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Abstract. It is proved that pointwise commuting formally normal operators

which are dominated by a single essentially normal operator are essentially normal and

essentially spectrally commuting. The question when essential normality of a polynomial

in an operator implies essential normality of that operator is solved in this way.

Furthermore, domination by essentially normal powers of formally normal operators

are studied and, as a consequence, extended versions of Nelson’s criterion for essential

spectral commutativity are proposed. Subsequent domination results ensuring joint

subnormality of systems of operators are proved. Several applications to multidimen-

sional moment problems are found.

Introduction.

The problem whether a pair of essentially selfadjoint operators which pointwise

commute may spectrally commute has had an interesting history. In the 1959 paper

[19] Nelson constructed his famous example (it has to be mentioned that a prototype

of this can be found in [14]) and gave su‰cient conditions for the problem to be

answered a‰rmatively. Since then there is a long-lasting demand for finding any kind

of competitive conditions (and, if possible, to clarify the circumstances); see [2] and

papers quoted therein. One of the possibilities is to work under the assumption of

inclusions of domains of involved operators like in [22]. Another is to maintain the

domination idea originated in [19]. In this paper we develop the domination approach

with an extensive use of the technique of bounded vectors (in fact, bounded vectors,

which is the simplest class of so called C
y-vectors, play a substantial role for most of

our presentation) and this makes our considerations as much independent of the spectral

theorem as possible. Besides its simplicity, which also means it to be easily tested, this

technique allows the operators in question to be filled up with bounded ones (cf. [18] and

[36 ]). The main results of this part of the paper, Theorems 10 and 12, are inspired by

[24].

As a step further we consider more subtle domination involving powers or poly-

nomials in operators, the case not studied so far. This results in producing diverse

forms of Nelson’s theorem of polynomial type. Applying this to the multidimensional

moment problem we come in particular to a substantially simplified version of [25,

Theorem 2.7] avoiding any use of Hilbert’s Nullstellensatz by the way.

It turns out that much of the results can be carried over to essentially normal

operators as those which generalize essentially selfadjoint ones. However, though it
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may look like it, this is not doubling the problem for essentially selfadjoint operators.

This is because it may happen [23] that

Aþ iBWAþ iB;

for two essentially selfadjoint operators A and B which pointwise commute on a

common domain and which closures A and B spectrally commute (this means that

while Aþ iB is normal Aþ iB is exclusively formally normal). The main reason for

engaging normality comes from our interest in subnormal operators, which, in turn,

goes back to mathematical physics, cf. [46 ]. As a consequence, we establish relevant

domination results for subnormal operators and get more applications to the complex

moment problem.

Preliminaries.

Let H be a Hilbert space (we consider complex spaces exclusively). Denote by

BðHÞ the C
�-algebra of all bounded linear operators on H (all the operators are linear

here). For a linear operator A in H denote by DðAÞ and RðAÞ its domain and range,

respectively; A� and A stand for the adjoint and the closure of A, respectively. The

graph norm of A is denoted by k � kA, i.e. k f k2A ¼ k f k2 þ kAf k2 for f A DðAÞ. Set

D
yðAÞ ¼ 7y

n¼1
DðAnÞ and

BaðAÞ ¼ f f A D
yðAÞ : bc > 0 Enb 0; kAnf ka cang; ab 0:

A vector f A D
yðAÞ is said to be a bounded vector1 of A (in short f A BðAÞ) if there

exists a > 0 such that f A BaðAÞ. We denote by QðAÞ the set of all f A D
yðAÞ such

that
P

y

n¼1 kA
nf k�1=n ¼ þy. Members of QðAÞ are called quasianalytic vectors of A.

It is clear that BðAÞHQðAÞ.

Recall that a linear subspace E of DðAÞ is said to be a core of A if the graph of A

is contained in the closure of the graph of the restriction Aj
E

of A to E. Here we

need the notion of core of a finite system A ¼ ðA1; . . . ;AkÞ of operators in H. First,

following [15], define the graph GðAÞ of A as

GðAÞ ¼
df

fð f ;A1 f ; . . . ;Ak f Þ; f A DðA1ÞV � � �VDðAkÞg:

A linear subspace E of DðA1ÞV � � �VDðAkÞ is said to be a core of A ¼ ðA1; . . . ;AkÞ

if GðA1; . . . ;AkÞHGðA1jE; . . . ;AkjEÞ. If E is a core of A, then GðA1; . . . ;AkÞ ¼

GðA1jE; . . . ;AkjEÞ. The following facts can be easily verified.

Proposition 1. Let A1; . . . ;Ak be operators in H ðkb 1Þ.

If A1; . . . ;Ak are closable, then GðA1; . . . ;AkÞHGðA1; . . . ;AkÞ. If A1; . . . ;Ak are

closed, then GðA1; . . . ;AkÞ is closed.

If E is a core of ðA1; . . . ;AkÞ and DðA1ÞV � � �VDðAkÞ is a core of Ai for a

fixed i A f1; . . . ; kg, then E is a core of Ai. If EHDðA1ÞV � � �VDðAkÞ is a core of

ðA1; . . . ;AkÞ, then E is a core of ðA1; . . . ;AkÞ.

1 the term can be found in [12]
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We say that two operators A and B in H pointwise commute on a linear subspace

E of H if EHDðABÞVDðBAÞ and ABf ¼ BAf for every f A E; saying ‘‘pointwise

commute’’ without ‘‘on . . .’’ refers to E ¼ DðABÞVDðBAÞ. We state now a criterion

for pointwise commutativity of closures of operators.

Proposition 2. If A and B are closable operators in H which pointwise commute on

a dense linear subspace E of H, and DðA�B�ÞVDðB�A�Þ is dense in H, then A and B

pointwise commute.

Proof. Set C ¼ AB� BA. Then B�A� � A�B�
HC �, which implies that C � is

densely defined. By the von Neumann theorem, C is closable. Since Cf ¼ 0 for f A E,

it must be Cf ¼ 0 for f A DðC Þ, which completes the proof. r

An operator A in H is said to be paranormal if kAf k2a k f k � kA2f k for all

f A DðA2Þ (cf. [16 ]). Paranormal operators need not be closable and the closures

of paranormal operators need not be paranormal (cf. [11]). A densely defined oper-

ator A in H is said to be formally normal (resp. hyponormal ) if DðAÞHDðA�Þ

and kA�f k ¼ kAf k (resp. kA�f ka kAf k) for f A DðAÞ. If A is formally normal and

DðAÞ ¼ DðA�Þ, then A is called normal. We say that a closable operator is essentially

normal if its closure is normal. Formally normal (resp. hyponormal) operators are

closable and their closures are formally normal (resp. hyponormal) as well. A densely

defined operator A in H is said to be subnormal if there exist a Hilbert superspace K

of H and a normal operator N in K such that AHN, i.e. DðAÞHDðNÞ and Af ¼ Nf

for f A DðAÞ. Subnormal operators are hyponormal and hyponormal operators are

paranormal.

Let D be a dense linear subspace of H. Denote by LðDÞ the algebra of all

operators in H with invariant domain D. The symbol ID stands for the identity

operator on D. Denote by L
#ðDÞ the �-algebra of all A A LðDÞ for which there exists

A# A LðDÞ such that hAf ; gi ¼ h f ;A#gi for all f ; g A D; the operator A# is unique and

the mapping A 7! A# is an involution in L
#ðDÞ. An operator N A L

#ðDÞ is formally

normal (in H) if and only if N #N ¼ NN #.

We now formulate some properties of a formally normal operator which are forced

by a related normal one.

Proposition 3. If N is a normal operator in H and A is a formally normal operator

in H such that NHA, then N ¼ A.

Proof. Indeed, we have DðAÞHDðA�ÞHDðN �Þ ¼ DðNÞHDðAÞ. r

Proposition 4. Let A be a formally normal operator in H and let E be a dense

linear subspace of DðAÞ such that Aj
E
is essentially normal. Then E is a core of A, A is

normal, DðAnÞ ¼ DðA�nÞ for nb 0, D
yðAÞ ¼ D

yðA�Þ and A pointwise commutes on

D
yðAÞ with A�. Moreover2, if E is the spectral measure of A, then BaðAÞ ¼ BaðA

�Þ ¼

RðEðfz A C ; jzja agÞÞ for ab 0, and BðAÞ is a core of A.

2cf. [17] for a prototype of this formula.
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Proof. Since A is formally normal and Aj
E
HA, Proposition 3 gives us Aj

E
¼ A,

so A is normal. Without loss of generality we can assume that A is closed. Since

An ¼

ð

C

znEðdzÞ and A�n ¼

ð

C

znEðdzÞ for nb 0;ð1Þ

we get DðAnÞ ¼ DðA�nÞ for nb 0 (and consequently D
yðAÞ ¼ D

yðA�Þ) as well as3

A�Af ¼ AA�f for f A D
yðAÞ. By (1), BaðA

�Þ ¼ BaðAÞ. If f A BaðAÞ, then

lim
n!y

ð

C

jzj2nhEðdzÞ f ; f i

� �1=ð2nÞ

¼ lim
n!y

kAnð f Þk1=na a;

so hEðfz A C ; jzj > agÞ f ; f i ¼ 0 (cf. [26, page 73]), which in turn is equivalent to

f A RðEðfz A C ; jzja agÞÞ. The converse implication is easily seen to be true. Basing

on the equality BðAÞ ¼ 6y

n¼1
RðEðfz A C ; jzja ngÞÞ one can show that BðAÞ is a core

of A, which completes the proof. r

We conclude this section with a criterion for essential normality.

Theorem 5. Assume that N is a densely defined operator in H and E is a dense

subspace of H such that

(i) EHDðN �NÞVDðNN �Þ,

(ii) N �Nj
E
¼ NN �j

E
,

(iii) the operator N �Nj
E

is essentially selfadjoint.

Then N is closable, N is a normal operator and E is a core of N.

Proof. Since EHDðN �Þ and E ¼ H, the operator N is closable. Set

C ¼ N �Nj
E
. On account of (i), (ii) and (iii), C is a selfadjoint operator such that

CHN �N and CHNN �. Since the operators N �N and NN � are selfadjoint (cf. [47,

Theorem 5.39]), we conclude that N �N ¼ C ¼ NN �, which in turn implies that N is

normal (cf. [47, Proposition, page 125]) and

E is a core of N �N:ð2Þ

To show that E is a core of N, take f A DðN �NÞ. Then, by (2), there exists

f fng
y
n¼1 HE such that f ¼ limn!y fn and N �Nf ¼ limn!y N �Nfn. Since

kNð f � fnÞk
2 ¼ hN �Nð f � fnÞ; f � fni; nb 1;

we get limn!y Nfn ¼ Nf . This shows that ðNj
DðN �NÞÞ

� H ðNj
E
Þ� HN. However

DðN �NÞ is a core of N (cf. [47, Theorem 5.39]), so E is a core of N. r

Domination.

Domination and pointwise commutativity.

Given two operators A and B in a Hilbert space H and a linear subspace E

of DðAÞVDðBÞ, we say that A dominates B on E (this notion is widely used in the

3This fact does not depend on the spectral theorem, because if C is a formally normal operator and

DðC �CÞVDðCC �Þ ¼ H, then C �Cf ¼ CC �f for f A DðC �CÞVDðCC �Þ.

J. Stochel and F. H. Szafraniec408



perturbation theory and known there as A-boundedness of B on E) if there exists

c > 0 such that kBf ka cðk f k þ kAf kÞ for every f A E. In this section we discuss the

influence of the domination relation on pointwise commutativity of two operators on

the set of C
y-vectors of the dominator. By the way, we obtain the relationship

between bounded vectors of such operators (see also Lemma 38). We begin with a fact

of a general nature which connects the domination with the inclusion of domains of

operators in question. Its proof (based on the closed graph theorem) is left to the

reader.

Proposition 6. Assume A and B are closable operators in a Hilbert space H.

(i) If DðAÞHDðBÞ, then there exists c > 0 such that kBf ka cðk f k þ kAf kÞ for

every f A DðAÞ.

(ii) If DðAÞHDðBÞ and there exists c > 0 such that

kBf ka cðk f k þ kAf kÞ; f A DðAÞ;

then DðAÞHDðBÞ and kBf ka cðk f k þ kAf kÞ for f A DðAÞ.

The following theorem opens a series of domination results. It corresponds

somehow to the commutative part of Lemma 5.2 in [19].

Theorem 7. Let A be a formally normal operator in H, B be a densely defined

operator in H and E be a dense linear subspace of H. Assume that

(a) EHDðAÞVDðBÞVDðB�Þ and hAf ;Bgi ¼ hB�f ;A�gi for f ; g A E,

(b) Aj
E

is essentially normal in H,

(c) there exists c > 0 such that kBf ka cðk f k þ kAf kÞ for f A E.

Then B is closable and

(i) DðAnþ1ÞHDðA�nBÞVDðBA�nÞ, BDðAnþ1ÞHDðAnÞ and BA�nf ¼ A�nBf for

nb 0 and f A DðAnþ1Þ,

(ii) D
yðAÞHDðA�ÞVDðBÞ, A�

D
yðAÞHD

yðAÞ and BDyðAÞHD
yðAÞ,

(iii) A�Bf ¼ BA�f for f A D
yðAÞ,

(iv) kBf ka cðk f k þ kAf kÞ for f A DðAÞ,

(v) BðAÞHBðBÞ,

(vi) the operators A, A� and B leave the spaces BaðAÞ, ab 0, and BðAÞ invariant;

Aj
BaðAÞ;BjBaðAÞ A BðBaðAÞÞ and ABf ¼ BAf for f A BðAÞ.

Proof. B is closable because DðB�Þ ¼ H. By (b), A is normal and A ¼ Aj
E
(cf.

