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Abstract. We define invariants of two dimensional C2 projectively Anosov
diffeomorphisms. The invariants are defined by the topology of the space of circles
tangent to an invariant subbundle and are preserved under homotopy of projectively
Anosov diffeomorphisms. As an application, we show that the invariant subbundle is
not uniquely integrable and two distinct periodic orbits exist if certain invariants do
not vanish.

1. Introduction.

Let M be a smooth closed manifold and fix a norm ‖ · ‖ on the tangent bundle TM .
For a diffeomorphism f on M and an invariant set Λ of f , we say a continuous splitting
TM |Λ = Eu ⊕ Es is a dominated splitting associated to f on Λ when Df(Eu) = Eu,
Df(Es) = Es, and there exist two constants K > 0 and 0 < λ < 1 such that

∥∥Dfn |Es(z)

∥∥ · ∥∥(Dfn |Eu(z))−1
∥∥ < Kλn

for all z ∈ Λ and n ≥ 1. A non-trivial dominated splitting TM = Eu
f ⊕ Es

f on the
whole manifold is called a projectively Anosov splitting (or simply a PA splitting) asso-
ciated to f . We say a diffeomorphism f is projectively Anosov (or simply PA) when f

admits a PA splitting. Remark that if a dominated splitting satisfies stronger inequal-
ities ‖Dfn|Es(z)‖ < Kλn and ‖(Dfn|Eu(z))−1‖ < Kλn for all z ∈ Λ and n ≥ 1, then
it is called a hyperbolic splitting. We say a diffeomorphism is Anosov when it admits a
hyperbolic splitting on the whole manifold.

A continuous family {fλ}λ∈[0,1] of C1 diffeomorphisms is called a PA homotopy if
all fλ are PA diffeomorphisms. The main aim of this paper is to define PA homotopy
invariants of two-dimensional PA diffeomorphisms. Since the two-dimensional torus T 2

is the only orientable surface which admits a PA diffeomorphism, we focus our attention
on PA diffeomorphisms on T 2.

Originally, the concept of PA systems was introduced by Mitsumatsu [4] and by
Eliashberg and Thurston [2] for three-dimensional flows in order to study contact struc-
tures on three-dimensional manifolds (in [2], Eliashberg and Thurston called them confor-
mally Anosov systems). They gave a natural correspondence between three-dimensional
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PA flows and bi-contact structures, which are pairs of mutually transverse positive and
negative contact structures. It induces a one-to-one correspondence between homotopy
classes of PA flows and bi-contact structures. In this view point, the study of PA ho-
motopy invariants of PA diffeomorphisms on T 2 is a first step to study the homotopy
classes of three-dimensional PA flows and bi-contact structures.

In this paper, we also give two applications of the invariants. It is known that any
C2 Anosov diffeomorphism on T 2 admits a C1 PA splitting. However, some C2 PA
diffeomorphisms do not in general. For example, Eliashberg and Thurston [2, Example
2.2.9] constructed an example without C1 PA splitting. It is natural to ask which PA
homotopy class contains a PA system with a C1 PA splitting or not. The first application
shows that our invariants are obstructions to admit a C1 PA splitting. In fact, we show
that the non-vanishing of certain cohomology invariants implies that the PA splitting is
not uniquely integrable, and hence, is not of class C1. The second application is a kind of
fixed point theorem. We show that the non-vanishing of certain cohomology invariants
implies the existence of at least two distinct periodic orbits.

To state our results more precisely, we introduce some definitions. Let Diffr(T 2)
be the space of Cr diffeomorphisms of T 2 with Cr-topology and PAr(T 2) the subset
of Diffr(T 2) consisting of Cr PA diffeomorphisms. As we see in Subsection 3.1, any
f ∈ PA1(T 2) admits a unique PA splitting and the existence of such a splitting is
persistent under C1-perturbation of f . In particular, PAr(T 2) is an open subset of
Diffr(T 2) for any r ≥ 1. Let Eu

f ⊕ Es
f denote the PA splitting associated to f . We say

f ∈ PA1(T 2) is orientable when both Eu
f and Es

f are orientable and Df preserves their
orientations.

A periodic point p of a diffeomorphism f of T 2 is called hyperbolic if Dfn
p has no

eigenvalues of absolute value one, where n is the period of p. We say a hyperbolic periodic
point p is attracting, repelling, or of saddle-type when all eigenvalues of Dfn

p are of abso-
lute value less than one, greater than one, or otherwise, respectively. A diffeomorphism
is called non-degenerate if all periodic points are hyperbolic. Such diffeomorphisms are
generic in PAr(T 2) by the Kupka-Smale theorem.

Let S1 denote the circle. Let C1(S1,T 2) be the space of C1 maps from S1 to T 2

with the C1 topology and Diff1
+(S1) the group of orientation preserving diffeomorphisms

of S1. The group Diff1
+(S1) acts on C1(S1,T 2) from the right by composition. For a PA

diffeomorphism f of T 2, we define a Diff1
+(S1)-invariant subspace C̃ (Eu

f ) of C1(S1,T 2)
by

C̃ (Eu
f ) =

{
γ ∈ C1(S1,T 2)

∣∣∣∣
(

dγ

dt

)
(t) ∈ Eu

f (γ(t)) \ {0} for any t ∈ S1

}
.

Let C (Eu
f ) denote a quotient space C̃ (Eu

f )/Diff1
+(S1). As we see in Subsection 2.2, the

space C (Eu
f ) is metrizable. Let [γ]c denote the equivalence class of γ ∈ C̃ (Eu

f ) in C (Eu
f ).

For an integral homology class a ∈ H1(T 2,Z), let Ca(Eu
f ) denote the set consisting of

elements [γ]c of C (Eu
f ) such that γ represents the class a.

We call a ∈ H1(T 2,Z) a prime homology class if a 6= na′ for any n ≥ 2 and a′ ∈
H1(T 2,Z). For a topological space X, let X∪{∞} denote the one point compactification
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of X and H∗
c (X) denote the compactly supported cohomology groups of X.

Theorem A (Invariance of homotopy type). Let f0 and f1 be C2 PA diffeomor-
phism on T 2 which are orientable, non-degenerate, and mutually PA homotopic. Then,
pointed spaces (Ca(Eu

f0
)∪{∞},∞) and (Ca(Eu

f1
)∪{∞},∞) have the same homotopy type

for any prime homology class a ∈ H1(T 2,Z). In particular, H∗
c (Ca(Eu

f0
)) is isomorphic

to H∗
c (Ca(Eu

f1
)).

Any PA diffeomorphism f on T 2 induces a natural homeomorphism C (f) on C (Eu
f )

by C (f)([γ]c) = [f ◦ γ]c. We define the index of a periodic point [γ]c of C (f) by the
number of t ∈ S1 such that γ(t) is a repelling periodic point of f . It does not depend on
the choice of the representative γ and we denote it by ind [γ]c. We define the unstable
set Wu([γ]c;C (f)) of a fixed point [γ]c of C (f)n by

Wu([γ]c;C (f)) =
{

[γ′]c ∈ C (Eu
f )

∣∣∣ lim
k→∞

C (f)−kn([γ′]c) = [γ]c
}

.

Theorem B (Morse decomposition). Let f be a C2 non-degenerate orientable PA
diffeomorphism of T 2. For any prime homology class a ∈ H1(T 2,Z), the decomposition

Ca(Eu
f ) =

⊔
Wu([γ]c;C (f))

gives a structure of CW complex to Ca(Eu
f ) with dimWu([γ]c;C (f)) = ind [γ]c, where

the union runs over all periodic points [γ]c of C (f) in Ca(Eu
f ).

The followings are applications of Theorems A and B.

Theorem C (Non-smoothness). Let f be a C2 non-degenerate orientable PA dif-
feomorphism of T 2. Suppose that there exist prime homology classes a1, a2 ∈ H1(T 2,Z)
with a1 6= ±a2 and integers k1, k2 ≥ 0 satisfying Hki

c (Cai
(Eu

f )) 6= {0} for i = 1, 2. Then,
Eu

g is not uniquely integrable for any C1 PA diffeomorphism g which is PA homotopic
to f . In particular, it is not a C1 subbundle of TT 2.

Theorem D (Periodic orbits). Let f be a C2 non-degenerate orientable PA dif-
feomorphism on T 2. Suppose that there exist a prime homology class a ∈ H1(T 2,Z) and
an integer k ≥ 1 satisfying Hk

c (Ca(Eu
f )) 6= {0}. Then, any C1 PA diffeomorphism which

is PA homotopic to f has at least two distinct periodic orbits.

The author recommends that the readers should refer to Subsection 2.3 of [1], which
provides examples of PA diffeomorphisms on T 2 and some applications of the above
theorems to them.

The outline of the proofs of the main results is as follows. More detailed outlines are
given at the beginning of each section. In Section 2, we prepare terminology on the space
of curves tangent to a line field. We study general PA diffeomorphisms in Section 3. In
particular, we give a combinatorial description of invariant segments in Subsection 3.2.
In Section 4, we investigate invariant foliations of non-degenerate PA diffeomorphisms
and prove Theorem B. In Section 5, we begin the study of PA homotopy and reduce the
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proof of Theorem A to the case of a PA homotopy with a simple bifurcation. A keystone
is the compactness of the spaces of invariant embedded circles or intervals, which is given
in Subsection 5.3. We study the bifurcation of combinatorics of invariant segments in
Section 6 and prove Theorem A in Section 7. In Section 8, we prove Theorems C and D.

To end the introduction, we pose a question. It is easy to see that if f is an Anosov
diffeomorphism then H∗

c (Ca(Eu
f )) vanishes for any a ∈ H1(T 2,Z). By Theorem A, the

same holds for any C2 non-degenerate PA diffeomorphism g which is PA homotopic to
f . Our question is whether the converse is true or not.

Question. Suppose that H∗
c (Ca(Eu

f )) vanishes for all a ∈ H1(T 2,Z). Is the map
f PA homotopic to an Anosov diffeomorphism?

Acknowledgments. The author would like to thank Hiromichi Nakayama who
introduced me the concept of projectively Anosov systems. The author is also thankful
to Hiroshi Kokubu, Yoshihiko Mitsumatsu, and Takeo Noda for fruitful discussions and
Akira Kono for valuable comments and encouragements. Finally, the author would like
to thank an anonymous referee for many suggestions which greatly helped in improving
this paper.

1.1. Notations.
Let Z,R denote the set of all integers and real numbers respectively. Let #X denote

the cardinality of a set X. For real numbers a and b with a < b, let [a, b], ]a, b], [a, b[,
and ]a, b[ denote the intervals {a ≤ x ≤ b}, {a < x ≤ b}, {a ≤ x < b}, and {a < x < b}
respectively. For a subspace Y of a topological space X, let Y denote the closure of Y .

For manifolds M1 and M2, let Cr(M1,M2) denote the space of all Cr maps from M1

to M2 and Diffr(M1) the group of all Cr diffeomorphisms of M1 with the Cr-topology. If
M1 is oriented, Diffr

+(M1) denotes the subgroup of Diffr(M1) consisting of all orientation
preserving diffeomorphisms.

For a homeomorphism g on a Hausdorff space X, we write O(z; g) for the orbit
{gn(z) | n ∈ Z} of z ∈ X. Let Fix(g) denote the set of fixed points and Per(g) the set of
periodic points of g. For p ∈ Per(g) with period k, we define the stable set W s(p; g) by
the set of z ∈ X such that gkn(z) converges to p as n →∞. We also define the unstable
set Wu(p; g) by Wu(p; g) = W s(p; g−1).

2. The space of curves.

Our proof of main theorems is based on the study of the spaces of curves tangent
to Eu at constant speed. In this section, we show basic properties of such spaces in a
general setting. We study the space of segments in Subsection 2.1 and that of circles in
Subsection 2.2.

2.1. Segments tangent to a unit vector field.
Let X be one of [0, 1], ]0, 1[, or S1 = R/Z. For ξ ∈ C1(X, T 2), we define the length

|ξ| by |ξ| = ∫
X
‖(dξ/dt)(t)‖dt. Remark that |ξ ◦ η| = |ξ| for any η ∈ Diff1

+(X). Let Im ξ

and Int ξ denote the subsets ξ(X) and ξ(]0, 1[) of T 2 respectively.
Let S (T 2) be the subset of C1([0, 1],T 2) consisting of all ξ with the constant speed

|dξ/dt|. For a C1 immersion ξ : [0, 1] → T 2, we define the normalizer ηξ ∈ Diff1
+([0, 1])
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of ξ by ηξ(t) = |ξ|−1
∫ t

0
‖(dξ/dt)(t)‖dt. The map ηξ is characterized as the unique orien-

tation preserving map with ξ ◦ η−1
ξ ∈ S (T 2). Remark that ηξ depends continuously on

ξ with respect to the C1-topology.
Any f ∈ Diff1(T 2) induces a self-map S (f) on S (T 2) by S (f)(ξ) = f ◦ ξ if |ξ| = 0

and S (f)(ξ) = (f◦ξ)◦η−1
f◦ξ otherwise, where ηf◦η is the normalizer of f◦ξ. It is easy to see

that S (f)(ξ) depends continuously on f and ξ, and the equation S (f ◦g) = S (f)◦S (g)
holds. In particular, S (f) is a homeomorphism on S (T 2).

Let X 0
1 (T 2) denote the set of continuous unit vector fields on T 2. For e ∈ X 0

1 (T 2),
we define a subset S (e) of S (T 2) by

S (e) =
{

ξ ∈ S (T 2)
∣∣∣∣
dξ

dt
(t) = |ξ| · e(ξ(t)) for any t ∈ [0, 1]

}
.

Lemma 2.1. Let {ei ∈ X 0
1 (T 2)}∞i=1 be a sequence which converges to e∗ ∈ X 0

1 (T 2).
Any sequence {ξi ∈ S (ei)}∞i=1 with supi≥1 |ξi| < ∞ has a subsequence which converges
to an element of S (e∗).

Proof. Without loss of generality, we assume that |ξi| converges to a real number.
Since (dξi/dt)(t) = |ξi|ei(ξi(t)), the sequence {ξi}i≥1 is equi-continuous. By the Ascoli-
Arzelá theorem, it has a subsequence {ξik

}k≥1 which converges with respect to the C0-
topology. The convergence of ei and |ξi| implies that the sequence {ξik

} converges to an
element of S (e∗) with respect to the C1-topology. ¤

Fix e ∈ X 0
1 (T 2). For ξ, ξ′ ∈ S (e) with ξ(1) = ξ′(0), we define the composition

ξ ∗ ξ′ ∈ S (e) by ξ ∗ ξ′ = ξ if |ξ′| = 0, ξ ∗ ξ′ = ξ′ if |ξ| = 0, and

(ξ ∗ ξ′)(t) =





ξ

( |ξ|+ |ξ′|
|ξ| t

)
for t ∈

[
0,

|ξ|
|ξ|+ |ξ′|

]

ξ′
( |ξ|+ |ξ′|

|ξ′| t− |ξ|
|ξ′|

)
for t ∈

] |ξ|
|ξ|+ |ξ′| , 1

]

otherwise. It is easy to check |ξ ∗ ξ′| = |ξ|+ |ξ′| and S (f)(ξ ∗ ξ′) = S (f)(ξ) ∗S (f)(ξ′).
We also see that ξ ∗ ξ′ depends continuously on ξ and ξ′.

For a finite subset Λ of T 2, we put

S (e,Λ) = {ξ ∈ S (e) | ξ(0), ξ(1) ∈ Λ}.

We say a decomposition ξ = ξ1 ∗ · · · ∗ ξk of ξ ∈ S (e,Λ) is irreducible with respect to
Λ if ξi ∈ S (e,Λ) and Int ξi ∩ Λ = ∅ for all i = 1, 2, . . . , k. It is easy to see that any
ξ ∈ S (e,Λ) with |ξ| 6= 0 has a unique irreducible decomposition since ξ−1(Λ) is a finite
set.

We say an injectively immersed one-dimensional submanifold L of T 2 is tangent
to e ∈ X 0

1 (T 2) when e(z) ∈ TzL for all z ∈ L. For a one-dimensional manifold X,
let E (X, e) be the collection of C1 injectively immersed submanifolds of T 2 that are
diffeomorphic to X and are tangent to e. We write |L| for the length of L ∈ E (X, e). Let
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E (t<∞X, e) be the collection of subset of M that are disjoint unions of finitely many
elements of E (X, e).

Fix L ∈ E (]0, 1[, e) and a C1 immersion ξ : ]− 1, 1[ → T 2 so that Im ξ = L, ξ(0) = p

and (dξ/dt)(0) ∈ {a · e(p) | a > 0}. We call ξ(]0, 1[) and ξ(] − 1, 0[) the positive and the
negative components of L \ {p} respectively. If ξ(t) converges as t → 1 or t → −1, we
call the limit point the positive or the negative boundary point of L, and write ∂+L or
∂−L for it. If ξ(t) does not converge, we do not define ∂±L. Remark that the positive
and negative components of L \ {p} do not depend on the choice of ξ and ∂±L does not
depend on the choice of p and ξ. We also remark that |L| is finite if and only if both
∂+L and ∂−L exist. In such a case, there exists a unique ξ ∈ S (e) satisfying L = Int ξ.

2.2. Circles tangent to a unit vector field.
Recall that the group Diff1

+(S1) acts on C1(S1,T 2) from the right. Let πc denote
the quotient map from C1(S1,T 2) to C1(S1,T 2)/Diff1

+(S1). A C1 diffeomorphism f of
T 2 induces a homeomorphism C (f) of C1(S1,T 2)/Diff1

+(S1) by πc(f ◦γ) = C (f)(πc(γ)).
We define the image Im c and the length |c| of c = πc(γ) ∈ C1(S1,T 2)/Diff1

+(S1) by
Im c = Im γ and |c| = |γ|.

Fix e ∈ X 0
1 (M) and define a subspace C̃ (e) of C1(S1,T 2) by

C̃ (e) =
{

γ ∈ C1(S1,T 2)
∣∣∣∣ |γ| 6= 0,

dγ

dt
(t) = |γ| · e(γ(t)) for any t ∈ S1

}
.

In the below, we regard C̃ (e) as a subspace of both C1(S1,T 2) and S (e). Let C (e)
denote the set πc(C̃ (e)).

Lemma 2.2. The restriction of πc to C̃ (e) is a proper map. In particular, the space
C (e) is metrizable.

Proof. Notice that |πc(γ)| = |γ| for any γ ∈ C̃ (e) and it depends continuously
on γ. It implies the set {|γ| | γ ∈ C̃ (e), πc(γ) ∈ S} is bounded for any compact subset S

of C (e). By Lemma 2.1, π−1
c (S) ∩ C̃ (e) is a compact subset of C̃ (e).

Since C̃ (e) admits a natural metric as a subspace of C1([0, 1],T 2), the space C (e)
is metrizable. ¤

It is important to remark that there exists Kc > 0 such that |c| ≥ Kc for any
e ∈ X 0

1 (T 2) and any c ∈ C (e). In fact, the Poincare-Bendixon theorem implies no
c ∈ C (e) is null-homotopic. Hence, |c| is not less than the injectivity radius of T 2.

For a ∈ H1(T 2,Z) and a finite subset Λ of M , we put

Ca(e) = {πc(γ) ∈ C (e) | [γ] = a in H1(T 2,Z)},

C̃a(e,Λ) =
{
γ ∈ C̃ (e) ∩S (e,Λ) | [γ] = a in H1(T 2,Z)

}
,

Ca(e,Λ) = πc(C̃a(e,Λ)) = {c ∈ Ca(e) | Im c ∩ Λ 6=∅}.

It is easy to see that ξ1, ξ2 ∈ C̃a(e,Λ) satisfy πc(ξ1) = πc(ξ2) if and only if ξ1 = ξ ∗ ξ′ and
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ξ2 = ξ′ ∗ ξ for some ξ, ξ′ ∈ S (e,Λ).

3. Framed PA diffeomorphisms.

We begin to study the space of curves tangent to the invariant subbundles of a PA
diffeomorphism. In Subsection 3.1, we introduce framed PA diffeomorphisms and canon-
ical coordinates associated to them. In Subsections 3.2 and 3.3, we give a combinatorial
description of invariant segments. A keystone is the uniqueness of a segment connecting
a pair of periodic points, which is proved in Proposition 3.4. In Subsection 3.4, we study
invariant embedded circles without hyperbolic periodic points. Such a circle may exhibit
complicated bifurcation under perturbation. However, their normal hyperbolicity and
finiteness, proved in Proposition 3.13, imply that they are tame in the context of the
topology of C (eu).

3.1. Framed PA diffeomorphisms and canonical coordinates.
First, we show the uniqueness and the persistence of PA splittings.

Lemma 3.1. Any f ∈ PA1(T 2) admits a unique PA splitting.

Proof. Suppose that f admits two PA splittings Eu
1 ⊕ Es

1 and Eu
2 ⊕ Es

2 . It is
sufficient to show that each Eu

2 (z) and Es
2(z) coincides with either Eu

1 (z) or Es
1(z) for

any z ∈ T 2. In fact, it implies {Eu
2 (z), Es

2(z)} = {Eu
1 (z), Es

1(z)} since Eu
2 (z)⊕Es

2(z) is a
splitting of TzT

2. By the domination property of the splittings, we obtain Eu
2 (z) = Eu

1 (z)
and Es

2(z) = Es
1(z).

Suppose that Eu
2 (z) coincides with neither Eu

1 (z) nor Es
1(z). By the domination

property of Eu
2 ⊕ Es

2 the angle between Eu
2 (fn(z)) = Dfn(Eu

2 (z)) and Eσ
1 (fn(z)) =

Dfn(Eσ
1 (z)) converges to zero as n → ∞ for σ = u, s. The continuity of the splittings

implies that Eu
1 (z∗) = Es

1(z∗) = Eu
2 (z∗) for any accumulation point of {fn(z) | n ≥ 0}.

It contradicts that Eu
1 (z∗)⊕ Es

1(z∗) is a splitting of Tz∗T
2. ¤

We write Eu
f ⊕Es

f for the unique PA splitting associated to a PA diffeomorphism f

of T 2. By the same argument as in the case of hyperbolic splittings (see, e.g., Subsection
6.4 of [3]), we can show the persistence of PA splittings. Namely, PAr(T 2) is an
open subset of Diffr(T 2) for any r ≥ 1 and PA splittings depend continuously on PA
diffeomorphisms.

