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1. Correction.

In our paper [1], we have given a formula for the Alexander polynomial of a certain
torus curve. In the last part of Theorem 2 in p. 942, we have considered the following
torus curve of type (p, p):

C : (y − xn)p − cp(y − xn + yn)p = 0, |c| 6= 1 (1)

and we claimed the Alexander polynomial is given by

∆(t) =
(tp

2 − 1)p−1(t− 1)
(tp − 1)

.

Unfortunately this formula is wrong. In the proof of Lemma 3, page 947, the principal
Newton part of Φ∗(y − xn) = v − un2

, not un2
in the case p = q and therefore the

principal Newton part of (Φ∗Mα,β,γ,δ)(u, v) is not monomial for the weight vector Q =
(1, n2). Because of this, the linear independence assertion of {Mα,β,γ,δ} breaks down.
The assertion for p > q are correct without any problem.

The correct formula for the case p = q is:

Modified Theorem. The Alexander polynomial of C, defined by (1) is given by

∆(t) =
(tpn − 1)p−1(t− 1)

(tp − 1)
.

We can reduce the proof of this assertion to Theorem 2 in case p > q as follows. Let
Ct : y− xn + tyn = 0, t 6= 0. It is easy to see that Ct gives a non-singular plane curve of
degree n and O = (0, 0) is a flex point with flex-order n. Consider a curve

Ct =
p⋃

j=1

Ctj , t = (t1, . . . , tp).
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It is easy to see that Ct is a curve of degree pn with a single singularity Bp,pn2 at O, under
the assumption that ti 6= tk for i 6= k. In particular, the topology of Ct, t = (t1, . . . , tp)
does not depend on a generic t.

Let a = exp( 2πi
p ). As we have an obvious factorization

(y − xn + yn)p − cp(y − xn)p =
p∏

j=1

(
(y − xn)− caj(y − xn + yn)

)

= (1− cp)
p∏

j=1

(
y − xn − caj

1− caj
yn

)
,

we can see that C = Cs where sj = − caj

1−caj . On the other hand, consider a curve of
torus type (p, pn):

D : (y − xn)p − cpypn = 0, |c| 6= 1.

It is easy to see that D = Cu where uj = −caj . Thus we see that the topology of (P 2, C)
and (P 2, D) are same. Thus Alexander polynomial of C is the same with that of D and
it is given by Theorem 2, completing the proof of Modified Theorem.
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