Proposition 4). This and (c) lead (via Proposition 6) to DðAÞHDðBÞ and (iv). Since

DðAkÞ ¼ DðA�kÞ, we get A�k
DðAkþ1ÞHDðA�Þ ¼ DðAÞHDðBÞ, so

DðAkþ1ÞHDðBA�kÞ; kb 0:ð3Þ

We now show that

hAf ;Bgi ¼ hB�f ;A�gi; f A E; g A DðAÞ:ð4Þ

Indeed, since E is a core of A, there exists a sequence fgng
y
n¼1 HE such that gn ! g

and Agn ! Ag as n ! y. By (c) and formal normality of A we have Bgn ! Bg and

A�gn ! A�g as n ! y. This and (a) imply the equality (4).
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The condition (i) will be proved by induction. The case n ¼ 0 is done. Assume

(i) holds for a fixed nb 0. Let f A DðAnþ2Þ. Then clearly f A DðAnþ1Þ and conse-

quently, by virtue of the induction assumption, (4) and (3), we obtain

hA�nBf ;Ahi ¼ hBA�nf ;Ahi ¼ hA�ðnþ1Þf ;B�hi ¼ hBA�ðnþ1Þf ; hi; h A E:

Since E is a core of A, we get A�nBf A DðA�Þ (equivalently: f A DðA�ðnþ1ÞBÞ) and

BA�ðnþ1Þf ¼ A�ðnþ1ÞBf . In particular Bf A DðA�ðnþ1ÞÞ ¼ DðAnþ1Þ.

(vi) According to (ii) and Proposition 4, BaðAÞ is closed and BaðAÞHDðBÞ.

Hence, by the closed graph theorem, the operator Bj
BaðAÞ : BaðAÞ ! H is bounded. Set

jðaÞ ¼ kBj
BaðAÞk. If f A BaðAÞ, then (ii) and (iii) lead to

kAnBf k ¼ kA�nBf k ¼ kBA�nf ka jðaÞkA�nf k ¼ jðaÞkAnf k; nb 0;

so Bf A BaðAÞ. In consequence, Bj
BaðAÞ belongs to BðBaðAÞÞ. From (iii) we get

ðAj
BaðAÞÞ

�
Bj

BaðAÞ ¼ Bj
BaðAÞðAjBaðAÞÞ

�. Since Aj
BaðAÞ is normal, the Fuglede theorem

yields ABj
BaðAÞ ¼ BAj

BaðAÞ (ab 0), which completes the proof of (vi).

(v) comes from (vi) immediately. r

It is worthwhile to point out that if A is a formally normal operator in H, B is

a densely defined operator in H and E is a dense linear subspace of H such that

EHDðBÞVDðAB�ÞVDðB�AÞ and AB�f ¼ B�Af for f A E, then A and B satisfy the

condition (a) of Theorem 7.

The following is a direct consequence of Proposition 6 and Theorem 7.

Corollary 8. If A is a normal operator in H, B is a closed densely defined

operator in H and E is a dense linear subspace of H such that

1� DðAÞHDðBÞ,

2� EHDðAÞVDðB�Þ and hAf ;Bgi ¼ hB�f ;A�gi for f ; g A E,

3� E is a core of A,

then the conditions (i), (ii), (iii), (iv), (v) and (vi) of Theorem 7 hold.

Lemma 9. Let A be formally normal and B be hyponormal, both in H, and let E be

a dense linear subspace of H such that EHDðAÞVDðBÞ. Suppose that the operators A

and B satisfy conditions (b) and (c) of Theorem 7. If moreover one of the following two

conditions holds

(i) hAf ;B�gi ¼ hBf ;A�gi for f ; g A E,

(ii) hAf ;Bgi ¼ hB�f ;A�gi for f ; g A E,

then DðAÞHDðBÞ, BðAÞHBðBÞ, the operators A, A�, B and B� leave the spaces

D
yðAÞ and BðAÞ invariant, BaðAÞ reduces B to a bounded hyponormal operator ðab 0Þ,

ABf ¼ BAf and A�Bf ¼ BA�f for f A D
yðAÞ.

Proof. It follows from (b) and (c), as in the proof of Theorem 7, that

DðAÞHDðBÞ and (because B is hyponormal)

kB�f ka kBf ka cðk f k þ kAf kÞ; f A DðAÞ:ð5Þ

Assume (i). By (5), we can apply Theorem 7 to the triplet ðA;B�
;EÞ. Hence the

operators A, A� and B� leave the spaces D
yðAÞ, BðAÞ and BaðAÞ invariant,
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A�B�f ¼ B�A�f ; f A D
yðAÞð6Þ

and AB�f ¼ B�Af for f A BðAÞ. The latter implies that hAf ;Bgi ¼ hB�f ;A�gi for

f ; g A BðAÞ. This, Proposition 4 and (5) enable us to apply Theorem 7 to the triplet

ðA;B;BðAÞÞ. In consequence, BðAÞHBðBÞ, the operator B leaves D
yðAÞ, BðAÞ and

BaðAÞ invariant, and A�Bf ¼ BA�f for f A D
yðAÞ. Since BðDyðAÞÞHD

yðAÞ, (6)

leads to ABf ¼ BAf for f A D
yðAÞ. As BaðAÞ is invariant for B and B�, BaðAÞ

reduces B to a bounded hyponormal operator.

The same arguments come into force in the case (ii) (first we apply Theorem 7 to

ðA;B;EÞ and then to ðA;B�;BðAÞÞ). The details are left to the reader. r

It is right time to relate our results to those of [22]. Notice that some parts of

Lemma 9 and Theorems 10 and 12 can be derived from what is in [22]. However, we

have made our proofs independent of [22] because we want them to be consistent with

the main theme of the paper: domination. Let us mention that we can retrieve in this

way information on cores of operators in question. Another favouring circumstance

is that it is just domination what can be explicitly assumed in the case of moment

problems.

Domination and spectral commutativity.

Recall that normal operators in a Hilbert space H are said to spectrally commute if

their spectral measures commute. We now formulate the main criterion for the spectral

commutativity of normal operators one of which dominates others. Its proof is based

on Lemma 9.

Theorem 10. Assume that A0;A1; . . . ;Ak ðkb 1Þ are formally normal operators in

H and Ei; j, 0a i < ja k, are dense linear subspaces of H such that

(i) E0; j HDðA0ÞVDðAjÞ and either hA0 f ;A
�
j gi ¼ hAj f ;A

�
0gi, f ; g A E0; j, or

hA0 f ;Ajgi ¼ hA�
j f ;A

�
0gi, f ; g A E0; j, for j ¼ 1; . . . ; k;

(ii) either Ei; j HDðAiAjÞVDðAjAiÞ and AiAj f ¼ AjAi f , f A Ei; j, or Ei; j H
DðAiA

�
j ÞVDðA�

j AiÞ and AiA
�
j f ¼ A�

j Ai f , f A Ei; j, for 1a i < ja k;

(iii) A0jE0; j is essentially normal for j ¼ 1; . . . ; k;

(iv) there is c > 0 such that kAj f ka cðk f k þ kA0 f kÞ for f A E0; j and j ¼ 1; . . . ; k.

Then A0;A1; . . . ;Ak are spectrally commuting normal operators. Moreover, if E ¼ E0; j

for all j ¼ 1; . . . ; k, then E is a core of any subsystem of fA0;A1; . . . ;Akg.

Proof. Set H1 ¼ B1ðA0Þ and Hn ¼ BnðA0ÞmBn�1ðA0Þ for nb 2. By Propo-

sition 4 and Lemma 9, H ¼ 0y

n¼1
Hn, the closed linear space Hn reduces Ai to a

bounded normal operator Ni;n A BðHnÞ and N0;nNi;n ¼ Ni;nN0;n for all nb 1 and i ¼

0; . . . ; k. If 1a i < ja k and AiAj f ¼ AjAi f for f A Ei; j, then Ni;nNj;n ¼ Nj;nNi;n for

nb 1 (use Proposition 2). Likewise, if AiA
�
j f ¼ A�

j Ai f for f A Ei; j, then Ni;nN
�
j;n ¼

N �
j;nNi;n, and consequently, by the Fuglede theorem, Ni;nNj;n ¼ Nj;nNi;n. Hence, the

normal operators 0y

n¼1
Ni;n, i ¼ 0; . . . ; k, spectrally commute (because spectral measures

of appropriate summands commute). Since 0y

n¼1
Ni;n HAi, Proposition 3 yields Ai ¼

0y

n¼1
Ni;n, so A0; . . . ;Ak are spectrally commuting normal operators.

Suppose that E0; j ¼ E for all j ¼ 1; . . . ; k. Take a finite sequence of integers

0a n1 < � � � < nma k ð1ama kþ 1Þ. Let E be the spectral measure of the system
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ðA0;A1; . . . ;AkÞ, i.e. Aj ¼
Ð
C

kþ1 zjEðdz0; dz1; . . . ; dzkÞ for j ¼ 0; 1; . . . ; k (cf. [8]). Set

Dn ¼ 7k

j¼0
fðz0; z1; . . . ; zkÞ A C

kþ1
: jzjja ng, nb 1, and define a dense linear subspace

X of H via X ¼ 6y

n¼1
RðEðDnÞÞ. By Lemma 9, XHDðA0ÞV � � �VDðAkÞ ¼ DðA0Þ.

If f A DðAn1
ÞV � � �VDðAnm

Þ, then clearly X C EðDnÞ f ! f and Anj
EðDnÞ f ! Anj

f as

n ! y for j ¼ 1; . . . ;m. This implies

GðAn1
; . . . ;Anm

ÞHGðAn1
j
X
; . . . ;Anm

j
X
Þ:ð7Þ

Take h A X. Since, by (iii), E is a core of A0, there exists a sequence fhng
y
n¼1 HE

such that h ¼ limn!y hn and A0h ¼ limn!y A0hn. This and (iv) imply that Anj
h ¼

limn!y Anj
hn for j ¼ 1; . . . ;m. In this way we have proved that

GðAn1
j
X
; . . . ;Anm

j
X
ÞHGðAn1

j
E
; . . . ;Anm

j
E
Þ:ð8Þ

Combining (7) and (8) we get GðAn1
; . . . ;Anm

ÞHGðAn1
j
E
; . . . ;Anm

j
E
Þ, which completes the

proof. r

Remark 11. In fact we have proved the following fact (see the second part of the

proof of Theorem 10 and apply Proposition 6): if A0;A1; . . . ;Ak are spectrally com-

muting normal operators such that DðA0ÞHDðAiÞ for all i ¼ 1; . . . ; k, and E is a core of

A0, then E is a core of any subsystem of fA0;A1; . . . ;Akg.

The next result is a direct consequence of Proposition 6 and Theorem 10.

Theorem 12. Let A0 be a normal operator in H, A1; . . . ;Ak be closed formally

normal operators in H and Ei; j, 0a i < ja k, be dense linear subspaces of H. Assume

that

(i) E0; j HDðA0ÞHDðAjÞ and either hA0 f ;A
�
j gi ¼ hAj f ;A

�
0gi, f ; g A E0; j, or

hA0 f ;Ajgi ¼ hA�
j f ;A

�
0gi, f ; g A E0; j, for j ¼ 1; . . . ; k;

(ii) either Ei; j HDðAiAjÞVDðAjAiÞ and AiAj f ¼ AjAi f , f A Ei; j, or Ei; j H
DðAiA

�
j ÞVDðA�

j AiÞ and AiA
�
j f ¼ A�

j Ai f , f A Ei; j, for 1a i < ja k;

(iii) E0; j is a core of A0 for j ¼ 1; . . . ; k.

Then A0;A1; . . . ;Ak are spectrally commuting normal operators. Moreover, if E ¼ E0; j

for all j ¼ 1; . . . ; k, then E is a core of any subsystem of fA0;A1; . . . ;Akg.

The particular case of Theorem 12 for symmetric operators is stronger than

Lemma 2 of [24] and Proposition 2 of [31] (which, in turn, generalizes the result of

[24]). It di¤ers from those results by having assumed here weak commutativity instead

of pointwise one as well as by allowing varying subspaces Ei; j to constitute a core

exclusively for i ¼ 0 (as compared with [31]) and by having gained the core conclusion.

Remark 13. In addition to the circumstances of Theorem 10 (and, in a sense, of

Theorem 12) the fact that the closed support of the spectral measure E of the system

ðA0; . . . ;AkÞ of spectrally commuting normal operators is contained in the semianalytic

set 7k

j¼1
Zj, where Zj ¼ fðz0; . . . ; zkÞ A C

kþ1
; jzjj

2
a bð1þ jz0j

2Þg, is equivalent to the

domination condition (iv) appearing therein (the smallest nonnegative constants b and

c are related to each other as follows: c2a ba 2c2). Indeed, we see that: kAj f k
2
a

bðk f k2 þ kA0 f k
2Þ, f A DðA0Þ, if and only if

Ð
C

kþ1ðbð1þ jz0j
2Þ � jzjj

2ÞhEðdzÞ f ; f ib 0,
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f A DðA0Þ, if and only if (as EA0 HA0E)
Ð
s
ðbð1þ jz0j

2Þ � jzjj
2ÞhEðdzÞ f ; f ib 0, s a

Borel subset of C kþ1 and f A DðA0Þ, if and only if hEðC kþ1nZjÞ f ; f i ¼ 0, f A DðA0Þ,

if and only if EðC kþ1nZjÞ ¼ 0. Roughly speaking, Theorem 10 guarantees essential

spectral commutativity of a finite system of (formally) normal operators in case it is

dominated by some (essentially) normal operator. Conversely, if A1; . . . ;Ak are spec-

trally commuting normal operators, then the operator A0 ¼
df

A�
1A1 þ � � � þ A�

k
Ak is self-

adjoint (because A0 ¼
Ð
C

kðjz1j
2 þ � � � þ jzkj

2ÞEðdzÞ, where E is the spectral measure of

the system ðA1; . . . ;AkÞ), the operators A0;A1; . . . ;Ak spectrally commute and finally A0

dominates every Ai on DðA0Þ, i ¼ 1; . . . ; k (because DðA0ÞHDðAiÞ).

