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Abstract. In the article, the Cauchy problem of the form
(%) Oou(x, 1) = fu(x, 1), 0 u(x,a(t)t), x,t), u(x,0)=0
or of the form
(1) Oou(x, 1) = fu(x, 1), 0 u(a(x, t)x,t),x,1), u(x,0)=0

is studied. In (%) and (}) u(x,?) denotes a real valued unknown function of the real
variables x and 7. p denotes a fixed positive integer. It is assumed that f(u,v,x,?) is
continuous in (u,v, x,t) and Gevrey in (u,v,x). «(f) in (x) and a(x,?) in (f) are called
shrinkings, since they satisfy the conditions sup|o(7)| < 1 and supla(x, 7)| < 1, respectively.

1. Introduction.

In the paper the local Cauchy problems of the form

(1.1) Oou(x, 1) = f(u(x, 1), 0l u(x,a(t)t), x,1), u(x,0)=0
and
(1.2) Oou(x,t) = f(u(x,1),00u(a(x,1)x,1),x,1), u(x,0)=0

were considered. In and u(x, t) denotes a real valued unknown function
of the real variables x and ¢. The variable x is called the space variable and ¢ the
time variable. 0;, i =1 or 2, denotes partial differentiation with respect to the ith
variable. p is an arbitrarily fixed positive integer. f and o« are given continuous
functions. In particular, « is called a shrinking, since it satisfies the inequality of
the form 0 < |a(f)] <m or 0 < |a(x, )] < m, where m is a positive constant less
than 1. As was mentioned in [3], a shrinking seems to compensates the loss of
smoothness caused by differentiation with respect to the space variable. In virtue
of this property of a shrinking we can consider a local Cauchy problem such as

or in which the maximum order of differentiation with respect to the
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space variable is greater than the corresponding order with respect to the time
variable.

Kawagishi [3] solved the problems [1.1) and (1.2) under the condition that
f(u,v,x,t) is analytic in (u,v,x). Roughly speaking, [3] can be said to be a gen-
eralization to the non-linear case of the results of Augustynowicz et al. [1], [2] for
linear differential equations. The purpose of the present note is to generalize the
results of [3] to the case where f(u,v,x,¢) is a Gevrey type function of (u,v, x).

In §2 we shall begin with the definition of a Gevrey function and list up
necessary properties of Gevrey functions. In this section we shall quote some re-
sults that were given in Yamanaka [6], [7]. Although some of them may not be
considered quite suitable for our present situation without modification, we shall
make no modification in order not to make the note longer.

The existence of a solution of the Cauchy problem will be given in §3 as
Theorem 3.1. The uniqueness of the solution of the same Cauchy problem will
be shown in another theorem, Theorem 3.2, in the same section. Our result in §3
can be said to be a partial generalization of a result of Matsumoto [4]".

In §4 we shall study the properties of the composition of a Gevrey function
and a real analytic function. This is a preparation for §5.

In §5, the final section, we shall treat the Cauchy problem of the form [1.2).
The existence of a solution of the Cauchy problem will be given as [Theorem|
5.1. The uniqueness of the solution of the same Cauchy problem will be shown

in another theorem, [Theorem 5.2.

2. Gevrey functions, 1.

2.1. Gevrey functions of one variable.

We denote by Z, the set of all non-negative integers. Let / be an interval
in R and /4 a constant greater than 1. We fix such a A throughout this paper. If
w:I — R is a C* function and there are two positive constants C, M such that
the inequality

W (x)| < CM*(k)*

holds for all x e I and all k € Z,, then w is called a Gevrey function on 7 of order
/. As is easily seen, a C* function w: I — R is a Gevrey function of order A if
and only if there are two positive constants C’, L such that the inequality

B (x)| < 273C"LFRNA (1 + k)2

DIn [4] only linear differential equations are considered. However, the coefficients of the equa-
tions in @ are assumed to be in some wider class of functions than the Gevrey class, i.e., the ultra-
differentiable class.
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holds for all xel and all ke Z,. So we write, according to Yamanaka [6],
(k) =273k (1 + k)2
for k=0,1,2,... and define

W ()]
lw|, = sup{L"I}(k) i xel ke Z,

for each C* function w: I — R. We denote by y, (I) the family of all C* func-
tions w: I — R such that |w|, < o0.

Besides the family y; (/) we need another type of Gevrey family. If w:1 — R
is a C* function, we write

(2.1) Il = sup|w(x)|, [[w], =max{2°w],2°L~"|w’|}

xel

and define
%JD:{WJE:RmWL<w}

Between the two types of Gevrey families y; (/) and % (/) there is the following
relation.

ProposITION 2.1. If 0 < L < M, then y;,(I) < %y (I) < y)(I) and the in-
clusion maps in these inclusion relations are linear and bounded.

ProoF. See Lemma 5.2 of Yamanaka [7]. O

The norm | - ||, has the following useful property.

PRrOPOSITION 2.2. If v and w are in G1(I), then the product vw is again in
G1(I) and the inequality |jvw|; < ||v||.||w|, holds.

Proor. See Theorem 5.4 of Yamanaka . ]

As for the result of differentiation of a function belonging to the family y, (1)
there is the following fact.

PrROPOSITION 2.3. Let L be a positive constant, o. a constant greater than 1
and q a positive integer. Assume that w € y;(I). Then the qth derivative w\9 of
w is in the family vy, (I) and the inequality

g\
W9, < <aL>Q(@) i,

holds.
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PRrOOF.

(k+q) k+q
WD) _ ATk g)

wlo (L) 4o~ k+4a) Aq
(L) Li(k) — (aL)*Ti(k) Wz(et) fexa)

< |w|, (L) sup o 't* = |w], (aL)? 2q M<|W‘ (aL)? g H
B >0 L eloga) — "' loga)

For us the following modification of the above proposition is useful.

PrOPOSITION 2.4. Let L and M be positive constants such that L < M.
Assume that w is in y;(I) and q is a positive integer. Then w9 is in y,,(I) and
the inequality

49
(2.2) |W(q)| < M+ q ]
. M M . L L

holds.

PrOOF. Write o= M /L. Then we see by [Proposition 2.3 that w(¥ is in
v, (I) =7, (I) and the inequality

q q
(23) Wy < M (1oga> .,

holds. Further we have

lo J”m>“_1 M-L
O( oy — — .
g 1 t{ o M

Substituting this relation into [2.3), we obtain [2.2]. ]

As for the result of composition of two Gevrey type functions there is the
following fact.

