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A generalized Cartan decomposition for the double coset space
(U(n1) x U(nz) X U(ns))\U(n)/(U(p) x U(q))
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Abstract. Motivated by recent developments on visible actions on complex
manifolds, we raise a question whether or not the multiplication of three subgroups
L, G" and H surjects a Lie group G in the setting that G/H carries a complex struc-
ture and contains G'/G’ N H as a totally real submanifold.

Particularly important cases are when G/L and G/H are generalized flag va-
rieties, and we classify pairs of Levi subgroups (L, H) such that LG'H = G, or
equivalently, the real generalized flag variety G’/H N G’ meets every L-orbit on the
complex generalized flag variety G/H in the setting that (G,G’) = (U(n),O(n)). For
such pairs (L, H), we introduce a herringbone stitch method to find a generalized
Cartan decomposition for the double coset space L\G/H, for which there has been
no general theory in the non-symmetric case. Our geometric results provides a unified
proof of various multiplicity-free theorems in representation theory of general linear
groups.

1. Introduction and statement of main results.

1.1. Our object of study is the double coset space L\G/H, where L C G D H are
a triple of reductive Lie groups.

In the ‘symmetric case’ (namely, both (G, L) and (G, H) are symmetric pairs), the
theory of the Cartan decomposition G = LBH or its variants gives an explicit description
of the double coset decomposition L\G/H (e.g., [3], [4], [14], [15], [16], [17]). However,
in the general case where one of the pairs (G, L) and (G, H) is non-symmetric, there is
no known structure theory on the double cosets L\G/H even for a compact Lie group.

Motivated by the recent works of ‘visible actions’ (Definition 7.1) on complex mani-
folds [9], [11] and multiplicity-free representations (e.g. the classification of multiplicity-
free tensor product representations of GL(n), see [8], [19]), we have come to realize the
importance of understanding the double cosets L\G/H in the non-symmetric case such
as

(G,L,H) = (U(n),U(ny) x U(ng) x -+ x U(ng),U(my) x -+ x U(my)), (1.1)

wheren=n; +---4+np =m; +--- +my.
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In this article, we initiate the study of the double cosets L\G/H in the ‘non-
symmetric and visible case’ by taking (1.1) as a test case, and develop new techniques
in finding an explicit decomposition for L\G/H.

For this, first we single out triples that give rise to visible actions. Theorem A gives a
classification of the triples (L, G, H) such that G has the decomposition G = LG’ H where
G’ = O(n), or equivalently, any L-orbit on the complex generalized flag variety G/H ~
Brny,...m, (C™) (see (1.5)) intersects with its real form %, ., (R™). The proof uses an
idea of invariant theory arising from quivers. The classification includes some interesting
non-symmetric cases such as k = 3, I = 2 and min(ny + 1,n2 + 1,n5 + 1,m1, ma) = 2.
Then, the L-action on G/H (and likewise, the H-action on G/L) becomes visible in the
sense of [9] (see Definition 7.1).

Second, we confine ourselves to these triples, and prove an analog of the Cartan
decomposition

G=LBH

by finding an explicit subset B in G’ such that generic points of B form a J-transversal
totally real slice (Definition 7.1) for the L-action on G/H of minimal dimension (see The-
orem B). The novelty of our method in the non-symmetric case is an idea of ‘herringbone
stitch’ (see Section 3).

1.2. To explain the perspectives of our generalization of the Cartan decomposition,
let us recall briefly classic results on the double cosets L\G/H in the symmetric case. A
prototype is a theorem due to H. Weyl: let K be a connected compact Lie group, and T
a maximal toral subgroup. Then,

any element of K is conjugate to an element of T. (1.2)

Weset G := Kx K, A:={(t,t™!) : t € T} and identify K with the subgroup diag(K) :=
{(k,k) : k€ K} of G. Then, the statement (1.2) is equivalent to the double coset
decomposition:

G = KAK. (1.3)

In the above case, (G,K) = (K x K,diag(K)) forms a compact symmetric pair.
More generally, the decomposition (1.3) still holds for a Riemannian symmetric pair
(G, K) by taking A ~ T* (G/K: compact type) or A ~ RF (G/K: non-compact type)
where k = rank G/K. Such a decomposition is known as the Cartan decomposition for
symmetric spaces.

A further generalization of the Cartan decomposition has been developed over the
decades under the hypothesis that both (G, L) and (G, H) are symmetric pairs. For
example, Hoogenboom [4] gave an analog of the Cartan decomposition for L\G/H =
(U1) x Um))\U(n)/(U(p) x U(q)) (I+m = p+q =n) by finding a toral subgroup T*
as its representatives, where k = min(l,m,p,q). This result is generalized by Matsuki
[16], showing that there exists a toral subgroup B in G such that
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G =LBH (1.4)

if G is compact (see Fact 2.1). Analogous decomposition also holds in the case where G
is a non-compact reductive Lie group and L is its maximal compact subgroup, by taking
a non-compact abelian subgroup B of dimension rankg G/H (see Flensted-Jensen [3]).

1.3. Before explaining a new direction of study in the non-symmetric case, we pin
down some remarkable aspects on the Cartan decomposition in the symmetric case from
algebraic, geometric, and analytic viewpoints.

Algebraically, finding nice representatives of the double coset is relevant to the re-
duction theory, or the theory of normal forms. For example, the Cartan decomposition
(1.3) for (G,K) = (GL(n, R),0(n)) corresponds to the diagonalization of symmetric
matrices by orthogonal transformations. The case G = G' x G', L = H = diag(G’) with
G’ = GL(n,C) is equivalent to the theory of Jordan normal forms.