Remark 14. The conditions (i) and (ii) of Theorem 10 are apparently necessary for

the operators A0;A1; . . . ;Ak to be spectrally commuting. Indeed, the spaces E0; j ¼

DðA0ÞVDðAjÞ and Ei; j ¼ DðAiAjÞVDðAjAiÞ (resp. Ei; j ¼ DðAiA
�
j ÞVDðA�

j AiÞ), i; jb 1

being fixed, are the largest spaces satisfying conditions (i) and (ii) (use the spectral

measure of the system ðA0; . . . ;AkÞ mimicking a part of the proof of Theorem 10). It

turns out that none of the remaining conditions (iii) and (iv) of Theorem 10 can be

omitted without spoiling its conclusion. Let us discuss the case k ¼ 2 in detail.

In [19] two pointwise commuting symmetric operators A0;A1 A LðDÞ, acting in a

Hilbert space H, whose closures A0;A1 are selfadjoint but not spectrally commuting are

constructed. Thus the operators A0;A1 satisfy all the assumptions of Theorem 10 (with

E0;1 ¼ D) except for (iv). As is shown in [42, Section 16], the pair ðA0;A1Þ does not

extend to any pair of spectrally commuting selfadjoint operators even in a larger Hilbert

space.

Let A A L
#ðDÞ be a formally normal operator, which is not subnormal (cf. [10],

[30]; it is possible to choose A to be �-cyclic, see [33]). Set Ai ¼ A for i ¼ 0; 1. Then

the formally normal operators A0 and A1 satisfy all the assumptions of Theorem 10

except (iii). In this particular case there is no pair of spectrally commuting normal

operators (even in a larger Hilbert space) which extends ðA0;A1Þ. Another possibility

for this is to consider A0 ¼ A and A1 ¼ ð1=2ÞðAþ A#Þ; the conclusion is as before,

however now A1 is symmetric. Below we present a more advanced example.

Example 15. By [33, Proposition 7.3] there exist pointwise commuting symmetric

operators A;B A LðDÞ, acting in a Hilbert space H, such that

(A1) the pair ðA;BÞ does not extend to any pair of spectrally commuting self-

adjoint operators in a larger Hilbert space,

(A2) BðB� A2Þ ¼ 0.

Set A0 ¼ A2 and A1 ¼ B. Then A0A1 ¼ A1A0 and, according to (A2), we have

kA1 f k
2 ¼ hA0 f ;A1 f ia kA0 f k kA1 f k; f A D;

which implies that kA1 f ka kA0 f ka k f k þ kA0 f k for f A D. This means that

the operators A0;A1 satisfy all the assumptions of Theorem 10 (with E0;1 ¼ D) except

for (iii). Indeed, suppose contrary to our claim that A2 ¼ A0 is essentially self-

adjoint. Then, by Theorem 24, A and B are spectrally commuting selfadjoint operators,

which contradicts (A1). Notice however that the pair ðA0;A1Þ extends to a pair of

spectrally commuting selfadjoint operators in a larger Hilbert space; this is because

A1ðA1 � A0Þ ¼ 0 (cf. [9, Theorem 3]; see also [33, Proposition 5.3]).
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Domination in higher powers.

Polynomially essentially normal operators.

In this section we try to answer the following question: when does (essential)

normality of a complex polynomial in an operator imply essential normality of the

operator in question? Notice that a very special case of Theorem 16 below (namely

saying that if A is a closed symmetric operator and A2 is selfadjoint, then A is itself

selfadjoint) has been used in the proof of [21, Theorem 2].

The symbol C ½X1; . . . ;Xk� stands as usual for the ring of all polynomials in k

commuting formal variables X1; . . . ;Xk with complex coe‰cients; in the case k ¼ 1 we

write simply C ½X �. For p A C ½X �, we define p� A C ½X � via p�ðzÞ ¼ pðzÞ, z A C .

Theorem 16. If A is a formally normal operator in H such that pðAÞ is normal

for some polynomial p A C ½X � of degree nb 1, then for every q A C ½X � with deg qa n,

the operator qðAÞ is essentially normal, D
yðAÞ is a core of qðAÞ, qðAÞ ¼ qðAÞ and

qðAÞ� ¼ q�ðA�Þ. Moreover, the operator An is normal.

Proof. First we prove that A is normal. Using an induction argument one can

show that D
yðpðAÞÞHDðAknÞ for every kb 1, so D

yðpðAÞÞ ¼ D
yðAÞ (this is true

for any linear operator A). By Proposition 4, the linear space E0;1 ¼
df

D
yðAÞ is a core

of A0 ¼
df
pðAÞ. Since DðpðAÞÞHDðAÞ, the triplet ðA0;A1;E0;1Þ, where A1 ¼

df
A, satisfies

all the assumptions of Theorem 12. Hence A is normal.

Take a polynomial q A C ½X � with deg qa n. Since pðAÞ ¼ pðAÞ (use Proposition

3), we see that pðAÞ and qðAÞ are spectrally commuting normal operators such that

DðpðAÞÞHDðqðAÞÞ. Applying Remark 11 to the triplet ðA0;A
0
1;E0;1Þ with A 0

1 ¼
df

qðAÞ,

we conclude that D
yðAÞ is a core of qðAÞ. Thus qðAÞ ¼ qðAÞj

D
yðAÞ H qðAÞH qðAÞ,

which means that the operator qðAÞ ¼ qðAÞ is normal and D
yðAÞ is a core of qðAÞ.

Since q�ðA�ÞH qðAÞ� ¼ ðqðAÞÞ� ¼ qðAÞ� and all these operators are normal, Proposition

3 gives us qðAÞ� ¼ q�ðA�Þ.

In view of the previous part of the proof, it su‰ces to show that if B is a closable

operator in H such that B is paranormal and pðBÞ is closed, then Bn is closed (this is

a more general result than we need). Suppose that sequences f fkg
y
k¼1 HDðBnÞ and

fBnfkg
y
k¼1 are convergent to vectors f and g, respectively. Since the graph norm of Bn

is equivalent to the norm ð
Pn

i¼0 kB
ið�Þk2Þ1=2 (cf. [41, Proposition 6]), the sequence

fpðBÞ fkg
y
k¼1 is convergent. Thus, by the closedness of pðBÞ, f A DðpðBÞÞ ¼ DðBnÞ.

However the operator Bn is closed as the nth power of the paranormal operator B

(cf. [41, Proposition 6]). Hence g ¼ Bnf ¼ Bnf , which shows that Bn is closed. The

proof is complete. r

Even for bounded operators Theorem 16 is false if A itself is not (formally)

normal: take the rank one operator A ¼ en f with e; f A H such that he; f i ¼ 1 and

kek k f k0 1; then A is not normal though A2 � A ¼ 0.

Lemma 17. If A is a formally normal operator in H such that pðAÞ is essentially

normal, pðAÞ is closed and DðAnÞHDðpðAÞ�Þ for some polynomial p A C ½X � of degree

nb 1, then for every q A C ½X � with deg qa n, the operator qðAÞ is essentially normal,

DðAnÞ is a core of qðAÞ, qðAÞ ¼ qðAÞ and qðAÞ� ¼ q�ðA�Þ.
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Proof. Notice first that according to pðAÞH pðAÞ, we have

Dð pðAÞÞ ¼ DðAnÞHDðpðAÞ�ÞHDðpðAÞ�Þ ¼ DðpðAÞÞ;

so pðAÞ ¼ pðAÞ and consequently pðAÞ is normal. By Theorem 16, the operator A is

normal as well. Let q A C ½X � be a polynomial of deg qa n. Since A0 ¼
df
pðAÞ and

A1 ¼
df

qðAÞ are spectrally commuting normal operators such that DðpðAÞÞHDðqðAÞÞ,

we can apply Remark 11 to the triplet ðA0;A1;E0;1Þ with E0;1 ¼
df
DðAnÞ. We conclude

that DðAnÞ is a core of qðAÞ. Now we can follow arguments used in the middle part of

the proof of Theorem 16. r

Let us recall that formally normal operators need not be subnormal (cf. [10], [30],

[33]). We show now that the property of being essentially normal is inherited by roots,

at least within the class of subnormal and formally normal operators.

Proposition 18. If A is a subnormal and formally normal operator in H such

that pðAÞ is essentially normal for some polynomial p A C ½X � of degree nb 1, then the

conclusion of Lemma 17 holds true.

Proof. Suppose that pðXÞ ¼
Pn

j¼0 pjX
j with pn 0 0. By [35, Proposition 5.3]

(see also [29] for the case of symmetric operators) pðAÞ is closed. Let N be a normal

extension of A. Then clearly A j
HN j. Moreover, if f A DðAnÞ, then

h f ; pðAÞhi ¼
X

n

j¼0

pjh f ;A
jhi ¼

X

n

j¼0

pjh f ;N
jhi ¼

X

n

j¼0

pjN
�j f ; h

* +

; h A DðAnÞ;

so f A DðpðAÞ�Þ. Applying Lemma 17 completes the proof. r

In the case of symmetric operators (which always have selfadjoint extensions

possibly in larger Hilbert spaces; cf. [1, §111 Theorem 1] and [40, Proposition 1])

Proposition 18 simplifies to

Corollary 19. If A is a symmetric operator in H such that pðAÞ is essentially

selfadjoint for some polynomial p A R½X � of degree nb 1, then for every q A R½X � with

deg qa n, the operator qðAÞ is essentially selfadjoint, DðAnÞ is a core of qðAÞ and

qðAÞ ¼ qðAÞ.

Notice that essential selfadjointness of A follows from that of pðAÞ ( p A R½X �)

via the following simple arguments: since deg pb 1, there exists x A C nR such that

pðxÞ A C nR (because otherwise pðCÞHR which, by analyticity of p, implies p1

constant, a contradiction) and, in consequence, pðxÞ A C nR; hence NðA� � xÞH

NðpðAÞ� � pðxÞÞ ¼ f0g and NðA� � xÞHNðpðAÞ� � pðxÞÞ ¼ f0g, which means that

the defect indices of A are both equal to 0. However, this simple argument is not

applicable in the context of Proposition 18.

Corollary 19 says in particular that if An is selfadjoint then so are all the powers

A;A2
; . . . ;An�1. For A cyclic this can be get directly from the L

2-model of the

symmetric operator A, the fact which has been overlooked in [7], Theorem 1, where

the so called index of determinacy of a determinate positive measure on R is con-

sidered.
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Corollary 20. Let A be a formally normal operator in H such that An is

essentially normal for some nb 1. If either AðDðAÞÞHDðAÞ or An is formally normal,

then the conclusion of Lemma 17 holds true.

Proof. Suppose that AðDðAÞÞHDðAÞ. Then, by part (iii) of [41, Proposition

6], the operator A0 ¼
df
An dominates A1 ¼

df
A on E0;1 ¼

df
DðAÞ. Since hA0 f ;A

�
1gi ¼

hAnþ1f ; gi ¼ hA1 f ;A
�
0gi for all f ; g A E0;1, Theorem 10 implies that A is normal.

Assume now that An is formally normal. By part (iv) of [41, Proposition 6], the

operator An is closed, so An
HAn. This and Proposition 3 imply that An ¼ An and

consequently that An is normal. It follows from Theorem 16 that A is normal.

In both cases we can apply Proposition 18, which completes the proof. r

Corollary 21. If D is a dense linear subspace of H and A A LðDÞ is formally

normal, then the following conditions are equivalent for every nb 1

(i) An is essentially normal,

(ii) A i is essentially normal for every i ¼ 1; . . . ; n,

(iii) A is essentially normal and D is a core of every A i, i ¼ 1; . . . ; n,

(iv) A is essentially normal and D is a core of An.

Proof. The implications (i) ) (ii) and (i) ) (iii) are true due to Corollary 20 while

(ii) ) (i) and (iii) ) (iv) are trivial. If (iv) holds, then An is normal and, in conse-

quence, An ¼ ðAnj
D
Þ� ¼ An, so An is normal, which gives us (i). r

Domination in powers.

The two theorems which follow extend applicability of Theorem 10 to the case

when either some power of the dominator is essentially normal or the dominator itself,

still being essentially normal, is a power of some formally normal operator. First we

prove

Lemma 22. Let D be a dense linear subspace of H, A0;A1; . . . ;Ak A LðDÞ be

pointwise commuting operators and c > 0 be such that

(a) kAi f ka cðk f k þ kA0 f kÞ for f A D and i ¼ 1; . . . ; k.

Then for every p A C ½X0;X1; . . . ;Xk�, there exists cp > 0 such that

(i) kpðA0;A1; . . . ;AkÞ f ka cp
Pdeg p

j¼0 kA j
0 f k for f A D.

If A0 is paranormal, then for every nb 0 and for every polynomial p with deg pa n there

exists dn;p > 0 such that

(ii) kpðA0;A1; . . . ;AkÞ f ka dn;pðk f k þ kAn
0 f kÞ for f A D.

Proof. (i) Set Zþ ¼ f0; 1; 2; . . .g. It su‰ces to show that

kAaf ka cjaj
Xjaj

j¼0

kA j
0 f k; f A D; a A Z

kþ1
þ ;ð9Þ

where A
a ¼ Aa0

0 � � �Aak

k
and jaj ¼ a0 þ � � � þ ak for a ¼ ða0; . . . ; akÞ A Z

kþ1
þ . The

proof is by induction on n ¼ jaj. Assume (9) holds for a fixed nb 0. If a A Z
kþ1
þ

and jaj ¼ nþ 1, then there exists i A f0; . . . ; kg such that aib 1. Set a
0 ¼ ða0; . . . ;

ai�1; ai � 1; aiþ1; . . . ; akÞ A Z
kþ1
þ . Since ja 0j ¼ n, (a) yields
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kAaf k ¼ kAiA
a
0

f ka ~ccðkAa
0

f k þ kAa
0

A0 f kÞa 2~cccn
Xnþ1

j¼0

kA j
0 f k; f A D;

where ~cc ¼ maxf1; cg. This completes the proof of (9) and, in consequence, of (i).

(ii) Since A0 is paranormal, one can deduce from part (iii) of Proposition 6 in

[41] that there exists bn > 0 such that
Pn

j¼0 kA
j
0 f ka bnðk f k þ kAn

0 f kÞ for every f A D.

