2Þjvj2jxj�2

dx:

Thus, we obtain

2Re

ð
ðQv; ~GGvÞjxj�2

dxð5:45Þ

¼

ð
oðjxj�1Þj‘vj jvj jxj�2

dxþ

ð
ð ~GGv;QvÞjxj�2

dx�

ð
ðv;Q ~GGvÞjxj�2

dx

¼

ð
ðjxj�1

v; aJaoL̂LvÞjxj
�2

dx�

ð
ðjxj�1

v; L̂LJaoavÞjxj
�2

dx

þ

ð
oðjxj�1Þj‘vj jvj jxj�2

dxþ

ð
oðjxj�1ÞjQvj jvj jxj�2

dx

þ

ð
oðjxj�2Þjvj2jxj�2

dx:

Since að0Þ ¼ 1 and the Hölder continuity of a imply that

aJao � Jaoa ¼ OðjxjdÞ;
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we note that

�

ð
ðjxj�1

v; L̂LJaoavÞjxj
�2

dxþ

ð
ðjxj�1

v; aJaoL̂LvÞjxj
�2

dxð5:46Þ

¼

ð
Oðjxjd�1Þjvj j‘vj jxj�2

dxþ

ð
oðjxj�2Þjvj2jxj�2

dx:

As a result, we arrive at the assertion of Lemma 5.10. r

Similarly,

Lemma 5.11.

2Re

ð
ðQv;�j 0v� j 0SvÞjxj�2

dxb

ð
ð1� OðjxjdÞÞj 00jvj2jxj�2

dxð5:47Þ

�

ð
oðjxj�1Þj 0jvj2jxj�2

dx�

ð
oðjxj�1Þjvj2jxj�2

dx:

Proof. We see that

�2Re

ð
ðQv; j 0vÞjxj�2

dxb

ð
j 00jvj2jxj�2

dx�

ð
oðjxj�1Þjj 0j jvj2jxj�2

dx:ð5:48Þ

Since Sv ¼ OðjxjdÞv and Qv� qrv ¼ OðjxjdÞj‘vj, it holds that

2Re

ð
ðQv; j 0SvÞjxj�2

dx ¼�

ð
ðv; j 00SvÞjxj�2

dx�

ð
ðv; j 0QSvÞjxj�2

dxð5:49Þ

þ

ð
Oðjxjd�1Þjvj jj 0vj jxj�2

dx

and

QSv ¼ SQvþ ðqrSÞvþ Oðjxjd�1Þv:ð5:50Þ

From the definition, it follows that

ðqrSÞv ¼ ðqraÞvþ ðao; vÞðqraÞao� JaoJðqraÞoavþ Oðjxjd�1Þjvjð5:51Þ

¼ ðqraÞvþ ðo; vÞðqraÞo� JoJðqraÞovþ Oðjxjd�1Þjvj:

Thus, we obtain

jðqrSÞvja 3kqrak jvj þ Oðjxjd�1Þjvj:ð5:52Þ
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From (5.49)–(5.52), it holds that

2Re

ð

ðQv; j 0SvÞjxj�2
dxb�

ð

oðr�1Þjj 0j jvj2jxj�2
dxð5:53Þ

�

ð

OðjxjdÞj 00jvj2jxj�2
dx�

ð

Oðjxjd�1Þjvj2jxj�2
dx:

From (5.47) and (5.53), we arrive at the conclusion of Lemma 5.11. r

Combining Lemma 5.10 with Lemma 5.11, we can conclude that

�2Re

ð

ðQv; ~GGvþ j 0vþ j 0SvÞjxj�2
dxð5:54Þ

b

ð

fj 00ð1� OðjxjdÞÞ � oðr�1Þj 0gjvj2jxj�2
dx

�

ð

oðjxj�1Þj‘vj jvj jxj�2
dx�

ð

oðjxj�2Þjvj2jxj�2
dx:

We choose jðrÞ ¼ gðlog rÞ2=2. Then,

j 00 ¼ gr�2jlog rjð1þ jlog rj�1Þ; r�1j 0 ¼ gr�2 log r:

If we use the inequality aba fga2 þ g�1b2g=2, it holds that

r�1jvj j‘uja
1

2
fgr�1jlog rj jvj2 þ g�1jlog rj�1j‘vj2g;

r�1jvj jQvja r�2jlog rj jvj2 þ jlog rj�1jQvj2:

In view of (5.39), (5.40), (5.41) and (5.54), we see that for every small y > 0,

there exist a small neighborhood U of the origin and a positive constant C such

that

g

2
ð1�D0 � 4D3Þ

ð

jxj�2
�

�logjxj
�

� jvj2jxj�2
dxþ

1

3

ð

jQvj2jxj�2
dxð5:55Þ

aC

ð

e2jja curl uj2jxj�2
dxþ

ð

e2jjdivðauÞj2jxj�2
dx

� �

þ yg�1
X

3

j¼1

ð

�

�logjxj
�

�

�1
jqjvj

2jxj�2
dx

for all v A Cy
0 ðUÞ. The terms with the first order derivatives in the right hand
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side of the last estimate are harmless. To see this, we shall use Lemma 5.2 and

the fact that
�

�logjxj
�

�

�1=2
‘ðejuÞ ¼ ‘ð

�

�logjxj
�

�

�1=2
vÞ þ ½‘;