We call an element (f, eu, es) of PAr(T 2)× (X 0
1 (T 2))2 a Cr framed PA diffeomor-

phism if eu(z) ∈ Eu
f (z) and es(z) ∈ Es

f (z) for any z ∈ T 2. Remark that f is orientable
if and only if (f, eu, es) is a framed PA diffeomorphism for some eu, es ∈ X 0

1 (T 2).
We call a continuous family {(fλ, eu

λ, es
λ)}λ∈[0,1] of C1 framed PA diffeomorphisms

on T 2 a framed PA homotopy. For a C1 framed PA diffeomorphism (f, eu, es) and a PA
homotopy {fλ}λ∈I with f0 = f , the persistence of PA splittings implies that there exists
a unique framed PA homotopy {(fλ, eu

λ, es
λ)}λ∈I with (f0, e

u
0 , es

0) = (f, eu, es). It is easy
to see that Ca(Eu

f ) is homeomorphic to Ca(eu) t C−a(eu) for any a ∈ H1(T 2,Z) \ {0}.
Hence, in order to prove Theorems A and B, it is sufficient to show the corresponding
results for Ca(eu).

Next, we introduce coordinates compatible with a framed PA diffeomorphism
(f, eu, es). Let {ex(w), ey(w)} denote the standard basis of TwR2 for w ∈ R2. For
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ε > 0, a C1 embedding ϕ of [−1, 1]2 into T 2 is called an ε-canonical coordinate for
(eu, es) if

eu(ϕ(w)) ∈ Dϕ({aex(w) + bey(w) | |b| < εa})
es(ϕ(w)) ∈ Dϕ({aex(w) + bey(w) | |a| < εb})

for any w ∈ [−1, 1]2. For any z ∈ T 2 and any neighborhood U of z, we can take an
ε-canonical coordinate ϕ so that ϕ(0, 0) = z and Im ϕ ⊂ U . In fact, we can construct
such an ε-canonical coordinate by using foliations along C1 approximations of eu and es.
If eu is of class C1 on a neighborhood of z then we can take an ε-canonical coordinate ϕ

so that ϕ([−1, 1]× {y}) is tangent to eu for any y ∈ [−1, 1].
Let ϕ be an ε-canonical coordinate with ε ∈]0, 1/4[. Take ξ ∈ S (eu) satisfying

Im ξ ⊂ Im ϕ. Then, there exist C1 function h on [−1, 1] and an interval [a, b] such
that Im ξ = ϕ({(x, h(x)) | x ∈ [a, b]}) and |dh/dx| < ε. If ξ(0) = ϕ(x0, y0) for some
(x0, y0) ∈ [−1, 1]× [−1 + 2ε, 1− 2ε] and ξ(1) ∈ ∂(Im ϕ), then |h(x)| < |y0|+ ε(1 + |x0|)
for any x ∈ [a, 1] and Im ξ = ϕ({(x, h(x)) | x ∈ [a, 1]}).

Recall that Wu(p) = Wu(p; f) and W s(p) = W s(p; f) denote the unstable set and
the stable set of a periodic point p of f respectively. We will make repeated use of the
following lemma.

Lemma 3.2. Let Ls and Lu be subsets of T 2 with Ls ∈ E (t<∞[0, 1], es) ∪
E (t<∞S1, es) and Lu ∈ E (]0, 1[, eu). If Ls ∩ Lu 6=∅, f(Ls) = Ls, and Lu ⊂ Wu(r) for
r ∈ Per(f), then Ls ∩ Lu consists of exactly one point. If f(Lu) = Lu in addition, then
we have Ls ∩ Lu = {r}.

Proof. Suppose Lu∩Ls contains at least two points. Then, there exists a compact
subinterval Iu of Lu which contains at least two points of Ls.

Since Ls is a compact f -invariant set and intersects with Lu ⊂ Wu(r), it contains
r. Take a 1/4-canonical coordinate ϕ so that ϕ(0, 0) = r and Ls ∩ Im ϕ = ϕ(0× [−1, 1]).
Since Iu ⊂ Wu(r), there exist n ≥ 1 such that f−n(Iu) ⊂ Im ϕ. Then, we can take
a function hu on [−1, 1] so that f−n(Iu) ⊂ ϕ({(x, hu(x)) | x ∈ [−1, 1]}). In particular,
Ls ∩ f−n(Iu) contains at most one point. However, it contradicts that Iu contains two
points of Ls.

If f(Lu) = Lu, then the unique intersection point of Lu and Ls must be a fixed
point of f . Since Wu(r) ∩ Fix(f) = {r}, it coincides with r. ¤

By replacing f with f−1, we also obtain the following.

Lemma 3.3. Let Lu and Ls be subsets of T 2 with Lu ∈ E (t<∞[0, 1], eu) ∪
E (t<∞S1, eu) and Ls ∈ E (]0, 1[, es). If Lu ∩ Ls 6=∅, f(Lu) = Lu, and Ls ⊂ W s(r) for
r ∈ Per(f), then Lu ∩ Ls consists of exactly one point. If f(Ls) = Ls in addition, then
we have Lu ∩ Ls = {r}. ¤

3.2. Connecting segments.
In this subsection, we fix a framed C1 PA diffeomorphism (f, eu, es) and suppose

that Fix(fn) is a finite set for all n ≥ 1.
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For σ ∈ {u, s} and p, q ∈ Per(f), we call ξ ∈ S (eσ) a σ-connecting segment of (p, q)
if ξ(0) = p, ξ(1) = q, ξ ∈ Per(S (f)), and Int ξ ∩ Per(f) = ∅. For p ∈ Per(f), let Dσ

+p

denote the set of q ∈ Per(f) such that a σ-connecting segment of (p, q) exists. Let Dσ
−p

also denote the set of q ∈ Per(f) such that a σ-connecting segment of (q, p) exists.
For a σ-connecting segment ξ of (p, q) with S (f)k(ξ) = ξ, the normalizer η of fk ◦ ξ

satisfies fk◦ξ = ξ◦η. Since η has no periodic point, we have either η(t) > t for all t ∈]0, 1[
or η(t) < t for all t ∈]0, 1[. We say ξ is ascending in the former case and descending in the
latter case. Remark that Int ξ ∈ E (]0, 1[, eu). In fact, if it is not, then ξ(t1) = ξ(t2) for
some t1, t2 ∈]0, 1[ with t1 6= t2. The set fn ◦ ξ([t1, t2]) = ξ([ηn(t1), ηn(t2)]) contains an
embedded circle tangent to eu and its length tends to zero as n → +∞ or −∞. However,
it contradicts that no element of E (S1, eu) is null-homotopic.

Proposition 3.4. If there exists a σ-connecting segment ξ1 of (p, q) for σ ∈ {u, s}
and p, q ∈ Per(f), then it is unique. Moreover, if such ξ1 exists then the followings hold :

1. Dσ
+p = {q} if σ = u and ξ1 is ascending, or σ = s and ξ1 is descending.

2. Dσ
−q = {p} if σ = u and ξ1 is descending, or σ = s and ξ1 is ascending.

Proof. To simplify the arguments, we assume that σ = u and ξ1 is ascending.
The proof for other cases is similar.

Choose q′ ∈ Du
+p and a u-connecting segment ξ2 of (p, q′). By taking an iteration

of f if it is necessary, we assume S (f)(ξi) = ξi for i = 1, 2. We show that ξ1(]0, ε1[) =
ξ2(]0, ε2[) for some ε1, ε2 ∈]0, 1[. Once it is done, we have Int ξ1 = Int ξ2. It implies
ξ1 = ξ2 since Int ξ1 and Int ξ2 are elements of E (]0, 1[, eu).

Fix a 1/8-canonical coordinate ϕ so that ϕ(0, 0) = p, Dϕ−1(es(p)) is parallel to
ey(0, 0), Int ξ1 6⊂ Im ϕ, and ϕ([0, 1]×{0}) ⊂ Im ξ2. There exists a C1-function h on [0, 1]
such that h(0) = 0 and ϕ({(x, h(x)) | x ∈ [0, 1]}) ⊂ Im ξ1. Remark that |h′(x)| < 1/8 for
any x ∈ [0, 1]. In particular, we have |h(x)| ≤ x/8.

Fix a map F = ϕ−1 ◦ f ◦ϕ on a small neighborhood V of (0, 0). We define functions
a(w), b(w), c(w), and d(w) on V by DFw(ex(w)) = a(w)ex(F (w)) + c(w)ey(F (w)) and
DFw(ey(w)) = b(w)ex(F (w)) + d(w)ey(F (w)). Notice that 0 < d(0, 0) < a(0, 0) and
b(0, 0) = c(0, 0) = 0 since T(0,0)R

2 = Rex ⊕ Rey is a dominated splitting on {(0, 0)}
associated to F . By the continuity of DF , there exist x0 > 0 and λ ∈]0, 1[ such that
[−x0, x0]2 ⊂ V and sup{

√
d(w)2 + b(w)2 | w ∈ [−x0, x0]2} < λ inf{a(w) − |b(w)| | w ∈

[−x0, x0]2}. For x ∈]0, x0[ and x′ ∈]0, 1[ with (x′, h(x′)) = F (x, h(x)), we have

Figure 1. Proof of Proposition 3.4.
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|h(x′)| ≤ ‖F (x, h(x))− F (x, 0)‖

≤
∫ h(x)

0

∥∥DF(x,s)(ey(x, s))
∥∥ds

≤ |h(x)| sup
{√

d(w)2 + b(w)2 | w ∈ [−x0, x0]2
}

≤ λ|h(x)| inf{a(w)− |b(w)| | w ∈ [−x0, x0]2}

≤ λ|h(x)| 1
x

∫ x

0

{
a(t, h(t)) +

dh

dt
(t)b(t, h(t))

}
dt = λ

|h(x)|
x

x′.

It implies

sup
{ |h(x′)|

x′

∣∣∣∣ x′ ∈ (0, x′0)
}
≤ λ sup

{ |h(x)|
x

∣∣∣∣ x ∈ (0, x0)
}
≤ x0/8,

where (x′0, h(x′0)) = F (x0, h(x0)). Notice that x′0 > x0 since ξ1 is ascending. Hence, we
obtain h(x) = 0 for any x ∈]0, x0[. It implies ξ1([0, ε1]) = ξ2([0, ε2]) for some ε1, ε2 ∈]0, 1[.

¤

Let [p, q]σ denote the unique σ-connecting segment of (p, q) if it exists. By the
uniqueness, [p, q]σ is a fixed point of S (f) if p and q are fixed points of f .

Remark that Du
+p may contain several points in general when [p, q]u is descending.

In Subsection 4.2, we see that if p is an attracting fixed point and Du
+p contains a repelling

fixed point, then Du
+p consists of at least three points. In particular, Eu

f is not uniquely
integrable at such a point p.

Next, we give a criterion for the existence of connecting segments. Let us recall the
definition of the strong unstable manifolds. For p ∈ Fix(f) with ‖Df(eu(p))‖ > 1, fix
λ > 1 so that ‖Df(es(p))‖ < λ < ‖Df(eu(p))‖. For a given number δ > 0, we define a
subset Wuu

δ (p) of Wu(p) by

Wuu
δ (p) =

{
z ∈ T 2 | d(f−n(z), p) ≤ λ−nδ for any n ≥ 0

}
.

If δ > 0 is sufficiently small, then Wuu
δ (p) is an embedded compact interval with eu(p) ∈

TpW
uu
δ (p). We call Wuu

δ (p) the local strong unstable manifold of p. It is known that
it depends continuously on p and f as a C1 embedded manifold. The set Wuu(p) =⋃

n≥0 fn(Wuu
δ (p)) is called the strong unstable manifold of p and it does not depend on

the choice of λ and δ (see e.g. [8]). The manifold Wuu(p) is characterized as the unique
f -invariant C1 injectively immersed open interval satisfying p ∈ Wuu(p) ⊂ Wu(p) and
eu(p) ∈ TpW

uu(p).

Lemma 3.5. Let I be a compact embedded interval with f−1(I) ⊂ I and es(z) 6∈ TzI

for any z ∈ I. Then, I is tangent to eu. In particular, the strong unstable manifold of a
periodic point is tangent to eu.

Proof. We define a function α on I by eu(z)+α(z)es(z) ∈ TzI. By the domination
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property, there exist N ≥ 1 and λ ∈ (0, 1) such that |α(z)| ≤ λ|α(f−N (z))| for any z ∈ I.
Since f−N (I) ⊂ I and the function α is bounded, we obtain α(z) = 0 for any z ∈ I.

The latter part is an easy consequence of the former. ¤

Let Wuu
+ (p) and Wuu

− (p) denote the positive and negative components of Wuu(p) \
{p} respectively. It is easy to see that if ∂+Wuu(p) = q then Du

+p = {q}, [p, q]u is an
ascending u-connecting segment, Int [p, q]u = Wuu

+ (p) ⊂ W s(q), and ‖Df(eu(q))‖ ≤
1. We define the local strong stable manifold W ss

δ (p) = Wuu
δ (p; f−1), the strong stable

manifold W ss(p), and the connected components W ss
± (p) of W ss(p) \ {p} by the same

way as above.

Lemma 3.6. Let p and q be fixed points of f such that ‖Df(eu(p))‖ > 1 and q is
attracting. If Wuu

+ (p) ⊂ W s(q), then q ∈ Du
+p. In particular, [p, q]u is ascending, and

hence, Du
+p = {q}.

Proof. Suppose Wuu
+ (p) ⊂ W s(q). There exist a compact interval I ⊂ Wuu

+ (p)
and δ > 0 such that

⋃
n≥0 fn(I) = Wuu

+ (p) \Wuu
δ (p). By the compactness of I, fn(I)

converges to {q} as n →∞ with respect to the Hausdorff metric. It implies ∂+Wuu(p) =
q, and hence, q ∈ Du

+p. ¤

Finally, we define a presentation of fixed segments and show that the set Fix(S (f))∩
S (eu) is discrete. For σ = u, s if a sequence {pi}k

i=0 of periodic points of f satisfies
pi ∈ Dσ

+pi−1 for each i, then we define [p0, . . . , pk]σ ∈ S (eσ) by the composition [p0, p1]σ∗
· · · ∗ [pk−1, pk]σ.

Proposition 3.7. Any ξ ∈ S (eσ) ∩ Fix(S (f)n) with |ξ| 6= 0 has a unique pre-
sentation ξ = [p0, . . . , pk]σ and all p0, . . . , pk are fixed points of fn.

Proof. Recall that the normalizer η of fn ◦ ξ is a map in Diff1
+([0, 1]) satisfying

fn ◦ ξ = ξ ◦ η. Since ξ is an immersion, ξ−1(z) is a finite set for any z ∈ T 2. Hence,
ξ−1(O(z; fn)) is a periodic orbit of η for any z ∈ Per(f) ∩ Im ξ. It implies ξ(Per(η)) =
Per(f) ∩ Im ξ.

It is clear that Per(η) = Fix(η), and hence, we have Per(f)∩ Im ξ = Fix(fn)∩ Im ξ.
By the assumption, Fix(fn) is a finite set. Now, the proposition is an easy consequence
of the existence and the uniqueness of an irreducible decomposition of ξ associated to
Fix(fn). ¤

Corollary 3.8. The set {ξ ∈ S (eu) ∩ Fix(S (f)) | |ξ| ≤ K} is finite for any
given K > 0. In particular, S (eu) ∩ Fix(S (f)) is a discrete set.

Proof. Since Fix(f) is a finite set, K0 = inf{|[p, q]u| | p ∈ Fix(f), q ∈ Du
+p} is

positive. The corollary follows from the proposition and the inequality

|[p0, . . . , pk]u| ≥ K0 · k

for any [p0, . . . , pk]u ∈ S (eu) with p0, . . . , pk ∈ Fix(f). ¤
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3.3. A canonical total order on Ds
±p.

Let (f, eu, es) be a framed PA diffeomorphism on T 2. For p ∈ Per(f), we define a
relation ≺p

+ on Ds
+p so that q1 ≺p

+ q2 if and only if for any ε ∈]0, 1[ and any neighborhood
U of p, there exists ξ ∈ S(eu) such that |ξ| 6= 0, ξ(0) ∈ [p, q1]s(]0, ε[), ξ(1) ∈ [p, q2]s(]0, ε[),
and Im ξ ⊂ U . We write q1 ¹p

+ q2 if q1 = q2 or q1 ≺p
+ q2.

Figure 2. A total order ≺p
+.

Proposition 3.9. Let p, q1, q2 be periodic points of f with q1, q2 ∈ Ds
+p. Let ϕ be

a 1/4-canonical coordinate with p = ϕ(x0, y0) ∈ ϕ([−1/2, 1/2]2). Suppose that there exist
functions v1 and v2 on [y0, 1] such that vi(y0) = x0 and ϕ({(vi(y), y) | y ∈ [y0, 1]}) ⊂
Im [p, qi]s for each i = 1, 2. Then, the following conditions are equivalent :

1. q1 ≺p
+ q2.

2. v1(y) < v2(y) for some y ∈]y0, 1].
3. v1(y) < v2(y) for any y ∈]y0, 1].

Proof. Since Int [p, q1]s∩ Int [p, q2]s =∅ if q1 6= q2, the latter two conditions are
equivalent. Put Ii = ϕ({(vi(y), y) | y ∈ [y0, 1]}) for i = 1, 2.

Take a neighborhood U of p and a number ε > 0 so that U ⊂ ϕ([−1, 1]2) and
[p, qi]s([0, ε]) ⊂ Ii. If q1 ≺p

+ q2, then there exists ξ ∈ S (eu) such that ξ(0) ∈ I1,
ξ(1) ∈ I2, and Im ξ ⊂ U . It is easy to see that it implies that v1(y) < v2(y) for any
y ∈]y0, 1[.

Suppose v1(y) < v2(y) for any y ∈]y0, 1[. It is easy to see that there exists a family
{ξy}y∈]y0,1/2[ in S (eu) such that ξy(0) = ϕ(v1(y), y), ξy(1) ∈ I2, and Im ξy ⊂ Im ϕ for
any y ∈]y0, 1/2[, and Im ξy converges to {p} as y → y0. It implies q1 ≺p

+ q2. ¤

Corollary 3.10. The relation ¹p
+ is a total order on Ds

+p.

Proof. For any q1, q2, q3 ∈ Ds
+p, we can take a 1/4-canonical coordinate ϕ with

p = ϕ(x0, y0) ∈ ϕ([−1/2, 1/2]2) and functions v1, v2, and v2 on [y0, 1] so that vi(y0) = x0

and ϕ({(vi(y), y) | y ∈ [y0, 1]}) ⊂ Im [p, qi]s for each i = 1, 2, 3. Then, it is easy to check
that the corollary follows from the proposition. ¤

We also define a total order ≺p
− on Ds

−p so that q1 ≺p
− q2 if and only if for any

ε ∈]0, 1[ and any neighborhood U of p, there exists ξ ∈ S(eu) such that |ξ| 6= 0, ξ(0) ∈
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[q1, p]s(]− ε, 0[), ξ(1) ∈ [q2, p]s(]− ε, 0[), and Im ξ ⊂ U .
If ϕ is a 1/4-canonical coordinate, then f ◦ϕ also is. Hence, Proposition 3.9 implies

if q1 ≺p
+ q2 then f(q1) ≺f(p)

+ f(q2).

Lemma 3.11. Ds
+p ∩ O(q; f) = {q} for any q ∈ Ds

+p. In particular, p and q have
the same period. The similar assertions also hold for Ds

−p and Du
±p.

Proof. Suppose that fk(q) 6= q is contained in Ds
+p. If q ≺p

+ fk(q), then
f ik(q) ≺p

+ f (i+1)k(q) for any i. Since ≺p
+ is a total order, we obtain that q 6= f ik(q) for

any i. It contradicts that q is a periodic point. The same argument shows fk(q) 6≺p
+ q,

and hence, we have Ds
+p ∩ O(q; f) = {q}.

Now, it is easy to see that p and q have the same period since Ds
+fm(p)∩O(q; f) =

{fm(q)} for any m ≥ 0. ¤

Remark that S (eu,Fix(fk)) ∩ Per(S (f)) = S (eu) ∩ Fix(S (f)k). In fact, for
ξ = [p1, . . . , pm]u ∈ S (eu,Fix(fk)) ∩ Per(S (f)), the lemma implies that each pi is a
fixed point of fk. By the uniqueness of a connecting segment, we have S (f)k(ξ) =
[fk(p1), . . . , fk(pm)]u = [p1, . . . , pm]u = ξ.

3.4. Invariant circles without hyperbolic periodic points.
For a Cr diffeomorphism g on a manifold M , let Fixh(g) and Perh(g) denote the

set of hyperbolic fixed points and that of hyperbolic periodic points respectively. By
the stable manifold theorem, the unstable set Wu(p) and the stable set W s(p) are Cr

injectively immersed manifolds with TpW
u(p) ⊕ TpW

s(p) = TpM for any p ∈ Perh(g).
For k ≥ 0, we define Fixk

h(g) and Perk
h(g) by

Fixk
h(g) =

{
p ∈ Fixh(g) | dimWu(p; g) = k

}
,

Perk
h(g) =

{
p ∈ Perh(g) | dimWu(p; g) = k

}
.

Recall that a periodic point p is called attracting if p ∈ Fix0
h(g), repelling if p ∈

Fixdim M
h (g), and of saddle-type otherwise.
For ρ ≤ r, we call an embedded circle C a ρ-normally attracting circle for g if

gm(C) = C for some m ≥ 1 and there exist a dominated splitting TM |C = Eu ⊕ Es,
K > 0, and λ ∈]0, 1[ such that TzC = Eu(z) and

∥∥Dgn|Es(z)

∥∥ ·
∥∥(Dgn|Eu(z))−1

∥∥ρ
< Kλn,

∥∥Dgn|Es(z)

∥∥ < Kλn

for any n ≥ 0 and z ∈ C. It is known that a ρ-normally attracting circle is a Cρ

submanifold of M , whose existence is persistent under Cρ-perturbation of g, and which
depends continuously on g (see Subsection 12.4 of [7]). An embedded circle C ′ is called
ρ-normally repelling if it is a ρ-normally attracting circle for g−1. We say a ρ-normally
attracting or repelling circle C is irrational if the restriction of gm on C is topologically
conjugate to an irrational rotation. Remark that C = O(z; gm) for any z ∈ C if C is
irrational.