This and (i) complete the proof. r

Theorem 23. Let D be a dense linear subspace of H and A0;A1; . . . ;Ak A LðDÞ

be formally normal operators ðkb 1Þ satisfying conditions (i), (ii) and (iv) of Theorem

10 with Ei; j ¼ D, 0a i < ja k. If the operator An
0 is normal for some nb 1, then the

operators A0;A1; . . . ;Ak pointwise commute, and for any choice p1; . . . ; ps of complex

polynomials in kþ 1 variables with deg pia n, the operators p1ðA0;A1; . . . ;AkÞ; . . . ;

psðA0;A1; . . . ;AkÞ are normal, they spectrally commute and D is a core of the system

ð p1ðA0;A1; . . . ;AkÞ; . . . ; psðA0;A1; . . . ;AkÞÞ.

Proof. It follows from Corollary 21 and Theorem 10 that A0;A1; . . . ;Ak

are spectrally commuting normal operators. This in turn implies that the operators

A0;A1; . . . ;Ak pointwise commute. Let E be the spectral measure of the system

ðA0;A1; . . . ;AkÞ. Since piðA0;A1; . . . ;AkÞH
Ð
C

kþ1 pi dE, we infer from part (ii) of

Lemma 22 that the operators An
0 , p1ðA0;A1; . . . ;AkÞ; . . . ; psðA0;A1; . . . ;AkÞ are formally

normal and that they satisfy all the assumptions of Theorem 10 with Ei; j ¼ D, 0a

i < ja s. This completes the proof. r

Theorem 24. Let D be a dense linear subspace of H, A0;A1; . . . ;Ak A LðDÞ be

formally normal operators and n be a positive integer ðkb 1Þ. Assume that

(i) AiAj ¼ AjAi for all 0a i < ja k,

(ii) An
0 is essentially normal,

(iii) there is c > 0 such that kAj f ka cðk f k þ kAn
0 f kÞ for f A D and j ¼ 1; . . . ; k.

Then A0;A1; . . . ;Ak are spectrally commuting normal operators, and D is a core4 of any

subsystem of fA0;A1; . . . ;Akg.

Proof. We proceed as in the proof of Theorem 10 to conclude that A1; . . . ;Ak are

spectrally commuting normal operators, An
0 is normal and the space BaðA

n
0 Þ reduces

every A1; . . . ;Ak to a bounded normal operator for all ab 0. By Corollary 21, the

operator A0 is normal and An
0 ¼ An

0 , so D
yðAn

0 Þ ¼ D
yðA0Þ. Using either [41, Lemma

8] or Proposition 4 one can prove that

Ba1=nðA0Þ ¼ BaðA
n
0 Þ ¼ BaðA

n
0 Þ; ab 0;ð10Þ

and consequently that BðA0Þ ¼ BðAn
0 Þ. Therefore, by (i) and Propositions 2 and 4,

we have A0Ai f ¼ AiA0 f for f A BðAn
0 Þ and i ¼ 1; . . . ; k. This and (10) imply that for

every i ¼ 1; . . . ; k, the space BaðA
n
0 Þ reduces operators A0 and Ai to pointwise com-

muting bounded normal operators. Applying the argument (via orthogonal sums) from

4 In fact, a small modification of the proof of Theorem 24 leads to more, in particular to: D is a core of

any subsystem of fA0; . . . ;A
n
0 ;A1; . . . ;Akg.
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the first part of the proof of Theorem 10, we conclude that A0 spectrally commutes with

every Ai.

Let E be the spectral measure of the system ðA0;A1; . . . ;AkÞ. Let X ¼

6y

i¼1
RðEðDiÞÞ and 0a n1 < � � � < nma k be as in the proof of Theorem 10. Like

there, we show that (7) holds true. Take h A X. Since XHDðAn
0 Þ ¼ DðAn

0 Þ, there

exists a sequence fhig
y
i¼1 HD such that h ¼ limi!y hi and An

0h ¼ limi!y An
0hi. It

follows from part (iii) of [41, Proposition 6] and our assumption (iii) that A
j
0h ¼

limi!y A
j
0hi and Anl

h ¼ limi!y Anl
hi for all j ¼ 1; . . . ; n and l ¼ 1; . . . ;m. In this way

we have proved that (8) holds true with E ¼ D. Combining inclusions (7) and (8)

completes the proof. r

In connection with Theorem 24 we have to point out that in general two bounded

normal operators A1 and A0 may not spectrally commute though A1 spectrally com-

mutes with some nth power of A0, nb 2 (e.g. consider a normal nth root A0 of the

identity operator). This means that we can not replace in Theorem 24 the condition

(i) by a weaker one: An
0Aj ¼ AjA

n
0 for every j ¼ 1; . . . ; k and AiAj ¼ AjAi for all 1a

i < ja k.

In view of Corollary 19, it is possible to formulate more general versions of

Theorems 23 and 24 for symmetric operators weakening a little bit the assumption on

domains of operators in question (mainly that about a common invariant domain).

The details are left to the reader.

Nelson’s type criterion for spectral commutativity.

Theorem 10 leads to a useful criterion for spectral commutativity of normal

operators. It generalizes among other things the commutative part of Theorem 5 in

[19] (see also Corollary 9.2 therein) to the context of formally normal operators.

What has to be pointed out is the role played by bounded vectors in the background

so as to make the arguments we have used in our proof to work as smoothly as

possible. We want to take the opportunity here to indicate that [22] contains a result

which is much like Nelson’s (with a simpler proof ). Though it is also somehow in

flavour of our considerations the main di¤erence is in the fact that existence and some

behaviour of bounded vectors is in [22] made as an explicit assumption.

Theorem 25. Let A1; . . . ;Ak be formally normal operators in H and E be a dense

linear subspace of H. Suppose that

(i) EHDðAiAjÞVDðAjAiÞ and AiAj f ¼ AjAi f , f A E, for 1a i < ja k,

(ii) EHDðA�
i AiÞ and hA�

i Ai f ;Ajgi ¼ hA�
j f ;A

�
i Aigi, f ; g A E, for i; j ¼ 1; . . . ; k,

(iii) ðA�
1A1 þ � � � þ A�

k
AkÞjE is essentially selfadjoint.

Then A1; . . . ;Ak are spectrally commuting normal operators and E is a core of any

subsystem of fA1; . . . ;Akg.

Proof. According to (ii) and (iii) the operator A0 ¼
df
A�

1A1 þ � � � þ A�
k
Ak is sym-

metric and A0jE is essentially selfadjoint. Notice that

kAj f k ¼ hA�
j Aj f ; f i

1=2
a hA0 f ; f i

1=2
a kA0 f k

1=2k f k1=2a
1

2
ðk f k þ kA0 f kÞ

for all f A E and 1a ja k. It follows from (ii) that for every j ¼ 1; . . . ; k
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hA0 f ;Ajgi ¼
Xk
i¼1

hA�
i Ai f ;Ajgi ¼

Xk
i¼1

hA�
j f ;A

�
i Aigi ¼ hA�

j f ;A0gi; f ; g A E:

Applying Theorem 10 completes the proof. r

Remark 26. Theorem 25 is still true if condition (ii) is replaced by

(ii 0) EHDðAiA
�
j ÞVDðA2

i Þ and AiA
�
j f ¼ A�

j Ai f , f A E, for all i; j A f1; . . . ; kg such

that i0 j.

Indeed, by formal normality of Ai we have hAi f ;Aigi ¼ hA�
i f ;A

�
i gi for f ; g A DðAiÞ.

This and EHDðA2
i Þ imply that EHDðA�

i AiÞ and hA�
i Ai f ;Aigi ¼ hAi f ;AiAigi ¼

hA�
i f ;A

�
i Aigi for f ; g A E. On the other hand, conditions (i) and (ii 0) lead to

hA�
i Ai f ;Ajgi ¼ hAi f ;AiAjgi ¼ hAi f ;AjAigi ¼ hA�

j Ai f ;Aigi ¼ hAiA
�
j f ;Aigi

¼ hA�
j f ;A

�
i Aigi; f ; g A E; i0 j:

This shows that condition (ii) of Theorem 25 is satisfied.

Conditions (i) and (ii) of Theorem 25 are also satisfied if the operators Ai;Aj;A
�
i Ai,

i; j ¼ 1; . . . ; k, pointwise commute on a dense linear subspace E of H.

The next result (except its part concerning cores) is often referred to as Nelson’s

criterion [19].

Corollary 27. Let A1; . . . ;Ak be symmetric operators in H and E be a dense

linear subspace of H. Suppose that

(i) EHDðAiAjÞ and AiAj f ¼ AjAi f , f A E, for all i; j ¼ 1; . . . ; k;

(ii) ðA2
1 þ � � � þ A2

k
Þj
E

is essentially selfadjoint in H.

Then A1; . . . ;Ak are spectrally commuting selfadjoint operators and E is a core of any

subsystem of fA1; . . . ;Akg.

Remark 28. It turns out that the two-operator version of Nelson’s criterion is

stronger (at least a priori) than its general form (assuming a little bit more about the

domains of operators in question). Namely, if the symmetric operators A1; . . . ;Ak

ðkb 2Þ satisfy conditions (i) and (ii) of Corollary 27 and, moreover, hA2
i f ;A

2
j gi ¼

hA2
j f ;A

2
i gi for all f ; g A E and i; j ¼ 1; . . . ; k, then the operators ðA2

p þ A2
qÞjE, 1a p <

qa k, are essentially selfadjoint5. Indeed, we can apply Theorem 10 to symmetric

operators ~AA0 ¼
df

A2
1 þ � � � þ A2

k
and ~AA1 ¼

df
A2

p þ A2
q (with E0;1 ¼ E) because

k ~AA1 f k
2 ¼

ð
R

k

ðx2
p þ x2

qÞ
2
hEðdx1; . . . ; dxkÞ f ; f i

a

ð
R

k

ðx2
1 þ � � � þ x2

k
Þ2hEðdx1; . . . ; dxkÞ f ; f i ¼ k ~AA0 f k

2
; f A E;

5The same conclusion is valid if symmetric operators A1; . . . ;Ak satisfy condition (ii) of Corollary 27 with

EH7k

i; j¼1
DðAiAjÞ such that hA2

i f ;A
2
j gi ¼ hA2

j f ;A
2
i gi ¼ hAiAj f ;AiAjgi for all f ; g A E and i; j ¼ 1; . . . ; k.

Indeed, Theorem 10 is to be applied because

k ~AA0 f k
2 ¼

Xk
i; j¼1

hA2
i f ;A

2
j f i ¼

Xk
i; j¼1

kAiAj f k
2
b k ~AA1 f k

2
; f A E:
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where E is the spectral measure of the system ðA1; . . . ;AkÞ (such a measure exists due

to Corollary 27). The same arguments can be used to show that any subsystem of

ðA1; . . . ;AkÞ satisfies the condition (ii) of Corollary 27.

In view of Remark 28, the authors have decided to include a direct proof of

Nelson’s criterion for spectral commutativity of two symmetric operators based on the

spectral theorem for a normal operator. Below we write ReA ¼ ð1=2ÞðAþ A�Þ and

ImA ¼ ð1=ð2iÞÞðA� A�Þ for a densely defined operator A in H such that DðAÞHDðA�Þ.

Proof of Corollary 27 for k ¼ 2. By (i), N ¼
df

A1 þ iA2 is densely defined,

EHDððA1 � iA2ÞðA1 þ iA2ÞÞHDðN �NÞ, EHDððA1 þ iA2ÞðA1 � iA2ÞÞHDðNN �Þ and

N �Nj
E
¼ NN �j

E
¼ ðA2

1 þ A2
2ÞjE. Hence, according to (ii) and Theorem 5, N is closable,

E is a core of N and N is normal. The latter implies that S1 ¼
df

ReN and S2 ¼
df

ImN

are spectrally commuting selfadjoint operators and N ¼ S1 þ iS2 (cf. [47, Theorem

7.32]).

Take f A DðNÞ. Since E is a core of N, there exists f fng
y

n¼1 HE such that

limn!y fn ¼ f and limn!y Nfn ¼ Nf . It follows from (i) that kN �hk2 ¼ kNhk2 for

h A E, so the sequence fN �fng
y

n¼1 is convergent. Thus f A DðN �Þ and limn!y N �fn ¼

N �f . Since A1 � iA2 HN �, we conclude that the sequence A1 fn ¼ ð1=2ÞðNfn þN �fnÞ,

nb 1, converges to ReNf . Hence f A DðA1Þ and A1 f ¼ ReNf . This implies that

S1 HA1. Likewise S2 HA2. By maximality of S1 and S2, we get S1 ¼ A1 and

S2 ¼ A2, which means that A1 and A2 are spectrally commuting selfadjoint operators

such that N ¼ A1 þ iA2.

If f A DðA1ÞVDðA2Þ ¼ DðNÞ and f fng
y

n¼1 HE are as in the previous paragraph,

then ð f ;A1 f ;A2 f Þ ¼ limn!yð fn;A1 fn;A2 fnÞ. Hence GðA1;A2ÞHGðA1jE;A2jEÞ, A1 ¼

ðA1jDðNÞÞ
�
H ðA1jEÞ

�
HA1 and A2 ¼ ðA2jDðNÞÞ

�
H ðA2jEÞ

�
HA2, which completes the

proof. r

Nelson’s criteria of polynomial type.

In the context of Theorem 25 and Corollary 27 (also referring to [25]) the fol-

lowing question seems to be natural (for simplicity we formulate it only for symmetric

operators): does essential selfadjointness of qðA1; . . . ;AkÞ, where q is a polynomial with

deg qb 1 and A1; . . . ;Ak A LðDÞ are pointwise commuting symmetric operators, imply

selfadjointness and spectral commutativity of A1; . . . ;Ak? In general, the answer to our

question can be easily made negative. Indeed, if S A LðDÞ is a symmetric operator

which is not essentially selfadjoint and qðX1;X2Þ ¼ X1 � X2, then qðS;SÞ ¼ 0. On the

other hand, if q is a polynomial with 1a deg qa 2 and ðA1;A2Þ is a (cyclic) pair of

pointwise commuting symmetric operators such that qðA1;A2Þ ¼ 0, then ðA1;A2Þ always

extends to a pair of spectrally commuting selfadjoint operators possible in a larger

Hilbert space (cf. [33], [9]). However, if deg qb 3, even that property, which can be

treated as a poor substitute for an a‰rmative answer to our question, does not hold

(cf. [33]). However, the answer to our question is in the a‰rmative if qðX1; . . . ;XkÞ ¼

X 2
1 þ � � � þ X 2

k
; this is due to Corollary 27. Below we propose some other possible

solutions.

