Erratum to "On Alexander polynomial of torus curves"

[This JOURNAL, Vol. 57 (2005), 935–957]

By Benoît AUDOUBERT, TU Chanh NGUYEN and Mutsuo OKA

(Received Sep. 27, 2006)

1. Correction.

In our paper [1], we have given a formula for the Alexander polynomial of a certain torus curve. In the last part of Theorem 2 in p. 942, we have considered the following torus curve of type (p, p):

$$C: (y - x^{n})^{p} - c^{p}(y - x^{n} + y^{n})^{p} = 0, \quad |c| \neq 1$$
(1)

and we claimed the Alexander polynomial is given by

$$\Delta(t) = \frac{(t^{p^2} - 1)^{p-1}(t-1)}{(t^p - 1)}.$$

Unfortunately this formula is wrong. In the proof of Lemma 3, page 947, the principal Newton part of $\Phi^*(y - x^n) = v - u^{n^2}$, not u^{n^2} in the case p = q and therefore the principal Newton part of $(\Phi^* M_{\alpha,\beta,\gamma,\delta})(u,v)$ is not monomial for the weight vector $Q = (1, n^2)$. Because of this, the linear independence assertion of $\{M_{\alpha,\beta,\gamma,\delta}\}$ breaks down. The assertion for p > q are correct without any problem.

The correct formula for the case p = q is:

MODIFIED THEOREM. The Alexander polynomial of C, defined by (1) is given by

$$\Delta(t) = \frac{(t^{pn} - 1)^{p-1}(t-1)}{(t^p - 1)}.$$

We can reduce the proof of this assertion to Theorem 2 in case p > q as follows. Let $C_t : y - x^n + ty^n = 0, t \neq 0$. It is easy to see that C_t gives a non-singular plane curve of degree n and O = (0,0) is a flex point with flex-order n. Consider a curve

$$C_{\boldsymbol{t}} = \bigcup_{j=1}^{p} C_{t_j}, \quad \boldsymbol{t} = (t_1, \dots, t_p).$$

²⁰⁰⁰ Mathematics Subject Classification. 14H20, 14H30, 32S05, 32S55.

Key Words and Phrases. torus curves, maximal contact, Alexander polynomial, Zariski multiple.

It is easy to see that C_t is a curve of degree pn with a single singularity B_{p,pn^2} at O, under the assumption that $t_i \neq t_k$ for $i \neq k$. In particular, the topology of C_t , $t = (t_1, \ldots, t_p)$ does not depend on a generic t.

Let $a = \exp(\frac{2\pi i}{n})$. As we have an obvious factorization

$$(y - x^n + y^n)^p - c^p (y - x^n)^p = \prod_{j=1}^p \left((y - x^n) - ca^j (y - x^n + y^n) \right)$$
$$= (1 - c^p) \prod_{j=1}^p \left(y - x^n - \frac{ca^j}{1 - ca^j} y^n \right),$$

we can see that $C = C_s$ where $s_j = -\frac{ca^j}{1-ca^j}$. On the other hand, consider a curve of torus type (p, pn):

$$D: \quad (y - x^n)^p - c^p y^{pn} = 0, \quad |c| \neq 1.$$

It is easy to see that $D = C_u$ where $u_j = -ca^j$. Thus we see that the topology of (\mathbf{P}^2, C) and (\mathbf{P}^2, D) are same. Thus Alexander polynomial of C is the same with that of D and it is given by Theorem 2, completing the proof of Modified Theorem.

References

 B. Audoubert, C. Nguyen and M. Oka, On Alexander polynomials of torus curves, J. Math. Soc. Japan, 57 (2005), 935–957.

> Benoît AUDOUBERT E-mail: benoit.audoubert@wanadoo.fr

Tu Chanh NGUYEN Department of Mathematics University of Hue 32 Le Loi Street Hue, Vietnam E-mail: nctu2000@yahoo.com

Mutsuo Oka

Department of Mathematics Tokyo University of Science 26 Wakamiya-cho, Shinjuku-ku Tokyo, 162-8601 E-mail: oka@rs.kagu.tus.ac.jp