We recall a theorem due to Pujals and Sambarino on the structure of invariant sets
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of a surface diffeomorphism which admits a dominated splitting. Let Ω(g) denote the
non-wandering set of a diffeomorphism g. That is, a point z of M is contained in Ω(g)
if and only if any neighborhood U of z satisfies gn(U) ∩ U 6= ∅ for some n ≥ 1. We say
a g-invariant set Λ is a hyperbolic set of saddle-type if it admits a hyperbolic splitting
TM |Λ = Eu ⊕ Es such that both Es and Es are non-trivial.

Theorem 3.12 ([6], Theorem B). Let g be a C2 diffeomorphism on a compact
surface. Suppose that a compact g-invariant set Λ ⊂ Ω(f) admits a dominated splitting
and satisfies Λ∩Per(g) ⊂ Per1h(g). Then, Λ is a disjoint union of a hyperbolic g-invariant
set of saddle-type and finitely many mutually disjoint 2-normally attracting or repelling
irrational circles.

Fix a C2 framed PA diffeomorphism (f, eu, es). For σ ∈ {u, s}, we define a subset
C∗(eσ) of C (eσ) by

C∗(eσ) =
{
c ∈ C (eσ) ∩ Per(C (f)) | Im c ∩ Perh(f) =∅

}
,

and put Ca,∗(eσ) = Ca(eσ) ∩ C∗(eσ). We also define subsets Ω0
∗(f) and Ω2

∗(f) of T 2 by

Ω0
∗(f) =

⋃

c∈C∗(eu)

Im c, Ω2
∗(f) =

⋃

c∈C∗(es)

Im c.

Proposition 3.13. Suppose that f has at most one non-hyperbolic periodic or-
bit. Then, Ω0

∗(f) is a disjoint union of finitely many 2-normally attracting circles. In
particular, Ca,∗(eu) is a finite set for any a ∈ H1(T 2,Z).

Proof. The latter is an immediate consequence of the former. We prove the
former by assuming the following lemmas, which we show later. Remark that the lemmas
hold even if f has more than one non-hyperbolic periodic orbits.

Lemma 3.14. Put S∗ = {c ∈ C∗(eu) | Im c ∩ Per(f) = ∅} and C∗ =
⋃

c∈S∗ Im c.
Then, C∗ is a disjoint union of finitely many 2-normally attracting irrational circles.

Lemma 3.15. Let p0, . . . , pk−1 are periodic points of f with mutually disjoint or-
bits and with the same period m. Put pk = p0 and suppose that there exists a se-
quence {ni}k−1

i=0 such that fni(pi+1) ∈ Du
+pi for each i = 0, . . . , k − 1. Then, the set⋃m−1

n=0

⋃k−1
i=0 Im [fn(pi), fn+ni(pi+1)]u is an f-invariant element of E (t<∞S1, eu).

Let C∗ be the subset of Ω0
∗(f) given in Lemma 3.14. Put S = {c ∈ C∗(eu) |

Im c ∩ Per(f) 6= ∅} and C =
⋃

c∈S Im c. It is easy to see that C ∩ C∗ = ∅. Hence,
it is sufficient to show that C is a disjoint union of finitely many 2-normally attracting
circles.

Suppose that C is non-empty. Then, it contains a non-hyperbolic periodic point p∗.
Let m be the period of p∗. Put A = {(n, n′) ∈ {0, . . . , m− 1}2 | fn+n′(p∗) ∈ Du

+fn(p∗)}.
For any z ∈ C, there exist non-hyperbolic periodic points q∗ and q′∗ such that q′∗ ∈ Du

+q∗
and z ∈ Im [q∗, q′∗]

u. By the assumption, O(p∗) is the unique non-hyperbolic periodic
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orbit. Hence, we have C ⊂ ⋃
(n,n′)∈A Im [fn(p∗), fn+n′(p∗)]u. Fix (n0, n

′
0) ∈ A. It is

clear that {(n, n′0) | n = 0, . . . , m−1} is a subset of A. Lemma 3.11 implies A = {(n, n′0) |
n = 0, . . . , m − 1}. Since C is f -invariant, we have C =

⋃m−1
n=0 Im [fn(p∗), fn+n′0(p∗)]u.

Lemma 3.15 implies that C is a disjoint union of finitely many embedded circles.
Notice that fmn(z) converges to a point of O(p∗; f) as n → ∞ for any z ∈ C.

Since ‖Dfm(es(p∗))‖ < ‖Dfm(eu(p∗))‖ = 1, both ‖Dfn(es(z))‖ · ‖Dfn(eu(z))‖−2 and
‖Dfn(es(z))‖ tends to zero as n →∞. The compactness of C implies that C is a union
of 2-normally attracting circles. ¤

Proof of Lemma 3.14. Fix c ∈ S∗ and take γ ∈ π−1
c (c) ∩ C̃ (eu). Then, there

exist n ≥ 1 and η ∈ Diff1
+(S1) such that fn ◦γ = γ ◦η. Since Im c∩Per(f) =∅, we have

Per(η) = ∅. It implies that η is semi-conjugate to an irrational rotation, and hence, η

has no hyperbolic invariant set. In particular, Im c = Im γ does not intersect with a
hyperbolic invariant set of saddle type. Now, the lemma follows from Theorem 3.12. ¤

Proof of Lemma 3.15. Put Λ =
⋃k−1

i=1 O(pi; f) and C =
⋃m−1

n=0

⋃k−1
i=1 Im

[fn(pi), fn+ni(pi+1)]u. It is easy to see that Int [p, q]u ∩ Im [p′, q′]u 6= ∅ implies p = p′

and q = q′. Hence, C is locally diffeomorphic to an interval at any point of C \ Λ.
Fix a point fn(pi) of Λ. Recall fni(pi+1) ∈ Du

+pi and pi−1 ∈ Du
−(fni(pi)). By

Lemma 3.11, we have Du
+(fn(pi)) ∩ O(pi+1; f) = {fn+ni(pi+1)} and Du

−(fn(pi)) ∩
O(pi−1; f) = {fn−ni−1(pi−1)}. It implies that Im [fn−ni−1(pi−1), fn(pi), fn+ni(pi+1)]u

is a neighborhood of fn(pi) in C. Therefore, C is locally diffeomorphic to an interval at
fn(pi). ¤

The following is a consequence of Lemmas 3.14 and 3.15, which we use later.

Lemma 3.16. For any periodic point c ∈ C (eu) of C (f) and any z ∈ Im c, there
exists C ∈ E (t<∞S1, eu) satisfying f(C) = C and z ∈ C ⊂ ⋃

n≥0 fn(Im c).

Proof. If Im c∩Per(f) =∅, then
⋃

n≥0 fn(Im c) is a disjoint union of normally
attracting irrational circles by Lemma 3.14.

Suppose that Im c∩Per(f) 6=∅. Then, c = πc(ξ) for some ξ = [p0, p1, . . . , pk]u with
pk = p0. By Lemma 3.11, periodic points p0, . . . , pk have the same period m. Without
loss of generality, we assume that z ∈ Im [p0, p1]u. If p1 = fn′(p0) for some n′ ≥ 0,
then Lemma 3.15 implies that C =

⋃m
n=0 Im [fn(p0), fn+n′(p0)]u satisfies the required

conditions.
Suppose O(p0; f) 6= O(p1; f). We define a directed graph G = (E, V ) so that

V = {1, . . . , k} and i → j if and only if pi+1 ∈ O(pj ; f). Note that 1 → · · · → k is a path
of G and if i → j and pj′ ∈ O(pj) then i → j′.

Take the shortest path j1 → · · · → jl of G satisfying j1 = 1 and jl = k. It is
easy to see that O(pji

) 6= O(pji′ ) if i 6= i′. Take ni so that pji+1 = fni(pj(i+1)) for
each i. Then, we have fni(pj(i+1)) ∈ Du

+pji
and Im [pji

, fni(pj(i+1))]
u ⊂ Im c for any

i = 1, . . . , l − 1. Put j0 = 0 and n0 = 0. Then, Lemma 3.15 for {pji}l−1
i=0 and {ni}l−1

i=0

implies that C =
⋃m−1

n=0

⋃l−1
i=0 Im [fn(pji

), fn+ni(pj(i+1))]
u is the required one. ¤
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4. Non-degenerate PA diffeomorphisms and Proof of Theorem B.

We study the topology of invariant foliations of a non-degenerate PA diffeomorphism
and give a structure of CW complex structure to Ca(eu). In Subsection 4.1, we show
that a non-degenerate PA diffeomorphism admits a C1 invariant foliation tangent to
Eu on T 2 \ (Ω0

∗(f) ∪ Per0h(f)). One of the important consequences is Proposition 4.4,
which asserts that the non-trivial part of C (eu) is C (eu,Per0h(f)). In Subsection 4.2,
we investigate the singularity of the above foliation at attracting periodic points. It
allows us to show the continuity of segments and the existence of a decomposition of
S (eu,Fix0

h(f)). We give a structure of CW complex to S (eu,Fix0
h(f)) in Subsection

4.3, where we see that the combinatorics of connecting segments determines the topology
of S (eu,Fix0

h(f)) completely. We prove Theorem B in Subsection 4.4.
In this section, we fix a framed PA diffeomorphism (f, eu, es) and suppose that f is

non-degenerate and of class C2.

4.1. The unstable foliation.
Put Ωk(f) = Perk

h(f) ∪ Ωk
∗(f) for k = 0, 2 and Ω1(f) = Ω(f) \ (Ω0(f) ∪ Ω2(f)).

Theorem 3.12 implies that Ω1(f) is a hyperbolic set of saddle-type. It is easy to see that
both Per0h(f) and Per2h(f) have no accumulation points. In particular, they are finite
sets.

Proposition 4.1. Let Eu⊕Es be the unique PA splitting associated to f . Then,
the subbundle Eu generates a C1 f-invariant foliation Fu on T 2 \ Ω0(f). Moreover,
for any given neighborhood U of Ω0(f), there exist λU ∈]0, 1[ and KU > 0 such that
‖Df−n|Eu(z)‖ ≤ KUλn

U for any n ≥ 0 and z ∈ T 2 \ U .

Proof. Since Ω0(f) is an attracting invariant set, we can choose an open neigh-
borhood U∗ of Ω0(f) so that f(U∗) ⊂ U∗ and

⋂
n≥0 fn(U∗) = Ω0(f).

Since the α-limit set
⋂

n≥1 {f−m(z) | m ≥ n} is contained in Ω1(f) ∪ Ω2(f) for any
z ∈ T 2 \U∗, ‖Df−n|Eu(z)‖ converges to zero. By the compactness of T 2 \U∗, there exist
K > 0 and λ ∈ (0, 1) such that ‖Df−n|Eu(z)‖ ≤ Kλn for any z ∈ T 2 \ U∗. It is easy to
see that it implies the second assertion of the proposition.

Since f(U∗) ⊂ U∗, we obtain the C1 regularity of Eu on T 2 \ U∗ by the same
argument as in the case of codimension one hyperbolic splittings (see, e.g., Theorem
19.1.8 of [3]). By the Df -invariance of Eu, the restriction of Eu to T 2 \Ω0(f) is of class
C1. In particular, it generates a C1 f -invariant foliation Fu. ¤

For z ∈ T 2 \ Ω0(f), let Fu(z) be the leaf of Fu that contains z, and Fu
+(z) and

Fu
−(z) denote the positive and the negative half components of Fu(z) \ {z}. By the

same argument as Proposition 4.1, Es generates a C1 foliation F s on T 2 \ Ω2(f). We
define F s(z) and F s

±(z) similarly.

Lemma 4.2. The foliation Fu on T 2 \ Ω0(f) satisfies the followings.

1. Fu has no compact leaves.
2. If Fu(z) ∩ Wu(p) 6= ∅ for z ∈ T 2 \ Ω0(f) and p ∈ Per1h(f) ∪ Per2h(f), then

Fu(z) ⊂ Wu(p).
3. If f(Fu(z)) = Fu(z) for z ∈ T 2 \ Ω0(f), then there exists p ∈ Fix1

h(f) ∪ Fix2
h(f)
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such that Fu(z) = Wuu(p).

The similar statements hold for F s.

Proof. By Proposition 4.1, any I ∈ E (S1, eu) ∪ E ([0, 1], eu) with I ∩ Ω0(f) = ∅
satisfies

∑
n≥0 |f−n(I)| < ∞.

If Fu has a compact leaf C, then |f−n(C)| converges to zero as n → ∞ since
C ∩ Ω0(f) = ∅. It contradicts the Poincaré-Bendixon theorem. Therefore, Fu has no
compact leaves.

Suppose Fu(z) ∩Wu(p) 6= ∅ for z ∈ T 2 \ Ω0(f) and p ∈ Per1h(f) ∪ Per2h(f). Take
a point z0 ∈ Fu(z) ∩Wu(p). Any compact subinterval I1 of Fu(z) containing z0 is a
subset of Wu(p) since |f−n(I1)| converges to zero as n →∞. It implies Fu(z) ⊂ Wu(p).

Suppose f(Fu(z)) = Fu(z) for z ∈ T 2 \ Ω0(f). Choose a compact subinterval I2

of Fu(z) and a neighborhood U∗ of Ω0(f) so that f−1(I2) ∩ I2 6= ∅, f(U∗) ⊂ U∗, and
U∗ ∩ I2 = ∅. Put In

2 =
⋃n

m=0 f−m(I2) for n ≥ 1 and I∗2 =
⋃

n≥0 In
2 . Then, {In

2 }n≥0

is an increasing sequence of compact intervals with In
2 ∩ U∗ = ∅ and supn≥0 |In

2 | < ∞.
Hence, the set I∗2 is a compact interval with I∗2 ∩Ω0(f) =∅ and f−1(I∗2 ) ⊂ I∗2 . It implies
that I∗2 is a subset of Fu(z) and contains a point p of Fix1

h(f)∪Fix2
h(f). By the second

assertion, we have Fu(z) ⊂ Wu(p). It implies that Fu(z) = Wuu(p). ¤

Lemma 4.3. For any z ∈ T 2 \ Ω0(f), the positive or the negative boundary point
∂±Fu(z) is an attracting periodic point if it exists.

Proof. Proof is done by contradiction. Suppose that ∂τFu(z) ∈ T 2 \ Per0h(f)
for z ∈ T 2 \ Ω0(f) and τ ∈ {+,−}. Without loss of generality, we assume τ = −.
Since ∂−Fu(z) is contained in Ω0(f) = Per0h(f) ∪ Ω0

∗(f), we have ∂−Fu(z) ∈ Ω0
∗(f).

Choose a 1/4-canonical coordinate ϕ at p such that ϕ([−1, 1] × {0}) = Ω0
∗(f) ∩ Im ϕ

and ϕ({x} × [−1, 1]) ⊂ F s(ϕ(x, 0)) for any x ∈ [−1, 1]. There exists a C1 function h

on [0, 1] such that h(0) = 0 and ϕ({(x, h(x)) | x ∈]0, 1]}) is a connected component of
Fu(z) ∩ Im ϕ. Without loss of generality, we assume that h(x) > 0 for all x ∈]0, 1].

Since Ω0
∗(f) consists of irrational normally attracting circles, there exist sequences

{ni ≥ 1}, {xi ∈]−1, 0[} and {x′i ∈]1/4, 1/2[} such that fni ◦ϕ([0, 1/2]×{0}) = ϕ([xi, x
′
i]×

{0}) for any i and [xi, x
′
i] converges to [0, 1/2] as i → ∞. Since ϕ({x} × [0, h(x)]) ⊂

F s(ϕ(x, 0)) for any x ∈]0, 1[, the set fni ◦ ϕ({(x, h(x)) | x ∈ [0, 1/2]}) converges to
ϕ([0, 1/2]×{0}) as i →∞. Hence, for any sufficiently large i, there exists a C1 function
hi on [xi, x

′
i] such that hi(xi) = 0, hi(x) > 0 for any x ∈]xi, x

′
i], ϕ({(x, hi(x)) | x ∈

[xi, x
′
i]}) ⊂ Fu

−(fni(z)), and 0 < hi(x′i) < inf{h(x) | x ∈ [1/4, 1/2]}. Since xi < 0 and
hi(xi) = 0, we have Fu(fni(z)) ∩Fu(z) 6= ∅ for any sufficiently large i. It contradicts
that Fu is a foliation on T 2 \ Ω0(f). ¤

The following proposition implies all we need to know is the structure of the image
of C̃a(eu,Per0h(f)) under πc.

Proposition 4.4. Ca(eu) is the disjoint union of Ca(eu,Per0h(f)) and Ca,∗(eu).

Proof. It is trivial that Ca(eu,Per0h(f)) ∩ Ca,∗(eu) = ∅. Fix c ∈ Ca(eu). By
Lemma 4.2, we have Im c ∩ Ω0(f) 6= ∅. Lemma 4.3 implies either Im c ∩ Per0h(f) 6= ∅
or Im c ⊂ Ω0

∗(f). The latter implies c ∈ Ca,∗(eu). ¤
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4.2. A decomposition of S (eu,Fix0
h(f)).

First, we investigate the local structure of Fu at attracting fixed points. Fix an
attracting fixed point r of f and a 1/8-canonical coordinate ϕ satisfying ϕ(0, 0) = r,
Im ϕ ⊂ W s(r), and ϕ({0}×[−1, 1]) ⊂ W ss(r) = F s(r). For y ∈ [−1/2, 1/2], let Iy denote
the connected component of Fu(ϕ(1/2, y)) ∩ ϕ(]0, 1[×] − 1, 1[) that contains ϕ(1/2, y).
Then, there exists a C1 function hy on [0, 1] such that Iy = ϕ({(x, hy(x)) | x ∈ [0, 1]}).
Remark that the family {hy}y∈[−1/2,1/2] is continuous with respect to the C1 topology
and |dhy/dx| ≤ 1/8 for any y. In particular, the set V =

⋃
y∈[−1/2,1/2] Iy contains

ϕ([0, 1] × [−1/4, 1/4]) and the family {Iy}y∈[−1/2,1/2] defines a foliation on V with a
unique possible singularity at r.

Proposition 4.5. There exist k ≥ 0, a sequence {qi}2k+1
i=1 of fixed points of f , and

an increasing sequence {yi}2k+1
i=1 in [−1/8, 1/8] such that

1. qi is of saddle-type if i is odd, and is repelling if i is even,
2. Iyi ⊂ Wuu

− (qi) for any i,
3. {y ∈ [−1/2, 1/2] | ∂−Iy = p} = [y1, y2k+1],
4. {y ∈ [−1/2, 1/2] | ∂−Iy ∈ ϕ({0}×]− 1, 0[)} = [−1/2, y1[,
5. {y ∈ [−1/2, 1/2] | ∂−Iy ∈ ϕ({0}×]0, 1[)} =]y2k+1, 1/2],
6. if k ≥ 1, then Iy ⊂ Wu(q2j) for any j = 1, . . . , k and y ∈]y2j−1, y2j+1[.

Proof. Fix N ≥ 1 so that fN ([0, 1]× [−1/2, 1/2]) ⊂ ϕ([0, 1]× [−1/8, 1/8]). The
proof is done by investigating the action of fN on the leaf space of foliation {Iy}. Take
a map g : [−1/2, 1/2] → [−1/4, 1/4] so that fN (Iy) = Ig(y). The assertion 3 of Lemma
4.2 implies that there exists a map α : Fix(g) → Fix(fN ) such that Iy∗ ⊂ Fu(α(y∗)) for
any y∗ ∈ Fix(g). Since ∂−Iy = fN (∂−Iy) if and only if ∂−Iy = r, we have ∂−Iy∗ = r

for any y∗ ∈ Fix(g). In particular, Im α ⊂ Du
+r. On the other hand, any q ∈ Du

+r is a
fixed point of f by Lemma 3.11, and hence, there exists a unique fixed point y∗ of Fix(g)
with Iy∗ ⊂ Fu(q). Hence, the map α is a one-to-one correspondence between Fix(g) and
Du

+r.
By the finiteness of Fix(f), there exists an increasing sequence {yi}l

i=1 such that
Fix(g) = {yi | i = 1, . . . , l}. Put qi = α(yi). Since the map g is the composition

Figure 3. Branching of Fu at an attracting fixed point.
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of fN and a holonomy map of Fu, it is a C1 orientation preserving map satisfying
‖Dg(yi)‖ = ‖DfN |Es(qi)‖ for any i. In particular, yi is attracting if and only if qi is of
saddle-type and yi is repelling if and only if qi is repelling.

Recall that g([−1/2, 1/2]) is contained in [−1/4, 1/4]. The maximal invariant set⋂
n≥0 gn([−1/2, 1/2]) must coincide with [y1, y2k+1] and both y1, y2k+1 are attracting

fixed points of g. It implies that l = 2k + 1 for some k ≥ 0, yi is attracting if i is odd,
and yi is repelling if i is even. Hence, qi ∈ Fix1

h(f) if i is odd, and qi ∈ Fix2
h(f) if i is

even.
The set J = {y ∈ [−1/2, 1/2] | ∂−Iy = r} is a g-invariant subinterval of [−1/2, 1/2].

Since [y1, y2k+1] is the maximal invariant subinterval and J contains both y1 and y2k+1,
we obtain J = [y1, y2k+1]. Now, it is clear that the assertions 4 and 5 of the proposition
hold.

Finally, it remains only to show the last assertion. Suppose that k ≥ 1. Fix j =
1, . . . , k and y ∈]y2j−1, y2j+1[. Since Wu(y2j ; g) =]y2j−1, y2j+1[, ϕ(1/2, y2j) ∈ Iy2j

⊂
Wu(q2j), and q2j is repelling, we have ϕ(1/2, g−n(y)) ∈ Wu(q2j) for some sufficiently
large n ≥ 1, and hence, Fu(ϕ(1/2, y)) ∩Wu(q2j) 6= ∅. The second assertion of Lemma
4.2 implies Iy ⊂ Fu(ϕ(1/2, y)) ⊂ Wu(q2j). ¤

One of the consequences is the following.

Corollary 4.6.
⋃

q∈Du
+r Wu(q) = {z ∈ T 2 \ Ω0(f) | ∂−Fu(z) = r} for any

attracting fixed point r of f . ¤

Another is the continuity of segments tangent to eu.

Lemma 4.7. For any q ∈ Du
+r and any compact subinterval J of F s(r) with

r ∈ Int J , there exists a continuous map ξ̂ from a neighborhood U of q to S (eu) such
that ξ̂(z)(0) ∈ J , ξ̂(z)(1) = z, and Int ξ̂(z) ∩ J = ∅ for any z ∈ U . Moreover, if
q ∈ Fix2

h(f), then we can choose the above ξ̂ so that ξ̂(z)(0) = r for any z ∈ U .