Proposition 29. Let n1; . . . ; nk be positive integers, D be a dense linear subspace of

a Hilbert space H and A1; . . . ;Ak A L
#ðDÞ be such that
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(i) AiAj ¼ AjAi and AiA
#
j ¼ A#

j Ai for all 1a ia ja k,

(ii) A�n1
1 An1

1 þ � � � þ A�nk
k

Ank
k

is essentially selfadjoint.

Then for all p1; . . . ; ps A C ½X1; . . . ;X2k� with deg piamink

j¼1 nj, D is a core of the

system ðp1ðA;A
#Þ; . . . ; psðA;A

#ÞÞ, and p1ðA;A
#Þ; . . . ; psðA;A

#Þ are spectrally commut-

ing normal operators; here A ¼ ðA1; . . . ;AkÞ and A
# ¼ ðA#

1 ; . . . ;A
#
k
Þ.

Proof. By (i), A1;A
#
1 ; . . . ;Ak;A

#
k

are pointwise commuting formally normal

operators. Set n ¼ minfn1; . . . ; nkg. We show that A0 ¼
df
A�n1

1 An1
1 þ � � � þ A�nk

k
Ank

k

dominates every Ai on D, i ¼ 1; . . . ; k. Indeed, if h A D is a normalized vector, then

by [45, formula (4)] the sequence fkA j
i hk

1=jgyj¼1 is monotically increasing, so

kAihka kAni
i hk

1=ni ¼ hA�ni
i Ani

i h; hi
1=ð2niÞa hA0h; hi

1=ð2niÞ

a kA0hk
1=ð2niÞ

a 1þ kA0hk; i ¼ 1; . . . ; k;

because ta 1þ tr for all real numbers tb 0 and rb 1. Thus kAi f ka k f kþ

kA0 f k for f A D and i ¼ 1; . . . ; k. By Theorem 10, A1; . . . ;Ak are spectrally com-

muting normal operators. Let E be the spectral measure of the system ðA1; . . . ;AkÞ.

Since there exists d > 0 such that jpiðz1; . . . ; z2kÞj
2
a dð1þ jz1j

2n þ � � � þ jz2kj
2nÞ for

ðz1; . . . ; z2kÞ A C
2k and i ¼ 1; . . . ; s, we obtain

kpiðA;A
#Þ f k2 ¼

ð
C

k

jpiðz; zÞj
2
hEðdzÞ f ; f i

a c

ð
C

k

ð1þ jz1j
2n1 þ � � � þ jzkj

2nkÞhEðdzÞ f ; f i

¼ cðk f k2 þ hA0 f ; f iÞa 2cðk f k2 þ kA0 f k
2Þ; f A D; i ¼ 1; . . . ; s;

where c ¼ 2ðkþ 1Þd. This means that A0 dominates every operator piðA;A
#Þ on

D. Applying Theorem 10 to ðA0; p1ðA;A
#Þ; . . . ; psðA;A

#ÞÞ completes the proof. r

Assuming subnormality of operators in question we can strengthen Proposition 29

as follows

Proposition 30. Let q1; . . . ; qk A C ½X � be polynomials with deg qib 1, D be a dense

linear subspace of H and A1; . . . ;Ak A L
#ðDÞ be subnormal operators. If

(i) AiAj ¼ AjAi and AiA
#
j ¼ A#

j Ai for all 1a ia ja k,

(ii) q1ðA1Þ
�
q1ðA1Þ þ � � � þ qkðAkÞ

�
qkðAkÞ is essentially selfadjoint,

then for all p1; . . . ; ps A C ½X1; . . . ;X2k� with deg piamink

j¼1 deg qj, D is a core of the

system ðp1ðA;A
#Þ; . . . ; psðA;A

#ÞÞ, and p1ðA;A
#Þ; . . . ; psðA;A

#Þ are spectrally commuting

normal operators; here A ¼ ðA1; . . . ;AkÞ and A
# ¼ ðA#

1 ; . . . ;A
#
k
Þ.

Proof. Set A0 ¼ q1ðA1Þ
�
q1ðA1Þ þ � � � þ qkðAkÞ

�
qkðAkÞ and ni ¼ deg qi. Since

there exists a > 0 such that jzj2a að1þ jqiðzÞj
2Þ for z A C and i ¼ 1; . . . ; k, one can

show, using the spectral measure of a normal extension of Ai, that kAi f k
2
a

aðk f k2 þ kqiðAiÞ f k
2Þ for f A D and i ¼ 1; . . . ; k. This implies that

kAi f k
2
a aðk f k2 þ hA0 f ; f iÞa 2aðk f k2 þ kA0 f k

2Þ; f A D; i ¼ 1; . . . ; k:
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By Theorem 10, A1; . . . ;Ak are spectrally commuting normal operators. Let E be

the spectral measure of the system ðA1; . . . ;AkÞ. Since there exists b > 0 such that

jzni j2a bð1þ jqiðzÞj
2Þ for z A C and i ¼ 1; . . . ; k, we see, as in the proof of Proposi-

tion 29, that for some g > 0 the following inequalities hold

kpiðA;A
#Þ f k2 ¼

ð
C

k

jpiðz; zÞj
2
hEðdzÞ f ; f i

a g

ð
C

k

ð1þ jq1ðz1Þj
2 þ � � � þ jqkðzkÞj

2ÞhEðdzÞ f ; f i

¼ gðk f k2 þ hA0 f ; f iÞa 2gðk f k2 þ kA0 f k
2Þ; f A D; i ¼ 1; . . . ; s:

This and Theorem 10 complete the proof. r

Since symmetric operators are subnormal, Proposition 30, when formulated for

symmetric operators, simplifies to:

Corollary 31. If q1; . . . ; qk A R½X � are polynomials with deg qib 1 and

A1; . . . ;Ak A LðDÞ are pointwise commuting symmetric operators such that the operator

q1ðA1Þ
2 þ � � � þ qkðAkÞ

2
is essentially selfadjoint, then for all p1; . . . ; ps A R½X1; . . . ;Xk�

with deg piamink
j¼1 deg qj, D is a core of ðp1ðAÞ; . . . ; psðAÞÞ, and p1ðAÞ; . . . ; psðAÞ are

spectrally commuting selfadjoint operators.

The idea used in the proofs of Propositions 29 and 30 enables us to build up

more Nelson’s criteria of polynomial type. Here we formulate a sample of what can be

done in this matter for symmetric operators. Notice that Proposition 32 below includes

essentially new criteria.

Proposition 32. Let A
ð1Þ
1 ; . . . ;A

ð1Þ
n1 ; . . . ;A

ðkÞ
1 ; . . . ;A

ðkÞ
nk A LðDÞ be pointwise commut-

ing symmetric operators such that the operator

r1ðq
ð1Þ
1 ðA

ð1Þ
1 Þ2 þ � � � þ qð1Þn1

ðAð1Þ
n1
Þ2Þ2 þ � � � þ rkðq

ðkÞ
1 ðA

ðkÞ
1 Þ2 þ � � � þ qðkÞnk

ðAðkÞ
nk
Þ2Þ2

is essentially selfadjoint, where r1; . . . ; rk; q
ð1Þ
1 ; . . . ; q

ð1Þ
n1 ; . . . ; q

ðkÞ
1 ; . . . ; q

ðkÞ
nk A R½X � are poly-

nomials of degree at least 1. Then A
ð1Þ
1 ; . . . ;A

ð1Þ
n1 ; . . . ;A

ðkÞ
1 ; . . . ;A

ðkÞ
nk are spectrally com-

muting selfadjoint operators, and D is a core of any subsystem of ðA
ð1Þ
1 ; . . . ;A

ð1Þ
n1 ; . . . ;

A
ðkÞ
1 ; . . . ;A

ðkÞ
nk Þ.

All this for subnormal operators.

Subnormality from domination.

Given a finite system A ¼ ðA1; . . . ;AkÞ of operators in H, we define DðAÞ ¼

DðA1ÞV � � �VDðAkÞ and

D
yðAÞ ¼ 7fDðB1 � � �BnÞ; nb 1;Bi ¼ A1; . . . ;Ak for i ¼ 1; . . . ; ng:

A linear subspace E of DðAÞ is said to be invariant for A if AiEHE for every

i ¼ 1; . . . ; k. The set D
yðAÞ is the largest linear subspace of DðAÞ which is invariant

for A. We write A
� ¼ ðA�

1 ; . . . ;A
�
kÞ, provided all Ai are densely defined.
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Let E be a linear subspace of DðAÞ. A is said to satisfy the Halmos-Bram-Ito

condition with respect to E (in short: HBIðEÞ) if E is invariant for A, AiAjjE ¼ AjAijE
for all i; j ¼ 1; . . . ; k and6

X

a;b AZ k
þ

hAafb;A
bfaib 0 for every finite multisequence f faga AZ k

þ
HE;ð11Þ

where A
a ¼ Aa1

1 � � �Aak
k for a A Z

k
þ.

We say that a system A ¼ ðA1; . . . ;AkÞ of operators in H is subnormal if

DðAÞ ¼ H and there exists a Hilbert space KIH and a system N ¼ ðN1; . . . ;NkÞ

of spectrally commuting normal operators in K such that Ai HNi for i ¼ 1; . . . ; k

(in short: N is a normal extension of A). It is clear that if A is subnormal, then

ðA1; . . . ;AkÞ is subnormal as well. A normal extension N of A is said to be minimal of

cyclic type if there exists a linear subspace E of H which is an invariant core for every

Ai, i ¼ 1; . . . ; k, and such that the linear span7 FN ½E� of 6
a AZ k

þ
N

�aðEÞ is a core for

every Ni, i ¼ 1; . . . ; k (one may take E as D
yðA1; . . . ;AkÞ). Like in the single operator

case (cf. [38, Section 7]), any two normal extensions N
0 and N

00 of A acting in Hilbert

spaces K
0 and K

00, respectively, which are minimal of cyclic type are H-unitarily

equivalent, i.e. there exists a unitary operator U : K
0 ! K

00 such that U j
H

¼ IH and

UN 0
i ¼ N 00

i U for i ¼ 1; . . . ; k. It is worth while to note that there exist subnormal

operators having no minimal normal extension of cyclic type (cf. Example 1 and

Theorem 3 in [38], and [44]).

The only relation between systems of operators satisfying the Halmos-Bram-Ito

condition and those which are subnormal available at this stage is the following

Proposition 33. If A ¼ ðA1; . . . ;AkÞ is a subnormal system of operators in H, then

A satisfies HBIðDyðAÞÞ.

It follows from Proposition 33 that if N ¼ ðN1; . . . ;NkÞ is a normal extension of a

subnormal system A ¼ ðA1; . . . ;AkÞ, then D
yðAÞ is invariant for N , NiNj f ¼ NjNi f ,

A
af ¼ N

af for i; j ¼ 1; . . . ; k, a A Z
k
þ and f A D

yðAÞ.

Even in the case of a single operator, as is pretty well known (cf. [10], [30], [33]),

the converse to Proposition 33 does not hold. However, we have

Proposition 34. Suppose E is a dense linear subspace of H. A system

A ¼ ðA1; . . . ;AkÞ A LðEÞk satisfies HBIðEÞ if and only if there exists a Hilbert space

K, a dense linear subspace F of K and a system N ¼ ðN1; . . . ;NkÞ A L
#ðFÞk such

that HHK, Ai HNi, NiNj ¼ NjNi and NiN
#
j ¼ N #

j Ni for all i; j ¼ 1; . . . ; k. If this

happens, then F can be chosen so that it coincides with the linear span of the set

6fN #aðEÞ; a A Z
k
þg, where N

# ¼ ðN #
1 ; . . . ;N

#
k Þ.

Theorem 35. Let E be a dense linear subspace of H. Suppose A0;A1; . . . ;Ak A

LðEÞ ðkb 1Þ fulfil the following three conditions

6Under some circumstances (e.g. for bounded operators) the commutativity of A can be inferred from the

positivity condition (11), cf. [34].

7Using arguments based on the spectral measure of N one can easily show (like in the proof of

Proposition 4) that D
yðNÞ ¼ D

yðN �
1 ; . . . ;N

�
k Þ; this justifies the definition of FN ½E�.
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(i) Ai satisfies HBIðEÞ and A0Ai ¼ AiA0 for i ¼ 1; . . . ; k,

(ii) kAi f ka cðk f k þ kA0 f kÞ for f A E and i ¼ 1; . . . ; k, with some c > 0,

(iii) A0 is essentially normal.

Then spaces D
yðA0Þ and BðA0Þ are invariant for ðA1; . . . ;AkÞ and ðA�

1 ; . . . ;A
�
kÞ. If,

moreover, the system ðA1; . . . ;AkÞ satisfies HBIðBðA0ÞÞ, then ðA0;A1; . . . ;AkÞ is sub-

normal, it has a minimal normal extension of cyclic type and E (as well as BðA0Þ) is a

core of the system ðA0;A1; . . . ;AkÞ.