Geometrically, (1.4) means that every L-orbit on the (pseudo-)Riemannian symmet-
ric space G/ H meets the flat totally geodesic submanifold B/B N H. The decomposition
(1.4) is also used in the construction of a G-equivariant compactification of the symmetric
space G/H (see [2] for a survey on various compactifications).

Analytically, the Cartan decomposition is particularly important in the analysis
of asymptotic behavior of global solutions to G-invariant differential equations on the
symmetric space G/H (e.g. [3], [4], [6]).

1.4. Now, we consider the non-symmetric case L C G D H. Unlike the symmetric
case, we cannot expect the existence of an abelian subgroup B such that LBH contains
an interior point of GG in general, as is easily observed by the argument of dimensions
(e.g. [6, Introduction]). Instead, we raise here the following question:

QUESTION 1.1.  Does there exist a ‘nice’ subgroup G’ such that LG'H contains an
open subset of G?

For a compact G, one may strengthen Question 1.1 as follows:
QUESTION 1.1'.  Does there exist a ‘nice’ subgroup G' such that G = LG'H ?

The decomposition G = LG'H means that the double coset space L\G/H can be
controlled by a subgroup G'.

What is a ‘nice’ subgroup G'? In contrast to the previous case that G/H carries
a G-invariant Riemannian structure and that the abelian subgroup G’ = B (see (1.4))
gives a flat totally geodesic submanifold of G/H, we are interested in the case that G/H
carries a G-invariant complex structure and that the subgroup G’ gives a totally real
submanifold G'/G' N H of G/H. In the latter case, the L-action on G/H is said to be
previsible ([9, Definition 3.1.1]) if LG'H contains an open subset of G.

1.5. Let us state our main results. Suppose we are in the setting (1.1) and consider
Question 1.1’ for

G' :=0(n).
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In this setting, we shall give a necessary and sufficient condition for the multiplication
map L x G’ x H — G to be surjective.

In order to clarify its geometric meaning, let By, ... m,(C™) denote the complex
(generalized) flag variety:

{,....V):{o}=VocVicVcC---CViiCcV=C",
dimV; =my+---4+m; (1<i<I)}. (1.5)

Likewise, the real (generalized) flag variety %, . m,(R"™) is defined and becomes a
totally real submanifold of %, ... m, (C™).

THEOREM A. Letk,l>2andn=mny+---+np=mq+---+my be partitions of
n by positive integers. Let

(G,L,H) = (U(n),U(n1) x U(ng) x -+ x U(ng),U(my) x -+ x U(my)).

We set N := min(nq,...,ng) and M := min(my,...,my). Then the following five con-
ditions are equivalent:

i) G=LG'H. Here, G’ := O(n).
i) By, (R") X By, ny (R") meets every G-orbit on B, . m,(C") x
Bhry....n (C™) by the diagonal action.
1) Bm,,....m, (R™) meets every L-orbit on B, .....m,(C™).
)" B,....n, (R") meets every H-orbit on By, .. n.(C™).
iii) One of the following conditions holds:
0 k=2 =2,
) k=3, N=1, [=2

) k=3, N>2 [=2 M=2,
1) =2, M=1,
) k=2, =3, M=1,
Iy k=2, N=2 1[1=3 M>2,

) k=2 N=1.

REMARK 1.5.1.  Both (G, L) and (G, H) are symmetric pairs if and only if (k,[) =
(2,2), namely, (G, L, H) is in Case 0.

REMARK 1.5.2. The condition (ii) implies that the L-action on G/H is previsible
(see Definition 7.1). We shall see in Section 7 that this action is (strongly) visible, too
(see also [9, Corollary 17]).

REMARK 1.5.3. A holomorphic action of a complex reductive group on a complex
manifold D is called spherical if its Borel subgroup has an open orbit on D. We shall
see in Section 8 that the condition (ii) in Theorem A is equivalent to:

iv) Biny....mi (C™) X PBr,....n, (C™) is a spherical variety of G¢ := GL(n, C).
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See Littelmann [13] for the statement (iv) in the case k = [ = 2, namely, Case 0 in (iii).

REMARK 1.5.4. An isometric action of a compact Lie group L on a Riemannian
manifold is called polar if there exists a submanifold that meets every L-orbit orthogo-
nally. Among Cases 0 ~ III' in Theorem A, the L-action on G/H is polar if and only if
(G,L,H) is in Case 0 (see [1]).

1.6. Suppose one of (therefore, all of) the equivalent conditions in Theorem A is
satisfied. As a finer structural result of the double coset decomposition L\G/H, we
shall construct a fairly simple subset B of G’ = O(n) such that the multiplication map
L x B x H — @ is still surjective, according to Cases 0 ~ III of Theorem A. We omit
Cases I ~ III" below because these are essentially the same with Cases I ~ III. For Case I
below, we may and do assume ny = 1 without loss of generalities.

THEOREM B (generalized Cartan decomposition). Let
(G.L,H) = (U(n),U(n1) x - x U(ny),U(p) x U(q))-

Then, there exists B C O(n) such that G = LBH, where B is of the following form:

min(n1,n2,p,q) (Case 0),
Tmin(p.gnzna) . pmin(p.gna+inatl) (Case I),
Bl 2 o2 (Case 1),
T ....T (Case III).
k—1

Here, T* - T® means a subset of the form {vy € G : x € T y € T*} for some toral
subgroups T* and T.