We remark that the map ξ̂ is uniquely determined once U is fixed.

Proof. Suppose that q = qi and put I ′ = Fu−(qi) \ Iyi . Since Fu−(qi) = Im [r, qi]u

is an f -invariant compact interval, and Fu−(qi) ∩ J contains r, we apply Lemma 3.3 to
Fu−(qi) and J ⊂ W s(r), and obtain I ′ ∩ J = ∅. Since I ′ ∩ Ω0(f) = ∅, there exists an
embedding ψ : [−1, 1]2 → T 2 \ (J ∪ Ω0(f)) such that ψ(0, 0) = qi, ψ([−1, 0]× {0}) = I ′,
ψ({−1} × [−1, 1]) ⊂ ϕ({1/2} × [−1/2, 1/2]), and ψ([−1, 1] × {y}) ⊂ Fu(ψ(0, y)) for
any y. Take a function h : [−1, 1] → [−1/2, 1/2] so that ψ(−1, y) = ϕ(1/2, h(y)).
Then, we can define a map ξ̂ : ψ([−1/2, 1] × [−1, 1]) → S (eu) so that Im (ξ̂(ψ(x, y)) =
Ih(y) ∪ ψ([−1, x]× {y}). It is easy to see that ξ̂ is continuous and satisfies the assertions
of the lemma.

The latter part of the lemma is an immediate consequence of the assertion 3 of
Proposition 4.5. ¤

Now, we show that S (eu,Fix0
h(f)) admits a decomposition by the unstable sets of

fixed points of S (f). For k = 1, 2, let Σk(f) denote the set consisting of p ∈ Fixk
h(f)

such that Fu(p) has finite length. Put Σ(f) = Σ1(f) ∪ Σ2(f). For p ∈ Σ(f), let (z)u
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denote the unique element of S (eu) with Int (z)u = Fu(z). Let (z1, . . . , zn)u denote the
composition (z1)u ∗ · · · ∗ (zn)u if it is well-defined.

Lemma 4.8. Let p be a fixed point in Σ(f) with Du
±p = {r±}. Then, ∂±Fu(z) = r±

for any z ∈ Wu(p) and the map z ∈ Wu(p) 7→ (z)u ∈ S (eu) is continuous.

Proof. It is clear when p ∈ Fix1
h(f). When p ∈ Fix2

h(f), Lemma 4.7 implies that
there exists a neighborhood U of p such that ∂±Fu(z) = r± for any z ∈ U and (z)u

depends continuously on z ∈ U . Since Wu(p) =
⋃

n≥0 f−n(U), the same holds for any
z ∈ Wu(p). ¤

Proposition 4.9. The set S (eu,Fix0
h(f)) admits a decomposition

S
(
eu,Fix0

h(f)
)

=
⋃

Wu(ξ0;S (f)),

where the union runs over all ξ0 ∈ S (eu,Fix0
h(f)) ∩ Fix(S (f)). Moreover, the unstable

set Wu(ξ0;S (f)) coincides with {ξ1 ∗ · · · ∗ ξk | ξi ∈ Wu((pi)u;S (f))} for any ξ0 =
(p1, . . . , pn)u with p1, . . . , pn ∈ Σ(f).

Proof. Put W (ξ0) = {(z1, . . . , zk)u | zi ∈ Wu(pi; f)} for ξ0 = (p1, . . . , pn)u

with p1, . . . , pn ∈ Σ(f). Lemma 4.8 implies that S (f)−n((z1, . . . , zk)u) = (f−n(z1), . . . ,
f−n(zk))u converges to ξ0 as n → ∞ if zi ∈ Wu(pi; f) for any i. Therefore, we have
W (ξ0) ⊂ Wu(ξ0;S (f)).

We claim that S (eu,Fix0
h(f)) =

⋃
W (ξ0), where the union runs over all ξ0 ∈

S (eu,Fix0
h(f))∩Fix(S (f)). Recall that Per0h(f) is a finite set. Take ξ ∈ S (eu,Fix0

h(f))
and let ξ = ξ1 ∗ · · · ∗ ξk be the irreducible decomposition with respect to Per0h(f). Choose
zi ∈ Int ξi for i = 1, 2, . . . , k. Lemma 4.3 implies ξi = (zi)u. Put r−,i = ∂−Fu(zi) = ξi(0)
and r+,i = ∂+Fu(zi) = ξi(1). By Corollary 4.6, there exist pi ∈ Per1h(f) ∪ Per2h(f) such
that ∂±Fu(pi) = r±,i and zi ∈ Wu(pi). Since r−,1 = ξ(0) ∈ Fix0

h(f), Lemma 3.11
implies all pi and r+,i are fixed points of f . Hence, ξ = (z1)u ∗ · · · ∗ (zk)u is contained in
W ((p1, . . . , pk)u) with p1, . . . , pk ∈ Σ(f).

Since the unstable sets are mutually disjoint, the above claim implies that
Wu(ξ0;S (f)) = W (ξ0) for any ξ0 ∈ S (eu,Fix0

h(f)) ∩ Fix(S (f)). It also implies the
latter assertion of the lemma. ¤

4.3. The CW structure of S (eu,Fix0
h(f)).

In this subsection, we show that the decomposition in Proposition 4.9 gives a struc-
ture of a CW complex to S (eu,Fix0

h(f)).
We need the following easy lemma, whose proof we omit.

Lemma 4.10. Let X be a metric space and h a continuous map from a cube [−1, 1]n

to X. Suppose that the restriction of h on ] − 1, 1[n is injective and h(∂[−1, 1]n) ∩
h(] − 1, 1[n) = ∅. Then, the restriction of h on ] − 1, 1[n is a homeomorphism onto its
image. ¤

The following lemma shows that the totally ordered sets (Du
+p,≺p

+) and (Du
−p,≺p

−)
determine the boundary of Wu((p)u;S (f)).
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Lemma 4.11. For any repelling fixed point p of f , Ds
+p consists of odd number of

elements. Let Ds
+p = {q1 ≺p

+ · · · ≺p
+ q2k+1}. Then, the followings hold :

1. qi is of saddle-type if i is odd, and is attracting if i is even.
2. qi+1 ∈ Du

+qi for each i.
3. If Du

+p = {r+} and Du
−p = {r−}, then Du

−q1 = {r−}, Du
+q2k+1 = {r+}, and (z)u

converges to [r−, q1, . . . , q2k+1, r+]u as z ∈ Int [p, q1]s tends to q1.

Proof. Fix a 1/8-canonical coordinate ϕ satisfying ϕ(0, 0) = p, Im ϕ ⊂ Wu(p),
and ϕ([−1, 1]×{y}) ⊂ Fu(ϕ(0, y)) for any y ∈ [−1, 1]. For x ∈ [−1/2, 1/2], let Ix denote
the connected component of F s(ϕ(x, 1/2)) ∩ ϕ(] − 1, 1[×]0, 1[) that contains ϕ(x, 1/2).
Applying the same argument as in Proposition 4.5 to F s, we obtain k ≥ 0, a sequence
{qi}2k+1

i=1 of fixed points of f , and an increasing sequence {xi}2k+1
i=1 in [−1/8, 1/8] such

that

1. qi is of saddle-type if i is odd, and is attracting if i is even,
2. Ixi ⊂ W ss

− (qi) for any i,
3. {x ∈ [−1/2, 1/2] | ∂−Ix = p} = [x1, x2k+1],
4. {x ∈ [−1/2, 1/2] | ∂−Ix ∈ ϕ(]− 1, 0[×{0})} = [−1/2, x1[,
5. {x ∈ [−1/2, 1/2] | ∂−Ix ∈ ϕ(]0, 1[×{0})} =]x2k+1, 1/2],
6. if k ≥ 1, Ix ⊂ W s(q2j) for any j = 1, . . . , k and x ∈]x2j−1, x2j+1[.

In particular, Ds
+p = {q1 ≺p

+ · · · ≺p
+ q2k+1}.

First, we show that Du
+q2j−1 = {q2j} for any j. Take an interval J ⊂ Wuu

+ (q2j−1)
so that ∂−J = q2j−1 and F s(z) ∩ ϕ(]x2j−1, x2j [×{1/2}) 6= ∅ for any z ∈ J . Since
ϕ(]x2j−1, x2j [×{1/2}) ⊂ W s(q2j), we have J ⊂ W s(q2j) by the assertion 2 of Lemma 4.2
for F s. It implies Wuu

+ (q2j−1) ⊂ W s(q2j), and hence, Du
+q2j−1 = {q2j} by Lemma 3.6.

The same argument shows Du
−q2j+1 = {q2j} for any j.

Suppose that Du
+p = {r+} and Du

−p = {r−}. Then, the set ϕ(]−1, 0[×{0}) ⊂ Fu
−(p)

is contained in W s(r−). Since F s(ϕ(x, 1/2))∩ϕ(]−1, 0[×{0}) 6=∅ for any x ∈ [−1/2, x1[,
we have ϕ([−1/2, x1[×{1/2}) ⊂ W s(r−). The same argument as above implies that
Du
−q1 = {r−}. Similarly, we obtain Du

+q2k+1 = {r+}.
Finally, we show the convergence of (z)u. For any z ∈ Int [p, q1]s = W ss

− (q1)
and any compact subinterval Iz of Fu(z), there exist n ≥ 1 and y ∈]0, 1/2[ such that
f−n(Iz) ⊂ ϕ([−1/2, 1/2] × {y}). Hence, there exists a decomposition (z)u = ξz,0 ∗
· · · ∗ ξz,2k+1 such that ξz,i−1(1) = ξz,i(0) ∈ W ss

− (qi) for any i. Lemma 3.2 implies
that ξz,i(0) is the unique intersection point of Fu(z) and F s

−(qi). By Lemma 3.3, we
have Im [r−, p, r+]u ∩F s

+(qi) = ∅, and hence, ϕ([−1/2, 1/2] × {y}) ∩F s
+(qi) = ∅ for

any y ∈]0, 1/2[. The same argument as above implies Fu(z) ∩ F s
+(qi) = ∅ for any

z ∈ Int [p, q1]s. Therefore, ξz,i(0) is the unique intersection point of Fu(z) and F s(qi)
for z ∈ Int [p, q1]s. It is easy to see that it depends continuously on z ∈ Int [p, q1]s.

For any t ∈]0, 1[, there exists n ≥ 0 such that F s(f−n(ξz,0(t))) ∩ Int [r−, p]u 6= ∅.
Applying Lemma 3.3 to Im [r−, p]u and F s(r−) = W ss(r−), we obtain F s(ϕ(x, 0)) 6=
F s(r−) for any x ∈] − 1, 0[. It implies that Int ξz,0 ∩F s(r−) = ∅. Similarly, we have
Int ξz,2k+1 ∩F s(r+) =∅.

Put q0 = r− and q2k+2 = r+. Fix a compact interval Is
j ⊂ F s(q2j) for every

j = 0, . . . , k+1. We have shown Int ξz,2j∩F s(q2j) =∅ and Int ξz,2j+1∩F s(q2j+2) =∅
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for any z ∈ Int [p, q1]s and j = 0, . . . , k. By Lemma 4.7, there exists a continuous function
ξ̂j from a neighborhood Uj of q2j+1 to S (eu) such that ξ̂j(z)(0) ∈ Is

j , ξ̂j(z)(1) ∈ Uj ,
and Int ξ̂j(z) ∩ Is

j = ∅ for any z ∈ Uj . It is clear that ξ̂j(q2j+1) = [q2j , q2j+1]u and
ξz,2j = ξ̂j(ξz,2j(1)) if ξz,2j(1) ∈ Uj . Therefore, ξz,2j converges to [q2j , q2j+1]u as z ∈
Int [p, q1]s tends to q1. Similarly, we obtain that ξz,2j+1 converges to [q2j+1, q2j+2]u as
z ∈ Int [p, q1]s tends to q1. ¤

For p ∈ Σ2(f) with Du
±p = {r±}, Ds

+p = {q1 ≺p
+ · · · ≺p

+ q2k+1}, and Ds
−p = {q′1 ≺p

−
· · · ≺p

− q′2l+1}, we define two elements d+p and d−p of S (eu) by

d+p =
[
r−, q1, . . . , q2k+1, r+

]u

d−p =
[
r−, q′1, . . . , q

′
2l+1, r+

]u
.

Proposition 4.12. For p ∈ Σ2(f), there exists a continuous map µp from [−1, 1]
to S (eu) such that µp(0) = (p)u, µp(1) = d+p, µp(−1) = d−p, and µp|]−1,1[ is a homeo-
morphism onto Wu((p)u;S (f)).

Proof. Put I = Im [q′1, p, q1]s. Lemmas 4.8 and 4.11 imply that the map z ∈
Int I 7→ (z)u is continuous and converges to d+p and d−p as z tends to q1 and q′1
respectively.

By Lemma 4.10, we have only to show that Fu(z) and I have a unique intersection
point for any z ∈ Wu(p). We have Fu(z) ∩ I 6= ∅ since f−n(z) tends to p as n → ∞
and I is an invariant curve transverse to Fu(p). Applying Lemma 3.2 to I and Fu(z),
we obtain that the intersection point is unique. ¤

For p ∈ Σ(f), we define a subset Ip of [−1, 1] by

Ip =

{{0} if p ∈ Σ1(f)

]− 1, 1[ if p ∈ Σ2(f).

We call a continuous map µp from Ip to S (eu) a characteristic map of p if µp(0) = (p)u,
the restriction of µp to Ip is a homeomorphism onto Wu((p)u;S (f)), and µp(±1) =
d±p when p ∈ Σ2(f). Proposition 4.12 implies any p ∈ Σ2(f) has a characteristic
map. Proposition 4.9 also implies that a characteristic map µq of q ∈ Σ1(f) is given by
µq(0) = (q)u.

For ξ = (p1, . . . , pn)u with p1, . . . , pn ∈ Σ(f), we put Iξ =
∏n

i=1 Ipi
⊂ [−1, 1]n and

define a map λξ from Iξ to S (eu) by λξ(s1, . . . , sn) = µp1(s1) ∗ · · · ∗ µpn(sn). We define
the index by #{i | pi ∈ Fix2

h(f)} and denote it by ind ξ.

Proposition 4.13. The decomposition

S
(
eu,Fix0

h(f)
)

=
⋃

Wu(ξ;S (f)) (1)

gives a structure of locally finite CW complex to S (eu,Fix0
h(f)) with dimWu(ξ;S (f)) =
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ind ξ, where the union runs over all ξ in S (eu,Fix0
h(f)) ∩ Fix(S (f)).

Proof. The uniqueness of irreducible decomposition with respect to Fix0
h(f) im-

plies that the restriction of λξ on Iξ is a homeomorphism onto Wu(ξ;S (f)). In partic-
ular, Wu(ξ;S (f)) is homeomorphic to an open disk of dimension ind ξ.

It is easy to see that ∂Wu(ξ;S (f)) is contained in a union of finitely many
Wu(ξ′;S (f)) with ind ξ′ < ind ξ. Hence, Proposition 4.9 implies that the decomposition
(1) gives a structure of cellular complex to S (eu,Fix0

h(f)).
Fix ξ0 ∈ S (eu,Fix0

h(f)). Since Σ(f) is a finite set, there exists K > 0 such that
|(p)u| ≤ K|µp(t)| for any p ∈ Σ(f) and t ∈ Ip. It implies that |ξ1| ≤ K|ξ| for any
ξ1 ∈ S (eu,Fix0

h(f)) ∩ Fix(S (f)) and ξ ∈ Wu(ξ1;S (f)). Let A be the set consisting of
curves ξ1 ∈ S (eu,Fix0

h(f)) ∩ Fix(S (f)) with |ξ1| ≤ K(|ξ0| + 1). Corollary 3.8 implies
that A is a finite set. Hence, the set

⋃
ξ1∈A Wu(ξ1;S (f)) is a finite complex which

contains a neighborhood {ξ ∈ S (eu,Fix0
h(f)) | |ξ| < |ξ0| + 1} of ξ0. Therefore, the

decomposition (1) gives a structure of locally finite CW complex to S (eu,Fix0
h(f)). ¤

4.4. Proof of Theorem B.
Fix a prime homology class a ∈ H1(T 2,Z). By replacing f with its iteration fn,

we may assume that Per0h(f) = Fix0
h(f). It is easy to see that πc(Wu(γ0;S (f))) ⊂

Wu(πc(γ0);C (f)) for any γ0 ∈ C̃a(eu,Fix0
h(f)) ∩ Fix(S (f)). Hence, Proposition 4.9

implies that

Ca

(
eu,Fix0

h(f)
)

=
⋃

Wu(c;C (f)), (2)

where the union runs over all c ∈ Ca(eu,Fix0
h(f)) ∩ Fix(C (f)). Since the unstable sets

are mutually disjoint, it implies that Wu(πc(γ0);C (f)) = πc(Wu(γ0;S (f))) for any
γ0 ∈ C̃a(eu,Fix0

h(f)) ∩ Fix(S (f)).

Lemma 4.14. For γ0 ∈ C̃a(eu,Fix0
h(f)) ∩ Fix(S (f)), the restriction πc to

Wu(γ0;S (f)) is a homeomorphism onto Wu(πc(γ0);C (f)).

Proof. By Lemma 4.10, it is sufficient to show that the restriction of πc to
Wu(γ0;S (f)) is injective. Suppose that πc(γ) = πc(γ′) for some γ, γ′ ∈ Wu(γ0;S (f)).
Then, there exist ξ1, ξ2 ∈ S (eu,Fix0

h(f)) ∩ Fix(S (f)), s1 ∈ Iξ1 , and s2 ∈ Iξ2 such
that |ξi| 6= 0 for i = 1, 2, γ = λξ1(s1) ∗ λξ2(s2), and γ′ = λξ2(s2) ∗ λξ1(s1). Since
γ, γ′ ∈ Wu(γ0;S (f)), we have ξ1 ∗ ξ2 = ξ2 ∗ ξ1 = γ0. Put ξ1 = (p1, . . . , pm)u and
ξ2 = (pm+1, . . . , pn)u with p1, . . . , pn ∈ Fix(f). Let k be the greatest common divisor of
m and n. Then, we can see that pik+j = pj for any i = 0, . . . , (n/k)− 1 and j = 1, . . . , k.
In particular, we have γ0 = (p1, . . . , pk)u ∗ · · · ∗ (p1, . . . , pk)u. It contradicts that γ and
γ0 represent the prime homology class a. ¤

By Proposition 4.13, the decomposition (1) gives a structure of locally finite CW
complex to S (eu,Fix0

h(f)). It is easy to see that C̃a(eu,Fix0
h(f)) is its subcomplex. Since

the restriction of πc on C̃ (eu,Fix0
h(f)) is finite to one, Lemma 4.10 implies that πc induces

the corresponding structure of CW complex to πc(C̃a(eu,Fix0
h(f))) = Ca(eu,Fix0

h(f)),
which is given by the decomposition (2). It is trivial that dimWu(πc(γ);C (f)) =
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ind γ0 = ind πc(γ0).
It is clear that ind c is zero for any c ∈ Ca,∗(eu). Since Ω0

∗(f) consists of finitely
many embedded circles, Proposition 4.4 implies Theorem B.

5. Reduction to a simple PA homotopy.

We begin the study of PA homotopy. The main aim of this subsection is the re-
duction of the proof of Theorem A to the case of a simple PA homotopy, which exhibits
an essential bifurcation only once and it is a saddle-node bifurcation of a non-hyperbolic
periodic orbit. In Subsection 5.1, we observe the local persistence of combinatorics of
connecting segments. In Subsection 5.2, we show that any PA homotopy can be approx-
imated by a regular PA homotopy and see some basic properties of saddle-node bifurca-
tions. In Subsection 5.3, we give the compactness of families of invariant one-dimensional
submanifolds. It is a keystone to show the discreteness of essential bifurcations and the
continuity of connecting segments under a PA homotopy. As an application, we show the
existence of global continuations of connecting segments for a regular PA homotopy of
special type. In Subsection 5.4, we give a definition of a simple PA homotopy and show
that any regular PA homotopy is equivalent to a concatenation of simple PA homotopy
locally.

When we fix a PA homotopy {fλ}, let the symbols D
u(s)
±,λ p, ≺p

±,λ, [p1, . . . , pk]u(s)
λ ,

and (q1, . . . , qk)u(s)
λ denote D

u(s)
± p, ≺p

±, [p1, . . . , pk]u(s), and (q1, . . . , qk)u(s) for fλ.

5.1. Local persistence of combinatorics.
Take a C1 framed PA homotopy {(fλ, eu

λ, es
λ)}λ∈I0 . For a subinterval I of I0, λ0 ∈ I,

and p ∈ Per(fλ0), we call a continuous map p̂ : I → T 2 a continuation of p on I if
p̂(λ0) = p and p̂(λ) ∈ Per(fλ) for any λ ∈ I.

The following lemma summarizes the facts on the local persistence of the combina-
torics of connecting segments.

Lemma 5.1. Let p, q1, and q2 be hyperbolic periodic points of fλ0 for λ0 ∈ I0.
Then, there exists a neighborhood I of λ0 such that

1. p, q1, and q2 admit unique continuations p̂, q̂1, and q̂2 on I,
2. if qi ∈ Dσ

τ,λ0
p for i = 1, 2, σ = u, s, and τ = ±, then q̂i(λ) ∈ Dσ

τ,λp̂(λ) for any
λ ∈ I, and

3. if q1 ≺p
τ,λ0

q2, then q̂1(λ) ≺p̂(λ)
τ,λ q̂2(λ) for any λ ∈ I.

Proof. Without loss of generality, we can assume that σ = u, τ = +, and p is
attracting. The first is a consequence of the implicit function theorem. The second is a
consequence of the continuity of Wuu

δ (q̂i(λ)), the lower semi-continuity of W s(p̂(λ)) with
respect to λ, and Lemma 3.6. The last follows from Proposition 3.9 since the condition
given there is persistent under perturbation. ¤

5.2. Saddle-node bifurcations and regular PA homotopy.
For a PA homotopy {fλ}λ∈[−1,1], λ∗ ∈]−1, 1[, and p∗ ∈ Fix(fn

λ∗) with some n ≥ 1, we
say that p∗ exhibits a generating saddle-node bifurcation when there exist a neighborhood
[λ−, λ+] of λ∗, a neighborhood U of p∗, and continuations p̂s and p̂n of p∗ on [λ∗, λ+]
such that
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1. Fix(fn
λ∗) ∩ U = {p∗},

2. Fix(fn
λ ) ∩ U =∅ for any λ ∈ [λ−, λ∗[,

3. Fix(fn
λ )∩U = {p̂s(λ), p̂n(λ)}, p̂s(λ) ∈ Fix1

h(fn
λ ), and p̂n(λ) ∈ Fix0

h(fn
λ )∪Fix2

h(fn
λ )

for any λ ∈]λ∗, λ+].