PROPOSITION 2.5. Let I,J be open intervals and L, M be positive constants.
Assume that w:J — R is a C* function such that w' €y, (J) and v:1 —J is a
C™ function such that v' € y,,(I). Assume further that the inequality

(2.4) W' <L 'M

holds.  Then the derivative (w o v)’ of the composite function wo v : I — R belongs
to the family y,,(I) and the inequality

[(wov)'lyy < L7 M|w'|,

holds.
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ProoF. See [Theorem 3.1 of Yamanaka [6]. O

The |Proposition 2.Y is modified as follows.

PROPOSITION 2.6. Let I,J be open intervals and L, M be positive constants.
Assume that w : J — R is in the family 91 (J) and v: 1 — J is in the family Gy (I).
Assume further that the inequality (2.4) holds. Then the composite function wo v :
I — R belongs to the family %y (I) and the inequality

[lwoolly < il
holds.
ProoF. See Theorem 5.3 of Yamanaka [7]. O

2.2. Gevrey functions of several variables.

In this subsection we consider Gevrey functions of several variables. For
a function of m variables we denote by ¢, the partial differentiation with respect
to the jth variable and write 0 = (0y,...,0,). Further, if k = (ky,...,k,) is an
element of Z", then we write 0% = 0ft ... 0% Let U be an open set of R". If
f:U— Ris a C” function and there are positive constants C, M such that the
inequality

057 (x)] < CMM(ED, where k| = ki + -+ +km, K=k k!,

holds everywhere in U for any m dimensional index k = (k... k), then f
is called a Gevrey function on U of order 4. A C® function f: U — R is a
Gevrey function of order A, if and only if there are positive constants C’, L such
that the inequality

0% ()| < C"LMT; (k)

holds everywhere in U for any m dimensional index k. For this reason we write

W)
1= S99 3 k)

for any C* function f: U — R and define

() ={f: USR] < 0.

Further we write, like (2.1),

[w] = sup |w(x)|, |wl, = max{26|w|,23L_1 max |6,~W|L}

xeU
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and define
G, (U) = {w; U5 R, < oo}.

It is necessary for us to know what comes out when m Gevrey functions
gi1(x),...,gm(x) of one variable x are substituted for the first m variables
V1y---,ym In a Gevrey function f(yi,...,ym,x) of m+ 1 variables yi,...,ym,X.

ProposITION 2.7. Let Jy,...,J,, and I be open intervals and L, M be posi-
tive constants. Write U =J; x --- x J, x I. Let f be an element of the family
G (U) and g;: 1 — Ji, i=1,....,m, be in the family 9y (I). Assume that

(2.5) M > L(l +mlax|glf]M).

Put

p(x) = f(91(x),. -, gm(x),x)
for xel. Then ¢ is in 9y (I) and the inequality

ol < (111,
holds.

PrOOF. See Lemma 8.1 of Yamanaka [6]. O

2.3. Partial Gevrey functions.

It 1s necessary for us to consider functions of m + 1 variables which are in
a Gevrey class with respect to the first m variables only. We call them partial
Gevrey functions. For a function f(yy,..., m,t) of m+ 1 variables yy,..., .t
we write 0 = (01,...,0m). For a non-negative integer j, we write Z.(jy) =
{jeZ.;j<jo}. Let U be an open set of R™ I a real open interval and j, a
non-negative integer. Then we denote by C*(U) ® C/°(I) the set of all func-
tions f: U x I — R such that the partial derivative 51‘6;; 1 f 1 UXT — R exists
and continuous for each (k, j) e Z%' x Z(jo). Further, if A(¢) is a positive valued
function of ¢t eI, we write

yh(U) ® Cjo(l) = {fE COC<U) ® CjO(I)QSZliII) |f('7"'a'7t)|h(t) < OO},
gh(U) ® Cjo(l) = {fE COO(U) ® CjO(I)QSZliII)Hf('?"'7'7l)||h(t) < OO}

If /(7) is identically equal to a positive constant L, then we write 7, (U) ® C/0(1)
and 4 (U) ® C/o(I) instead of y,(U) ® C/°(I) and %,(U) ® C/*(I), respectively.
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3. The Cauchy problem with shrinking at the time variable.
In this section we want to solve the Cauchy problem [I.I}:
dou(x, 1) = f(u(x, 1), 07u(x,0(0)t), x, 1), u(x,0)=0.

In the first subsection we prove the existence of a solution to the problem.

3.1. Existence of a solution.
The purpose of this subsection is to prove the following theorem.

THEOREM 3.1. Let R, Ty,L,M,m,q and ry be positive constants. Assume
that M > max{l,L}, m <1 and Apq < 1, where p is the integer in the equation
(1.1).  Write U = {(v,w,x) € R*; [v] < R,|w| < R,|x| < ro} and assume that f is a
member of the family 4 (U) ® C%(—Ty, Ty). Assume further that o(t) is a real
valued continuous function of t e (—Ty, Ty) satisfying the inequality 0 < a(t) < m.
Write h(t) = M (1 + |t|7).  Then there is a positive number Ty such that the Cauchy
problem (1.1) has a solution u € 9,(—ry,r9) @ C(~Ty, Ty).

PrOOF. Solving the Cauchy problem 1s clearly equivalent to solving the
integral equation

0 0

t a(t)t
(3.1) v(x, 1) = f(J v(x,7) dr,J ol v(x,7)dr, x, t).

Now, from the assumption that f is in %, (U) ® C°(—Ty, Ty) it immediately
follows that

(3.2) Ap = sup |f(v,w,x,1)| < o0
(v,w,x)e U, t|<Ty

and

(3.3) By == sup{|0if(-,-,-,0)|;;]t] < To,1 <i<3} < 0.

For any two positive constants K and 7 we define
7 (K, T)= {v € G1(—ro,10) ® CO(=T, T); sup [[v(-, )|l < K}-
lt|<T
Note first that, if ve #(K,T), then

(3.4) lo(- )l = sup |o(x, )] <27o(-, Ol <27°K, |1 <T,

|x|<ro
and

(3:5) [010C, )y < 27RO [e( 1)l < 27h(K, i < T.
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Let us next show that, for any given K > 0, there is a number 7,(K) such that,
if ve #(K,T>(K)), then the right hand side of makes sense for all (x,¢) €
(=ro,10) X (—=T2(K), T>(K)). To this end take for the moment a 7 > 0 arbi-
trarily and let v be in Z (K, T). We see by that

Jt v(x,7)dr

0

sup <27°KT, || <T.

|x|<ro

It follows that, if T satisfies
(3.6) T <2°K7'R

t

and |t| < T, then we can substitute J v(x,7)dt for v in f(v,w,x,t). It follows
0

from that, if ve #(K,T) and |t| < T, then
1070(x, 1)] < 273 Kh(t)’'T;(p — 1)

and

ol
<27KI;(p— I)J h(z)? dz

()t
J ol v(x,7)dr
0

0

<27KI(p— )MP(1+ T)mT

< 273KT(p—1)MP(1 + T)MT.
Therefore, if T satisfies the inequality
(3.7) 2K (p—)MP(1+ T)YMT <R

a(o)t
and |#| < T, then we can substitute J olv(x,7)dr for w in f(v, w,x,1).
0
We denote by T5(K) the maximum value of T that satisfies and [(3.7).