We note that B is no longer a subgroup of G in Cases I, II and III.

1.7. This article is organized as follows. First, we give a proof of Theorem B
(generalized Cartan decomposition G = LBH) by constructing explicitly the subset B
of O(n). This is done in Theorems 2.2 (Case 0), 3.1 (Case I), 4.1 (Case II), and 5.1
(Case III), respectively by using an idea of herringbone stitch. This also gives a proof of
the implication (iii)=-(i) in Theorem A. The remaining implications of Theorem A are
proved in Section 6. An application to representation theory is discussed in Section 8.

Theorem A was announced and used in [8, Theorem 3.1] and [9, Theorem 16] and
its proof was postponed until this article. Theorem B was presented in the Oberwolfach
workshop on “Finite and Infinite Dimensional Complex Geometry and Representation
Theory”, organized by A. T. Huckleberry, K.-H. Neeb, and J. A. Wolf, February 2004.
The author thanks the organizers for a wonderful and stimulating atmosphere of the
workshop.
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2. Symmetric case.

This section reviews a well-known fact on the Cartan decomposition for the sym-
metric case. The results here will be used in the non-symmetric case (Sections 3, 4, and
5) as a ‘stitch’ (see Diagram 3.1, for example). Theorem 2.2 corresponds to Theorem B
in Case 0, which is proved here.

First, we recall from [4, Theorem 6.10], [15, Theorem 1] the following:

Fact 2.1.  Let G be a connected, compact Lie group with Lie algebra g. Suppose
that T and 0 are two involutive automorphisms of G, and that L and H are open subgroups
of GT and GY, respectively. We take a mazimal abelian subspace b in g™ % .= {X €
g:7X = 60X = —X}, and write B for the connected abelian subgroup with Lie algebra
b. Then G = LBH.

Now, let us consider the setting:

(G,L,H) = (U(n),U(m) x U(n2),U(p) x U(q)), (2.1)
where n = nj +no = p+¢. Then, both (G, L) and (G, H) are symmetric pairs. In fact, if
we set I, , := diag(1,...,1,—1,...,—1) and define an involution 8 by 0(g) := I 491, ",
then H = GY. Likewise, L = G™ if we set 7(g) := In, ny9ln, n, '

We set
l := min(ny,ns2,p, q) (2.2)

and define an abelian subspace:
l
b:= Z R(E; pny1—i — Eng1-ii)-
i=1

Then, b is a maximal abelian subspace in g~ and B := exp(b) is a toral subgroup
of O(n). Now, applying Fact 2.1, we obtain:

THEOREM 2.2. G = LBH.

3. Non-symmetric case 1: min(ni,nq,ng) = 1.

In Sections 3, 4, and 5, we give an explicit decomposition formula for the double
coset space L\G/H in Cases I, II, and III of Theorem B, respectively, and complete the
proof of Theorem B, and therefore that of the implication (iii) = (ii) of Theorem A.

The distinguishing feature of these three sections is that we are dealing with the
non-symmetric pair (G, L), for which there is no known general theory on the double
coset decomposition L\G/H of a compact Lie group G. We shall introduce a method of
herringbone stitch (see Diagram 3.1) consisting of symmetric triples Go;11 C Go; D H;
and L; C Gai41 D Gaia (i = 0,1,2,...) such that the iteration of the double coset
decomposition of Ga;11\Ga;/H; and L;\G2;11/G2i+2 keeps on toward a finer structure
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of L\G/H = LQ\G()/HQ.
This section treats the most interesting case for Theorem B, namely,

(G,L,H) = (U(n),U(n1) x U(na) x U(ns),U(p) x U(q)) (3.1)

where min(ny, na,n3) = 1. Theorem 3.1 below corresponds to Case I of Theorem B.
Without loss of generality, we may and do assume ny = 1. Thus, L = U(1) xU(nz) x
U(ng) (n2 +ng =n—1). We set

[ ;= min(2p, 2¢,2n2 + 1,2n3 + 1). (3.2)

A simple computation shows [£] = min(p, ¢, n2,n3) and [51] = min(p, ¢, n2 +1,n3+1).

We define two abelian subspaces:

[54]

b/ = Z R(Ei,n+1—i - n+1—i,i)a
i=1
(5]

1
b ::E R(Eitint1—i — Enti—iit1)-
=1

Then B’ := expb’ and B” := expb” are toral subgroups of dimension [H'Tl] and [é],
respectively. We define a subset of O(n) by

B:=B"B. (3.3)

For the sake of simplicity, we shall write also B = Tl . T, We note that B is

a compact manifold of dimension I = [£] + [4!] because B is diffeomorphic to the

homogeneous space (B’ x B"”)/(B'N B"”) and B’ N B” is a finite subgroup.
We are ready to describe the double coset decomposition for L\G/H in the case
(3.1).

THEOREM 3.1 (generalized Cartan decomposition). G = LBH, where B ~
Tmin(p,q,n2,n3) . Tmin(p,q,ng+1,n3+1) .

PROOF. First, for i > 1, we define one dimensional toral subgroups by

B, :=expR(E; ny1—i — Ent1-i4),

C; = €xXp R(Ei+1,n+17i - n+14,¢+1).

Then, By, By, --- , and B[ﬂ] commute with each other, and we have
2

B' = BBy Bjita; = By, -+ - BaBy.
[2] [2]
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LikeWise7 B" = 0102 cee C[%]
For m > 1, we define an embedding of a one dimensional torus into G by

tm: T — G, aw— diag(a,...,a,1,...,1,a,...,a).
— N —

() nomo (3]
We write T, for its image, and define a subgroup G,, of G by
G =T x U(n —m).