We call the pair (p̂s, p̂n) a saddle-node continuation of p∗ and the set U × [λ−, λ+] an
isolating region of p∗. Remark that p∗ has a unique saddle-node continuation on [λ∗, λ+].
We say a periodic point exhibits an annihilating saddle-node bifurcation when it exhibits
a generating saddle-node bifurcation for the PA homotopy {f−λ}λ∈[−1,1].

For a PA diffeomorphism f , let Fix∗(f) and Per∗(f) denote the set of non-hyperbolic
fixed points and the set of non-hyperbolic periodic points, respectively. A PA homotopy
{fλ} is called regular if fλ is of class C2, Per∗(fλ) consists of at most one periodic orbit,
and it exhibits a saddle-node bifurcation for any λ. For a regular PA homotopy {fλ}λ∈I ,
let N D({fλ}) be the set of λ such that fλ is non-degenerate. The set {λ | Fix∗(fn

λ ) 6=∅}
is discrete and Fix(fn

λ ) is a finite set for any λ once we fix n ≥ 1. In particular, N D({fλ})
is a dense subset of I.

Lemma 5.2. Any PA homotopy between two C2 non-degenerate orientable PA
diffeomorphisms of T 2 is approximated by a regular PA homotopy between them in the
space of continuous family of C1-diffeomorphisms.

Proof. Since the set of PA diffeomorphisms is an open subset of Diff1(T 2), we
may take a PA homotopy {fλ}λ∈[0,1] between given two diffeomorphisms so that the map
(z, λ) 7→ fλ(z) is of class C2. By the standard bifurcation theory, we can approximate
{fλ} by {gλ} so that f0 = g0, f1 = g1, the set Per∗(gλ) consists of at most one periodic
orbit, and it exhibits a generic bifurcation, namely, one of a period doubling bifurcation,
a saddle-node bifurcation or a Hopf bifurcation for any λ ∈]− 1, 1[ (see e.g. Section 3.2
of [5]). Since gλ is an orientable PA diffeomorphism, no periodic point exhibits a period
doubling or a Hopf bifurcation. ¤

In the rest of the subsection, we show some basic properties of saddle-node bifurca-
tions. Fix a regular framed PA homotopy {(fλ, eu

λ, es
λ)}λ∈[−1,1] and suppose that a fixed

point p∗ of f0 exhibits a generating saddle-node bifurcation. Let (p̂s, p̂n) be a saddle-node
continuation and U∗ × [λ∗, λ∗] an isolating region of p∗.

For σ ∈ {u, s} and τ = ±, we say p∗ is of type (σ, τ) when ‖Df(eσ
0 (p∗))‖ = 1 and

there exists a compact embedded interval I with ∂τI = p∗, eσ
0 (p∗) ∈ Tp∗I, Fix(f0) ∩ I =

{p∗}, and f0(I) ⊂ I. Remark that p̂n(λ) is attracting if σ = u and is repelling if σ = s.

Figure 4. Types of non-hyperbolic periodic points.
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Lemma 5.3. A non-hyperbolic periodic point p∗ admits a unique type. p∗ is of type
(σ,+) (resp. (σ,−)) if and only if ‖Df0(eσ

0 (p∗))‖ = 1 and there exists a compact embedded
interval I satisfying ∂−I = p∗ (resp. ∂+I = p∗), eσ

0 (p∗) ∈ Tp∗I, Fix(f0) ∩ I = {p∗}, and
f−1
0 (I) ⊂ I.

Proof. Let I(p, f) denote the Lefschetz fixed point index of an isolated fixed
point p of a map f . It is easy to see that I(p∗, f0) = 0.

We assume ‖Df0(eu
0 (p∗))‖ = 1 since the proof for the other case is similar. We

call a compact embedded interval I a local center-unstable manifold of p∗ if p∗ ∈ Int I,
eu
0 (p∗) ∈ Tp∗I, I ∩ Fix(f0) = {p∗}, and each connected component J of I \ {p∗} satisfies

f0(J) ⊂ J or f−1
0 (J) ⊂ J . We claim that for such an interval I, one of the connected

component J of I \ {p∗} satisfies f0(J) ⊂ J and the other J ′ satisfies f−1
0 (J ′) ⊂ J ′. In

fact, fix a 1/8-canonical coordinate ϕ so that ϕ(0, 0) = p∗, Dϕ−1(es(p∗)) is parallel to
the y-axis, and ϕ([−1, 1] × {0}) ⊂ I. Since ‖Df0(es

0(p∗))‖ < 1, there exists ε > 0 such
that f ◦ ϕ([−ε, ε] × [−y, y]) ⊂ ϕ(] − 1, 1[×] − y, y[) for any y ∈]0, ε[. Therefore, we have
I(p∗, f0|I) = I(p∗, f0) = 0. It is easy to see that it implies the claim.

Since p∗ is an isolated fixed point of f0, the center manifold theorem (see e.g. [8])
implies that p∗ admits a local center-unstable manifold. Hence, p∗ admits a unique type
by the claim. The latter assertion of the lemma is also a consequence of the existence of
a local center-unstable manifold and the above claim. ¤

Lemma 5.4. Suppose that p, q ∈ Perh(f0) and ξ ∈ S (eu
0 ) ∩ Per(S (f0)) satisfy

ξ(0) = p, ξ(1) = q, and Int ξ ∩ Perh(f0) =∅. Then, either one of the followings holds:

1. ξ = [p, q]u0 ,
2. ξ = [p, p∗, q]u0 for some p∗ ∈ Per∗(f0) of type (u,±), or
3. ξ = [p, p∗, q]u0 for some p∗ ∈ Per∗(f0) of type (s,±).

In the former two cases, one of p and q is attracting and the other is not. In the last
case, both p and q are attracting.

Proof. If Int ξ ∩ Per∗(f0) =∅, then the lemma is trivial.
Suppose that Im ξ contains a non-hyperbolic periodic point p∗. Since {fλ} is

regular, we have Per∗(f0) = O(p∗; f0). Hence, there exist n1, . . . , nk ≥ 0 such that
ξ = [p, fn1

0 (p∗), . . . , fnk
0 (p∗), q]u0 . If p∗ is of type (s,±), then k = 1 and p, q ∈ Per0h(f0). If

p∗ is of type (u, +), then q is an attracting periodic point and Du
+,0f

nk
0 (p∗) = {q} since

[fnk
0 (p∗), q]u0 is ascending. It implies Du

+,0f
n1
0 (p∗) = {fn1−nk

0 (q)} ⊂ Perh(f0), and hence,
k = 1. The proof for the case where p∗ is of type (u,−) is similar. ¤

Lemma 5.5. If p∗ is of type (u, +), then Du
+,λp̂n(λ) = {p̂s(λ)} for any λ sufficiently

close to zero.

Proof. Take δ0 > 0 so that any immersed curve L tangent to eu
λ with |L| ≤ δ0 is

an embedded interval. Let δ be a number less than both δ0 and the distance between p∗
and T 2 \ U∗.

First, we claim that |Wuu
− (p̂s(λ); fλ)| < δ for any sufficiently small λ > 0. Once

it is shown, we have ∂−Wuu(p̂s(λ)) = p̂n(λ), and hence, p̂s(λ) ∈ Du
+,λp̂n(λ) since U∗ ∩

Fix0
h(fλ) = {p̂n(λ)}. Assume that the claim does not hold. Then, we can take a sequence
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{λi > 0}∞i=1 converging to 0 and a sequence {Ii}∞i=1 of embedded compact intervals
satisfying |Ii| = δ, ∂+Ii = p̂s(λi), and Int Ii ⊂ Wuu

− (p̂s(λi); fλ) for any i. Notice that Ii

is tangent to eu
λi

and f−1(Ii) ⊂ Ii. By Lemma 2.1, we may assume that Ii converges to
an embedded interval I∗ tangent to eu

0 . Since |I∗| = δ and ∂+I∗ = p∗, we have I∗ ⊂ U∗,
and hence, I∗ ∩ Fix(f0) = {p∗}. Since f−1(I∗) ⊂ I∗, Lemma 5.3 implies that p∗ must be
of type (u,−). It contradicts that p∗ is of type (u, +).

Next, we show that p̂s(λ) is the unique element of Du
+,λp̂n(λ) for any sufficiently

small λ > 0. Suppose that it does not hold. Take a sequence {λ′i > 0}∞i=1 which
converges to 0 and a sequence {qi ∈ Du

+,λ′i
p̂n(λ′i)}∞i=1 with qi 6= p̂s(λ′i). Then, there exist

δ′ ∈]0, δ[ and a sequence {I ′i} of embedded intervals with |I ′i| = δ′, ∂−I ′i = p̂n(λ′i), and
I ′i ⊂ Wuu

− (qi; fλ′i). Notice that I ′i is tangent to eu
λ′i

and f(I ′i) ⊂ I ′i. By Lemma 2.1, we
may assume that I ′i converges to an embedded interval I ′∗ tangent to eu

0 . Since |I ′∗| = δ′

and ∂−I ′∗ = p∗, we have I ′∗ ⊂ U∗, and hence, I ′∗ ∩Fix(f0) = {p∗}. Since f(I ′∗) ⊂ I ′∗, p∗ is
of type (u,−). It contradicts that p∗ is of type (u, +). ¤

Finally, we consider bifurcations of connecting segments between p∗ and hyperbolic
fixed points. Suppose that Du

−,0p∗ and Du
+,0p∗ contain hyperbolic fixed points p and q

respectively. We assume p, q ∈ Fix(fλ) for any λ ∈ [−1, 1], that is, p and q have constant
continuations on [−1, 1]. This assumption holds for a simple PA homotopy, which we
define and investigate later.

Lemma 5.6. If p∗ is of type (s,±), then Du
−,λp̂s(λ) = Du

−,λp̂n(λ) = {p} and
Du

+,λp̂s(λ) = Du
+,λp̂n(λ) = {q} for any λ > 0 sufficiently close to zero.

Remark that both p and q are attracting since [p, q∗]u0 is descending and [p∗, q]u0 is
ascending.

Proof. It is a consequence of the continuity of Wuu(p̂s(λ)) and Wuu(p̂n(λ)), the
persistence of attracting fixed points, and Lemma 3.6. ¤

Lemma 5.7. If p∗ is of type (u, +), then the followings hold :

1. Du
+,λp = {q} for any λ < 0 sufficiently close to zero.

2. Du
+,λp = {p̂n(λ)} and Du

+,λp̂s(λ) = {q} for any λ > 0 sufficiently close to zero.

Remark that p is of saddle-type or repelling and q is attracting since both [p, p∗]u0
and [p∗, q]u0 are ascending.

Proof. Take a0 < 0 < a1 and a coordinate ψ : [a0 − 1, a1 + 1]× [−1, 1] → T 2 so
that

1. ψ(a0, 0) = p, ψ(0, 0) = p∗, ψ(a1, 0) = q, Im ψ ∩ Fix(f0) = {p, q, p∗},
2. Im [p, p∗, q]u0 = ψ([a0, a1]× {0}), and
3. the map ϕa : (x, y) 7→ ψ(x + a, y) is a 1/8-canonical coordinate associated to

(eu
0 , es

0) for any a ∈ [a0, a1],

Since [p, p∗]u0 is ascending, q is attracting, and ‖Dfn(es
0(z))‖ tends to zero as n → ∞

for any z ∈ Im [p∗, q]u0 , there exists a neighborhood B of ϕ([0, a1] × {0}) such that
f0(B) ⊂ Int B and B ⊂ Im ψ \ {p}.
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Figure 5. Proof of Lemma 5.7.

Let Wuu
δ,+(p; fλ) be the positive half component of Wuu

δ (p; fλ) for δ > 0. For m ≥ 1,
let I(m,λ) be the closure of fm+1

λ (Wuu
δ,+(p; fλ))\fm

λ (Wuu
δ,+(p; fλ)). Since ∂+Wuu(p; f0) =

p∗, there exists m0 ≥ 0 such that I(m0, 0) ⊂ Int B. Take λ1 > 0 so that the followings
hold for any λ ∈ [−λ1, λ1]:

1. Fix(fλ)∩ Im ψ = {p, q} if λ < 0, and Fix(fλ)∩ Im ψ = {p, q, p̂s(λ), p̂n(λ)} if λ > 0.
2. ϕa is a 1/8-canonical coordinate associated to (eu

λ, es
λ) for any a ∈ [a0, a1].

3. fλ(B) ⊂ Int B.
4. I(m0, λ) ⊂ Int B, and

⋃
m≤m0

I(m,λ) ⊂ Im ψ.

Remark that if a curve J ⊂ B is tangent to eu
λ for λ ∈ [−λ1, λ1], then J is an embedded

interval with finite length. In particular, it satisfies ∂±J ∈ B.
Suppose λ ∈] − λ1, 0[. Since

⋃
n≥m0

I(n, λ) is a curve which is contained in B

and is tangent to eu
λ, we have ∂+Wuu(p; fλ) ∈ B. It implies that Du

+,λp = {q} since
Fix(fλ) ∩B = {q}.

Next, suppose λ ∈]0, λ1[. Since Wuu(p̂s(λ)) is contained in Int B and is tangent
to eu

λ, Wuu(p̂s(λ)) is an embedded interval with ∂Wuu(p̂s(λ)) = {p̂n(λ), q}. By Lemma
5.5, we have ∂−Wuu(p̂s(λ)) = p̂n(λ), and hence, ∂+Wuu(p̂s(λ)) = q. It implies that
Du

+,λp̂s(λ) = {q}. Since
⋃

n≥m0
I(n, λ) ⊂ Int B, we also have ∂+Wuu(p; fλ) ∈ {p̂n(λ), q}.

If ∂+Wuu(p; fλ) = q, then Wuu
+ (p; fλ) must intersect with W ss(p̂n(λ)), which separates

p and q in Im ψ. It contradicts Lemma 3.2 for Im [p, q]uλ and W ss(p̂n(λ)). Therefore, we
obtain ∂+Wuu(p; fλ) = p̂n(λ), and hence, Du

+,λp = {p̂n(λ)}. ¤

5.3. The compactness of families of invariant embedded curves.
The following Lemma is a keystone to show the finiteness and the compactness of

the family of compact invariant one-dimensional submanifolds.

Lemma 5.8. Let (f, eu, es) be a C2 non-degenerate framed PA diffeomorphism of
T 2, and L be an element of E (t<∞[0, 1], eu) or E (t<∞S1, eu) with f(L) = L. If ϕ is a
1/80-canonical coordinate associated to (eu, es) such that L ∩ ϕ([−1/3, 1/3]2) 6= ∅ and
∂L ∩ Im ϕ =∅, then L ∩ ϕ([−1/2, 1/2]2) is connected.

Proof. Replacing f with its iteration fn if it is necessary, we assume that any
attracting or repelling periodic point of f is a fixed point. Put ε = 1/80. We say a triple
(σ∗, L∗, ϕ∗) of σ∗ ∈ {u, s}, L∗ ∈ E (t<∞S1, eσ∗) ∪ E (t<∞[0, 1], eσ∗), and an ε-canonical
coordinate ϕ associated to (eu, es), is bad when f(L∗) = L∗, L∗ ∩ ϕ∗([−1/3, 1/3]2) 6=
∅, ∂L∗ ∩ Im ϕ∗ = ∅, and L∗ ∩ ϕ∗([−1/2, 1/2]2) is not connected. We show that if
(σ0, L0, ϕ0) is a bad triple then there exists another bad triple (σ1, L1, ϕ1) such that
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Figure 6. Proof of Lemma 5.8.

Im ϕ1 ⊂ Im ϕ0 and (Im ϕ0 \ Im ϕ1) ∩ Fix(f) 6= ∅. Notice that it completes the proof
of the lemma. In fact, if the lemma does not hold, then the above claim implies that
there exists a sequence {(σn, Ln, ϕn)}n≥0 of bad triples such that Im ϕn+1 ⊂ Im ϕn and
(Im ϕn \ Im ϕn+1) ∩ Fix(f) 6=∅. However, it contradicts the finiteness of Fix(f).

Fix a bad triple (σ0, L0, ϕ0). Without loss of generality, we can assume σ0 = u. First,
we claim that there exist two distinct connected components I1 and I2 of L0 ∩ Im ϕ0

which intersects with ϕ0([−1/2, 1/2]2). Suppose it does not hold. Then, there exists
a connected component I0 of L0 ∩ Im ϕ0 such that I0 ∩ ϕ0([−1/3, 1/3]2) 6= ∅ and
I0∩ϕ0([−1/2, 1/2]2) = L0∩ϕ0([−1/2, 1/2]2). We can take a C1-function h0 on [−1, 1] so
that I0 = ϕ0({(x, h0(x)) | x ∈ [−1, 1]}). Since |h′0(x)| ≤ ε, we have |h0(x)| ≤ 1/3 + 2ε <

1/2. In particular, I0∩ϕ0([−1/2, 1/2]2) is connected. However, it contradicts the badness
of (σ0, L0, ϕ0).

Let I1 and I2 be two distinct connected components of L0 ∩ Im ϕ0 which in-
tersects with ϕ0([−1/2, 1/2]2). Take C1-functions h1 and h2 on [−1, 1] so that Ii =
ϕ0({(x, hi(x)) | x ∈ [−1, 1]}) for i = 1, 2. Without loss of generality, we may assume that
h1(x) < h2(x) for any x ∈ [−1, 1]. Since |h′i(x)| ≤ ε, we have |hi(x)| ≤ 1/2 + 2ε. Put
a = (2/3)(h2(0)− h1(0)) and b = (1/2)(h2(0) + h1(0)). Since

|a|+ |b| ≤ max
i,j=1,2

∣∣∣∣
7
6
hi(0)− 1

6
hj(0)

∣∣∣∣ <
4
3

(
1
2

+ 2ε

)
< 1,

we can define an ε-canonical coordinate ψ, and functions g1 and g2 on [−1, 1] by ψ(x, y) =
ϕ0(ax, ay + b) and gi(x) = a−1(hi(ax)− b). It is easy to see that g1(0) = −3/4, g2(0) =
3/4, |gi(x)− gi(0)| ≤ ε|x| for x ∈ [−1, 1], and Ii ∩ Im ψ = ψ({(x, gi(x)) | x ∈ [−1, 1]}) for
each i = 1, 2. In particular, we have (I1 ∪ I2) ∩ ψ([−1/2, 1/2]2) =∅.

Put B(x0, δ) = ψ({(x, y) | |x− x0| ≤ δ, g1(x) ≤ y ≤ g2(x)}) for any x0 ∈ [−1/2, 1/2]
and δ ∈]0, 1[. We claim that for any x0 ∈ [−1/4, 1/4], there exists J(x0) ∈ E ([0, 1], es)
such that J(x0) ⊂ B(x0, 4ε), f(J(x0)) = J(x0), ∂−J(x0) ∈ I1 and ∂+J(x0) ∈ I2. Once
it is shown, we can take a bad triple (σ1, ϕ1, L1) by σ1 = s, ϕ1(x, y) = ψ(x/2, y/2), and
L1 = J(1/12)∪ J(−1/12). Since (Im ϕ0 \ Im ϕ1)∩Fix(f) contains ∂L1, the triple is the
required one.

Fix x0 ∈ [−1/4, 1/4]. The proof of the claim is divided into three steps. First, we
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show Int B(x0, 2ε) ∩ Fix2
h(f) 6= ∅. Suppose it does not hold. Then, Ω2(f) ∩ B(x0, 2ε)

is empty or a union of finitely many circles tangent to es. Hence, we can take x1 ∈
]x0 − ε, x0 + ε[ so that ψ(x1, 0) 6∈ Ω2(f). Since ∂±F s(ψ(x1, 0)) is not contained in
Int B(x0, 2ε) by Lemma 4.3, there exists J∗ ∈ E ([0, 1], es) such that J∗ ⊂ F s(ψ(x1, 0)),
∂−J∗ ∈ I1, and ∂+J∗ ∈ I2. Proposition 4.1 implies that |fn(J∗)| tends to zero as n →∞.
However, it contradicts L ∈ E (t<∞S1, eu) ∪ E (t<∞[0, 1], eu) and f(L) = L.

Second, we show that for any given p ∈ Fix(f)∩B(x0, 4ε) \ I2, there exists J+(p) ∈
E ([0, 1], es) such that J+(p) ⊂ B(x0, 6ε), f(J+(p)) = J+(p), and ∂−J+(p) = p. If
p ∈ Fix2

h(f), then Ds
+p is non-empty by Lemma 4.11. We put L = W ss

− (q) with some
q ∈ Ds

+p in this case. If p ∈ Fix0
h(f)∪Fix1

h(f), then we put L = W ss
+ (p). The set L is an

element of E ([0, 1], es) with f(L) = L and ∂−L = p. If L is not contained in B(x0, 6ε),
then it must intersects with I2. However, it contradicts Lemma 3.3 for L0 and L since
L ⊂ W s(q)\{q} or L ⊂ W ss(p)\{p}. Therefore, L is a subset of B(x0, 6ε). In particular,
L has finite length, and hence, J+(p) = L is the required one. By the similar way, we
can show that for any given p ∈ Fix(f) ∩B(x0, 4ε) \ I1, there exists J−(p) ∈ E ([0, 1], es)
such that J−(p) ⊂ B(x0, 6ε), f(J−(p)) = J−(p), and ∂+J−(p) = p.

Finally, we prove the claim. By the first step, we can take p ∈ Int B(x0, 2ε)∩Fix2
h(f).