We know from the above arguments that, if ve # (K, T»(K)) and |t| < T>(K), then
the right member of [3.1] is well defined for all (x,7) € (—rg,r9) x (= T2(K), T>(K)).
It follows that, if ve # (K, T>(K)), we can define

(1)t

0 0

t
D(v)(x,1) = f(J v(x,7) dr,J ol v(x,7)dr, X, t)
for all (x, t) € (—7’0,7‘0) X (—TQ(K), TQ(K))
Let us next show that there is a number 73(K) € (0, T>(K)] such that, if v is
F (K, T3(K)), then @(v) is in G),(—rg,r0) ® C°(—T3(K), T3(K)). To this end
take for the moment a T € (0, 7»(K)] arbitrarily and let v be in # (K, T). Write

t

(3.8) p(x,t) = Jo v(x,7)dt
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and
a(t)t

(3.9) Y(x, 1) = J ol v(x,7)dr.

0

We want to apply [Proposition 2.7 to the composite function f(¢(x, ), ¥ (x, ), x, ).
By we have, for each (k,7)e Z, x (=T, T),

|alk-|—lv(x7 T)’ < |(310(‘ ,T)|h(.[)h(f)k[‘/l(k) < 2_3Kh(T)k+1[’)»(k)'

Therefore we have

I
105 o(x, 1)] < < J 273Kh(0) (k) dr

t
J 05 v(x, 7)| dx
0

0

< 273Kh()* ' (k)T

and

(3.10) 1019(-, )y <27 °Kh(DT.

Now suppose that T satisfies the inequality

(3.11) T < 23K1(l—i).
L M

Then we have

h(t)  h(1) - h(t)
L M — L
Therefore we see by that the following assertion is correct.

23Kh(NT < —1.

ASSERTION 3.1, If T satisfies 0 < T < T»(K) and (3.11) and v is in (K, T),
then the function ¢ defined by satisfies the inequality

h(t
(3.1 00y = 01
for |t| < T.

As for y(x,7) we have, since 0 < a(f) <m < 1,

ro(0)t
(3.13) ol < || 107 oy, 1) de
JO

mt
07 p(x, 7)| de

IA

Jo

=m

t
J 07 w(x, ms)| ds
0
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t
J 107 ot ) ()1 ) s

<

< h(t)*I;(k)

t
Lwﬁ%mmmmma

We use here [Proposition 2.4 and [3.5]. As a result we obtain the following
estimation of 07" v(-, ms)] hs)-

p @
\51’)“0(' 7mS)|h(5) < h(S)(IH)p (W) |0y ’ms)‘h(mS)

) p
< h(s)* (M(l fiq‘l)|s|q> 273 Kh(ms)

/lp p
<WT)*? M~ <m> 273Kh(t)|s| .

It follows that

(3.14) <

h(T)”””( Ap )*PKh(z) T4
1

t
p+l1
J |07 0, ms)| ) ds M 23 1—Jpg

0

Substituting (3.14) in (3.13), we obtain

b\ M?P23K :
ot il < (220) (1 TP T () k)

— m4 1 — Apg
and
Jp P M»2-3K .
(3.15) O (-, )] < (1 _mq) T (1+ THXP T =ap(7),

Now suppose that T satisfies the inequality

p M N\pl—ipg 311 1
(3.16) (1—m‘1> 1_/1])q(1+T) T <2°K (Z_M)

and || < T. Then we have, in virtue of (3.15),

Mo b _ b
L M~ L

100 (-, D)l <

It follows that the following assertion is correct.
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ASSERTION 3.2, If T satisfies 0 < T < T»(K) and and visin 7 (K, T),
then the function \ defined by satisfies the inequality

3.17) o Dl <

for |t| < T.
We denote by T5(K) the maximum value of T € (0, 7>(K)]| that satisfies (3.11)

and (3.16). Then, by Assertion 3.1 and 3.2, we see that, if 0 < 7' < T3(K) and v
is in # (K, T), then the inequality

(3.18) h(t) = L(1 +max{|01p(-, )], [ (5 Dy })

holds for |¢/| < T. The condition is of the same type as in Prop-
osition 2.7. Therefore we can use it here and conclude that, if 0 < T < T3(K)
and v is in Z (K, T), then @(v) is in the family %;(—ro,r9) ® C°(—T,T) and the
norm [|®(v)(-, 1)l is estimated as follows.

(319) 8@l < 1100l
=maX{26If(',-,-,t)I,23L1 max ial-f<-,-,-,z>u}
1<i<3
< max{2°4,2 L' B;}.

We want @(v) to be in the family # (K, T). In view of (3.19) we see that, in
order for @(v) to be in this family, it is enough for K to satisfy the inequality
K >max{2%4,,2°L71B;}. So we define

Ky := max{26Af, 23L_le}.

We have proved that, if 0 < 7' < T3(Ky), then @ maps # (K, T) into itself.
Our next task is to estimate the difference @(v;) — @(vy), where v; and v,

are two elements of the family 7 (Ko, T5(Ky)). Take two elements vy, v; of this

family arbitrarily and set vy = Ov; + (1 — 0)vy for 0 < @ < 1. Further define

t

(3.20) Pp(x, 1) = Jo vo(x,7)dt

and

(3.21) Yy(x, 1) = J 0T vy(x,7) dr.
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Write

1
(3.22) AmnzLaﬂ%mm%uwmow

for i=1,2. Then the difference @(v;) — @(vy) is expressed as follows.
(3.23)  @(v1)(x, 1) — @(vo)(x,1)
= f(gol (X, t)a lrbl(xa t)? X, l) _f(¢0(x’ t)a lpO(xa t)) Xy l)

Lo
= JO a_Hf((pH(xa l)? lpﬁ(xv Z)a X, t) do

= Al(x7 t)((pl(xa t) - (DO(X, t)) + AZ(x7 f)(% (x7 Z) - lpO(X7 [))

Using this relation and [Proposition 2.2, we obtain

(3.24) ([ @) (-, 1) = @) (-, )l < (141 (5 Dl llor (5 8) = 205 Dl

+ [[A2C Ol 11 5 1) = o )l

In order to estimate the right member of this inequality we write

gi,O,t(x) — aif((pﬁ(xa l)? lp@(xa l)7 X, t)

and define L; = (L + M)/2. Since f € %, (U) ® C°(—Ty, Ty) and L; > L, we see
that

(3.25) Dy = sup{[[0:f (-, D)5 1] < To, 1 <i <3} < o0,

Therefore we see again by [Proposition 2.7 that, if, instead of and ((3.17), the
conditions

(3.26) il Oy < G210, U <T

and

(.27 Oy < 21, l<T

are satisfied, then g; g€ %u(—ro,r0) and ||gio.cllyp < 10:/ ¢, 0, < Dy

From the last inequality we obtain

(3.28) [4i(-, iy < sup lgio.llp) < Dy

0<6<1
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In order that the condition is satisfied it is enough that T satisfies,
instead of |3.11),

11
3p—-1( > -
(3.29) T < 2°K, <L1 M).