Here, we regard U(n —m) as a subgroup of G by identifying with {I[%}} x U(n—m) x
{I;m)}. (I;m stands for the unit matrix of degree m.) It is convenient to set Ty = {e} and
Gy = G. Then, we have a decreasing sequence of subgroups:

G=GyDG1DGyD .

The point of our definition of G, is that
(9; commutes with all of By,...,B;,Cq,...,C;_1.
Go;41 commutes with all of By,...,B;,C1,...,C;.

Next, for ¢ > 0, we define the following subgroups:

HiZ:HﬂGQi 2T2i><U(p7i)xU(q7i)7
Li ::LﬂGgiH :T2i+1 X U(’I’LQ—’L) X U(n3—2>

The following obvious properties play a crucial role in the inductive step below.

H=Hy>H; D>DHyD>---; H;commutes with By, ..., B;, (3.4)
L=LyD>LyD>LyD---; L;commutes with Cy,...,C;. (3.5)

With these preparations, let us proceed the proof of Theorem 3.1 along a herringbone
stitch consisting of triples (Gaiy1, Gai, H;) and (L;, Goi11, Gai42) (1 =0,1,2,...):

LO L] L2 L3
¢ ¢ ¢ ¢
G1 G3 G5 G?
@ O 0, N) 0, N) 0, O
Go Go Gy Gg Gy
C C C C <
Hy H, H, Hj H,

Diagram 3.1.
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We claim that each triple has the following decomposition formula:
Gai = Goip1 Biy1 Hi, (3.6)
Gait1 = LiCit1Gaito. (3.7)

To see this, we first take away the trivial factor from Go; and Ga;41, respectively. Then,
the following bijections hold for i = 0,1,...,

G2i+1\Ga2i/H; ~ (U(1) x U(n — 2i — 1))\U(n — 2i)/(U(p — i) x U(q — 1)),
Li\G2i+1/G2i+2 ~ (U(’H,g — Z) X U(ng — z))\U(n — 21— 1)/(U(n — 21— 2) X U(l))
Since the right-hand side is the double coset space by symmetric subgroups, we can
apply Theorem 2.2. Thus, (3.6) and (3.7) have been proved.

By using (3.6) and (3.7) iteratively, together with the commutating properties (3.4)
and (3.5), we obtain

G = GO = GIBIHO

= (LoCng)BlH

= LC1(G3BQH1)BlH

== LCngBQBlH

= LCl e CiG2i+lBi+1 s BlH (39)

If min(p, q) < min(ng,n3), then this equation terminates with Go; = H; when i reaches

min(p, q). Then, i = [£] = [%5}], and we have G = LB"B'H;H = LBH from (3.8). If

min(p, ¢) > min(ng, n3), then this equation terminates with Go;11 = L; when i reaches
min(ng, ng). Then, i = [%] and i +1 = [HTl], and we have G = LL;B"B'H = LBH
from (3.9). Hence, we have completed the proof of Theorem. O

4. Non-symmetric case 2: min(n, nz,nz) > 2.
In this section we study the double coset space L\G/H in Case II of Theorem B,
that is, the non-symmetric case:

(G,L,H) = (U(n),U(m) x U(nz) x Unz), U(p) x U(q)),

where n = ny + na + n3 = p + ¢, min(ng, na,n3) > 2 and min(p, ¢) = 2. Without loss of
generality, we may and do assume p = 2.
We define three abelian subspaces:
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a1 :=R(E1, — FEpn1)+ R(E2p—1 — En_1,2),
a = R(EnlJrl,nfl - Enfl,n1+1);

az = R(Em-&-lm - Emnﬁ-l) + R(Enﬁ-?,n—l - En—17n1+2)a

and correspondingly three toral subgroups by A; := expa;, A’ := expd’, and A :=
exp ay. We then set

B = AQA/Al. (41)

Note that B is a five dimensional subset of O(n), but is no more a subgroup.
Here is a generalized Cartan decomposition for L\G/H in the non-symmetric setting
min(ny, ne,ng) > 2 and min(p, q) = 2:

THEOREM 4.1. G = LBH.

PRrROOF. The proof again uses herringbone ‘stitch’, of which each stitch is a special
case of Theorem 3.1 or Theorem 2.2, respectively.

Step 1. We define a subgroup Gp of G by

Gl = U(nl) X U(TLQ + ng).
Since both (G, H) and (G, G1) are symmetric pairs, we have
G=G1A1H (4.2)

by Theorem 2.2. We observe from (2.2) that A; is of dimension min(2,n —2,n;,n2 +ng3)

=2.
Step 2. We define a subgroup H; of G by

H, = ZHQGI(Al) ~ A(TQ) X U(n1 — 2) X U(n2 + ns — 2)

Here, A(T?) := {diag(a,b,1,--- ,1,b,a) : a,b € T}. Then, taking away the first factor
inclusion U(ny), we have

I\G1/H; ~ (U(n2) x U(n3))\U(n2 +n3)/(U(nz +ns — 2) x U(1) x U(1)).
Applying Theorem 3.1 to the right-hand side, we obtain
G1=LAA'H;. (4.3)
We note that A3 A’ is of dimension min(2ng, 2n3,2(ny +n3 — 2) +1,3) = 3, as explained

in Section 3.
Combining (4.2) and (4.3), we obtain
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G=G{AH
= (LAA'H )AL H
=LA A'A1H
= LBH
because H; commutes with A;. Thus, we have shown Theorem 4.1. O

5. Non-symmetric case 3: min(p,q) = 1.
This section treats the double coset space L\G/H in Case III of Theorem B, that
is, the non-symmetric case:

(G, L, H) = (U(n),U(ny) x -+ x Ulng), U(1) x U(n — 1))

for an arbitrary partition n = nj +---+ng. In this case, although the pair (G, L) is non-
symmetric, the symmetric pair (G, H) gives a very simple homogeneous space, namely,
G/H ~ P" !'C. Thus, it is much easier to find an explicit decomposition G = LBH
than the previous cases in Sections 3 and 4.