Let J+(p) be the interval obtained in the second step. Since p ∈ B(x0, 2ε) and J+(p)
is tangent to es, we have J+(p) ∈ B(x0, 4ε). If p′ = ∂+J+(p) is not contained I2,
then let J+(p′) be the interval obtained in the second step for p′. We replace J+(p) by
J+(p)∪ J+(p′) and repeat the same procedure until ∂+J+(p) ∈ I2. It must stop in finite
times since the number of fixed point of f is finite. Hence, we obtain J∗+ ∈ B(x0, 4ε) such
that f(J∗+) = J∗+, ∂−J∗+ = p, and ∂+J∗+ ∈ I2. Similarly, we can also obtain J∗− ∈ B(x0, 4ε)
such that f(J∗−) = J∗−, ∂+J∗− = p, and ∂−J∗− ∈ I1. Now, the interval J∗+ ∪ J∗− satisfies
the condition required in the claim. As we see before, the claim completes the proof. ¤

Proposition 5.9. Let (f, eu, es) be a C2 framed PA diffeomorphism on T 2 such
that f has at most one non-hyperbolic periodic orbit. Then, there exists N ≥ 1 such that
C (eu) ∩ Per(C (f)) is the disjoint union of C (eu,Fixh(fN )) ∩ Per(C (f)) and C∗(eu).

Remark that it is trivial that C (eu) ∩ Per(C (f)) is the disjoint union of
C (eu,Perh(f)) ∩ Per(C (f)) and C∗(eu). However, Perh(f) may contain periodic points
of arbitrary large period in general.

Proof. If the proposition does not hold, then there exist a sequence {ni}i≥1 of
integers and a sequence {ci}i≥1 in C (eu) ∩ Per(C (f)) such that ni tends to infinity as
i → ∞ and Im ci contains a periodic point of f of period ni for each i ≥ 1. By Lemma
3.16, we can also assume that an f -invariant set Ci =

⋃ni−1
n=0 fn(Im ci) is an element of

E (t<∞S1, eu). Lemma 3.11 implies Ci ∩ Cj =∅ if ni 6= nj .
Since Per∗(f) is a finite set, we can assume that Ci ∩ Per∗(f) =∅ for all i. Take a

1/80-canonical coordinate ϕ and i1, i2 ≥ 1 so that ni1 6= ni2 and Cik
∩ϕ(]1/3, 1/3[2) 6=∅

for k = 1, 2. By the persistence of connecting segments of hyperbolic periodic points, both
Ci1 and Ci2 are persistent under perturbation. Hence, if a C2 non-degenerate framed PA
diffeomorphism (f1, e

u
1 , es

1) is sufficiently close to (f, eu, es), then ϕ is a 1/80-canonical
coordinate for (eu

1 , es
1) and there exist C ′1, C

′
2 ∈ E (t<∞S1, eu

1 ) such that C ′1 ∩ C ′2 = ∅,
f(C ′k) = C ′k and C ′k ∩ϕ(]1/3, 1/3[2) 6=∅ for each k = 1, 2. It contradicts Lemma 5.8. ¤
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We also obtain the compactness of the family of invariant sets consisting of embedded
circles.

Proposition 5.10. Let {(fi, e
u
i , es

i )}i≥1 be a sequence of non-degenerate C2 framed
PA diffeomorphisms which converges to a C1 framed PA diffeomorphism (f∗, eu

∗ , e
s
∗) in

the C1-topology. Then, any sequence {Ci ∈ E (t<∞S1, eu
i )}i≥1 satisfying fi(Ci) = Ci

for each i admits a subsequence which converges to an element C∗ of E (t<∞S1, eu
∗) with

f∗(C∗) = C∗.

Proof. Choose a sequence {ik} so that Cik
converges to a compact set C∗ with

respect to the Hausdorff metric. Remark that C∗ is f∗-invariant.
Fix z ∈ C∗. Take a 1/80-canonical coordinate ϕ associated to (f∗, eu

∗ , e
s
∗) with

ϕ(0, 0) = z. Lemma 5.8 implies that there exists a C1 function hk on [−1/2, 1/2] such that
ϕ([−1/2, 1/2]2)∩Cik

= ϕ({(x, hk(x)) | x ∈ [−1/2, 1/2]}) for any sufficiently large k. Since
Cik

converges to C∗, hk converges to a C1-function h∗ satisfying ϕ([−1/2, 1/2]2) ∩C∗ =
ϕ({(x, h∗(x)) | x ∈ [−1/2, 1/2]}). It implies C∗ ∈ E (t<∞S1, eu

∗). ¤

Finally, we show the existence of global continuation of connecting segments. Let
{(fλ, eu

λ, es
λ)}λ∈I be a framed PA homotopy. For σ ∈ {u, s}, λ0 ∈ I, a subinterval I1 of

I containing λ0, and ξ ∈ S (eσ
λ0

) ∩ Per(S (fλ0)), we call a continuous map ξ̂ from I1 to
C1([0, 1],T 2) a continuation of ξ on I1 if ξ̂(λ0) = ξ and ξ̂(λ) ∈ S (eσ

λ) ∩ Per(S (fλ)) for
any λ ∈ I1.

Proposition 5.11. Let {(fλ, eu
λ, es

λ)}λ∈[0,1] be a regular framed PA homotopy such
that Fix∗(fλ) = ∅ for any λ ∈]0, 1[. Suppose that hyperbolic fixed points p and q of f0

satisfy q ∈ Dσ
+,0q for σ = u or s, and admit continuations p̂ and q̂ on [0, 1]. Then, there

exists a continuation ξ̂ of [p, q]σ0 on [0, 1] such that ξ̂(λ) = [p̂(λ), q̂(λ)]σλ for any λ ∈ [0, 1[
and Int ξ̂(1) ∩ Per0h(f1) =∅.

Proof. To simplify the proof, we assume σ = u and q ∈ Fix0
h(f0). Then, we have

p̂(λ) ∈ Fix1
h(fλ) ∪ Fix2

h(fλ) and q̂(λ) ∈ Fix0
h(fλ) for any λ ∈ [0, 1[. Put J = {λ ∈ [0, 1[|

|Wuu
+ (p̂(λ))| < ∞}. Since ∂+Wuu

+ (p̂(λ)) must be an attracting fixed point, Lemma 5.1
implies that J is an open subset of [0, 1[.

First, we claim that there exists K > 0 such that |Wuu
+ (p̂(λ))| ≤ K for any λ ∈

J ∩N D({fλ}). Suppose that it does not hold. Then, it is easy to see that we can take
λ0 ∈ J ∩N D({fλ}) and a 1/80-canonical coordinate ϕ associated to (eu

λ0
, es

λ0
) so that

Wuu
+ (p̂(λ0))∩ϕ([−1/3, /1/3]2) 6=∅, Wuu

+ (p̂(λ0))∩ϕ([−1/2, 1/2]2) is not connected, and
Im ϕ ∩ {p̂(λ0), q̂(λ0)} =∅. However, it contradicts Lemma 5.8.

By the continuity of Wuu
δ (p̂(λ)) with respect to λ, the function λ 7→ |Wuu

+ (p; fλ)| ∈
]0,∞] is lower semi-continuous. Since J ∩N D({fλ}) is a dense subset of J , the above
claim implies that J is a closed subset of [0, 1[ and |Wuu

+ (p̂(λ))| ≤ K for any λ ∈ J . Since
J is an open subset of [0, 1[, we obtain J = [0, 1[.

Put J1 = {λ ∈ [0, 1[| Du
+,λp̂(λ) = {q̂(λ)}}. Recall that ∂+Wuu(p̂(λ)) is an attracting

fixed point for any λ ∈ [0, 1[. By lemma 5.1, both J1 and [0, 1[\J1 are open subset of
[0, 1[. Since J1 6=∅, we obtain J1 = [0, 1[.

Put ξ̂(λ) = [p̂(λ), q̂(λ)]uλ for λ ∈ [0, 1[. We claim that if ξ̂(λn) converges to an element
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ξ∗ of S (eu
λ∗) for a sequence {λn}n≥1 which tends to λ∗ ∈ [0, 1], then Int ξ∗∩Per0h(fλ∗) =

∅. Suppose that there exists an attracting periodic point q∗ of fλ∗ in Int ξ∗. Take a
continuation q̂∗ of q∗ on a neighborhood I∗ of λ∗. By the persistence of W ss

δ (q̂∗(λ)), we
have Int ξ̂(λn))∩W ss(q̂(λn)) 6=∅ for any sufficiently large n. It contradicts Lemma 3.3
for Im ξ̂(λn) and W ss(q̂∗(λn)) since Int ξ̂(λn) ∩ Per(fλn

) = ∅. Hence, we obtain the
claim. Remark that the claim implies that ξ∗ = [p̂(λ∗), q̂(λ∗)]uλ∗ = ξ̂(λ∗) for λ∗ ∈ [0, 1[.

Since |ξ̂(λ)| ≤ K for any λ ∈ [0, 1[, Lemma 2.1 implies the family {ξ̂(λ)}λ∈[0,1[ is
relatively compact in S (T 2). By the above claim, we obtain the continuity of ξ̂ at any
λ∗ ∈ [0, 1[.

The set
⋂

λ0<1 {ξ̂(λ) | λ ∈ [λ0, 1[} is a connected subset of S (eu
1 )∩Fix(S (f1)). Since

the set S (eu
1 )∩Fix(S (f1)) is discrete by Corollary 3.8, ξ̂(λ) converges to an element ξ̂(1)

of S (eu
1 ) ∩ Fix(S (f1)) as λ → 1. By the above claim, we have Im ξ̂(1) ∩ Per0h(f1) =∅.

¤

Corollary 5.12. Let {fλ}λ∈[0,1] be a regular framed PA homotopy such that
Fix∗(fλ) = ∅ for any λ ∈]0, 1[. Suppose that hyperbolic fixed points p, q1, and q2 of fN

0

satisfy q1, q2 ∈ Ds
+,0p and admit continuations p̂, q̂1, and q̂2 on [0, 1]. If q1 ≺p

+,0 q2, then

q̂1(λ), q̂2(λ) ∈ Ds
+,λp̂(λ) and q̂1(λ) ≺p̂(λ)

+,λ q̂2(λ) for any λ ∈ [0, 1[.

Proof. It is a consequence of the above proposition for σ = s and the persistence
of the order ≺p

+ which is observed in Lemma 5.1. ¤

5.4. A Simple PA homotopy.
We say a framed PA homotopy {(fλ, eu, es)}λ∈[−1,1] is simple if it is regular and

there exist an integer N ≥ 1, a finite subset ∆h of T 2, and a disjoint union ∆0
∗ of finitely

many embedded circles in T 2 which satisfy the following conditions:

1. Any non-hyperbolic periodic point of f0 exhibits a generating saddle-node bifur-
cation.

2. ∆h = Fixh(fN
0 ) and ∆0

∗ = Ω0
∗(f).

3. For any λ ∈ [−1, 1], ∆h ⊂ Fixh(fN
λ ) and each connected component of ∆0

∗ is a
2-normally attracting circle for fλ.

4. Fix∗(fN
λ ) =∅ for any λ 6= 0.

5. For any λ ∈ N D({fλ}) and a ∈ H1(T 2,Z), Ca(eu
λ) is the disjoint union of

Ca(eu
λ,∆0

h) and {c ∈ Ca(eu
λ) | Im c ⊂ ∆0

∗}, where ∆0
h = ∆h ∩ Fix0

h(fN
0 ).

It is worth to remark that a simple PA homotopy {(fλ, eu
λ, es

λ)} may exhibit a bifurcation
of periodic points in ∆0

∗. In general, hyperbolic periodic points with very large period
may appear in ∆0

∗ for fλ with λ 6= 0. However, it makes no change of the topology of
the trivial part {c ∈ Ca(eu

λ) | Im c ⊂ ∆0
∗} of Ca(eu

λ). We also remark that ∆h may not
coincide with Fixh(fN

λ ) for λ 6= 0 in general. In fact, as we see later, the set Fixh(fN
λ )

coincide with ∆h for λ ∈ [−1, 0[, but it is the union of ∆h and periodic orbits generated
by the saddle-node bifurcation at λ = 0 for λ > 0.

We say two framed PA homotopies {(fλ, eu
λ, es

λ)}λ∈I and {(gλ, e′uλ , e′sλ )}λ∈I′ are Cr-
equivalent if there exist a continuous family {hλ}λ∈I of Cr diffeomorphisms of T 2 and a
homeomorphism ρ : I → I ′ such that each hλ is isotopic to identity, gρ(λ) = hλ ◦fλ ◦h−1

λ ,
Dhλ(eσ

λ(z)) ∈ {a · e′σρ(λ)(hλ(z)) | a > 0} for any λ ∈ I, σ ∈ {u, s}, and z ∈ T 2.
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Proposition 5.13. Let {(fλ, eu
λ, es

λ)}λ∈I0 be a regular framed PA homotopy. For
any λ0 ∈ I0, there exists a neighborhood I of λ0 such that {(fλ, eu

λ, es
λ)}λ∈I is C2-

equivalent to a simple PA homotopy.

Proof. First of all, we assume that λ0 = 0 and any non-hyperbolic periodic point
of f0 exhibits a generating saddle-node bifurcation without loss of generality.

By Proposition 3.13, Ω0
∗(f) consists of finitely many mutually disjoint 2-normally

attracting circles. By Proposition 5.9 there exists N ≥ 1 such that any c ∈ C (eu
0 ) ∩

Per(C (f0)) satisfies either Im c ⊂ Ω0
∗(f0) or Im c ∩ Fixh(fN

0 ) 6=∅. Put ∆h = Fixh(fN
0 ),

∆0
h = Fix0

h(fN
0 ), and ∆0

∗ = Ω0
∗(f0). Recall that any hyperbolic fixed points and

2-normally attracting circles have local continuations. By replacing {fλ} in the C2-
equivalence class if it is necessary, we assume that ∆h ⊂ Fixh(fN

λ ) and any connected
component of ∆0

∗ is 2-normally attracting circle associated to fλ for any λ ∈ I0. Since
{fλ} is regular, the set {λ | Fix∗(fN

λ ) 6= ∅} is discrete. Hence, there exists a neighbor-
hood I1 of 0 such that I1 ⊂ I0 and Fix∗(fN

λ ) =∅ for any λ ∈ I1 \ {0}.
It is sufficient to show that there exists a neighborhood I2 ⊂ I1 of 0 such that any

c ∈ C (eu
λ) satisfies either Im c ⊂ ∆0

∗ or Im c ∩ ∆0
h 6= ∅ for any λ ∈ I2 ∩ N D({fλ}).

Suppose it does not hold. Then, there exist a sequence {λi ∈ N D({fλ})}i≥1 and
{ci ∈ C (eu

λi
)}i≥1 such that λi tends to 0 as i →∞, Im ci 6⊂ ∆0

∗ and Im ci∩∆0
h =∅ for any

i. By Theorem B, there exists c′i ∈ C (eu
λi

) ∩ Per(C (fλi
)) such that ci ∈ Wu(c′i;C (fλi

))
for each i. We can see that Im c′i ∩ ∆0

h = Im ci ∩ ∆0
h, and if Im c′i is contained in ∆0

∗
then Im ci also is. In particular, the choice of ci implies Im c′i 6⊂ ∆0

∗ and Im c′i ∩∆0
h =∅

for any i. By Lemma 3.16, we may assume Ci =
⋃

n≥1 fn
λi

(Im c′i) is an element of
E (t<∞S1, eu

λi
). Then, Proposition 5.10 implies that there exists a subsequence {Cik

}
which converges to an f0-invariant set C∗ ∈ E (t<∞S1, eu

0 ).
If C∗ ⊂ ∆0

∗, then Cik
is contained in W s(∆0

∗; fλik
) for any sufficiently large k.

Since Cik
is fλik

-invariant, it is contained in ∆0
∗. However, it contradicts Im c′ik

6⊂ ∆0
∗.

Therefore, we have C∗ 6⊂ ∆0
∗.

The choice of the integer N implies C∗ ∩ Fixh(fN
0 ) 6= ∅. Hence, we can take

ξ ∈ S (eu
0 ,Fixh(fN

0 )) ∩ Per(S (f)) with Im ξ ⊂ C∗ and Int ξ ∩ Fixh(fN
0 ) = ∅. By

Lemma 5.4, ξ(0) or ξ(1) is an element of ∆0
h = Fix0

h(fN
0 ). The persistence of the stable

set of an attracting fixed point implies that Cik
∩∆0

h 6=∅ for any sufficiently large k. It
contradicts that Im c′i ∩∆0

h =∅. ¤

Let {(fλ, eu
λ, es

λ)}λ∈[−1,1] be a simple PA homotopy. Let N and ∆h be the ones given
in the definition. The persistence of hyperbolic fixed points observed in Lemma 5.1 and
the finiteness of fixed points of fN

λ imply that all fixed point of fN
λ with λ ∈ [−1, 0[ (resp.

λ ∈]0, 1]) admits a unique continuation on [−1, 0] (resp. [0, 1]). In particular, there exists
a unique pair (θ̂s, θ̂n) of continuous maps from Fix∗(fN

0 )×[0, 1] to T 2 such that θ̂σ(p∗, ·) is
a continuation of p∗ on [0, 1] for any p∗ ∈ Fix∗(fN

0 ) and σ = s, n, and (θ̂s(p∗, ·), θ̂n(p∗, ·))
is a saddle-node continuation of p∗ on a small interval containing λ = 0. Put θσ = θ̂σ(·, 1)
for σ ∈ {s, n}. Then, the existence and the uniqueness of a continuation of a hyperbolic
fixed point imply that Fix(fN

−1) = ∆h, Fix(fN
1 ) = ∆h∪Im θs∪Im θn, and f1◦θσ = θσ◦f0

for σ ∈ {s, n}. In particular, both Im θs and Im θn are periodic orbits of f1.
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6. Bifurcations in a simple PA homotopy.

In this section, we investigate the bifurcation of the combinatorial description of
Sa(eu

λ,∆0
h) ∩ Fix(S (fN

λ )) for a simple PA homotopy {(fλ, eu
λ, es

λ)}. It allows us to de-
scribe the bifurcation of Ca(eu

λ,∆0
h) completely. In Subsection 6.1, we study the bifurca-

tion of connecting segments and define a natural correspondence Θ between Sa(eu
−1,∆

0
h)

and Sa(eu
1 ,∆0

h). In Subsection 6.2, we consider the bifurcation of Ds
±p for a repelling

periodic point p.
We fix a simple framed PA homotopy {(fλ, eu

λ, es
λ)}λ∈[−1,1]. Let N , ∆h,∆0

h, and ∆0
∗

be the ones in the definition, and (θ̂s, θ̂n) and (θs, θn) be the pairs of maps defined in
the last paragraph of Subsection 5.4. To simplify the proofs, we assume that any point
of Per∗(f0) is of type (u, +) or (s,+).

6.1. Correspondence of segments.
In this subsection, we construct a natural correspondence Θ between S (eu

−1,∆
0
h)

and S (eu
1 ,∆0

h).

Lemma 6.1. For periodic points p, q ∈ ∆h with q ∈ Du
+,−1p, there exists a contin-

uation ξ̂ of [p, q]u−1 on [−1, 1] such that one of the followings holds:

1. ξ̂(λ) = [p, q]uλ for any λ ∈ [−1, 1].
2. There exists p∗ ∈ Fix∗(fN

0 ) of type (u, +) such that

ξ̂(λ) =





[p, q]uλ if λ ∈ [−1, 0[,

[p, p∗, q]u0 if λ = 0,
[
p, θ̂n(p∗, λ), θ̂s(p∗, λ), q

]u

λ
if λ ∈]0, 1].

In the latter case, we have p ∈ Per1h(fN
λ )∪Per2h(fN

λ ) and q ∈ Per0h(fN
λ ) for any λ ∈ [−1, 1].

Proof. By Proposition 5.11, there exists a continuation ξ̂− of [p, q]u−1 on [−1, 0]
satisfying ξ̂−(λ) = [p, q]uλ for any λ ∈ [−1, 0[ and Int (ξ̂−(0)) ∩ Fix0

h(fN
0 ) = ∅. Lemma

5.4 implies either ξ̂−(0) = [p, q]u0 or ξ̂−(0) = [p, p∗, q]u0 for some p∗ ∈ Fix∗(fN
0 ) of type

(u, +) since one of p or q is not attracting. In the former case, [p, q]u0 has a continuation
ξ̂ on [0, 1] with ξ̂(λ) = [p, q]uλ by Proposition 5.11 again.

Notice that p is repelling or of saddle-type, and q is attracting in the latter case. By
Lemmas 5.5 and 5.7, we obtain Du

+,λp = {θ̂n(p∗, λ)}, Du
+,λθ̂n(p∗, λ) = {θ̂s(p∗, λ)}, and

Du
+,λθ̂s(p∗, λ) = {q} for some sufficiently small λ+ > 0. Proposition 5.11 implies that

there exists a continuation ξ̂+ of a segment such that ξ̂+(λ) = [p, θ̂n(p∗, λ), θ̂s(p∗, λ), q]uλ
for any λ ∈]0, 1] and Int (ξ̂+(0)) ∩∆0

h = ∅. Since Du
+,0p = {p∗} and Du

+,0p∗ = {q}, we
obtain ξ̂+(0) = [p, p∗, q]u0 . ¤

Lemma 6.2. Suppose p, q ∈ ∆h and ξ ∈ S (eu
1 ) ∩ Fix(S (f1)N ) satisfy ξ(0) = p,

ξ(1) = q, and Int ξ ∩∆h =∅. Then, one of the followings holds:

1. q ∈ Du
+,−1p and ξ = [p, q]u1 .

2. q ∈ Du
+,−1p and there exists p∗ ∈ Fix∗(fN

0 ) of type (u, +) such that ξ =
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[p, θn(p∗), θs(p∗), q]u1 .
3. There exist p∗ ∈ Fix∗(fN

0 ) of type (s,+) and σ ∈ {s, n} such that Du
−,0p∗ = {p},

Du
+,0p∗ = {q}, and ξ = [p, θσ(p∗), q]u1 .

Proof. Suppose ξ = [p1, . . . , pk]u1 for some k ≥ 2 and p1, . . . , pk ∈ Fix(fN
1 ), where

p1 = p and pk = q. By Proposition 5.11, [pi, pi+1]u1 has a continuation ξ̂i on [0, 1] with
Int (ξ̂i(0)) ∩∆0

h =∅. Notice that ξ̂i(λ)(0) is not contained in ∆0
h for i = 2, . . . , k − 1.

