Erratum to "On Alexander polynomial of torus curves"

[This JOURNAL, Vol. 57 (2005), 935-957]

By Benoît Audoubert, Tu Chanh Nguyen and Mutsuo Oka
(Received Sep. 27, 2006)

1. Correction.

In our paper [1], we have given a formula for the Alexander polynomial of a certain torus curve. In the last part of Theorem 2 in p.942, we have considered the following torus curve of type (p, p) :

$$
\begin{equation*}
C:\left(y-x^{n}\right)^{p}-c^{p}\left(y-x^{n}+y^{n}\right)^{p}=0, \quad|c| \neq 1 \tag{1}
\end{equation*}
$$

and we claimed the Alexander polynomial is given by

$$
\Delta(t)=\frac{\left(t^{p^{2}}-1\right)^{p-1}(t-1)}{\left(t^{p}-1\right)}
$$

Unfortunately this formula is wrong. In the proof of Lemma 3, page 947, the principal Newton part of $\Phi^{*}\left(y-x^{n}\right)=v-u^{n^{2}}$, not $u^{n^{2}}$ in the case $p=q$ and therefore the principal Newton part of $\left(\Phi^{*} M_{\alpha, \beta, \gamma, \delta}\right)(u, v)$ is not monomial for the weight vector $Q=$ $\left(1, n^{2}\right)$. Because of this, the linear independence assertion of $\left\{M_{\alpha, \beta, \gamma, \delta}\right\}$ breaks down. The assertion for $p>q$ are correct without any problem.

The correct formula for the case $p=q$ is:
Modified Theorem. The Alexander polynomial of C, defined by (1) is given by

$$
\Delta(t)=\frac{\left(t^{p n}-1\right)^{p-1}(t-1)}{\left(t^{p}-1\right)}
$$

We can reduce the proof of this assertion to Theorem 2 in case $p>q$ as follows. Let $C_{t}: y-x^{n}+t y^{n}=0, t \neq 0$. It is easy to see that C_{t} gives a non-singular plane curve of degree n and $O=(0,0)$ is a flex point with flex-order n. Consider a curve

$$
C_{\boldsymbol{t}}=\bigcup_{j=1}^{p} C_{t_{j}}, \quad \boldsymbol{t}=\left(t_{1}, \ldots, t_{p}\right)
$$

Key Words and Phrases. torus curves, maximal contact, Alexander polynomial, Zariski multiple.

It is easy to see that $C_{\boldsymbol{t}}$ is a curve of degree $p n$ with a single singularity $B_{p, p n^{2}}$ at O, under the assumption that $t_{i} \neq t_{k}$ for $i \neq k$. In particular, the topology of $C_{\boldsymbol{t}}, \boldsymbol{t}=\left(t_{1}, \ldots, t_{p}\right)$ does not depend on a generic \boldsymbol{t}.

Let $a=\exp \left(\frac{2 \pi i}{p}\right)$. As we have an obvious factorization

$$
\begin{aligned}
\left(y-x^{n}+y^{n}\right)^{p}-c^{p}\left(y-x^{n}\right)^{p} & =\prod_{j=1}^{p}\left(\left(y-x^{n}\right)-c a^{j}\left(y-x^{n}+y^{n}\right)\right) \\
& =\left(1-c^{p}\right) \prod_{j=1}^{p}\left(y-x^{n}-\frac{c a^{j}}{1-c a^{j}} y^{n}\right),
\end{aligned}
$$

we can see that $C=C_{\boldsymbol{s}}$ where $s_{j}=-\frac{c a^{j}}{1-c a^{j}}$. On the other hand, consider a curve of torus type ($p, p n$):

$$
D: \quad\left(y-x^{n}\right)^{p}-c^{p} y^{p n}=0, \quad|c| \neq 1 .
$$

It is easy to see that $D=C_{\boldsymbol{u}}$ where $u_{j}=-c a^{j}$. Thus we see that the topology of $\left(\boldsymbol{P}^{2}, C\right)$ and $\left(\boldsymbol{P}^{2}, D\right)$ are same. Thus Alexander polynomial of C is the same with that of D and it is given by Theorem 2, completing the proof of Modified Theorem.

References

[1] B. Audoubert, C. Nguyen and M. Oka, On Alexander polynomials of torus curves, J. Math. Soc. Japan, 57 (2005), 935-957.

Benoît Audoubert
E-mail: benoit.audoubert@wanadoo.fr

Tu Chanh Nguyen

Department of Mathematics University of Hue 32 Le Loi Street Hue, Vietnam
E-mail: nctu2000@yahoo.com
Mutsuo Oka
Department of Mathematics
Tokyo University of Science 26 Wakamiya-cho, Shinjuku-ku Tokyo, 162-8601
E-mail: oka@rs.kagu.tus.ac.jp