For 1 <i<k-—1, we set

Hi:=—E1p+tni+1 + Enyroinit11
B; :=exp(RH;) (=T),

and define a (k — 1)-dimensional subset B in G’ = O(n) by
B = Bl c 'Bk—1~

We note that B is not a group if & > 3. The subset B is contained in the subgroup O(k)
of O(n) in an obvious sense.
Then, we have

THEOREM 5.1. G =LBH, where B=T- --- -T (C O(n)).
| S ——
k—1

PROOF. We shall work on the L-action on G/H ~ P"~!'C. First, we observe that
the map

U(HZ)XRHCM, (hi,ai)Hhit(ai,O,...,O)
is surjective for each ¢ (1 < i < k). Therefore, the following map

U(ny) x - x U(ng) x PP"TR — P"1C, (5.1)
((hl,...,hk),[al Deee ak]) — [hlt(al,O,...,O) R hkt(ak,(),...,())]
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is also surjective.
Next, an elementary matrix computation shows

exp(01Hy) - --exp(0r_1Hy_1)'(1,0,...,0) = Y(ay,...,0,as,...,0,...,az,0,...,0),

where
a1 cos 1 cos Oy -+ cosOp_ocosbp_1
as sin @7 cos s - - - cosOp_o cos b _1
as sinfly - -+ cosfp_ocosb_1 .
= ) i € R"\{0}.
Ap—1 sin 0y, _9 cos 0 _1
ay, sin 0,1
Hence, B-[1:0:---:0] = P*IR.
Combining with the surjective map L x P*"'R — G/H, we have shown that the
multiplication map L x B x H — G is surjective. d

Now, Theorems 2.2, 3.1, 4.1 and 5.1 show that we have completed the proof of
Theorem B.

6. Proof of Theorem A.

This section gives a proof of Theorem A.
Suppose we are in the setting of Theorem A. The equivalence (i) < (ii) (likewise,
(i) & (i)’ and (i) < (ii)”) is clear from the following natural identifications:

G)G'NH~ By, (R"), G/H >~ B,  m(C").

Further, Theorem B shows (iii) = (i).
Thus, the rest of this section is devoted to the proof of the implication (i) = (iii).
We begin with a question about when the multiplication map

LxG xH—G, (l,¢,h)—1g'h (6.1)

is surjective, in the general setting that G = U(n), G’ = O(n), and H is a Levi subgroup
G. Our key machinery to find a necessary condition for the surjectivity of (6.1) is
Lemma 6.3. Let us explain briefly the ideas of our strategy that manages the three
non-commutative subgroups L, G’ and H:

L--- finding L-invariants (invariant theory),
G’ --- using the geometric property (G’ gives real points in G/H),
H --- realizing H as the isotropy subgroup of the G-action.
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For this, we take J € M (n, R) and consider the adjoint orbit:
G/Gy;~{Ad(g)J : g€ G} C M(n,C),
where Ad(g)J := gJg~! and
G;:={9eG:gJ=Jg}

Later, we shall choose J such that H is conjugate to G; by an element of G’. Here,
we note that the surjectivity of the map (6.1) remains unchanged if we replace H with
aHa™' and L with bHb™! (a,b € G’). Then, the following observation:

G'Gy;/Gy;~{Ad(9)J: g€ G'} Cc M(n,R)

will be used in Lemma 6.1 (‘management’ of G’ ~ O(n)), while an invariant theory will
be used in Lemma 6.2 (‘management’ of L >~ U(ny) x --- x U(nyg)).

LEMMA 6.1. Let J € M(n,R), G’ = O(n), and L a subgroup of G = U(n). If
there exists g € G such that

Ad(L)(Ad(g)J) N M(n,R) = 0, (6.2)
then G 2 LG'G .
PRrROOF. First we observe that
Ad(G'G;)J = Ad(G")J € M(n, R).

Then, the condition (6.2) implies Ad(Lg)J N Ad(G'G;)J = (), whence LgNG'G; = 0.
Therefore, g ¢ LG'G ;. O

Next, we fix a partition n = ny + - 4+ nyg, and find a sufficient condition for (6.2)
in the setting:

L=U(ny) x -+ x U(ng).

For this, we fix [ > 2 and take a loop 79 — i1 — - -+ — ¢; consisting of non-negative
integers 1,...,k such that

lo =141, Ga—1Fda (a=1,2,...0). (6.3)
Now, let us introduce a non-linear map:

Aigiy » M(n, C) — M(n;,,C)
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as follows: Let P € M(n,C), and we write P as (P;;)1<; j<k in block matrix form such
that the (¢, j)-block P;; € M(n;,nj; C). We set P;; € M(n;,n;; C) by

~ P;; 1<7),
Pij = { : ( ])
Py (i > j).
Then, A;,...;,(P) is defined by
Ai()"'il (P) i= Pigiy Piviy -+ Piy_yiy- (64>
LEMMA 6.2. If there exists a loop ig — i1 — --- — 4 (= ig) such that at least

one of the coefficients of the characteristic polynomial det(Al,, — Ai,...;,(P)) is not real,
then

Ad(L)P N M(n, R) = 0.