�

�logjxj
�

�

�1=2
�eju;ð5:56Þ

j½‘;
�

�logjxj
�

�

�1=2
�ejujaCjxj�1

�

�logjxj
�

�

�3=2
jvj;

curlð
�

�logjxj
�

�

�1=2
vÞð5:57Þ

¼
�

�logjxj
�

�

�1=2
curl vþ Oðjxj�1

�

�logjxj
�

�

�3=2
Þjvj

¼
�

�logjxj
�

�

�1=2
ej curl uþ gOðjxj�1

�

�logjxj
�

�

1=2
Þvþ Oðjxj�1

�

�logjxj
�

�

�3=2
Þv

and

divð
�

�logjxj
�

�

�1=2
avÞð5:58Þ

¼
�

�logjxj
�

�

�1=2
div avþ Oðjxj�1

�

�logjxj
�

�

�3=2
Þjvj

¼
�

�logjxj
�

�

�1=2
ej div auþ gOðjxj�1

�

�logjxj
�

�

1=2
Þvþ Oðjxj�1

�

�logjxj
�

�

�3=2
Þv:

Therefore, applying the identity (5.13) to f ¼
�

�logjxj
�

�

�1=2
eju, we see that for any

u A fC1
0ð

_UUÞg3,

g�1
X

3

j¼1

ð

�

�logjxj
�

�

�1
jqjvj

2jxj�2
dxð5:59Þ

aC g�1

ð

�

�logjxj
�

�

�1
je2jðjdivðauÞj2 þ jcurl uj2Þjxj�2

dx

� �

þ Cg

ð

�

�logjxj
�

� jxj�2jvj2jxj�2
dx:

Combining (5.55) with (5.59), we finally conclude that there exists a positive

constant C such that if U is small enough,

ð

e2jðjdivðauÞj2 þ jcurl uj2Þjxj�2
dxbCg

ð

�

�logjxj
�

� jxj�2
e2jjuj2jxj�2

dx

for any u A fC1
0ð

_UUÞg3. This completes the proof of Theorem 5.5. r

6. Proof of Theorem 2.1.

With aid of Proposition 5.4, Theorem 2.1 follows from Theorem 5.5 by use

of the standard procedure. Indeed, let u A fH 1
locðUÞg3 satisfy (2.1) and vanish of

infinite order at the origin. and w be the same cut-o¤ function as in Section 4.3.

T. Ōkaji118



In view of Proposition 5.4, we can apply Theorem 5.5 to ~uu ¼ wðxÞuðxÞ. It fol-

lows that

g

ð

jxjar0=4

jxj�2
�

�logjxj
�

�e2jjuj2jxj�2
dxaC

ð

jxjbr0=3

e2jj~uuj2jxj�2
dx:

Since ðlog rÞ2 is a strictly decreasing function, we have

gðr0=4Þ
�4jlog r0=4j

ð

juj2 dxaC 0egfðlogðr0=3ÞÞ
2�ðlogðr0=4ÞÞ

2g:

Thus, letting g ! y, we conclude that u ¼ 0 in Br0=4ð0Þ. This completes the

proof of Theorem 2.1. r

7. Proof of Corollary 2.2.

In this section we shall prove Corollary 2.2 and keep the same notation as

in Section 4.3 except for the cut-o¤ function. Since l0eð0Þ ¼ mð0Þ, by using the

mapping

~EE ¼ l
�1=2
0 E; ~HH ¼ H;

we see that

�curl ~EE ¼ ill
�1=2
0 m ~HH; curl ~HH ¼ ill

1=2
0 e ~EE:

Therefore, without loss of generality, we may assume that

mð0Þ ¼ eð0Þ:

As in the beginning of Section 5, we can transform them into eð0Þ ¼ mð0Þ ¼ I

simultaneously. Let wðrÞ be a nonnegative function belonging to C 1
0ðð�y; 2ÞÞ

such that wðrÞ ¼ 1 when r < 1. Set wg ¼ wðMg1=djxjÞ. Here, M is a large pos-

itive parameter, which will play the same role in the proof of Proposition 5.4.