Put ξ0 = ξ̂1(0) ∗ · · · ∗ ξ̂k−1(0). Then, we have ξ0(0) = p, ξ0(1) = q, and Int ξ0 ∩
Per0h(f0) =∅. Since {p, q} ⊂ ∆h = Fixh(fN

0 ), Lemma 5.4 implies that either ξ0 = [p, q]u0
or ξ0 = [p, p∗, q]u0 for some p∗ ∈ Fix∗(f0). For the former case, we have k = 2, and hence,
ξ0 = [p, q]u0 and ξ = [p, q]u1 . Proposition 5.11 implies q ∈ Du

+,−1p.
For the latter case, we see that k ≥ 3 and (ξ̂i−1(0))(1) = (ξ̂i(0))(0) = p∗ for any

i = 2, . . . , k− 1. By the uniqueness of continuations, each pi is either θs(p∗) or θn(p∗). If
p∗ is of type (u, +), then q ∈ Du

+,−1p and ξ = [p, θn(p∗), θs(p∗), q]u1 by Lemmas 5.5 and
5.7. If p∗ is of type (s,+), then ‖DfN

1 (eu
1 (pi))‖ > 1 for any i = 2, . . . , k − 1. It implies

that k = 3. Hence, we obtain ξ = [p, θσ(p∗), q]u1 for some σ ∈ {s, n}. ¤

Let Σh be the subset of ∆h \∆0
h consisting of p satisfying |Wuu(p; f−1)| < ∞. Put

Σk
h = Σh ∩ Fixk

h(fN
0 ) for k = 1, 2. For p ∈ Σh, we define a subset I−p of [−1, 1] by

I−p =

{{0} if p ∈ Σ1
h

]− 1, 1[ if p ∈ Σ2
h.

If ξ0 = (p1, . . . , pk)u
−1 is well-defined, then we define a subset I−ξ0

of [−1, 1]k by I−ξ0
=∏k

i=1 I−pi
.

Let µ−p be a characteristic map from I−p to Wu((p)u
−1;S (f−1)) associated to f−1.

By Lemmas 6.1 and 6.2, a point p ∈ ∆h is contained in Σh if and only if Wuu(p; f1) has
finite length and one of the followings holds:

1. (p)u
1 ∈ S (eu

1 ,∆0
h).

2. There exists p∗ ∈ Fix∗(fN
0 ) of type (u, +) with θn(p∗) ∈ Du

+,1p and (p, θs(p∗))u
1 ∈

S (eu
1 ,∆h

0 ).

We define the map µ+
p by µ+

p = µp,1 in the former case and µ+
p = µp,1(·)∗(θs(p∗))u

1 in the

latter case, where µp,1 is a characteristic map from I−p to Wu((p)u
1 ;S (f1)) associated to

f1. Remark that the restriction of µ+
p to I−p is a homeomorphism onto Wu(µ+

p (0);S (f1)).
By Proposition 4.9, there exists a unique map Θ from S (eu

−1,∆
0
h) to S (eu

1 ,∆0
h)

such that

1. Θ ◦ µ−p (s) = µ+
p (s) for any p ∈ Σh and s ∈ Ip, and

2. Θ(ξ1 ∗ ξ2) = Θ(ξ1) ∗Θ(ξ2) for any ξ1, ξ2 ∈ S (eu
−1,∆

0
h) with ξ1(1) = ξ2(0).

It is important to remark that the map Θ is not continuous in general. However, the
restriction to each Wu(ξ0;S (f−1)) is continuous.

Proposition 6.3. The map Θ is injective. An element ξ ∈ S (eu
1 ,∆0

h) with |ξ| 6= 0
is contained in the image of Θ if and only if there exists a sequence {p1, . . . , pk} such
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that ξ ∈ Wu((p1, . . . , pk)u
1 ;S (f1)) and each pi satisfies either pi ∈ Σh or pi = θs(p∗,i)

for some p∗,i ∈ Fix∗(fN
0 ) of type (u, +).

Proof. Observe that the restriction of Θ on Wu(ξ0;S (f−1)) is a bijective map
onto Wu(Θ(ξ0);S (f1)) for any ξ0 ∈ S (eu

−1,∆
0
h) ∩ Fix(S (fN

−1)).
Take ξ+ = (p1, . . . , pk)u

1 with p1, . . . , pk ∈ Fix(fN
1 ). By Lemma 6.2, ξ+ ∈ Im Θ if

and only if each pi satisfies pi ∈ Σh or pi = θs(p∗,i) for some p∗,i ∈ Fix∗(fN
0 ) of type

(u, +). Hence, Proposition 4.9 implies the latter half of the assertion.
An element ξ+ = (p1, . . . , pk)u

1 of Im Θ with p1, . . . , pk ∈ Fix(fN
1 ) have a unique

irreducible decomposition ξ− = µ+
q1

(0) ∗ · · · ∗ µ+
qm

(0) associated to ∆0
h. Since µ+

p (0) 6=
µ+

p′(0) for any p, p′ ∈ Σh with p 6= p′, the restriction of Θ to S (eu
−1,∆

0
h)∩Fix(S (fN

−1)) is
injective. Hence, the observation at the beginning of the proof implies that Θ is injective.

¤

6.2. Correspondence at the boundary of cells.
Let Θ, Σh, Σ1

h, and Σ2
h be the ones defined in the previous subsection. We denote

by Σ∗ the set of non-hyperbolic fixed points p∗ of fN
0 that are of type (s,+) and satisfy

|Wuu(p∗; f0)| < ∞.

Lemma 6.4. If p∗ ∈ Fix∗(fN
0 ) is of type (s,+), then Ds

−,1θn(p∗) = {θs(p∗)}.
Moreover, the following three conditions on p∗ are equivalent :

• p∗ ∈ Σ∗.
• |Wuu(θs(p∗); f1)| < ∞.
• |Wuu(θn(p∗); f1)| < ∞.

Proof. The former is a consequence of Lemma 5.6 and Proposition 5.11. The
latter follows from Lemma 5.5 since p∗ ∈ Σ∗ is a non-hyperbolic fixed point of type
(u, +) for (f−N

0 ,−es
0, e

u
0 ). ¤

For p∗ ∈ Σ∗, let µ∗p∗ : [−1, 1] → Wu((θn(p∗);S (f1))) be a characteristic map of
θn(p∗) for f1.

Lemma 6.5. Suppose that p∗ ∈ Σ∗ satisfies Ds
+,1θn(p∗) ∩ Im θs 6= ∅. Then, the

followings hold :

1. For any q∗ ∈ Σ∗, there exist ξ−, ξ+ ∈ Im Θ and q′∗ ∈ Σ∗ such that |ξ−| 6= 0,
|ξ+| 6= 0, and µ∗q∗(1) = ξ− ∗ (θs(q′∗))

u
1 ∗ ξ+.

2. µq(1) ∈ Im Θ for any q ∈ Σ2
h.

Proof. Put µ∗p∗(1) = (q1, . . . , qk)u
1 and r− = ∂−Wuu(θn(p∗); f1). Since Im θs =

O(θs(p∗); f1), Lemma 3.11 implies that there exists a unique l = 1, . . . , k such that
ql ∈ Im θs. Since Du

+,1r− contains θn(p∗), θs(p∗), and q1, we can show O(q1; f1) 6=
O(θs(p∗); f1) by the same way as the proof of Lemma 3.11. In particular, we have
l ≥ 2. The same argument also implies l ≤ k − 1. Therefore, ξ− = (q1, . . . , ql−1)u

1 ,
ξ+ = (ql+1, . . . , qk)u

1 , and q′∗ = θ−1
s (ql) satisfy the former assertion for p∗.

Since Σ∗ is the orbit of p∗, the former assertion also holds for any q∗ ∈ Σ∗. Since
Ds
−,1ql = {θn(p∗)} and O(ql; f1) = Im θs = θs(Σ∗), we also obtain the second assertion.

¤
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Lemma 6.6. Ds
−,1p∩ Im θs =∅ and Ds

+,1p∩ Im θs contains at most one point for
any p ∈ Σ2

h.

Proof. Fix p ∈ Σ2
h. By Lemma 6.4, we have Ds

+,1θs(p∗) = {θn(p∗)} for any
p∗ ∈ Fix∗(FN

0 ). It implies Ds
−1p ∩ Im θs = ∅. If Fix∗(fN

0 ) is not empty, then we
have Im θs = O(θs(q∗); f1) for any q∗ ∈ Fix∗(fN

0 ). Hence, Lemma 3.11 implies that
Ds

+,1p ∩ Im θs contains at most one point. ¤

Now, let us consider the correspondence between µ+
p (s) and µ−p (s) at s = ±1.

Lemma 6.7. A pair (p, q) of elements of ∆h satisfies q ∈ Ds
+,−1p if and only if

either one of the followings holds:

1. q ∈ Ds
+,1p.

2. There exists p∗ ∈ Fix∗(fN
0 ) of type (s,+) such that q ∈ Ds

+,1θn(p∗), Ds
−,1θn(p∗) =

{θs(p∗)}, and θs(p∗) ∈ Ds
+,1p.

In the former case, the map λ 7→ [p, q]sλ is a continuation of [p, q]s−1 on [−1, 1]. In the
latter case, the map ξ̂ given by

ξ̂(λ) =





[p, q]sλ if λ ∈ [−1, 0[,

[p, p∗, q]s0 if λ = 0,
[
p, θ̂s(p∗, λ), θ̂n(p∗, λ), q

]s

λ
if λ ∈]0, 1]

is a continuation of [p, q]s−1 on [−1, 1].

Proof. Notice that a non-hyperbolic fixed point of type (s,+) for (fN
0 , eu

0 , es
0) is

of type (u, +) for (f−N
0 ,−es, eu). Hence, the lemma follows from Lemmas 6.1 and 6.2

for the PA homotopy {(f−N
λ ,−es

λ, eu
λ)}. ¤

Lemma 6.8. The equation Θ◦µ−p (−1) = µ+
p (−1) holds for any p ∈ Σ2

h. If Ds
+,1p∩

θs(Σ∗) = ∅, then the equation Θ ◦ µ−p (1) = µ+
p (1) also holds, and hence, Θ ◦ µ−p is a

continuous map on I−p = [−1, 1].

Proof. We show that the latter assertion holds. The proof for the former is same
since Ds

−,1p ∩ θs(Σ∗) =∅ by Lemma 6.6.
Suppose that Ds

+,1p ∩ ∆1
h = {q1, . . . , qk} and qi ≺p

+,1 qj if i < j. Since Ds
+,1p ∩

θs(Σ∗) = ∅, we can obtain µ+
p (1) = µ+

q1
(0) ∗ · · · ∗ µ+

qk
(0). By Lemma 6.7, we have

Ds
+,−p ∩ Fix1

h(fN
−1) = {q1, . . . , qk} and [p, qi]sλ is a continuation of [p, qi]s−1 for any i =

1, . . . , k. Corollary 5.12 implies qi ≺p
+,−1 qj if i < j. It implies µ−p (1) = (q1, . . . , qk)u

−1,
and hence, µ+

p (1) = Θ ◦ µ−p (1). In particular, the map Θ ◦ µ−p (s) = µ+
p (s) is continuous

at s = 1. ¤

Lemma 6.9. For p ∈ Σ2
h and p∗ ∈ Σ∗ with θs(p∗) ∈ Ds

+,1p, there exist ξ−, ξ∗, ξ+ ∈
S (eu

−1,∆
0
h) such that µ−p (1) = ξ− ∗ ξ∗ ∗ ξ+, µ+

p (1) = Θ(ξ−) ∗ (θs(p∗))u
1 ∗ Θ(ξ+), and

µ∗p∗(1) = Θ(ξ∗).
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Figure 7. Proof of Lemma 6.9.

Proof. Lemmas 6.6 and 6.5 imply that Ds
+,1p ∩ Im θs = {θs(p∗)} and

Ds
+,1θn(p∗) ⊂ ∆h. There exist r−, r+ ∈ ∆0

h, p1, . . . , pk, q1, . . . , ql ∈ ∆h, and m ≥ 1
such that µ+

p (1) = [r−, p1, . . . , pm−1, θs(p∗), pm, . . . , pk, r+]u1 and µ∗p∗(1) = [pm−1, q1, . . . ,

ql, pm]u1 . By Lemma 6.4, we have Ds
−,1θn(p∗) = {θs(p∗)}. Hence, Lemma 6.7 implies

Ds
+,−1p = {p1, . . . , pk, q1, . . . , ql}, Ds

+,0p = {p1, . . . , pk, p∗}, and Ds
+,0p∗ = {q1, . . . , ql}.

We have pi ≺p
+,−1 pj if i < j by Corollary 5.12. We claim that qi ≺p

+,−1 qj if i < j

and pm−1 ≺p
+,−1 qi ≺p

+,−1 pm for any i. Take a0 > 1 and an embedding ψ : [−1, a0 +1]×
[−1, 1] → T 2 so that ψ(0, 0) = p, ψ(0, a0) = p∗, ψ({0}×[0, a0]) = Im [p, p∗]s0, and the map
ϕa : (x, y) → ψ(x, y + a) on [−1, 1]2 is a 1/8-canonical coordinate associated to (eu

0 , es
0)

for any a ∈ [0, a0]. We fix λ0 > 0 so that ϕa is a 1/8-canonical coordinate associated to
(eu

λ, es
λ) for any a ∈ [0, a0] and λ ∈ [−λ0, λ0], and θ̂s(p∗, λ), θ̂n(p∗, λ) ∈ ϕa0([−1/2, 1/2]2)

for any λ ∈ [0, λ1]. By the continuity of connecting segments with respect to λ, there
exist λ1 ∈]0, λ0] and a family {v̂qj}l

j=1 of functions on [0, a0 + 1]× [−λ1, λ1] such that

1. v̂qj
(0, λ) = 0 for any λ ∈ [−λ1, λ1], and

2. ψ({(v̂qj
(y), y) | y ∈ [0, a0 + 1]}) is a subset of Im [p, qj ]sλ for any λ ∈ [−λ1, 0[, and

of Im [p, θ̂s(p∗, λ), θ̂n(p∗, λ), qj ]sλ for any λ ∈]0, λ1].

By Corollary 5.12, we have qi ≺θ̂n(p∗,λ)
+,λ qi+1 for any λ ∈]0, 1]. Since ϕa0 is a 1/8-

canonical coordinate, Proposition 3.9 implies that v̂qi
(a0 + 1, λ) < v̂qi+1(a0 + 1, λ) for

any λ ∈]0, λ1]. Since W ss
− (qi; fλ) ∩W ss

− (qi+1; fλ) = ∅, and v̂qi
and v̂qi+1 are continuous

functions, we obtain v̂qi
(1, λ) < v̂qi+1(1, λ) for any λ ∈ [−λ1, 0[. Since ϕ0 is a 1/8-

canonical coordinate, Proposition 3.9 implies that qi ≺p
+,λ qi+1 for any λ ∈ [−λ1, 0[. By

Corollary 5.12, we obtain qi ≺p
+,−1 qi+1.

Take a family {v̂pi}k
i=1 of continuous functions on [0, 1] × [−λ1, λ1] such that

v̂pi
(0, λ) = 0 and ψ({(v̂pi

(y), y) | y ∈ [0, 1]}) ⊂ Im [p, pi]sλ for any λ ∈ [−λ1, λ1]. The
same argument as above implies v̂pm−1(1, λ) < v̂q1(1, λ) and v̂ql

(1, λ) < v̂pm
(1, λ) for any

λ ∈ [−λ1, λ1]. It implies pm−1 ≺p
+,−1 q1 and ql ≺p

+,−1 pm. It completes the proof of the
claim.

Put ξ− = [r−, p1, . . . , pm−1]u−1, ξ∗ = [pm−1, q1, . . . , ql, pm]u−1, and ξ+ = [pm, . . . ,

pk, r+]u−1. Then, the above claim implies µ−p (1) = ξ−∗ξ∗∗ξ+, µ+
p (1) = Θ(ξ−)∗(θs(p∗))u

1 ∗
Θ(ξ+), and µ∗p∗(1) = Θ(ξ∗). ¤
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7. Proof of Theorem A.

In this section, we show the following proposition, which completes the proof of
Theorem A. Recall that X ∪{∞} is the one point compactification of a topological space
X.

Proposition 7.1. For any prime homology class a ∈ H1(T 2,Z), pointed spaces
(Ca(eu

1 ,∆0
h) ∪ {∞},∞) and (Ca(eu

−1,∆
0
h) ∪ {∞},∞) have the same homotopy type.

In fact, Lemma 5.2 and Proposition 5.13 allow us to reduce the proof to the case of
a simple PA homotopy. For a simple PA homotopy {(fλ, eu

λ, es
λ)}λ∈[−1,1], the set {c ∈

Ca(eu
λ) | Im c ⊂ ∆0

∗} does not depend on the choice of λ ∈ [−1, 1] and it consists of finitely
many isolated elements of index 0. Hence, the proposition implies that (Ca(eu

1 )∪{∞},∞)
and (Ca(eu

−1) ∪ {∞},∞) have the same homotopy type for any prime homology class
a ∈ H1(T 2,Z).

7.1. Compatible maps.
Before the proof of Proposition 7.1, we introduce the concept of compatible maps

and consider their continuity.
Let e1 and e2 be continuous unit vector fields on T 2, and Λ1 and Λ2 be finite subsets

of T 2 with Λ1 ⊂ Λ2. We call a map Ψ from S (e1,Λ1) to S (e2,Λ2) compatible if the
following conditions hold:

1. Ψ(ξ)(0) = ξ(0), Ψ(ξ)(1) = ξ(1), and Ψ(ξ) is homotopic to ξ relative to end points
for any ξ ∈ S (e1,Λ).

2. Ψ(ξ1 ∗ ξ2) = Ψ(ξ1) ∗Ψ(ξ2) for any ξ1, ξ2 ∈ S (e1,Λ) with ξ1(1) = ξ2(0).

Remark that the map Θ defined in Subsection 6.1 is a compatible map.
Let (f, eu

f , es
f ) and (g, eu

g , es
g) be C2 non-degenerate framed PA diffeomorphisms and

suppose Fix0
h(fn) ⊂ Fix0

h(gn) for some n ≥ 1. Recall that Σ(fn) is the set of points p of
Fix1

h(fn) ∪ Fix2
h(fn) satisfying |Wuu(p; f)| < ∞.

Lemma 7.2. Let Ψ be a compatible map from S (eu
f ,Fix0

h(fn)) to S (eu
g ,Fix0

h(gn)).
Suppose that Ψ ◦ µp is continuous for each p ∈ Σ(fn), where µp : Ip → S (eu

f ) is a
characteristic map of p. Then, the map Ψ is continuous and proper. In particular,
it induces a proper continuous map from Ca(eu

f ,Fix0
h(fn)) to Ca(eu

g ,Fix0
h(gn)) for any

a ∈ H1(T 2;Z).

Proof. By Propositions 4.9 and 4.13, the map Ψ is continuous. Since Σ(fn) is
a finite set, there exists K > 0 such that |Ψ ◦ µp(s)| ≥ K|µp(s)| for any p ∈ Σ(fn) and
s ∈ Ip. It implies that |Ψ(ξ)| ≥ K|ξ| for any ξ ∈ S (eu

f ,Fix0
h(fn)). Hence, the Ψ is

proper by Lemma 2.1.
For any a ∈ H1(T 2;Z), we can define a map Ψa from Ca(eu

f ,Fix0
h(fn)) to

Ca(eu
g ,Fix0

h(gn)) by πc ◦ Ψ = Ψa ◦ πc on C̃a(eu
f ,Fix0

h(fn)). Since πc and Ψ are con-
tinuous and proper, the map Ψa also is. ¤

We also call a map Ψ̂ from S (eu
f ,Fix0

h(fn)) × [0, 1] to S (eu
g ,Fix0

h(gn)) compatible
if Ψ̂(·, t) is compatible for any t ∈ [0, 1].
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Lemma 7.3. Let Ψ̂ be a compatible map from S (eu
f ,Fix0

h(fn)) × [0, 1] to
S (eu

g ,Fix0
h(gn)). Suppose that the map (s, t) 7→ Ψ̂(µp(s), t) is continuous on Ip × [0, 1]

for each p ∈ Σ(f). Then, Ψ̂ is continuous and proper. In particular, it induce a proper
continuous map from Ca(eu

f ,Fix0
h(fn))×[0, 1] to Ca(eu

g ,Fix0
h(gn)) for any a ∈ H1(T 2;Z).

Proof. The proof is the same as the previous lemma. ¤

7.2. Proof of Proposition 7.1.
Now, we prove Proposition 7.1. Fix a framed simple PA homotopy

{(fλ, eu
λ, es

λ)}λ∈[−1,1]. Let ∆h,∆0
h, and N ≥ 1 be the ones in the definition of a sim-

ple PA homotopy, and Σh, Σ1
h, Σ2

h, Σ∗, Θ, µ±p , µ∗p∗ , and I−p be the ones given in Section
6. Without loss of generality, we assume that all non-hyperbolic periodic point of f0 is
of type (u, +) or (s,+).

Lemma 7.4. Suppose Ds
+,1p ∩ θs(Σ∗) = ∅ for any p ∈ Σ2

h. Then, Θ is a homeo-
morphism onto its image.

Proof. Recall that the map Θ is compatible. Lemmas 6.8 and 7.2 imply that it
is continuous and proper. Since Θ is injective and both S (eu

−1,∆
0
h) and S (eu

1 ,∆0
h) are

locally compact, Θ is a homeomorphism onto Im Θ. ¤

We consider three cases:

1. Σ∗ =∅
2. Σ∗ 6=∅ and Ds

+,1θn(p∗) ∩ θs(Σ∗) =∅ for any p∗ ∈ Σ∗.
3. Σ∗ 6=∅ and Ds

+,1θn(p∗) ∩ θs(Σ∗) 6=∅ for some p∗ ∈ Σ∗.

Remark that all non-hyperbolic periodic points of f0 are of type (s,+) in the latter
two cases. In the first case, we show that the spaces Ca(eu

−1,∆
0
h) and Ca(eu

−1,∆
0
h) are

homeomorphic. In the second case, they have the same proper homotopy type. The last
is the worst case since the set Ca(eu

−1) may be empty while Ca(eu
1 ) is not. In this case,

we need to consider the homotopy type of the compactifications of Ca(eu
−1) and Ca(eu

1 ).
See Figure 8.

�
=1


�
=−1


Figure 8. The worst case.

The first case. We consider the case Σ∗ =∅.