In order that the condition ((3.27) is satisfied it is enough that 7 satisfies, instead

of [3.16),

ip \7 M I VAR
. 14+ THP 7121 < 3K —— — ).
(3:30) <1 — m‘l) 1 - /lpq( 1) N O\, M

We need further to estimate [[¢ (-, ) — @o(-, )|l and [, (-, 1) — o (-, Ol
in terms of sup,[lvi(-,7) —vo(-, 7). By we clearly have

(3.31) lo1 (5 8) = @o(- s Dllay < T sup [lor (- 7) = vol-, 7)l4ge)-

|z7|<T
From (3.21) we obtain
(332) |{pl(x7 Z) - l700()67 t)'
o)t

< 10701 (x,7) — 0fvo(x,7)| d7
Jo

a(t)t

0101 (-,7) = d1vo (-, Dl h(1) ™ Ti(p — 1) dr

IA

JO

ro(0)t
<|| 2@ 0 =l Dl Tp = 1) de

<27 (p = DI(T)'T sup |oi(-,7) = vo(-,7)[l4r)

|7|<T
and
(3.33) 1071y (v, 1) — 0 g (x, )|
(O kst piktl
< |04 vi(x,7) — 0 vo(x,7)| dt
0
rmt
< 07y (x, 1) — 0P g (x, 1) | de
LAtk prk+1
<m J |0 v1(x, ms) — 0, vo(x, ms)| ds
0
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rt

07 or (- ms) — of oo (- ms) |y h(s) " T (k) ds

IA

JO

t

. Ap
< || A" (ﬁ) 10101 (-, ms) — B100(- , m8) |y () T (k) s

Jo —h
N A Ap P l=ipg
< W)™ (k)M d1(-,7) — dyvo(-
< h(1) (k) - 1_qu|§|lil;| 11(+,7) = Ao+, 7)ly
ik To(k) ( dp \P T4 h(7)
2ip+k L A MY ) . )
<l ) (120 T s 5 ) = e

) T (k A p Tl—lpq
< 2—3h(z)zﬁp+k#h(T) _p ——sup [lo1(-,7) = vo (-, D) ly0).
M» l—mi) 1—ipqr

It follows from (3.32) and (3.33) that
(3.34) [l (. 0) = o (-, D)l

= maX{26 sup [ (2, 1) = Yo (o, D)1, 2°(0) oy (-, 1) = B - t)|h(t)}

W)™ ( ap NPT
< 2°I(p— DA(TPT
_max{ (0= Dh(T)'T, M» \1-m1) 1—ipq

x sup [[vi(+,7) —vo(+,7)][r)-

|z7|<T
If we define
23 1 p h(T)MP j,p p Tl—),pq
(3.35) Cy(T) =max< 2°I;(p— DA(T)'T, U (1—m‘1> e
then (3.34) is rewritten as
(3.36) W1 (1) = Yo (-, Dy < Cu(T) sup lor (-5 7) = vo (-, Tl o)-
T|<

In view of (3.24), (3.28), {3.31) and |3.36) we see that, if T satisfies the inequalities
0< T < T3(Kyp), (3.29) and (3.30), then the inequality

|@(01)(-5 2) = (o) (- )y < Dr(T + Ci(T)) sup i (-, 7) = vol-, 7)lyey

|t|<T
holds for |t < T. If T satisfies one more inequality

(3.37) Di(T + Cy(T)) <27,
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then the inequality

||¢(Ul)( ) t) - ®(UO)( ) Z)Hh(t) < 271 |S|UI; ||Ul(' 71-) - UO(' 7T)Hh(‘[)
T7I<

holds for |¢f| < T.

We denote by 7 the maximum value of T € (0, 7T5(Ky)] that satisfies the
inequalities {3.29), [(3.30) and {3.37). Then @ maps # (K, T1) into itself and the
inequality

sup [[@(01) (1) = P(v0) (- )l <27 sup JJoa(-, 1) = vo (-, 1) Iy,

<Ty f|<Ty
holds for every pair (v1,v9) € # (Ko, T1) x F (Ko, T1). 1Tt follows that there is a
unique element v € # (K, T) such that

D(v) = v.

This element v e (Ko, T)) satisfies the integral equation for |x| < ro and
|f| < T} and

t
(3.38) u(x,t) ::J v(x,7)dt

0
becomes a solution of the Cauchy problem (1.1}. Since v is in the family
G (—ro,19) ® C°(=Ty, Ty), the function u defined by enters in the family
G(—ro,r0) @ C'(=T1, Th). O

3.2. Uniqueness of the solution.
The solution of the Cauchy problem is unique in the following sense.

THEOREM 3.2. Let R, Ty, T),L, M,ry and m be positive constants. Assume
that Ty < Ty and m < 1. Write U ={(v,w,x) € R*;|v| < R, |w| < R, |x| <ro}. In
the differential equation (1.1) assume that f is an element of the family 4;(U) ®
C(~Ty, To) and w(t) is a real valued continuous function of t € (— Ty, To) satisfying
the inequality 0 < o(t) <m. Suppose that there are two solutions u; € Gy (—ro,1o) ®
CY(-T\,T), i=0,1, such that

lui(x,2) < R and |0fu;(x,0)] <R for |x| <ro,lt] < T).
Then u(x,t) = uo(x,t) for all (x,t) € (—ro,ro) x (=T, Th).

Proor. Write v;(x,t) = dru;(x,t) for i =0,1. Then each v; is a solution of
the integral equation and is in %y (—ry,10) ® C°(=Ty, Ty). Further, by the
assumption of the theorem, the quantity

max sup |01v;(-, )|y,
i<
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is finite. We denote this quantity by S,. Next take a number M* >max{M, L}.
Then we have of course

|alvi('7[)|M* < |811),’(',l‘)|M < Sp.