Proof. By Proposition 34, for every i ¼ 1; . . . ; k, there exists a Hilbert space Ki ,

a dense linear subspace Fi of Ki and Ni A L
#ðFiÞ such that HHKi , Ai HNi and

NiN
#
i ¼ N #

i Ni. It follows from [46, Fact D] that

DðAiÞHDðA�
i Þ and PiN

#
i jE HA�

i ;

where Pi is the orthogonal projection of Ki onto H. This in turn implies that

kA�
i f k ¼ kPiN

#
i f ka kN #

i f k ¼ kNi f k ¼ kAi f k; f A E;

so the operator Ai is hyponormal. Since A0Ai ¼ AiA0, we get hA0 f ;A
�
i gi ¼

hAi f ;A
�
0gi for f ; g A E. By Lemma 9, the spaces D

yðA0Þ and BðA0Þ are invariant

for A0; . . . ;Ak, A�
0; . . . ;A

�
k, and

A�
0Ai f ¼ AiA

�
0 f ; f A D

yðA0Þ; i ¼ 0; . . . ; k;ð12Þ

BðA0ÞHBðAiÞ; i ¼ 1; . . . ; k:ð13Þ

Assume now that ðA1; . . . ;AkÞ satisfies HBIðBðA0ÞÞ. Let us define a new system
~AA ¼ ðA1jBðA0Þ

; . . . ;AkjBðA0Þ
Þ A LðBðA0ÞÞ

k. Then, by (12), we have

X

m;nb0
a;b AZ k

þ

hAm
0 A

a1
1 � � �Aak

k fn;b;A
n
0A

b1
1 � � �Abk

k fm;ai

¼
X

m;nb0
a;b AZ k

þ

h ~AAaA�n
0 fn;b; ~AAbA�m

0 fm;ai ¼
X

a;b AZ k
þ

h ~AAagb; ~AAbgaib 0;

for any finite sequence f fm;agmb0;a AZ k
þ
HBðA0Þ with gb ¼

P
nb0 A

�n
0 fn;b A BðA0Þ. Thus

the system ðA0; . . . ;AkÞ satisfies HBIðBðA0ÞÞ. By Proposition 34 there exists a Hilbert

space M, a dense linear subspace D of M and a system M ¼ ðM0; . . . ;MkÞ A L
#ðDÞkþ1

such that HHM, AijBðA0Þ
HMi, MiMj ¼ MjMi and MiM

#
j ¼ M #

j Mi for all i; j ¼

0; . . . ; k, and D is the linear span of the set 6fM #aðBðA0ÞÞ; a A Z
kþ1
þ g. Since, due to

(13), BðA0ÞHBðMiÞ for i ¼ 0; . . . ; k, we infer from [37, Proposition 2] that D ¼ BðMiÞ

for i ¼ 0; . . . ; k and consequently, by [37, Theorem 2], the system ðM0; . . . ;MkÞ is a

normal extension of ðA0jBðA0Þ
; . . . ;AkjBðA0Þ

Þ which is minimal of cyclic type8. Below we

show that BðA0Þ is a core for every Ai, i ¼ 0; . . . ; k, so we will get that ðM0; . . . ;MkÞ is

a normal extension of ðA0; . . . ;AkÞ, which is minimal of cyclic type.

8We can also apply a particular case of [37, Theorem 10] (see also [36, Theorem 2] for the case of a single

operator) to conclude that the system ðA0jBðA0Þ
; . . . ;AkjBðA0Þ

Þ is subnormal. It was mentioned in [37, Remark

8] that a system like this has a minimal normal extension of cyclic type (under a di¤erent name).
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It follows from Proposition 6 that DðA0Þ ¼ 7k

j¼0
DðAjÞ. Take f A DðA0Þ.

Since BðA0Þ (resp. E) is a core of A0, there exists a sequence f fng
y
n¼1 HBðA0Þ

(resp. f fng
y
n¼1 HE) such that fn ! f and A0ð fnÞ ! A0ð f Þ as n ! y. By Proposition

6, Ajð fnÞ ! Ajð f Þ as n ! y for every j ¼ 0; . . . ; k. Thus we have proved that

GðA0; . . . ;AkÞHGðA0jBðA0Þ
; . . . ;AkjBðA0Þ

Þ and GðA0; . . . ;AkÞHGðA0; . . . ;AkÞ which

means that BðA0Þ and E are cores of the system ðA0; . . . ;AkÞ. We have also proved

that Ai HAijBðA0Þ
for i ¼ 0; . . . ; k (because evidently EHDðA0Þ). This completes the

proof. r

Notice that under the assumptions of Theorem 35 the space H reduces the operator

M0 to A0, where ðM0; . . . ;MkÞ is the normal extension of the system ðA0; . . . ;AkÞ

appearing in the proof of Theorem 35. This follows from [39, Corollary 1].

Corollary 36. Suppose the operators A0;A1; . . . ;Ak A LðEÞ ðkb 1Þ fulfil condi-

tions (i), (ii) and (iii) of Theorem 35. If the system ðA1; . . . ;AkÞ is subnormal, then the

system ðA0;A1; . . . ;AkÞ is subnormal, it has a minimal normal extension of cyclic type

and E (as well as BðA0Þ) is a core of the system ðA0;A1; . . . ;AkÞ.

Proof. It follows from Theorem 35 that BðA0Þ is invariant for ðA1; . . . ;AkÞ.

Since the system ðA1; . . . ;AkÞ is subnormal, so is ðA1jBðA0Þ
; . . . ;AkjBðA0Þ

Þ. By Propo-

sition 33, the system ðA1; . . . ;AkÞ satisfies HBIðBðA0ÞÞ. Applying Theorem 35 com-

pletes the proof. r

Corollary 37. Suppose the operators A0;A1; . . . ;Ak A LðEÞ ðkb 1Þ fulfil condi-

tions (i) and (ii) of Theorem 35. If the system ðA1; . . . ;AkÞ satisfies HBIðEÞ and An
0 is

essentially normal for every nb 1, then the system ðA0;A1; . . . ;AkÞ is subnormal, it has a

minimal normal extension of cyclic type and E (as well as BðA0Þ) is a core of the system

ðA0;A1; . . . ;AkÞ.

Proof. Set A ¼ ðA1; . . . ;AkÞ, A ¼ ðA1; . . . ;AkÞ. By Corollary 21 we have

E is a core of every Am
0 ; mb 1:ð14Þ

It follows from Theorem 35 that the space BðA0Þ is invariant for Aj and A�
j ,

1a ja k. This and the fact that AiAj ¼ AjAi for all i; jb 1 enables us to apply

Proposition 2; what we get is AiAj f ¼ AjAi f for f A BðA0Þ and 1a i; ja k.

Fix mb 1 and take a finite sequence f fa; a A Z
k
þ; jajamgHBðA0Þ. By (14),

for every such a there exists a sequence f fa;ng
y
n¼1 HE such that fa;n ! fa and

Am
0 fa;n ! Am

0 fa as n ! y. Since A0 is paranormal, one can deduce from part (ii) of

Lemma 22 that A
bfa;n ! A

bfa as n ! y for b A Z
k
þ with jbjam. This and the fact

that A satisfies HBIðEÞ lead to

X

a;b AZ k
þ

jaj; jbjam

hAafb;A
bfai ¼ lim

n!y

X

a;b AZ k
þ

jaj; jbjam

hAafb;n;A
bfa;nib 0;

so A satisfies HBIðBðA0ÞÞ. Applying Theorem 35 completes the proof. r
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Domination and quasianalyticity.

The result which follows is simple in essence and relates quasianalytic vectors of

two pointwise commuting operators one of which dominates the other. It has its origin

in Section 2 of [19].

Lemma 38. Suppose D is a dense linear subspace of a Hilbert space H and

A;B A LðDÞ are pointwise commuting operators such that

kBf ka cðk f k þ kAf kÞ; f A D;ð15Þ

for some c > 0. Then for every nb 0

kBnf ka cn
X

n

j¼0

n

j

� �

kA jf k; f A D:ð16Þ

Consequently, if A is paranormal, then BaðAÞHBcð1þaÞðBÞ for every ab 0, BðAÞHBðBÞ

and QðAÞHQðBÞ.

Proof. We prove (16) by induction on n. The case n ¼ 1 is just (15). If (16)

holds for a fixed nb 1, then (15) implies that

kBnþ1f ka cn
X

n

j¼0

n

j

� �

kBA jf ka cnþ1
X

n

j¼0

n

j

� �

kA jf k þ
X

n

j¼0

n

j

� �

kA jþ1f k

 !

¼ cnþ1 k f k þ
X

n

j¼1

n

j

� �

þ
n

j � 1

� �� �

kA jf k þ kAnþ1f k

 !

¼ cnþ1
X

nþ1

j¼0

nþ 1

j

� �

kA jf k; f A D;

which completes the proof of (16).

Suppose A is paranormal. Take f A D with k f k ¼ 1. Then, by formula (4) of

[45], the sequence fkAnf k1=ngyn¼1 is monotically increasing. This and (16) give us

kBnf ka cn 1þ
X

n

j¼1

n

j

� �

ðkA jf k1=jÞ j
 !

a cn 1þ
X

n

j¼1

n

j

� �

ðkAnf k1=nÞ j
 !

ð17Þ

¼ cnð1þ kAnf k1=nÞn; nb 1; f A D:

If ab 0 and f A BaðAÞ, then part (b) of Lemma 8 in [41] and the monotonicity of

the sequence fkAnf k1=ngyn¼1 lead to kAnf k1=na a for nb 1. This and (17) imply that

kBnf ka cnð1þ aÞn for nb 0. Thus f A Bcð1þaÞðBÞ. In case f A QðAÞ, we can assume

that kAk f k1=k > 1 for some kb 1 (because otherwise f A B1ðAÞ). By the monotonicity

of fkAnf k1=ngyn¼1, we have kAnf k1=n > 1 for nb k, so (17) yields kBnf k1=na

2ckAnf k1=n for nb k. Hence f A QðBÞ. Removing the normalization condition

k f k ¼ 1 does not spoil the conclusion. r
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Presence of quasianalytic vectors allows us to make an immediate use of Lemma

38 so as to get a result which can be considered as a kind of complement to the main

subject of the paper.

Proposition 39. Let A ¼ ðA0;A1; . . . ;AkÞ A LðEÞkþ1 ðkb 1Þ. Suppose that

(i) A satisfies HBIðEÞ,

(ii) kAi f ka cðk f k þ kA0 f kÞ for f A E and i ¼ 1; . . . ; k, with some c > 0,

(iii) the linear span of the set of all quasianalytic vectors of A0 is equal to E.

Then A is a subnormal system which has a minimal normal extension of cyclic type, and

E is a core of the system ðA0;A1; . . . ;AkÞ.

Proof. It follows from (i) that A0 is hyponormal and hence A0 is paranormal

(cf. the proof of Theorem 35). By (ii) and Lemma 38, QðA0ÞHQðAiÞ for every

i ¼ 1; . . . ; k. Applying [37, Theorem 10], we get subnormality of A. That A has a

minimal normal extension of cyclic type can be proved in the same way as in The-

orem 35. Repeating the last part of the proof of Theorem 35 shows that E is a core of

the system ðA0;A1; . . . ;AkÞ. r

The assumption (iii) of Proposition 39 can not be omitted, cf. Example 15. Also

(ii) can not be omitted when kb 1. Indeed, consider A0 ¼ IE and any pair ðS;TÞ of

pointwise commuting symmetric operators which does not extends to a pair of spectrally

commuting selfadjoint operators (Nelson’s example). Set A1 ¼ S þ iT . Then the pair

ðA0;A1Þ of double pointwise commuting formally normal operators is not subnormal,

though it satisfies the assumptions (i) and (iii) of Proposition 39. The case k ¼ 1 is

more delicate, because according to [20, Theorem 10] any cyclic pair of pointwise

commuting symmetric operators which satisfies the assumption (iii) of Proposition 39 is

subnormal.

Subnormality of algebraic operators.

Let D be a dense linear subspace of a Hilbert space H. According to the Nelson

criterion, if A1;A2 A LðDÞ are pointwise commuting symmetric operators such that

A2
1 þ A2

2 is essentially selfadjoint, then A1 and A2 are spectrally commuting selfadjoint

operators; the essential selfadjointness of A2
1 þ A2

2 is equivalent to9 Rðeþ A2
1 þ A2

2Þ ¼

H for some e > 0 (or equivalently: for every e > 0). In particular this occurs when

Rðeþ A2
1 þ A2

2Þ ¼ D for some e > 0. The question is what happens in the limit case

e ¼ 0. The answer has been given in [42, Corollary 42]: we lose essential spectral

commutativity still preserving subnormality, i.e. the possibility of extending the pair

ðA1;A2Þ to other one composed of spectrally commuting selfadjoint operators acting in a

larger Hilbert space. Let us discuss this question under an additional assumption that

the pair ðA1;A2Þ is cyclic with a cyclic vector e A D, i.e. D is equal to the linear span of

the set fAm
1 A

n
2e;m; nb 0g. Then, as is easily seen (see the proof of Lemma 46 in [42]),

Rðeþ A2
1 þ A2

2Þ ¼ D if and only if there exists a polynomial r A R½X1;X2� such that

ðeþ A2
1 þ A2

2ÞrðA1;A2Þ ¼ ID. On the other hand RðA2
1 þ A2

2Þ ¼ D if and only if there

exists r A R½X1;X2� such that ðA2
1 þ A2

2ÞrðA1;A2Þ ¼ ID. Summarizing, if the polynomial

9because the operator A2
1 þ A2

2 is positive.
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ðeþ X 2
1 þ X 2

2 ÞrðX1;X2Þ � 1 annihilates the pair ðA1;A2Þ for some eb 0 (no cyclicity is

required now), then ðA1;A2Þ is at least subnormal.

The essence of [25], for the 2-dimensional Hamburger moment problem say,

is in considering a polynomial p ¼ ð1þ X 2
1 þ X 2

2 ÞX3 � 1 (see also Theorem 45). The

advantage is taken from the fact that the algebraic set induced by p is unbounded

in variables X1 and X2 but it is bounded with respect to the additional variable X3.

Illustrating our ‘‘e tends to 0’’ programme of the preceding paragraph let us replace in

p the first 1 by 0 so as to get ðX 2
1 þ X 2

2 ÞX3 � 1. Then the algebraic set induced by

the latter polynomial is unbounded in each variable which makes things much more

complicated. Therefore allowing unbounded algebraic sets extends applicability of the

‘‘partially bounded’’ approach of [25]. However, unlike to [25], this focuses on solving

the moment problem itself leaving its determinacy apart. In what follows we work out

this in detail. Though we deal here with systems of symmetric operators, the reader can

easily formulate versions for systems of doubly pointwise commuting formally normal

operators.