Lemma 7.5. If Σ∗ = ∅, then Ca(eu
−1,∆

0
h) is homeomorphic to Ca(eu

1 ,∆0
h). In

particular, their one point compactifications are homeomorphic as pointed spaces.
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Proof. Proposition 6.3 implies Im Θ = S (eu
1 ,∆0

h). By Lemma 7.4, Θ is a home-
omorphism between S (eu

−1,∆
0
h) to S (eu

1 ,∆0
h). Fix a ∈ H1(T 2,Z). Since the restriction

of Θ to C̃a(eu
−1,∆

0
h) commutes with πc, it induce a homeomorphism between Ca(eu

−1,∆
0
h)

and Ca(eu
1 ,∆0

h). ¤

The second case. Next, we consider the case that Σ∗ 6= ∅ and Ds
+,1θn(p∗) ∩

θs(Σ∗) = ∅ for any p∗ ∈ Σ∗. Remark that ∆0
h = Fix0

h(fN
−1) = Fix0

h(fN
1 ), Im θσ =

θσ(Σ∗) = O(θσ(p∗); f0), and µ∗p∗(1) ∈ Im Θ for any p∗ ∈ Σ∗ and σ ∈ {s, n} in this case.

Lemma 7.6. Suppose that Σ∗ 6=∅ and Ds
+,1θn(p∗)∩ θs(Σ∗) =∅ for any p∗ ∈ Σ∗.

Then, there exists a proper homotopy equivalence between Ca(eu
1 ,∆0

h) and Ca(eu
−1,∆

0
h)

for any prime homology class a ∈ H1(T 2;Z). In particular, pointed spaces (Ca(eu
1 ,∆0

h)∪
{∞},∞) and (Ca(eu

−1,∆
0
h) ∪ {∞},∞) have the same homotopy type.

Proof. For p ∈ Σ2
h and p∗ ∈ Σ∗ with θs(p∗) ∈ Ds

+,1p, take a decomposition
µ−p (1) = ξ− ∗ ξ∗ ∗ ξ+ in Lemma 6.9. We define maps νp∗ and νp from [−1, 1] × [0, 1] to
S (eu

1 ,∆0
h) by

νp∗(s, t) = µ∗p∗((1− t)s + t)

and

νp(s, t) =





µ+
p (s) if s ≤ 0,

µ+
p ((1 + 2t)s) if s > 0 and (1 + 2t)s ≤ 1,

Θ(ξ−) ∗ µ∗p∗((1 + 2t)s− 2) ∗Θ(ξ+) if s > 0 and (1 + 2t)s > 1.

See Figure 9.

Figure 9. The map νp.

We define a compatible map Φ from S (eu
1 ,∆0

h)× [0, 1] to S (eu
1 ,∆0

h) as follows:

1. If p ∈ Σ1
h, or p ∈ Σ2

h and Ds
+,1p ∩ θs(Σ∗) = ∅, then Φ(µ+

p (s), t) = µ+
p (s) for any

(s, t) ∈ I−p × [0, 1].
2. If p ∈ Σ2

h and Ds
+,1p ∩ θs(Σ∗) 6= ∅, then Φ(µ+

p (s), t) = νp(s, t) for any (s, t) ∈
I−p × [0, 1].

3. Φ((θs(p∗))s
1, t) = νp∗(−1, t) and Φ(µ∗p∗(s), t) = νp∗(s, t) for p∗ ∈ Σ∗ and (s, t) ∈

]− 1, 1[×[0, 1].
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Put Θ+ = Φ(·, 1) ◦ Θ. Notice that Φ and Θ+ are compatible. Since νp(1, t) =
ξ− ∗ νp∗(−1, t) ∗ ξ+ for any t ∈ [−1, 1], we can check that Φ is continuous and proper by
Lemma 7.3. By Lemmas 6.9 and 7.2, the map Θ+ is continuous and proper.

We define a compatible map Θ− from S (eu
1 ,∆0

h) to S (eu
−1,∆

0
h) by

1. Θ− ◦ µ+
p (s) = µ−p (s) for p ∈ Σh and s ∈ I−p , and

2. Θ−((θs(p∗))u
1 ) = Θ−(µ∗p∗(s)) = Θ−1(µ∗p∗(1)) for p∗ ∈ Σ∗ and s ∈]− 1, 1[.

Since µ∗p∗(1) ∈ Im Θ, the map Θ− is well-defined. It is clear that Θ− ◦ µ∗p∗ is continuous
on [−1, 1] for any p∗ ∈ Σ∗. Lemma 6.9 implies that Θ− ◦µ+

p is continuous for any p ∈ Σ2
h.

Hence, the map Θ− is continuous and proper by Lemma 7.2. We can also verify that the
map (ξ, t) 7→ Θ− ◦ Φ(Θ(ξ), t) from S (eu

−1,∆
0
h)× [0, 1] to S (eu

−1,∆
0
h) is continuous and

proper.
By their constructions, Θ− ◦Θ is the identity map and is homotopic to Θ− ◦Θ+. We

can check that Θ+ ◦ Θ− coincides with Φ(·, 1), and hence, is homotopic to the identity
map. Therefore, Θ+ and Θ− are proper homotopy equivalences between S (eu

−1,∆
0
h) and

S (eu
1 ,∆0

h). Since all maps constructed above are compatible, Θ+ and Θ+ induce proper
homotopy equivalences between Ca(eu

−1,∆
0
h) and Ca(eu

1 ,∆0
h) for any prime homology

class a ∈ H1(T 2;Z). ¤

The last case. Finally, we consider the case that Ds
+,1θn(p0) ∩ θs(Σ∗) 6= ∅ for

some p0 ∈ Σ0. Put S∗(eu
1 ,∆0

h) = S (eu
1 ,∆0

h) \ Im Θ.

Lemma 7.7. Im Θ and S∗(eu
1 ,∆0

h) are mutually disjoint subcomplexes of
S (eu

1 ,∆0
h).

Proof. Lemmas 6.4 and 6.5 imply Ds
±,1θn(p∗) ∩ θs(Σ∗) 6= ∅ for any p∗ ∈ Σ∗.

Hence, we have µ∗p∗(±1) ∈ S∗(eu
1 ,∆0

h). It implies that S∗(eu
1 ,∆0

h) is a subcomplex of
S (eu

1 ,∆0
h).

Lemmas 6.6 and 6.5 also imply Ds
±,1θn(q) ∩ θs(Σ∗) = ∅ for any q ∈ Σ2

h. It implies
µ+

p (±1) ∈ Im Θ for any q ∈ Σ2
h, and hence, Im Θ is a subcomplex of S (eu

1 ,∆0
h). ¤

Lemma 7.8. There exists a continuous compatible map Ψ from S (eu
1 ,∆0

h)× [0,∞[
to S (eu

1 ,∆0
h) such that

• Ψ(ξ, t) = ξ for any ξ ∈ Im Θ and t ∈ [0, 1],
• Ψ(ξ∗, 0) = ξ∗ for any ξ∗ ∈ S∗(eu

1 ,∆0
h),

• inf{|Ψ(ξ∗, t)| | ξ∗ ∈ S∗(eu
1 ,∆0

h)} tends to infinity as t →∞.

Proof. For any p∗ ∈ Σ∗, there exists ξ−, ξ+ ∈ Im Θ and q∗ ∈ Σ∗ such that
|ξ−| 6= 0, |ξ+| 6= 0, and µ∗p∗(1) = ξ− ∗ (θs(q∗))u

1 ∗ ξ+ by Lemma 6.5. First, we define a
compatible map Ψ1 from S (eu

1 ,∆0
h)× [0, 1] to S (eu

1 ,∆0
h) by

1. Ψ1(µ+
p (s), t) = µ+

p (s) for p ∈ Σh and s ∈ I−p ,
2. Ψ1((θs(p∗))u

1 , t) = µ∗p∗(2t− 1) and

Ψ1(µ∗p∗(s), t) =

{
µ∗p∗(s + 2t) (s + 2t ≤ 1)

ξ− ∗ µ∗q∗(s + 2t− 2) ∗ ξ+ (s + 2t > 1)
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Figure 10. The map Ψ1.

for p∗ ∈ Σ∗, where µ∗p∗(1) = ξ− ∗ (θs(q∗))u
1 ∗ ξ+.

See Figure 10. It is easy to check that Ψ1 satisfies the assumption of Lemma 7.3.
Hence, it is continuous and proper. Remark that Ψ1(·, t) is the identity on Im Θ and
Ψ1(S∗(eu

1 ,∆0
h)× {t}) is a subset of S∗(eu

1 ,∆0
h) for any t ∈ [0, 1].

Define an integer valued function l on S (eu
1 ,∆0

h) by l(ξ) = 0 if |ξ| = 0 and l(ξ) = k

if ξ has the irreducible decomposition ξ = ξ1 ∗ · · · ∗ ξk with respect to ∆0
h. It is easy to

see l(ξ1 ∗ ξ2) = l(ξ1) + l(ξ2) for any ξ1, ξ2 with ξ1(1) = ξ2(0) ∈ ∆0
h, and l(Ψ1(ξ, t)) ≥ l(ξ)

for any ξ and t. Recall that µ∗p∗(1) = ξ− ∗ (θs(q∗))u
1 ∗ ξ+ where ξ−, ξ+ ∈ Im Θ, |ξ±| 6= 0,

and q∗ ∈ Σ∗. It implies l(Ψ1(µ∗p∗(s), 1)) = l(ξ− ∗ µ∗q∗(s) ∗ ξ+) ≥ 3 for any p∗ ∈ Σ∗ and
s ∈ [−1, 1]. In particular, we have l(Ψ(ξ∗, 1)) ≥ l(ξ∗) + 2 for any ξ∗ ∈ S∗(eu

1 ,∆0
h).

Put ψ1 = Ψ1(·, 1). We define a map Ψ from S (eu
1 ,∆0

h) × [0,∞[ to S (eu
1 ,∆0

h) by
Ψ(ξ, t) = Ψ(ψ[t]

1 (ξ), t− [t]), where [t] is the largest integer with [t] ≤ t. It is clear that Ψ
is compatible and continuous. We also see that Ψ(ξ, t) = ξ for any ξ ∈ Im Θ and t ≥ 0,
and Ψ(ξ∗, 0) = ξ∗ and l(Ψ(ξ∗, t)) ≥ l(ξ∗) + 2[t] for any ξ∗ ∈ S∗(eu

1 ,∆0
h) and t ≥ 0.

By the finiteness of Σh and Σ∗, we can take K > 0 such that |ξ| ≥ K · l(ξ) for any
ξ ∈ S (eu

1 ,∆0
h). Hence, we obtain that inf{|Ψ(ξ, t)| | ξ ∈ S∗(eu

1 ,∆0
h)} tends to infinity as

t →∞. ¤

The following is the last piece of the proof of Proposition 7.1. As remarked at the
beginning of this section, it completes the proof of Theorem A.

Lemma 7.9. Suppose that Ds
+,1θn(p0) ∩ θs(Σ∗) 6= ∅ for some p0 ∈ Σ∗. Then,

pointed spaces (Ca(eu
1 ,∆0

h)∪{∞},∞) and (Ca(eu
−1,∆

0
h)∪{∞},∞) have the same homo-

topy type.

Proof. The map Ψ in Lemma 7.8 induces a homotopy between pointed spaces
(Ca(eu

1 ,∆0
h)∪ {∞},∞) and (πc(Im Θ∩ C̃a(eu))∪ {∞},∞) for any prime homology class

a ∈ H1(T 2;Z). Since Θ is a homeomorphism between S (eu
−1,∆

0
h) and Im Θ by Lemma

7.4, πc(Im Θ ∩ C̃a(eu)) and Ca(eu
−1,∆

0
h) have the same proper homotopy type. ¤

8. Proof of Theorems C and D.

8.1. Proof of Theorem C.
Before the proof of Theorem C, we need some preparations. We say an element

c ∈ C (eu) is injective if any γ ∈ π−1
c (c) is injective as a map from S1 to T 2. Remark
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that if Ca(eu) contains an injective element for a ∈ H1(T 2,Z), then the class a is prime.

Lemma 8.1. Let (f, eu, es) be a C2 non-degenerate framed PA diffeomorphism
on T 2. If Ca(eu) 6= ∅ for a prime homology class a ∈ H1(T 2,Z), then there exist a
decomposition a =

∑l
i=1 ai and a sequence {ci ∈ Cai(e

u)∩Per(C (f))}l
i=1 such that ci is

injective for any i.

Proof. By Theorem B, we can take c ∈ Ca(eu)∩Per(C (f)). If Im c∩Per(f) =∅,
then Im c is an irrational normally attracting circle by Proposition 3.13. Hence, the
lemma is clear in this case.

We claim that if c ∈ Ca(eu,Fix(fn)) ∩ Per(C (f)) is not injective, then there exist
a1, a2 ∈ H1(T 2,Z), c1 ∈ Ca1(e

u,Fix(fn)) ∩ Per(C (f)), and c2 ∈ Ca2(e
u,Fix(fn)) ∩

Per(C (f)) such that a1 + a2 = a and |c1| + |c2| = |c|. Notice that the claim completes
the proof. In fact, since any element of C (eu) has the length larger than the injectivity
radius of T 2, we can obtain the required sequences by applying the claim several times
for c.

Now, we prove the claim. Suppose that c ∈ Ca(eu,Fix(fn)) ∩ Per(C (f)) is not
injective. Take γ = [p0, . . . , pk−1, p0]u ∈ π−1

c (c) ∩ C̃ (eu,Fix(fn)) and put Λ = {z ∈
Im c = Im γ | #(γ−1(z) ∩ [0, 1[) ≥ 2}. Notice that Fix(fn) ∩ Im γ = {p0, . . . , pk−1} and
Λ is a non-empty fn-invariant set. Without loss of generality, we may assume that Λ
intersects with [p0, p1]u([0, 1[). Since either the positive or negative fn-orbit of a point
in [p0, p1]u([0, 1[) converges to p0, the set Λ contains p0. In particular, we have pl = p0

for some l 6= 0. Put c1 = πc([p0, . . . , pl]u) and c2 = πc([pl, . . . , pk1 , p0]u), and let ai be
the homology class represented by ci for i = 1, 2. Then, a1, a2, c1, and c2 satisfy the
required conditions. ¤

Lemma 8.2. Let (f, eu, es) be a C2 non-degenerate framed PA diffeomorphism
on T 2. Suppose that there exist prime homology classes a1, a2 ∈ H1(T 2,Z) such that
a1 6= ±a2 and H∗

c (Cai
(eu)) 6= {0} for i = 1, 2. Then, there exist a′1, a

′
2 ∈ H1(T 2,Z),

c1 ∈ Ca′1(e
u)∩Per(C (f)), and c2 ∈ Ca′2(e

u)∩Per(C (f)) such that a′1 6= ±a′2, and c1 and
c2 are injective.

Proof. For each i = 1, 2 take the decomposition ai =
∑l

j=1 ai,j and the sequence
{ci,j ∈ Cai,j (e

u)}l
j=1 in Lemma 8.1. Notice that all ai,j are prime since all ci,j are

injective. If ai,j 6= ±ai,1 for some i = 1, 2 and j = 2, . . . , l, then, a′1 = ai,1, a′2 = ai,j ,
c1 = ci,1, and c2 = ci,j satisfy the required conditions.

Suppose ai,j = ±ai,1 for any i = 1, 2 and j = 2, . . . , l. Since all ai and ai,j are
prime, we have ai,j = ±ai for any i = 1, 2 and j = 1, . . . , l. In particular, the assumption
implies a1,1 6= ±a2,1. Hence, a′1 = a1,1, a′2 = a2,1, c1 = c1,1, and c2 = c2,1 satisfy the
required conditions. ¤

Let us prove Theorem C. Let (f, eu, es) be a C2 non-degenerate framed PA diffeo-
morphism on T 2. Suppose that there exist prime homology classes a1, a2 ∈ H1(T 2,Z)
such that a1 6= ±a2 and H∗

c (Cai
(eu)) 6= {0} for i = 1, 2.

Fix a C1 framed PA diffeomorphism (g, eu
∗ , e

s
∗) which is PA homotopic to (f, eu, es).

Since the set of PA diffeomorphisms is an open subset of Diff1(T 2), there exists a se-
quence {(gn, eu

n, es
n)} of C2 non-degenerate framed PA diffeomorphisms which converges
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to (g, eu
∗ , e

s
∗) in the C1-topology. By Theorem A, we may assume that Cai

(eu
n) 6= ∅ for

any i = 1, 2 and n ≥ 1.
By Lemma 8.2, there exist sequences {a1,n}n≥1 and {a2,n}n≥1 in H1(T 2,Z),

{c1,n}n≥1 and {c2,n}n≥1 in C (eu
n), and {mn}n≥1 of positive integers such that a1,n and

a2,n are prime homology classes with a1,n 6= ±a2,n, ci,n ∈ Cai,n
(eu

n), and Im ci,n is an
gmn

n -invariant embedded circle for any n ≥ 1 and i = 1, 2. By Lemma 5.8, if ϕ is a 1/80-
canonical coordinate for (eu

n, es
n) with ϕ([−1/3, 1/3]2) ∩ Im ci,n 6= ∅, then there exists

a C1-function h on [−1/2, 1/2] such that ϕ([−1/2, 1/2]2) ∩ Im ci,n = ϕ({(x, h(x)) | x ∈
[−1/2, 1/2]}). Hence, the same argument as the proof of Proposition 5.10 implies that a
subsequence of {Im ci,n} converges to an element Ci of E (S1, eu

∗) for each i = 1, 2. Since
a1,n 6= ±a2,n for any n, we obtain that C1 and C2 are mutually distinct but intersect
with each other. It implies that Eu

g is not uniquely integrable.

8.2. Proof of Theorem D.
We prepare two lemmas to prove Theorem D.

Lemma 8.3 (A variant of the Pliss lemma, Corollary 3.1 of [6]). For λ, λ1 ∈]0, 1[
with λ < λ1, suppose that a sequence {an}n≥0 of positive numbers satisfies

∏n
k=0 ak ≤ λn

for any sufficiently large n ≥ 1. Then, there exists a sequence {ni}i≥1 such that ni tends
to infinity as i →∞ and

∏n
k=ni

ak ≤ λn−ni
1 for any n ≥ ni. ¤

Lemma 8.4. Let h be a C1 orientation preserving diffeomorphism on S1 with
Per(h) =∅. Then, lim supn→∞(1/n) log Dhn(z) ≥ 0 for any z ∈ S1.

Proof. Suppose that the lemma does not hold. Then, there exist z0 ∈ S1, n0 > 0
and λ ∈]0, 1[ satisfying Dhn(z0) < λn for any n ≥ n0. Fix two constants λ1, λ2 such that
λ < λ1 < λ2 < 1. By Lemma 8.3, there exists a sequence {ni}i≥1 such that ni tends to
infinity and Dhn(hni(z0)) < λn

1 for any i and n.
Let I(z, δ) denote the interval ]z − δ, z + δ[ for z ∈ S1 and δ > 0. Choose δ > 0

such that Dh(z′)/Dh(z) < λ2/λ1 for any z ∈ S1 and z′ ∈ I(z, δ). We claim that
hn(I(hni(z0), δ)) ⊂ I(hni+n(z0), λn

2 δ) for any n ≥ 0 and i ≥ 1. Proof is by induction of
n. It is trivial for the case n = 0. Assume that hm(I(hni(z0), δ)) ⊂ I(hni+m(z0), λn

2 δ)
for any m = 0, . . . , n. Then, we have

Dhn+1(z) =
n∏

l=0

Dh(hl(z))
Dh(hl+ni(z0))

·Dhn+1(hni(z0)) <

(
λ2

λ1

)n+1

· λn+1
1 < λn+1

2

for any z ∈ I(hni(z0), δ). It implies hn+1(I(hni(z0), δ)) ⊂ I(hni+n+1(z0), λn+1
2 δ).

It is known that the positive orbit of any point of S1 converges to a Cantor set Λ
which is a minimal h-invariant set (see e.g. Theorem 8.4 of [7]). Choose i0 ≥ 1 so that
I(hni0 (z0), δ)∩Λ 6=∅. Then, I(hni0 (z0), δ) contains infinitely many points of the positive
orbit of hni0 (z0). Hence, hm(I(hni0 (z0), δ)) is a subset of I(hni0 (z0), δ) for some large
m. It implies the existence of periodic points, and hence, contradicts the assumption. ¤

Now, we prove Theorem D. Let (f, eu, es) be a C2 non-degenerate framed PA diffeo-
morphism and suppose that there exist k ≥ 1 and a prime homology class a ∈ H1(T 2,Z)
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such that Hk
c (Ca(eu)) 6= {0}. Fix a C1 framed PA diffeomorphism (g, eu

∗ , e
s
∗) which is PA

homotopic to (f, eu, es). Choose a sequence {(gi, e
u
i , es

i )} of C2 framed non-degenerate
PA diffeomorphisms which converges to (g, eu

∗ , e
s
∗) in the C1-topology. We may assume

that all (gi, e
u
i , es

i ) are PA homotopic to (f, eu, es). By the continuity of the PA split-
tings, there exists λ ∈]0, 1[ such that ‖Dg−n

i (eu
i (p))‖λ−n < ‖Dg−n

i (es
i (p))‖ < 1 for any

i ≥ 1, n ≥ 1, and p ∈ Fix2
h(gn

i ). Fix λ1 ∈]λ, 1[. By Theorems A and B, there exist
ci ∈ C (eu

i ) ∩ Per(C (gi)) and pi ∈ Per2h(gi) such that pi ∈ Im ci for every i. Lemma 8.3
implies that we may assume ‖Dg−n

i (eu
i (pi))‖ ≤ λn

1 for any i and n ≥ 1 by replacing pi

by another point in its orbit. By Lemma 3.16 there exists a sequence {Ci} of compact
subsets of T 2 such that Ci ∈ E (t<∞S1, eu

i ), pi ∈ Ci, gi(Ci) = Ci for any i. Proposition
5.10 implies that there exists an increasing sequence {ik} such that pik

converges to a
point p∞ and Cik

converges to an element C∞ of E (t<∞S1, eu
∗) with g(C∞) = C∞.

Remark that p∞ ∈ C∞ and ‖Dg−n(eu
∗(p∞))‖ ≤ λn

1 for all n ≥ 1. If C∞ contains no
periodic points, then it contradicts Lemma 8.4. If C∞ contains exactly one periodic
orbit, then C∞ is a union of 1-normally attracting circles for g by the same argument as
in Proposition 3.13. It contradicts that Cik

contains a repelling periodic point pik
and

converges to C∞. Therefore, C∞ contains at least two distinct periodic orbits.
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