Moreover, since M* > M, we see that there is another positive number S; such
that S) > S, and

1
07 0i, Dy < S

Next let us see that the difference w(x,?) := vi(x,t) — vo(x,¢) becomes a
solution of a linear integral equation. For this purpose set vy = Ov; + (1 — 0)vy
for 0 < 6 < 1 and define gy(x, 1), Yy(x, ) and A;(x, 1) by [3.20), (3.21) and [3.22],
respectively. Then we have (3.23). In the present case, however, we have
®(vg) =vp and @(v;) =v;. So we have

vi(x, 1) = vo(x, 1) = A1 (x, 0)(1 (x, 1) = @o(x, 1)) + Az (x, 1) ( (x, 1) = Wp(x, ).
This means that w(x,¢) is a solution of the linear integral equation

t a(t

(3.39) w(x, t) = Ay (x, Z)J w(x,7)dt + As(x, I)J " ofw(x,7) dx.

0 0

Our purpose here is to show that the equation (3.39) has only the zero
solution. For this purpose we have first to confirm that A;(x,¢) is a Gevrey
function of x. This is seen as follows. Since |0 vp(-, 1), < S, < S/, we have
1019p(- s )| 3+ < S/Ty. Similarly we have |01yy(-, )], < S/T1. In view of these
facts we take a positive number ¢ < (/lp)*1 and write

L+ M
-===,

L MY =max{M", Li(1+8;T)}, h(0) = MI(1+ 1),

Then we have
Ly (1 +max{[0194(-, )]0y, [O1¥ (-, D)5 })
< Li(1 4+ max{|01py(-, )] prt, [O1¥(+, )1 })
< Li(1+S/Ty) <h(r).

Note also that, since f € % (U)® C°(—Ty, Ty) and L; > L, the finite constant
Dy is defined by [3.25). In view of these facts we can use [Proposition 2.7 again
and conclude that 4; is in %,(—rg,7) ® C°(—Ty, T;) and

(340) sup ||Ai('7t)||h(t) SDf

1| <Th

Next we estimate the two integrals in the right member of (3.39) in terms of
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w(-, D)ll4- Take a positive number 7' < T arbitrarily. It is clear that the in-
equality

(3.41) sup

< T sup [[w(-, 1)l
lt|<T

h(t) lt|<T

Jt w(-,1)dt

0

holds. Moreover, by the same argument for obtaining (3.34), we obtain

(3.42) sup

|lt|]<T

a(t)t
J ofw(-,1)dr

0 < Ch(T) sup HW( ) t)”h(t)’

h(1) lt|<T

where C,(T) is the constant defined by (3.35).
From (3.39), (3.40), [(3.41) and (3.42) we obtain

sup [[w(-, t)ll < Dr(T + Cu(T)) sup [[w(-, )|,
1| <T |1|<T

It follows that, if T is sufficiently small, then

sup [[w(-, )|y =0
lt|<T

and

|{| < T = sup |w(x,?)] =0.

|x|<ro
So we write now

T, —sup{Te 0, T1];0 <t < T = sup |w(x,1)]| —0},

|x|<ro

|x|<ro

I = sup{Te (0, 71;0>t>—T = sup |w(x,1)| = O}.

We want to show that 7; = T, = T5. For this purpose suppose 7> < T;. Then,
if T» <t<min{T>/m, T}, then

a(t)t
J w(x,7)dr =0.
0

It follows that the integral equation (3.39) reduces to

(3.43) w(x,t) = A1 (x, 1) J; w(x,7)dt
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in the interval T, <t < min{7>/m,T;}. From we obtain

t

lw(x,f)| < sup |A1(é,s)|J lw(x,7)|dt

|s|<T1, |€]<ro T,

t
<27 sup A )y | ol
2

‘S|<T1
t
32_6DfJ lw(x, )| dr.

p)
It follows that w(z,x) =0 for all (x,¢) such that 7, <t < min{7T>/m, T} and
|x| < ro. This contradicts the definition of 7,. There arises a similar contra-
diction, if we assume that 75 < 7). Thus the proof of the fact that 77 = T, =
T3 and the proof of the theorem itself is now complete. O

4. Gevrey functions, 2.

This section is a preparation for solving the Cauchy problem in the next
section, §5. Here we investigate the properties of the composite function wo v
of a Gevrey function w and a real analytic function v. First let us make some
notational agreement. If p is a positive constant, we write D(p) = {ze C;|z| < p}
and denote by . (p) the set of all holomorphic functions from D(p) into C whose
restrictions on the real interval (—p, p) are real valued. Further, if p and m are
positive constants, we write

B(p,m)={veA(p);|v(z)| <mforall ze D(p)}.
Let us now prove the following proposition.

PropoSITION 4.1. Let L,m,ry and p, be positive constants. Write Iy =
(—ro,r0). Assume that m <1 and

ro—l—m‘3/4L‘1
(41) Po = 1 — /4

Let 8 be an element of #(py,m) and denote by o the restriction to the real interval
Iy of B. Let w be a member of the Gevrey family 4(ly). Write v(x) = a(x)x.
Then the composite function wov:ly— R is in the family 9 g (ly) and the
inequality

(4.2) [(wov)| < Clom, 2)|w],

holds, where C(m,A) is a constant > 1 that depends only on m and 1.
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ProoF. We have to estimate the successive derivatives of the composite
function wowv. To this end we use the higher order chain rule given by
Yamanaka [6]. By the formula given in Theorem 2.1 of [6] we have

(4.3) (wov)"(x)

=3 ()it ;,]{; v+ 0h) dg}j]

N G)W(f)(v(x)) :;;jj{ Olv()(x+0h)d0}j]h )

where vg(z) = f(z)z. If we write

1
o) = | syt om)ao,
0

wj,x(h) = {(px(h)}Ja

then the formula is rewritten as

n

(44) (w0 o)) = Y- D o) 0)

Let us estimate the magnitude of lp].{”x‘f)(O). For this purpose we write r| =
m3*L~" and r, = py —ry —r;. Note that the condition implies that
ra=py— (ro+m L) = py — po(1 = m'/*) = pym'/*,

Using this fact and the fact that the inequality |vy(z)| < pym holds for |z| < p,,
we see that, if |z| < ro+r, then

m
Po <
2 pom!/*

Poft . 3/4

()l <

Therefore we see that, if xe Iy, he D(r), then we have
o) <m™* and |y (h)] <m¥",
It follows that the inequality

k g K
(45) WO) < m
1
holds for all xel, and all ke Z,.
Now take an element w of %, (I)). Using [(4.4) and [4.5), we obtain the
following estimation of the derivative (w o v)(”“)(x).
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(n+ S (n + 1)! (n+1-j)
(46 lwor)" V)| < ZW\W( (o(X)) - W5~ 7 (0)]

—Z ”‘“ o)) W)