Proposition 40. Let D be a dense linear subspace of H and A1;A2;B A LðDÞ be

pointwise commuting symmetric operators. If q A C ½X1;X2� is such that

ðA1 þ iA2ÞqðA1;A2ÞB ¼ ID;ð18Þ

then the triplet ðA1;A2;BÞ extends to a triplet ðS1;S2;TÞ of spectrally commuting

selfadjoint operators in a Hilbert space KIH. In particular, this is the case when

ðA2
1 þ A2

2ÞrðA1;A2ÞB ¼ ID for some r A R½X1;X2�.

Proof. It follows from (18) that RðA1 þ iA2Þ ¼ D, so by [42, Corollary 42]

there exists a Hilbert space KIH and a pair ðS1;S2Þ of spectrally commuting

selfadjoint operators in K such that Ai HSi for i ¼ 1; 2. Denote by E the spectral

measure of the pair ðS1;S2Þ, i.e. Si ¼
Ð

R
2 xiEðdx1; dx2Þ for i ¼ 1; 2. The closed linear

span M of the set fEðsÞðhÞ; h A H, s is a Borel subset of R2g reduces E, HHM and

the pair ðS1jM;S2jMÞ is composed of spectrally commuting selfadjoint operators in M

such that Ai HSijM for i ¼ 1; 2. One can show that M is the smallest closed linear

subspace of K which reduces the operators S1 and S2, and which contains H. Thus we

can assume, without loss of generality, that K is minimal in a sense that K ¼ M (this is

so-called minimality of spectral type, see [38]).

Set N ¼
Ð

R
2ðx1 þ ix2ÞEðdx1; dx2Þ and C ¼ qðA1;A2ÞB. By (18) we have

C�1 ¼ A1 þ iA2 HS1 þ iS2 ¼ N:ð19Þ

Since NðN �Þ ¼ NðNÞ ¼ RðEðfð0; 0ÞgÞÞ, we deduce from (19) that

D ¼ C�1ðDÞ ¼ NðDÞHRðNÞHKmNðNÞ ¼ RðEðR2nfð0; 0ÞgÞÞ:

This implies that the closed linear space KmNðNÞ contains H and reduces the

operators S1 and S2. As K is minimal, it must be Eðfð0; 0ÞgÞ ¼ 0. By (18) we

have

D ¼ qðA1;A2ÞðDÞHR

ð

R
2
q dE

� �

HKmN

ð

R
2
q dE

� �

¼ KmRðEðq�1ðf0gÞÞÞ;
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which, in turn, implies that the closed linear space KmNð
Ð

R
2 q dEÞ contains H and

reduces the operators S1 and S2. Hence, by minimality of K, Eðq�1ðf0gÞÞ ¼ 0. We

can now infer from (18), (19) and equalities Eðfð0; 0ÞgÞ ¼ Eðq�1ðf0gÞÞ ¼ 0 that

B ¼ ðA1 þ iA2Þ
�1
qðA1;A2Þ

�1
HN�1

ð

R
2
q dE

� ��1

H

ð

R
2
j dE;

where jðx1; x2Þ ¼ ððx1 þ ix2Þqðx1; x2ÞÞ
�1. One can check that the selfadjoint operator

T ¼
Ð

R
2 Re j dE extends B, which completes the proof of the first part of the con-

clusion. To get the other one set qðX1;X2Þ ¼ ðX1 � iX2ÞrðX1;X2Þ. r

Proposition 41. Suppose that A1; . . . ;Ak;B A LðDÞ are pointwise commuting

symmetric operators such that

ðID þ q1ðA1Þ
2 þ � � � þ qkðAkÞ

2ÞrðA1; . . . ;AkÞB ¼ IDð20Þ

for some r A R½X1; . . . ;Xk� and q1; . . . ; qk A R½X � with deg qib 1. Then there exists a

selfadjoint extension T of B acting in H such that A1; . . . ;Ak;T are spectrally commuting

selfadjoint operators. If r1 1, then T ¼ B is bounded, and D is a core of the system

ðA1; . . . ;Ak;BÞ.

Proof. By (20), RðID þ q1ðA1Þ
2 þ � � � þ qkðAkÞ

2Þ ¼ D, so the positive operator

q1ðA1Þ
2 þ � � � þ qkðAkÞ

2 is essentially selfadjoint. It follows from Corollary 31 that

A1; . . . ;Ak are spectrally commuting selfadjoint operators, and D is a core of the

system ðA1; . . . ;AkÞ. If E is the spectral measure of the system ðA1; . . . ;AkÞ, then

Eðr�1ðf0gÞÞ ¼ 0 (see the proof of Proposition 40). Thus the operator

T ¼

ð

R
k

1

ð1þ q1ðx1Þ
2 þ � � � þ qkðxkÞ

2Þrðx1; . . . ; xkÞ
Eðdx1; . . . ; dxkÞ

is a required selfadjoint extension of B. In case r1 1, T ¼ B A BðHÞ and con-

sequently D is a core of ðA1; . . . ;Ak;BÞ. r

Below we present some other su‰cient conditions for subnormality; this of course

does not exhaust all the possibilities in this matter (see Proposition 32). We recall, by

the way, that a surjective operator A A LðDÞ which satisfies HBIðDÞ is automatically

subnormal (cf. [42, Theorem 39]).

Remark 42. Modifying proofs of Propositions 40 and 41 one can show that:

1� If a system A ¼ ðA1; . . . ;AkÞ A LðDÞk is subnormal and every Ai is bijective,

then the system ðA�1
1 ; . . . ;A�1

k
Þ is subnormal as well; moreover, if ðN1; . . . ;NkÞ is a

normal extension of A which is minimal of spectral type, then NðNjÞ ¼ f0g for every

j ¼ 1; . . . ; k, and ðN�1
1 ; . . . ;N�1

k
Þ is a normal extension of ðA�1

1 ; . . . ;A�1
k
Þ which is

minimal of spectral type (minimality of this kind is implicitly defined in the first

paragraph of the proof of Proposition 40).

2� If a system ðA1; . . . ;AkÞ A LðDÞk is subnormal, B A LðDÞ is an operator which

pointwise commutes with every Ai, i ¼ 1; . . . ; k, and pðA1; . . . ;AkÞB ¼ ID for some p A

C ½X1; . . . ;Xk�, then the system ðA1; . . . ;Ak;BÞ is subnormal.
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3� If A1;A2;B0; . . . ;Bn A LðDÞ are pointwise commuting symmetric operators such

that ðA2
1 þ A2

2Þr0ðA1;A2ÞB0 ¼ ID and riðA1;A2;B0; . . . ;Bi�1ÞBi ¼ ID for i ¼ 1; . . . ; n,

where ri A R½X1; . . . ;X2þi�, then ðA1;A2;B0; . . . ;BnÞ extends to a system of spectrally

commuting selfadjoint operators in a larger Hilbert space.

4� If A1; . . . ;Ak;B0; . . . ;Bn A LðDÞ are pointwise commuting symmetric oper-

ators satisfying conditions ðID þ q1ðA1Þ
2 þ � � � þ qkðAkÞ

2Þr0ðA1; . . . ;AkÞB0 ¼ ID and

riðA1; . . . ;Ak;B0; . . . ;Bi�1ÞBi ¼ ID for i ¼ 1; . . . ; n, where ri A R½X1; . . . ;Xkþi� and

q1; . . . ; qk A R½X � are polynomials of deg qib 1, then ðA1; . . . ;Ak;B0; . . . ;BnÞ extends to

a system of spectrally commuting selfadjoint operators in H.

5� If q1; . . . ; qk; r1; . . . ; rn A R½X � are polynomials with deg qi; deg rjb 1, and

A1; . . . ;Ak;B1; . . . ;Bn A LðDÞ are pointwise commuting symmetric operators such that

ðID þ q1ðA1Þ
2 þ � � � þ qkðAkÞ

2Þðr1ðB1Þ
2 þ � � � þ rnðBnÞ

2Þ ¼ ID, then A1; . . . ;Ak;B1; . . . ;Bn

are spectrally commuting selfadjoint operators, B1; . . . ;Bn are bounded and D is a core

of ðA1; . . . ;Ak;B1; . . . ;BnÞ (use also Corollary 19). And so on.

Moment problems.

Semialgebraic sets.

Let us begin with recalling some indispensable definitions. A k-sequence g ¼

fgaga AZ k
þ
HR is said to be positive definite if

X
a;b AZ k

þ

gaþblalbb 0

for every k-sequence flaga AZ k
þ
HC which has a finite number of nonzero entries; g is

said to be a Hamburger moment k-sequence if there exists a positive Borel measure m on

R
k (called a representing measure of g) such that

ga ¼

ð
R

k

xa dmðxÞ; a A Z
k
þ;ð21Þ

with the usual multi-index notation: xa ¼ xa1
1 � � � xak

k . It is well known that a

Hamburger moment multi-sequence is automatically positive definite, but not conversely

(cf. [5], [6 ], [28], [13], [33]).

We say that a Hamburger moment k-sequence g of the form (21) is ultra-

determinate if the set C ½X1; . . . ;Xk� is dense in L
2ðRk

; ð1þ kxk2Þ dmðxÞÞ, where kxk2 ¼

x2
1 þ � � � þ x2

k. An ultradeterminate Hamburger moment multi-sequence is determinate,

i.e. it has a unique representing measure (cf. [15]), but not conversely (cf. [32]). Recall

(cf. [43], [15], [42]) that a k-sequence g is positive definite if and only if there exists a

Hilbert space H, a dense linear subspace D of H, a vector f0 A D and a system

S ¼ ðS1; . . . ;SkÞ A LðDÞk such that

S1; . . . ;Sk are pointwise commuting symmetric operators;ð22Þ

S is f0-cyclic; i:e: D is the linear span of the set fS af0; a A Z
k
þg;ð23Þ

ga ¼ hS af0; f0i for every a A Z
k
þ:ð24Þ
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If ðH 0;D 0; f 0
0 ;S

0Þ is another choice, then there exists a unique unitary isomorphism

U : H ! H
0 such that UðDÞ ¼ D

0, Uf0 ¼ f 0
0 and UAih ¼ A 0

iUh for all h A D and

i ¼ 1; . . . ; k. The k-sequence g is a Hamburger moment k-sequence if and only if S

extends to a system of spectrally commuting selfadjoint operators in a larger Hilbert

space; moreover, g is an ultradeterminate Hamburger moment k-sequence if and only

if D is a core of ðA1; . . . ;AkÞ, and A1; . . . ;Ak are spectrally commuting selfadjoint

operators (cf. [15]).

The main question in the multidimensional moment problem is to find additional

conditions under which positive definiteness ensure the solution of the Hamburger

moment problem. The results which follow o¤er such conditions. The first of them

is related to [20, Theorem 10] where is shown that every positive definite 2-sequence,

which satisfies the Carleman condition with respect to the first ‘‘variable’’, is always a

Hamburger moment 2-sequence (hence the part of the conclusion of Proposition 43

which deal with the solution of 2-dimensional Hamburger moment problem holds true

without assuming (ii)). This is no longer true for positive definite 3-sequences (take

any positive definite 2-sequence fgi; jg
y
i; j¼0 which is not a Hamburger moment one and

consider the 3-sequence fgj;kg
y
i; j;k¼0).

Here and subsequently, ej stands for the sequence ð0; . . . ; 0; 1; 0; . . . ; 0Þ of length k

with the digit 1 on the jth position, j ¼ 1; . . . ; k.

Proposition 43. Let g ¼ fg
a
g
a AZ k

þ
HR be a k-sequence ðkb 2Þ such that

(i) g is positive definite,

(ii) there exists a number a > 0 such that for every i ¼ 2; . . . ; k, the k-sequence

faðg
a
þ g

aþ2e1
Þ � g

aþ2ei
g
a AZ k

þ
is positive definite,

(iii)
Py

n¼1 g
�1=ð2nÞ
2ne1

¼ þy.

Then g is an ultradeterminate Hamburger moment k-sequence having a representing

measure with closed support in the set 7k

i¼2
fx A R

k
; x2

i a að1þ x2
1Þg.

Proof. It follows from (i) that there exists a quadruplet ðH;D; f0;SÞ which

satisfies conditions (22), (23) and (24). It is a simple matter to verify that operators

A0; . . . ;Ak�1, where Ai ¼ Siþ1, satisfy conditions (i), (ii) and (iv) of Theorem 10. By

our assumption (iii), f0 A QðA0Þ, so (cf. [37, Proposition 2]) D is equal to the linear span

of QðA0Þ. Hence A0 is essentially selfadjoint (cf. [20]). By Theorem 10, S1; . . . ; Sk are

spectrally commuting selfadjoint operators, and D is a core of the system ðS1; . . . ; SkÞ.

This implies that g is an ultradeterminate Hamburger moment k-sequence with a rep-

resenting measure mð�Þ ¼ hEð�Þ f0; f0i, where E is the spectral measure of ðS1; . . . ; SkÞ.

The localization of the closed support of m follows from that of E (see Remark 13).

r

According to the discussion preceding Proposition 43, we know that condition (ii)

can not be omitted in Proposition 43 for kb 3. Likewise, condition (iii) can not be

removed therein as is shown in the following

Example 44. Let A;B A LðDÞ be pointwise commuting symmetric operators as in

Example 15. We can assume, without loss of generality, that the pair ðA;BÞ is f0-cyclic

(cf. [33, Proposition 7.3]). Define a triplet S ¼ ðS1;S2;S3Þ by S1 ¼ A2, S2 ¼ A and
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S3 ¼ B. Then S is f0-cyclic and S1 dominates both S2 and S3 on D, however S is not

subnormal (cf. Example 15). The 3-sequence g defined by (24) with k ¼ 3 is positive

definite, it satisfies condition (ii) of Proposition 43, however it is not a Hamburger

moment 3-sequence.