Applying Theorem 5.1 to wgE, we see that for every small positive number r, if

we shrink U enough, there exists a positive constant C independent of g such that

1

2
�M2 � r

� �
ð

U

jxj�2g�2jwgEj
2
dx

� �1=2

ð7:1Þ

a r

ð

U

jxj�2g�2jwgHj2 dx

� �1=2

þCMg1=d
ð

U nBð1=Mg dÞ

jxj�2gjEj2 dx

( )1=2

þ C

ð

jxj�2gþ2dðj‘xwgEj
2 þ jwgEj

2Þ dx

� �1=2

:
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Similarly, an application of Theorem 5.1 to wgH implies

1

2
�M1 � r

� �
ð

U

jxj�2g�2jwgHj2 dx

� �1=2

ð7:2Þ

a r

ð

U

jxj�2g�2jwgEj
2
dx

� �1=2

þCMg1=d
ð

U nBð1=Mg dÞ

jxj�2gjHj2 dx

( )1=2

þ C

ð

jxj�2gþ2dðj‘xwgHj2 þ jwgHj2Þ dx

� �1=2

:

If we take the sum of (7.1) and (7.2), it follows that

r1

ð

U

jxj�2g�2jwgEj
2
dx

� �1=2

þ r2

ð

U

jxj�2g�2jwgHj2 dx

� �1=2

ð7:3Þ

aCMg1=d
ð

U nBð1=Mg dÞ

jxj�2gjEj2 dx

( )1=2

þ CMg1=d
ð

U nBð1=Mg dÞ

jxj�2gjHj2 dx

( )1=2

þ C

ð

jxj�2gþ2dðj‘xwgEj
2 þ jwgEj

2Þ dx

� �1=2

þ C

ð

jxj�2gþ2dðj‘xwgHj2 þ jwgHj2Þ dx

� �1=2

;

where

r1 ¼
1

2
�M2 � r� rK1

� �

> 0; r2 ¼
1

2
�M1 � r� rK2

� �

> 0:

Deducing in the same manner as in the proof of Proposition 5.1, we conclude

Proposition 7.1. If maxðM1;M2Þ < 1=2, then there exist positive constants

c0 and C such that

ð

BðrÞ

ðjEj2 þ jHj2Þ dxaC expð�c0r
�dÞ

for all small positive number r.

Now, we are in the final stage for proving Theorem 2.1. Let F A Cy

0 ðUÞ,

T. Ōkaji120



0aFa 1 be a cut-o¤ function such that FðxÞ ¼ 1 if jxja r0=3 and F ¼ 0 if

jxjb r0=2. If we apply Theorem 5.5 to FE and FH, it follows that

g

ð

jxj�2
�

�logjxj
�

�egðlogjxjÞ
2

jFEj2jxj�2
dxð7:4Þ

aC

ð

egðlogjxjÞ
2

jFmHj2jxj�2
dxþ

ð

U nBðr0=3Þ

egðlogjxjÞ
2

jEj2jxj�2
dx

and

g

ð

jxj�2
�

�logjxj
�

�egðlogjxjÞ
2

jFHj2jxj�2
dxð7:5Þ

aC

ð

egðlogjxjÞ
2

jFeEj2jxj�2
dxþ

ð

U nBðr0=3Þ

egðlogjxjÞ
2

jHj2jxj�2
dx:

Adding (7.4) to (7.5), we see that

1

2
g

ð

jxjar0=4

jxj�2
�

�logjxj
�

�egðlogjxjÞ
2

ðjFEj2 þ jFHj2Þjxj�2
dxð7:6Þ

aC

ð

U nBðr0=3Þ

egðlogjxjÞ
2

ðjEj2 þ jHj2Þjxj�2
dx

( )

if r0 is small enough and g is su‰ciently large. Since fðrÞ ¼ ðlog rÞ2 is strictly

decreasing when 0 < r < 1, there exists a positive constant C0 independent of g

such that
ð

jxjar0=4

ðjEj2 þ jHj2Þ dxaC0e
gðfðr0=3Þ�fðr0=4ÞÞ:

Letting g ! y, we conclude that E and H are equal to zero in Bðr0=3Þ. r

8. An appendix.

Finally, we would like to give a remark on a similarity between the Dirac

equation and the Maxwell equation in a vacuum:

curlE þ ð1=cÞqtH ¼ 0; divH ¼ 0;

curlH � ð1=cÞqtE ¼ ð4p=cÞJ; divE ¼ 4pr:

�

This system can be written in the form analogous to the Dirac equation

�
1

i

X

3

k¼0

akqxkc ¼ �
4p

c
F:

Indeed, we define the components of c as

c0 ¼ 0; ck ¼ Hk � iEk; F0 ¼ cr; Fk ¼ jk; k ¼ 1; 2; 3
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and x0 ¼ ct, x1 ¼ x, x2 ¼ y, x3 ¼ z. Furthermore, we have

a0 ¼

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0

B

B

B

@

1

C

C

C

A

; a1 ¼

0 �1 0 0

�1 0 0 0

0 0 0 �i

0 0 i 0

0

B

B

B

@

1

C

C

C

A

;

a2 ¼

0 0 �1 0

0 0 0 i

�1 0 0 0

0 �i 0 0

0

B

B

B

@

1

C

C

C

A

; a3 ¼

0 0 0 �1

0 0 �i 0

0 i 0 0

�1 0 0 0

0

B

B

B

@

1

C

C

C

A

:

Then, it is easily seen that if k, l ¼ 1; 2; 3,

akal þ alak ¼ 2dklIð8:1Þ

and

a1a2 ¼ ia3; a2a3 ¼ ia1; a3a1 ¼ ia2:ð8:2Þ
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