L) (=)
< Iy LT, (+1)/4Z J)0
= 'L;m Ol —

n Lifl m3i+1)/4
=2+ Y
o DA+

n 3/4L Jj—n
< 275W!|, (n+ Dl(n + DI m¥/4L)" Z%
= (1+))

o0
£275|W/|L( 3/4L |)Z
]:0

<27+ 1)*|w'| (m**L)"n!”.
Note here that
(4.7) C(m,2) :=sup 2(n+ 1)"m"* < o0,
It follows from and the definition of the constant C(m, 1) that the in-
equality
[(wo )" V()] < Clm, )27 w'| (vmL)"n!* (14 n) 2

holds for all n and all x e ly. This means that (wowv)' is in y Jme(lo) and the
inequality holds. It is clear that C(m, 1) > 1. O

5. The Cauchy problem with shrinking at the space variable.
In this section we want to solve the Cauchy problem [1.2):
Oou(x,t) = f(u(x, 1), 0 u(a(x, 0)x,1),x,1), u(x,0)=0.

In the first subsection we prove the existence of a solution to the problem.

5.1. Existence of a solution.
The purpose of this subsection is to prove the following theorem. In the
theorem we use the symbol & in the same meaning as in the subsection 2.3 of §2.
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THEOREM 5.1. Let R, Ty,L,M and ry be positive constants. Assume that
M >max{1,L}. Write U={(v,w,x)eR>|v| <R,|w|<R,|x|<ry} and assume
that f is a member of the family 41 (U) ® C°(=Ty, Ty). Assume that a(x,t) is a
real valued continuous function of (x,t) € (—ro,ro) X (—To, To) such that the fol-
lowing condition [Cl1] is satisfied:

[C1]:  For each t e (—Ty, Ty) the function o(-,t) : (—ro,ro) — R is the restric-
tion to the real interval (—ro,r0) of a member of the family %B(py,m),
where m is a positive constant less than 1 and p, is another positive con-
stant satisfying the condition (4.1) in Proposition 4.1.

Then there is a positive number T such that the Cauchy problem (1.2) has a

solution u € Gy (—ro,10) ® C(=T1, Ty).

PrOOF. Solving the initial value problem is clearly equivalent to solving
the integral equation

(5.1) v(x, 1) = f<J; v(x, 1) dr, J; ol v(a(x, 1)x,7) dt, x, t).

Now, from the assumption that f is in 4, (U) ® C°(—Ty, Ty) it follows that

the finite constants A, and By are defined by and [3.3), respectively. For
any two positive constants K and 7 we define

F(K,T)= {v € Gy (—r0,70) @ CO(=T,T); sup [[v(-, 0)||, < K}-
lt|<T

Note first that, if ve #(K,T), then

(52) lo(-, Ol = sup [v(x, )] < 27u(-, )]l <27°K, |1 < T,
|x|<ro

and

(5.3) 010(-, )|,y < 273 MJo(-, )|y, <273MK, |f < T.

Let us next show that, for any given K > 0, there is a number 7(K) such
that, if ve # (K, T»(K)), then the right-hand side of makes sense for all
(x,t) € (—=ro,70) X (=T>(K), T>(K)). To this end take for the moment a 7 > 0
arbitrarily and let v be in #(K,T). We see by that

t
J v(x,7)dt| <27°KT, |t| < T.

0

sup
|x|<ro

It follows that, if T satisfies

T <2°K~'R
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t

and |7| < T, then we can substitute J v(x,7)dr for v in f(v,w,x,t). It follows
0

from that, if ve # (K, T) and |¢| < T, then

107 0(x, 1) <2 KMPT(p—1)
and

<27 KMPT;(p - 1T.

t
J ofv(a(x, t)x,7) dt
0

Therefore, if T satisfies the inequality

23R

T <
~ KI(p—-1)Mr

t
and |7| < T, then we can substitute J olv(a(x, t)x,7)dt for w in f(v,w,x,1).
So we write 0

2°R
T>»(K) = minq Ty,2°K'R .
2( ) mln{ 0, 7KD(p—1)Mp}
From the above arguments we know that, if ve #(K,T»(K)) and |{ <
T,(K), then the right member of is well-defined for all (x,¢) € (—ro,79) X
(—T»(K), T»(K)). It follows that, if ve # (K, T»(K)), we can define

t

D(v)(x,1) = f(J v(x,1)dr, J; T v(a(x,t)x,7) dr, x, t)

0
for all (X, l) S (—Vo,l”o) X (—Tz(K), Tz(K)).

Let us next show that there is a number 75(K) € (0, 7>(K)] such that, if v is
in 7 (K, T5(K)), then @(v) is in Gy (—ro,70) ® C°(=T3(K), T5(K)). To this end
take for the moment a 7 € (0, 7>(K)| arbitrarily and let v be in # (K, T). Write

t

ox.0) = | vlx0)dn,

w(x,7) = 0 v(a(x, 1)x,7)

and
t

Y(x,t) = J w(x,7) d.

0

We want to apply [Proposition 2.7 to the composite function (—rp,rp) 3 x —
Flp(x,0),¥(x,1),x,t). As for ¢(x, 1) it immediately follows from that the
following inequality holds.

(5.4) sup [010(-, )|, <27 MKT.
lt|<T
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In order to consider y/(x, ) we write @ = 1/4/m. Then, since a > 1 and 0;v(-,?) €
yar(=r0,70), we see that 0;07v(-, 1) = 37 u(- 1) is in y,,(—=ro, 7o) and, in virtue of
[Proposition 2.3 and [5.3), we have the following estimation of |07 +lv(-,t)|aM.

p P
(53 10t Dl < 010G 0y lann)” (122 )
alp >’1”

<273 : M?
<Ml )l M (2

afalp &
) 3(@) Mo )

Since 0,0{v(-,1) is in p,u(—ro,r9) and o satisfies the condition [C1] in the theo-
rem, we can use here [Proposition 4.1 and conclude that dw;(-,7) is in the family
va (=70, 70) and satisfies the inequality

(5.6) B D)y < Clm, |10, 7y

B aip \”
< 2P Clm ) (F) oG, D)l

It follows from and the condition |jv(-,7)|,, < K that

(5.7) 00 (-, )], <273C(m, A) arp APMP“KT
' PR Hl = " \loga '
Examining the two inequalities {5.4) and [(5.7), we know that the inequality
M
(58) sup max{[019(, )1y, |00 Dy} < 7 - 1

lt|<T

holds, if T satisfies the inequality

M 23 1 loga\”
(5.9) T < <fl)mmm{l’C(m,/l)MP<aip> }

(M | 23 loga\”
-\ L C(m, )MPHIK \ aip )
Therefore, if T € (0, T»(K)] satisfies [5.9), then we can use [Proposition 2.7 and

conclude that the function x — @(v)(x, ) = f(p(x,1),¥(x, 1), x,1) is in Gy (—ro, ro)
and the inequality ||@(v)(-, )|, < |If(-,-,-,?)||; holds for |f| < T. So we put

Ty(K) = min{ Ty (K), (% - 1) o /SEWHK <12/%pa>*1’ }
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We now know that, if 0 <7 <T3(K) and ve #(K,T), then @(v) is in
gM(—V(),}"()) ® CO(—T, T) and
(5.10)  sup [@(0)(-, 0)l[yr < sup £ (-5 Dl

lfl<T lf|<T

= Sup max{ 26|f( NI t)lvzsL_l max |alf( ) t)|L}
M<T 1<i<3

<max{2°4;,2 L' B}.