The result which follows is a substantially simplified version of [25, Theorem 2.7]

while Proposition 30 provides an alternative tool for proving it. Due to our approach it

becomes independent of Hilbert’s Nullstellensatz.

Theorem 45. Let g ¼ fgaga AZ k
þ
ðg0 > 0Þ be a k-sequence of real numbers and

let piðxÞ ¼
P

x A Ji
aixx

x with aix A R and Ji HZ
k
þ finite for all i ¼ 1; . . . ;m. Set n ¼

maxf1; deg p1; . . . ; deg pmg. Then g is a Hamburger moment k-sequence with a repre-

senting measure on the set S ¼
df 7m

i¼1
p�1
i ð½0;þyÞÞ if and only if there exists a positive

definite ðkþ 1Þ-sequence d ¼ fdða;bÞgða;bÞ AZ k
þ�Zþ

such that

(i) ga ¼ dða;0Þ for all a A Z
k
þ,

(ii) dða;bÞ ¼ dða;bþ1Þ þ
Pk

j¼1 dðaþ2nej ;bþ1Þ for all ða; bÞ A Z
k
þ � Zþ,

(iii) the ðkþ 1Þ-sequence f
P

x A Ji
aixdðaþx;bÞgða;bÞ AZ k

þ�Zþ
is positive definite for every

i ¼ 1; . . . ;m.

The k-sequence g has a uniquely determined representing measure on the set S if and only

if the ðkþ 1Þ-sequence d is unique.

A sketch of the proof. If g has a representing measure m on S, then the ðkþ 1Þ-

sequence d defined by

dða;bÞ ¼

ð
S

xa

ð1þ x2n
1 þ � � � þ x2n

k Þb
dmðxÞ; ða; bÞ A Z

k
þ � Zþ;ð25Þ

is positive definite and it satisfies conditions (i), (ii) and (iii).

Conversely, if d is a positive definite ðkþ 1Þ-sequence, then there exists a Hilbert

space H, a dense linear subspace D of H, a vector f0 A D and pointwise commuting

symmetric operators S1; . . . ;Sk;T A LðDÞ such that (with S ¼ ðS1; . . . ;SkÞ)

D is the linear span of the set fS aT bf0; ða; bÞ A Z
k
þ � Zþg;ð26Þ

dða;bÞ ¼ hS aTbf0; f0i; ða; bÞ A Z
k
þ � Zþ:ð27Þ

Using (26) and (27), one can deduce from (ii) that

ID ¼ ðID þ S2n
1 þ � � � þ S2n

k ÞT :ð28Þ

This implies that RðID þ S2n
1 þ � � � þ S2n

k Þ ¼ D is dense in H, so the operator

S2n
1 þ � � � þ S2n

k is essentially selfadjoint. By Corollary 31 (with qiðXÞ ¼ X n), the

operators S1; . . . ; Sk, p1ðSÞ; . . . ; pmðSÞ are selfadjoint and spectrally commuting. Con-

dition (iii) implies that every piðSÞ is positive. This in turn implies that the closed

support of the spectral measure E of the system ðS1; . . . ; SkÞ is contained in S (becauseÐ
pi dE ¼ piðSÞb 0). One can infer from (27) and (28) that d satisfies (25) with mð�Þ ¼

hEð�Þ f0; f0i. Hence, by (i), m is a representing measure of g.

The uniqueness assertion goes in the standard way (cf. [15]) provided one defines

S as the system of the multiplications by coordinates and T as the multiplication by
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ð1þ x2n
1 þ � � � þ x2n

k Þ�1 considered as operators in H ¼ L
2ðmÞ with the common dense

domain D ¼ the linear span of rational functions xað1þ x2n
1 þ � � � þ x2n

k Þ�b, a A Z
k
þ,

b A Zþ; f0ðxÞ1 1 is the cyclic vector of ðS;TÞ (however still no Nullstellensatz

needed). r

Algebraic sets of type A.

Let p A R½X1; . . . ;Xk� be a polynomial with coe‰cients faaga AZ k
þ
. We say that the

real algebraic set p�1ð0Þ is of type A (cf. [33], [42]), if each positive definite k-sequence

g ¼ fgaga AZ k
þ
of real numbers which satisfies the following equality

X

a;b AZ k
þ

aaabgaþb ¼ 0ðAÞ

is a Hamburger moment k-sequence. Notice that condition (A) is equivalent to

X

a AZ k
þ

aagaþb ¼ 0; b A Z
k
þ:ðA 0Þ

A Hamburger moment k-sequence g satisfies condition (A) if and only if the closed

support of every (equivalently: at least one) representing measure of g is contained in

p�1ð0Þ (cf. [33, Proposition 2.1]). According to [33] there are real algebraic sets which

are not of type A. Recall that a k-sequence g is positive definite and it satisfies con-

dition (A) if and only if there exists a quadruplet ðH;D; f0;SÞ fulfilling conditions

(22), (23), (24) and the equality pðSÞ ¼ 0 (cf. [42]). In consequence, the algebraic set

p�1ð0Þ is of type A if and only if for every quadruplet ðH;D; f0;SÞ fulfilling (22), (23)

and pðSÞ ¼ 0, the system S extends to a system ðT1; . . . ;TkÞ of spectrally commuting

selfadjoint operators acting in a larger Hilbert space. The above discussion enables us

to present some new algebraic sets of type A (other examples can be produced with help

of Remark 42).

Proposition 46. The set p�1ð0Þ is of type A provided p is of the form:

1� p ¼ ðX 2
1 þ X 2

2 ÞrðX1;X2ÞX3 � 1, where r A R½X1;X2�,

2� p ¼ ð1þ q1ðX1Þ
2 þ � � � þ qkðXkÞ

2ÞrðX1; . . . ;XkÞXkþ1 � 1, where q1; . . . ; qk A R½X �

are polynomials with deg qib 1 and r A R½X1; . . . ;Xk�.

If r1 1 in 2�, then every positive definite ðkþ 1Þ-sequence g satisfying condition (A) is

an ultradeterminate Hamburger moment ðkþ 1Þ-sequence.

Proof. Part 1� can be deduced from Proposition 40 while part 2� from Prop-

osition 41 (see also the proof of Theorem 45). r

The complex moment problem.

A multi-sequence c ¼ fca;bga;b AZ k
þ
HC is said to be �-positive definite if

X

a;b AZ k
þ

X

a 0
;b 0

AZ
k
þ

caþb 0
;bþa 0la;bla 0

;b 0b 0

for every multi-sequence fla;bga;b AZ k
þ
HC which has a finite number of nonzero

entries; c is said to be a complex moment multi-sequence if there exists a positive Borel

measure m on C
k (called a representing measure of c) such that
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ca;b ¼

ð

C
k

zazb dmðzÞ; a; b A Z
k
þ;ð29Þ

where z ¼ ðz1; . . . ; zkÞ. Complex moment multi-sequences are �-positive definite,

but not conversely (cf. [6, Theorem 6.3.5], [33]). We say that a complex moment

multi-sequence c of the form (29) is ultradeterminate if the set Pk of all functions

j : C
k ! C of the form jðzÞ ¼ pðz; zÞ with p A C ½X1; . . . ;X2k� is dense in the space

L
2ðC k; ð1þ kzk2Þ dmðzÞÞ, where kzk2 ¼ jz1j

2 þ � � � þ jzkj
2 (cf. [15]). An ultradeter-

minate complex moment multi-sequence is determinate, but not conversely. Let us

mention here that there is a natural correspondence between k-dimensional complex

moment problem and 2k-dimensional Hamburger moment problem (the case k ¼ 1 has

been made explicit in [42, Section 20]; see also [37]).

Proposition 47. Let c ¼ fca;bga;b AZ k
þ
HC ðkb 2Þ be such that

(i) c is �-positive definite,

(ii) there is a > 0 such that for all i ¼ 2; . . . ; k and for all finite sequences

flaga AZ k
þ
HC ,

P

a;b AZ k
þ
½aðca;b þ caþe1;bþe1Þ � caþei ;bþei �lalbb 0,

(iii)
Py

n¼1 c
�1=ð2nÞ
ne1;ne1 ¼ þy.

Then c is an ultradeterminate complex moment multi-sequence.

Proof. By (i), there exists a Hilbert space H, a dense linear subspace D of H,

a vector f0 A D and a system N ¼ ðN1; . . . ;NkÞ A L
#ðDÞk such that NiNj ¼ NjNi and

NiN
#
j ¼ N #

j Ni for all i; j A f1; . . . ; kg, ca;b ¼ hN af0;N
bf0i for all a; b A Z

k
þ and D is

linearly spanned by the set fN #b
N

af0; a; b A Z
k
þg (cf. [43]). Denote by E the linear span

of the set fN af0; a A Z
k
þg and by Ai the restriction of Ni to E, i ¼ 1; . . . ; k. One can

deduce from (i) (or from the inclusion AHN) that the system A ¼ ðA1; . . . ;AkÞ satisfies

HBIðEÞ. Condition (ii) implies that A1 dominates every Ai on E. Since f0 A QðA1Þ,

we see that E is equal to the linear span of QðA1Þ (cf. [37, Proposition 2]). Hence,

by Proposition 39, c is a complex moment multi-sequence with a representing measure

m. To prove its ultradeterminacy we proceed as follows. One can infer from Lemma

38 that f0 A 7k

i¼1
QðAiÞ, so

X

y

n¼1

c�1=ð2nÞ
nei ;nei

¼ þy; i ¼ 1; . . . ; k:ð30Þ

We show that the Carleman condition (30) implies the ultradeterminacy of c (the

assumption (ii) is needless for this).

First, we prove that Pk is dense in L
2ðr dmÞ for every r A L

2ðmÞ such that

rb 0 a.e. ½m�. Indeed, applying the Schwarz inequality to the complex moment multi-

sequence r̂ra;b ¼
Ð

C
k zazbrðzÞ dmðzÞ ða; b A Z

k
þÞ we obtain

r̂rnei ;nei ¼

ð

C
k

jzij
2n
rðzÞ dmðzÞa c

1=2
2nei ;2nei

ð

C
k

r2 dm

� �1=2

; nb 1:

Hence there exists M > 0 such that
Py

n¼1 r̂r
�1=ð2nÞ
nei ;nei bM

Py
n¼1 c

�1=ð4nÞ
2nei ;2nei

¼ þy for all i ¼

1; . . . ; k (the last series is divergent due to (c), page 32 in [37]). Now the density of

Pk in L
2ðr dmÞ follows from [37, Corollary 6].

Applying the above to rðzÞ ¼ 1þ kzk2 completes the proof. r
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Remark 48. Under the assumption (30), we can prove more, namely that Pk is

dense in L
pðmÞ for every pb 1. Indeed, one can deduce from (30) that the Hamburger

moment 2k-sequence fgaga AZ 2k
þ

defined by

ga ¼

ð
C

k

ðRe z1Þ
a1 � � � ðRe zkÞ

akðIm z1Þ
akþ1 � � � ðIm zkÞ

a2k dmðzÞ; a A Z
2k
þ ;

satisfies the Carleman condition
P

y

n¼1 g
�1=ð2nÞ
2nei

¼ þy for all i ¼ 1; . . . ; 2k. By Theorem

3 in [4] and part b) of Theorem, §11 in [15], the set C ½X1; . . . ;X2k� is dense in L
pðR2k; mÞ

for every pb 1, which completes the argument. We get in this way a stronger result

than that in section 2 of [3] labeled as 5�.

Comments.

The content of last three sections can be adapted to the operator Hamburger

and operator complex multi-dimensional moment problems as well as to algebraic sets

of operator type A, where multi-sequences of numbers have to be replaced by multi-

sequences of sesquilinear forms over an arbitrary linear space (the only exception is the

ultradeterminacy in the conclusion of Proposition 47, which needs a separate interest).

For more details we refer the reader to [42].

There is a simple way of producing new algebraic sets of (operator-) type A from a

given one. Namely, by [42, Proposition 60], the set of all polynomials p A R½X1; . . . ;Xk�

for which p�1ð0Þ is of (operator-) type A is invariant under the action F 7! p �F of

the group of all polynomial automorphisms F of R
k. For instance for k ¼ 3 we can

consider products of polynomial automorphisms of R
3 of the form

ðx1; x2; x3Þ 7! ðx1 � f1ðx2; x3Þ; x2; x3Þ;

ðx1; x2; x3Þ 7! ðx1; x2 � f2ðx1; x3Þ; x3Þ;

ðx1; x2; x3Þ 7! ðx1; x2; x3 � f3ðx1; x2ÞÞ;

ðx1; x2; x3Þ 7! ðx1 � gðx3Þ; x2 � hðx3Þ; x3Þ;

.

.

.

where f1; f2; f3 A R½X1;X2� and g; h; . . . A R½X �. For more information on generators of

the group of all polynomial automorphisms of R
2, see [27].

Similar phenomenon occurs for subnormal systems. We exemplify this in the

context of symmetric operators. Let F ¼ ðj1; . . . ; jkÞ be a polynomial automorphism

of R
k, p A R½X1; . . . ;Xk� and S ¼ ðS1; . . . ;SkÞ A LðDÞk be a system of pointwise com-

muting operators. If S is annihilated by p, i.e. pðSÞ ¼ 0, and S extends to a sys-

tem T ¼ ðT1; . . . ;TkÞ of spectrally commuting selfadjoint operators acting in a Hilbert

space KIH, then the system FðSÞ ¼
df

ðj1ðSÞ; . . . ; jkðSÞÞ is annihilated by the poly-

nomial p �F�1, and FðSÞ extends to the selfadjoint system
Ð
R

k F dE ¼
df

ð
Ð
R

k j1 dE; . . . ;Ð
R

k jk dEÞ, where E is the spectral measure of T (the reverse implication, written in an

appropriate way, is true as well). Moreover, T is minimal of spectral type if and only

if so is
Ð
R

k F dE (minimality of spectral type is implicitly defined in the first paragraph

of the proof of Proposition 40).
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