Later, we shall take P to be Ad(g)J and apply this lemma to the following loops:
)1—-2—-3—1,

A1 = P1aPa3 Py (6.5)
2)1-3—-2—>4—1,
Anz2a1 = P13 Pa3 Poy Py (6.6)
3)1-4—-52—-4—-3—-4—>1,
Ata243a1 = PraPyy Poy Py P3y Py (6.7)

1
PrOOF. For a block diagonal matrix [ = < & - ) € L, the transform P +—
Uy

Ad(l)P induces that of the (i, 7)-block matrix:
Py = LiPglyt (1<i,j<k).

Then P is transformed as P — (1;P;; lj_ ) =4GP5E ! Hence, P;; is transformed as

Py LB (1<ij<k),

ij ijlj
and then A;,..;, (P) is transformed as

Aio"'ll( )'_)l Alo Zz( )l'_l'

0
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Therefore, the characteristic polynomial of A;,...;,(P) is invariant under the transforma-
tion P+ Ad(I)P. In particular, if Ad(L)PNM (n, R) # 0, then det(\,,, — Aj,..;,(P)) €
RJ[)]. By contraposition, Lemma 6.2 follows. O

Here is a key machinery to show the implication (i) = (iii) in Theorem A:

LEMMA 6.3. Letn =mnj+---+nyg be a partition, and L = U(nq) X --- x U(ng) be
the natural subgroup of G = U(n). Suppose J is of a block diagonal matriz:

J1
Jo
J = ) € M(n,R), (6.8)

Jk

where J; € M(n;, R) (1 <14 < k). If there exist a skew Hermitian matriz X € u(n) and
a loop ig — i1 — - — 14 (=1p) (see (6.3)) such that

det (/\Imo - Aiowiz([X, ‘]D) ¢ R[)‘]’

then the multiplication map LXG' xG; — G is not surjective. Here, we recall G' = O(n).

PROOF. We set P(g) := Ad(exp(eX))J. In view of Lemmas 6.1 and 6.2, it is
sufficient to show

det (A, — Ajg..i,(P(¢))) ¢ R[N

for some € > 0. We set @ := [X, J]. The matrix P(e) depends real analytically on ¢, and
we have

P(e) = J +2Q + O(e%),
as € tends to 0. In particular, the (7, j)-block matrix P;;(e) (€ M (n;,n;; C)) satisfies
Pij(e) = eQij + O(*) (e —0)
for i # j. Then, we have

det (AL, — Aiy.iy(P(€))) = det (AL, — ' Qigiy  Qiy iy + O(eh)
= det (AL, — €' Aiyiy (Q) + O("))

’I’Lio

Z A"io_rsrlhr(a), (6.9)
r=0

where h,.(¢) (0 <r < n,,) are real analytic functions of e such that
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det (A, — Aoy (@) = D A0 "y (0).

r=0

From our assumption, this polynomial is not of real coefficients, namely, there exists r
such that h,.(0) € R. It follows from (6.9) that det(Al,,, — Aiy..;, (P(€))) ¢ R[A] for any
sufficiently small € > 0. Hence, we have shown Lemma. 0

For the applications of Lemma 6.3 below, we shall take a specific choice of a skew
Hermitian matrix X € u(n). According to the partition n = ny + --- + ng, we write
X = (Xij)i<ij<k as a block form. We note that the (4, j) block of @ = [X, J] is given
by

We also note that if J € M(n,R) is a diagonal matrix whose entries consist of non-
negative integers 1,2, ..., [ such that

#Hl<a<n:Juu=it=m; (1<i<l]),

then G is conjugate to U(myq) x U(myg) X - - x U(my) by an element of G’ = O(n). Since
the surjectivity of (6.1) remains unchanged if we take the conjugation of H by G’, we
can apply Lemma 6.3 to study the surjectivity of (6.1) in the setting (1.1).

Now, we apply Lemma 6.3 to show the following four propositions:

PROPOSITION 6.4. Let n = ny + ne + ng = my + mg + mg be partitions of n by
positive integers. We define (natural) subgroups L and H of G = U(n) by

L:=U(ny) x U(na) x U(nz),
H :=U(my) x U(ms) x U(ms),

and G’ := O(n). Then, G 2 LG'H.

In the following three propositions, we set
(G,L,H) = (U(n),U(m) x --- x U(ny),U(p) x U(q)) and G"=O(n)

where n=ni+no+---+np =p+q.

PROPOSITION 6.5. G 2 LG'H if
min(p,q) >3, k=3 and min(ny,ng,ng) > 2. (6.11)
PROPOSITION 6.6. G 2 LG'H if

min(p,q) =2 and k> 4. (6.12)
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PROPOSITION 6.7. G 2 LG'H if
min(p,q) >3 and k> 4. (6.13)

PROOF OF PROPOSITION 6.4. We consider the partition n = nqy +ng +ng and the
loop 1 — 2 — 3 — 1. We take J = diag(j1,...,jn) € M(n, R) to be a diagonal matrix
with the following two properties:

=1, jn1 =2, jn1+n2+1 =3,

#{k:je=il=m; (1<i<3).