We want @(v) to be in the family # (K, T). In view of (5.10) we see that, in
order for @(v) to be in this family, it is enough for K to satisfy the inequality
K > max{2%4,,2°L"'B;}. So we define

Ky == max{2°4,,2 L' B;}.

We have proved that, if 0 < T < T3(Ky), then @ maps # (Ko, T) into itself.
Our next task is to estimate the difference @(v;) — @(vy), where v; and v,

are two elements of the family 7 (Ko, T5(Ky)). Take two elements vy, v; of this

family arbitrarily and set vy = Qv; + (1 — @)vg for 0 < § < 1. Further define

(5.11) 00, 1) = J; oo, 7) dr,

(5.12) 0.4, 7) = oy, )%, )

and

(5.13) Dol 1) = J; 0., 7) dr.

Write

(5.14) Ailx, 1) = j; 611 (00(%, 1), (2, 1), x, 1) dO

for i=1,2. Then
¢(vl)(x7 t) - ¢(UO)(X’ t)

= A1(x, )(91(x, 1) — @y (x, 1)) + A2 (x, 1) (Y1 (x, 2) — Yo (x, 1))
and

(5.15) N ®(u)(-, 1) = P(oo) (-, Dllar < A1 Dlarllon (50 = 0o(5 D)l g
H 420DV ) = Yo Dl ag
In order to estimate the right member of this inequality we write

gi,@,t(x) = aif(go()(xa t)? lpO(xa l)7 X, l)



PDEs in the Gevrey class with shrinkings 673

and define L, = (L + M)/2. Since f € 9. (U) ® C°(~Ty, Tp) and L > L, we see
that

(5.16) Dy = sup{[|aif (-, Ol [ < To, 1 < i <3} < oo,

Therefore we see again by [Proposition 2.7 that, if, instead of [(5.8), the conditions

M
(5.17) O Dl < =1 W<T
and

M
(5.18) [01(+, D)y < L L li<T
are satisfied, then g; g, € 9y (—ro,70) and ||g; 0.4/l < 1|0:f (-, -+, 0)||, < Dy holds.
From the last inequality we obtain
(5.19) [4i(-, Ol < sup lgi0.6llar < Dy

0<0<l1

The condition {5.17) is satisfied, if 7 satisfies

22/1 1
5.20 T< —|———

since we have, like [5.4), |010y(-,1)|,, <23MK,T for || < T. The condition
is satisfied, if 7T satisfies

23 loga\” (1 1
5.21 T< ——— .
(521) - KOMPC(m,/I)<a/Ip) (L1 M)
We need further to estimate ||¢;(-,¢) —@o(-, )|, and || (-, 2) —Yo(-,0)|,, In

terms of sup,|jvi(-,7) —vo(-,7)|[;,. By we clearly have

(522) H(pl(' ) t) - 500(' ) t)HM = T|S|1i1; ||Ul(' 7T) - UO(' ’T)HM'

As for ||y (-, 1) —¥o(-, 1), we note first that we have, like 5.5),

/l

p+1 p+1 aip \" P
|07 o1 (-, 1) = 0 vo(-, 1) ar < loga MP|01vi (-, 1) — Qrvo(-, 1)] -

From this we obtain, like [5.6),
(523)  |or(en =02y < Clom Ao or (1) = 7 oo, )l

] p
< MPC(m. ) (%) 2101 — 00)(- )l
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Moreover we have
(5.24) (o1, = 0,0) (-, D <107 (01 = vo) (-, 7)]
< [01(v1 = v0) (-, 1) [y MP T Ti(p — 1)
<27°MP 101 (01 = o) (-, T
From (5.23) and we obtain
(5.25) [, = @0,0) (-, 7|5

= max{26|(a)17, —o,1)(+,7)l; 2’M 01(w1,1 — @0,0) (-, T)| 5 }

p
< max{szlpip’ 23Mp—lc(m, /1) <%> }6101(' 7T) - 6100(' 7T)|M

arp

— 93 gpr-1
2°M C(m,i)(lo

) |811)1( ) al”O('J)'M

p
< M7Cm, ) () . = vl )l
It follows from (5.25) that

(5.26) (Y1 = ¥o)(-, Dl < T|S|1ipT||(w1,z —@0,0)(-57) |y

aip \*
< TMP”C(m, ) (ﬁ) |sup [o1(-,7) = vo (-, T) o1

7|<T

From (5.15), {(5.19), (5.22) and 5 26) it follows that, if T satisfies the inequalities
0<T<T 3( 0), (5.20) and [5.2I}, then the inequality

[Pw1) (- 1) = P(wo) (- 1)l ps

alp \'”
< D, 4 Clm A (S sup o) = ol

0ga lt]<T
alp \’
<2D;TM*C(m, i)( ) sup |lo1(-, 1) —vo(-, )|l
loga lf]<T
holds for |z < T. If T satisfies one more inequality

1 loga\*”
5.27 T <
(5.27) ~ 4D MPC(m, A) (a/lp) ’
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then the inequality

1D(01) (1) = P(v0) (- D)llpr < 27 lo1 (1) = vo(-, 1)l oy

holds for |7] < T.

We denote by 7 the maximum value of T € (0, T5(Ky)] that satisfies the
inequalities [(5.20), |(5.21) and [5.27). Then @ maps % (K, T1) into itself and the
inequality

sup | @(v1)(-, 1) = @(v0) (-, )|y < 27" sup ua(-, 1) = vol-, 1)l
|t|< Ty |t|< T
holds for every pair (vy,v9) € # (Ko, T1) X F (Ko, T1).
It follows that there is a solution v € # (K, T7) of the integral equation (5.1).
It further follows that there is a solution in %y (—rg,r0) ® C'(=Ty, T}) of the

Cauchy problem [1.2). O

5.2. Uniqueness of the solution.
The solution of the Cauchy problem is unique in the following sense.

THEOREM 5.2. Let R, Ty, Ti,L, M and ry be positive constants. Assume that
Ty < Ty. Write U= {(v,w,x) e R* |v]| < R,|w| < R,|x| <ro}. Inthe differential
equation (1.2) assume that [ is an element of the family %1 (U) ® C°(—Ty, Tp).
Assume further that o(x,t) is a real valued continuous function of (x,t) € (—ro,ro) X
(=To, Ty) such that the condition [C1] in Theorem 5.1 is satisfied. Suppose that
there are two solutions u; € Gy (—ro, 1) ® C' (=T, T1), i =0,1, such that

lu(x,1)| < R and |07u;(x,1)] <R for |x| <ry, |t| <Th.
Then u(x,t) = uo(x,t) for all (x,t) € (—ro,ro) x (=T1,Th).

PrOOF. Write v;(x, ) = dhu;(x,t) for i =0,1. Then each v; is a solution of
the integral equation and is in %y (—ro, 1) ® C°(—Ty, T1). Further, by the
assumption of the theorem, the quantity

max sup |01v;(-, )|y,
LT

is finite. We denote this quantity by S,. Next take a number M* > max{M, L}.
Then we have of course

|alvi(°7l)|M* < |811),’(-,l)|M < Sp.

Moreover, since M* > M, we see that there is another positive number S; such
that S > S, and

6700y < S,
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Next write w(x,t) = v;(x,?) —vo(x,7). As was done in subsection 3.2, we can
construct a linear integral equation to which w(x, ) is a solution. In fact set
vg = Ovy + (1 — 0)vg for 0 < 0 < 1 and define p,(x, 1), wy (X, 7), Yp(x, t) and A;(x, )
by [5.11), [5.12), (5.13) and [5.14]), respectively. We define further

1n,(x,7) = 0P w(a(x, 1)x, 7).

Then w(x,t) becomes a solution of the integral equation

t t

w(x,7)dt + Ax(x, 1) Jo n,(x,7)dr.

(5.28) w(x,t) = A1(x, 1) J

0

Let us see that there is a positive number M. > M* such that |[4;(-,7)||,, < oo
for |¢{|<T). Since [01vp(-,1)|, < Sy < S/, we have [01¢9y(-, )|y~ < S;T1. Sim-
ilarly we have [01yy(-,7)],- < S;T1. In view of these facts we write

LM

Ll B ’

M, =max{M"*,Li(1+S,T1)}.
Then we have
Li(1 +max{|019(-, )37 1000 (-, D)l . }) < Li(1 + S,T1) < M...

Note also that, since f € %;(U)® C°(—T,,Ty) and L; > L, the finite constant
Dy is defined by (5.16). In view of these facts we can use [Proposition 2.7 again
and conclude that A; is in %y (—rg,79) ® C°(~T1,T;) and

(5.29) sup (| 4i(-, 1)l y, < Dy

1|<T)

Next we estimate the two integrals in the right member of (5.28). It is clear
that the inequality

t t
(5.30) | wesar| <] ol dr

0 M, 0
holds. Moreover, just like [5.6), we have

-3 asp+1 Clﬂp ”
(5.31) (01, )y, < 277 M Clm, ) (=) w5 1),
oga

and

(5.32) Inx->fﬂ=zsgp\nxx3f)!SSIE(ONﬂzt,f)

M,

a _ A(p—1)
gﬁ@2%ﬁqm@<ﬂﬁgﬂ> Iw(-,7)

M,

aip \'"
<25 MPC(m, ) (@> (-, )]

M,-
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It follows from and (5.32) that the inequality

(5.33)

< M?C(m, z)<

1, )l g, = max {2, (-, ), 22 MM oum, (- 2y, }

@) e

holds. From (5.28), [5.29), (5.30) and (5.33) we obtain the inequality

et < A1 Ol [t 01

arp
<D 1+ MPCm L) | ——
< Dyql+MIC(m, )<loga

M,

;

Jt n,(-,7)dt

0

+ 1425 )Ly,

M.

[t ol e

0

that holds for [7| < Ty. It follows that ||w(-,)||,, =0 for |¢| < T;. This means
that w(x,7) =0 and vo(x,?) = v1(x,t) for all (x,t) e (—ro,r0) X (=11, T1). OJ

W. Matsumoto,

References

A. Augustynowicz, H. Leszczynski and W. Walter,
with deviating variables,

A. Augustynowicz and H. Leszczynski,
tial equations with delays at the derivatives,
M. Kawagishi,

Cauchy-Kovalevskaya theory for equations

Aequationes Math., 58 (1999), 143-156.
Cauchy-Kovalevskaja theorems for a class of differen-
Aequationes Math., 59 (2000), 235-247.
Cauchy-Kovalevskaja-Nagumo type theorems for PDEs with shrinkings,

Proc.

Japan Acad. Ser. A Math. Sci., 75 (1999), No. 10, 184-187.

temps,

Probléme de Cauchy pour des systémes d’équations a retard croissant avec le
Comm. Partial Differential Equations, 10 (1985), no. 12, 1427-1450.

M. Nagumo, Uber das Anfangswertproblem partieller Differentialgleichungen, Japan. J. Math.,

18 (1942), 41-47.
T. Yamanaka,
and Geometry, 7 (1989), 179-203.
T. Yamanaka,
time variable,

Masaki KAWAGISHI

Department of General Education
College of Science and Technology
Nihon University

1-8-14 Kanda-Surugadai

Chiyoda-ku, Tokyo 101-8308

Japan

E-mail: masaki@suruga.ge.cst.nihon-u.ac.jp

A new higher order chain rule and Gevrey class,

Annals of Global Analysis

A Cauchy-Kovalevskaja type theorem in the Gevrey class with a vector-valued
Comm. in Partial Differential Equations, 17 (1992), 1457-1502.

Takesi YAMANAKA

Department of Mathematics

College of Science and Technology
Nihon University

1-8-14 Kanda-Surugadai

Chiyoda-ku, Tokyo, 101-8308

Japan

E-mail: yamanaka@math.cst.nihon-u.ac.jp



	1. Introduction.
	2. Gevrey functions, 1.
	2.1. Gevrey functions ...
	2.2. Gevrey functions ...
	2.3. Partial Gevrey functions.

	3. The Cauchy problem ...
	3.1. Existence of a solution.
	THEOREM 3.1. ...

	3.2. Uniqueness of the ...
	THEOREM 3.2. ...


	4. Gevrey functions, 2.
	5. The Cauchy problem ...
	5.1. Existence of a solution.
	THEOREM 5.1. ...

	5.2. Uniqueness of the ...
	THEOREM 5.2. ...


	References