Then, the isotropy subgroup G is conjugate to H by an element of O(n). We fix z € C
and define a skew Hermitian matrix X = (X;;)1<; j<3 € u(n) as follows:

=t o) 3= o) - o)

Then it follows from (6.10) that @ = [X, J] has the following block entries:

(o) an= (" g)o (o)

and therefore we have

A1231(Q) = Q12Q23Q75 = (2Z 0) .

Thus, det(Al,, — A1231(Q)) = A"t — 2z A™1~1. This does not have real coefficients if
we take z ¢ R. Hence, Proposition follows from Lemma 6.3. (]

PROOF OF PROPOSITION 6.5. We shall apply Lemma 6.3 with £ = 3 and the loop
1 -2 — 3 — 1. In light of the assumption (6.11), an elementary consideration shows
that there exist positive integers p;, g; (1 < i < 3) satisfying the following equations:

n = mny + no + nsg
Il Il Il Il

p = p1 + Dp2 + Dp3
+ + + +
Q9 = ¢ + q + g3

We set
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Then Gy ~ U(p1 +p2 +p3) x U(q1 + g2 + g3) = H, where J is defined as in (6.8).
Now, let us take a specific choice of X € u(n) as follows: for z € C,

1 1 1
X121_< 0 ),X231_< 0 >,X131_< 0 )
1 1 z

This is possible because n; > 2 (i = 1,2,3). Then the (4, j)-block of @ := [X, J] amounts

to
~1 ~1 ~1
Q12:< 0 >>Q23:< O >3Q13:< 0 )
1 1 z

Associated to the loop 1 — 2 — 3 — 1, we have
) -z
A1231(Q) = Q12Q23Q13 = 1 O .

Hence, det(A,, — A1231(Q)) = \™ + \™=22 ¢ R[)] if we take z ¢ R. Now, Proposi-
tion 6.5 follows from Lemma 6.3. 0

PROOF OF PROPOSITION 6.6.  With the notation as in (6.8), we define J by setting

k =4 and
L:C @,bzc ®7h:ahza

Then the isotropy subgroup G is conjugate to H ~ U(2) x U(n — 2) by an element of
G’ = O(n). We consider the loop 1 — 3 — 2 — 4 — 1. Then it follows from (6.10) that

A13241(Q) = Q13Q§3Q24QT4
= (=1 X13)(—J2X23)" (=2 X24) (=1 X14)"

-,

(@b)(d.e 0 --- 0
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where d, b € C™ denote the first row vectors of X3, Xo3 and ¢, d € C™ denote the first
row vectors of X4, Xo4, respectively. Since ni, ns, ng and n4 are positive integers, we
can find X € u(n) such that (a,b)(d, ) & R.

Then

det(Mn, — A13241(Q)) = A"~ H (A — (@, b)(d, ) ¢ R[N

Thus Proposition 6.6 follows from Lemma 6.3. O

PROOF OF PROPOSITION 6.7. Without loss of generality, we may and do assume
1<n; <ng <---<ng. We give a proof according to the following three cases:

Case 1) k>5.

Case 2) k=4andns>1.

Case 3) k=4andns=1.

Case 1) Suppose k > 5. Then, ns + --- +ng > 1. In fact, if it were not the case,
we would have £k = 5 and ns; = 1, which would imply ny = ny = --- = n5 = 1 and
n = 5. But, this contradicts to the assumption n = p+ ¢ > 3+ 3 = 6. Now, we apply
Proposition 6.5 to L' = U(ny +na) x U(ng+mn4) x U(ns +---+ny) (D L), and conclude

G 2 L'G’H > LG'H.

Case 2) Suppose k =4 and ng > 1. Then, 2 < ng < ny and 2 < ny + ny. Then
apply Proposition 6.5 to L' = U(ny + n2) x U(nz) x U(ng) and we conclude that

G2 L'G’'H > LG'H.
Case 3) Suppose k =4 and n3 = 1. Then,
k=4 and ny=ng=n3=1. (6.14)

In the setting (6.8), we define J by setting
Ji=Jy=J3 = (1) S M(l,R) and Jy :=

Then, G; ~U(p) x U(q) = H.
Given Y = (v1,...,vp) € M(q,p; C) (v1,...,v, € C?), we define X € u(n) by

(0 =Y~
X (2T,
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Then, @ = [X,J] = (3 }; ) Associated to the partition n = ny + ng + n3z + ny

(=14+1414(n—-3)) and theloopl -4 —-2—-4—-3—-4—1,
A1424341(Q) = Q14Q5,Q24Q3,Q34Q74
(o foN /o [foN[/o\ (o
- V1 V2 V2 V3 U3 (%1
= (02,01)(’(}3,1}2)(1}1,113), (615)
where 0 denotes the zero vector in CP~3. Since p > 3 and ¢ > 3 (> 2), we can take
11
_ _ |11 =z
Y*((UDKUQV"?(UP)* )
so that (ve, v1)(vs,v2)(v1,v3) =1+ 2. Thus,
det (/\11 — A1424341([X, J])) =A—-1—=z ¢ R[)\]
if z ¢ R. Hence Proposition follows from Lemma 6.3. O
Hence, the proof of Theorem A is now completed.

7. Visible actions on generalized flag varieties.

Suppose a Lie group L acts holomorphically on a connected complex manifold D
with complex structure J.

DEFINITION 7.1 (see [9, Definitions 2.3, 3.1.1 and 3.3.1]).  The action is previsible
if there exists a totally real submanifold S such that

D':=L-S isopenin D. (7.1)
The previsible action is visible if

Jo (T S) C Ty(L - ) for generic x € S (J-transversality), (7.2)

and is strongly visible if there exists an anti-holomorphic diffeomorphism o of D’ such
that

ols =id, (7.3)

o preserves each L-orbit on D'. (7.4)

A strongly visible action is visible ([9, Theorem 14]). Furthermore, we have:
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LEMMA 7.2.  Suppose there exists an automorphism ¢ of L such that
o(g-x)=0(g)-o(x) (gel, z€l) (7.5)

Then, a previsible action satisfying (7.3) is strongly visible.

PROOF. Any L-orbit on D’ is of the form L -z for some x € S. Then, by (7.3) and
(7.5), we have o(L - ) = 6(L) - o(x) = L - z. Hence, the condition (7.4) is fulfilled. O

Now, let us consider the setting of Theorem A.

ExXAMPLE 7.3. We set

(g):=g forge G=U(n).

Then & stabilizes subgroups L and H in the setting (1.1) in particular, induces a Lie
group automorphism, denoted by the same letter &, of L, and an anti-holomorphic dif-
feomorphism, denoted by o, of the homogeneous space

G/H ~ %'ml,...,’ml (Cn)

The L-action on G/H satisfies the compatibility condition (7.5). Now, we consider the
totally real submanifold S := %y, .. m,(R") in G/H. Since 6 = id on G’ = O(n) and
S ~ G'/G' N H, we have o|s = id. Therefore, if S meets every L-orbit on G/H, then
the L-action on G/H is not only previsible by definition but also is strongly visible by
Lemma 7.2. Hence, the assertion in Remark 1.5.2 is proved.

8. Applications to representation theory.

This section gives a flavor of some applications of Theorem A to multiplicity-free
theorems in representation theory.

In [10] (see also [12] and [9, Theorem 2]), we proved that the multiplicity-free prop-
erty propagates from fibers to spaces of holomorphic sections of equivariant holomorphic
bundles under a certain geometric condition. The key assumption there is strongly visible
actions (Definition 7.1) on base spaces.

First of all, we observe that one dimensional representations are obviously irre-
ducible, and therefore is multiplicity-free. Then, by [10], this multiplicity-free prop-
erty propagates to the multiplicity-free property of the representation on the space
O(G/H, %)) of holomorphic sections as an L-module for any G-equivariant holomor-
phic line bundle %, — G/H if (G, L, H) satisfies (ii)’ (or any of the equivalent condi-
tions) in Theorem A. Then, by a theorem of Vinberg—Kimelfeld [20], this implies that
G/H ~ PBp,,... m,(C™) is a spherical variety of Lc¢ ~ GL(n1,C) X --- x GL(ny, C),
namely, a Borel subgroup of L has an open orbit on %, ... m, (C™).

More generally, applying the propagation theorem of multiplicity-free property to
higher dimensional fibers, we get from Theorem A a new geometric proof of a number of
multiplicity-free results including;:
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(Tensor product) The tensor product of two irreducible representations 7 and
7, of GL(n,C) is multiplicity-free if the highest weight u € Z™ is of the form,

(@y...,a,b,....b) (a>Db). (8.1)

for some a,b € Z (a > b) and some p,q (p + ¢ = n) and if one of the following
conditions is satisfied:

1) min(p,q) = 1.

1) a—b=1.

2) min(p,q) = 2 and A is of the form

(Tyo o Yy Yy 2y ey 2) (2> Yy > 2) (8.2)
—_— ——

2)" @ —b=2 and A is of the form (8.2).
3) A is of the form (8.2) satisfying

min(x —y,y — z,n1,n2,n3) = 1.

Stembridge [19] gave a proof of this fact using a combinatorial method by a case-
by-case argument. He proved also that this exhausts all multiplicity-free cases.
(Restriction: GL,, | GL, x GL;) The representation m of GL(n,C) is
multiplicity-free when restricted to GL(p, C) x GL(q,C) if one of the three con-
ditions (1), (2), and (3) is satisfied.

(Restriction: GL,, | GLp, X GL,, x GLy,,) The irreducible representation
of GL(n,C) having highest weight p of the form (8.1) is multiplicity-free when
restricted to GL(ny,C) x GL(ng,C) x GL(n3,C) if min(a — b, p,q) < 2.

It is noteworthy that the above three multiplicity-free results (“triunity”) are ob-

tained from a single geometric result, Theorem A (see [8, Theorems 3.3, 3.4 and 3.6]).
In particular, we get the equivalence (ii) < (iv) in Remark 1.5.3 by considering the
(G x G)-equivariant line bundle X\ X .2, - G/L x G/H.

Besides, Theorem A gives a new geometric proof of yet more multiplicity-free theo-

rems (see [9, Theorems 19, 20]):

(GL,~GL, duality) The symmetric algebra S(M(p,¢;C)) =~ S(CP?) is
multiplicity-free as a representation of GL(p,C) x GL(q,C).

(Kac [5]) S(CP?) is still multiplicity-free as a representation of GL(p — 1,C) X
GL(q,C).

(Panyushev [18]) Let .4 be a nilpotent orbit of GL(n,C) corresponding to a
partition (2P 1"~2P). Then the representation of GL(n,C) on the space C[#] of
regular functions is multiplicity-free.

All of the examples discussed so far are finite dimensional. As we saw in [12], we can

also expect from strongly visible actions yet more multiplicity-free theorems for infinite
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dimensional representations for both continuous and discrete spectra. Applications of
Theorem A (and its non-compact version) to infinite dimensional representations will be
discussed in a future paper.
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