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Abstract. We use cohomological group theory and properties of L2-Betti numbers

to determine the solvable groups with presentations of deficiency 1, to give a new proof

of the ‘‘Tits alternative’’ for subgroups of Haken 3-manifold groups, and to study the

fundamental groups of closed 4-manifolds with Euler characteristic 0 and, in particular,

2-knot groups.

A well-known theorem of Tits asserts that every finitely generated linear group

is either virtually solvable or contains a nonabelian free subgroup [Ti72]. We shall

establish a similar result for groups G which are locally virtually indicable, virtually of

finite cohomological dimension and such that Z½G � is coherent. We shall then examine

in more detail several low-dimensional situations: groups of cohomological dimension

2, PD3-groups, the fundamental groups of closed 4-manifolds with Euler characteristic

0 and 2-knot groups.

The results on groups of finite cohomological dimension are given in §1. These

are based on the detailed study of Mayer-Vietoris sequences for HNN extensions in

[BG85]. We give also some conditions under which H sðG;Z½G �Þ ¼ 0, which shall be

used later to show that certain 4-manifolds are aspherical. In §2 we show that if

GGH�f is an ascending HNN extension then the first L2 Betti number b
ð2Þ
1 ðGÞ is 0, and

we use this to give several alternative characterizations of solvable groups of coho-

mological dimension two. In §3 we show that a locally virtually indicable PD3-group

G which has no nonabelian free subgroup and such that every finitely generated sub-

group is almost finitely presentable must be virtually poly-Z. Since subgroups of the

fundamental groups of Haken 3-manifolds satisfy these conditions this gives a new

proof of the result of [EJ73]. The most substantial argument is in §4, where we show

that if M is a closed 4-manifold such that wðMÞ ¼ 0, p ¼ p1ðMÞ is locally virtually

indicable and has no nonabelian free subgroup, and Z½p� is coherent then either p is

solvable and c:d:p ¼ 2 or p is virtually Z2 or p has two ends or M is homeomorphic

to an infrasolvmanifold. The remaining three sections are devoted to 2-knot groups.

The brief §5 gives several characterizations of the 2-knot group F ¼ Z�2. In §6 we

show that if a 2-knot group p has an abelian normal subgroup A of rankb 1 then either

p 0 is finite or pGF or p is a PDþ
4 -group or A has rank 1 and p=A has infinitely many

ends. In the final section we extend this tetrachotomy under mild coherence hypotheses

on the knot group, and we complete Yoshikawa’s determination of the 2-knot groups

with abelian HNN bases.
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§1. Groups of finite cohomological dimension.

If G is a group let G 0 and
ffiffiffiffi

G
p

denote the commutator subgroup and Hirsch-Plotkin

radical of G, respectively. The group G is indicable if HomðG;ZÞ0 0 or G ¼ 1. (We

allow the latter alternative for brevity in the statements of our results below). Thus it

is locally virtually indicable if every finitely generated infinite subgroup has a subgroup

of finite index which maps onto Z. If G is elementary amenable let hðGÞ denote its

Hirsch length, and let aðGÞ ¼ minfa jG A Xag be its level. Elementary amenable groups

are locally virtually indicable, and elementary amenable groups of finite cohomological

dimension are virtually solvable. (See Chapter I of [Hi94].)

A group G is FPn if the augmentation Z½G �-module Z has a projective resolution

which is finitely generated in degreesa n. It is FP if it has finite cohomological dimen-

sion and is FPn for n ¼ c:d:G. ‘‘Finitely generated’’ is equivalent to FP1, while ‘‘finitely

presentable’’ implies FP2. Groups which are FP2 are also said to be almost finitely

presentable. (There are FP groups which are not finitely presentable [BB97].)

A group is coherent if its finitely generated subgroups are all finitely presentable,

while a ring R is coherent if all finitely presentable R-modules are FPy.

Lemma 1. Let G be a group such that Z½G � is coherent. Then every finitely gen-

erated subgroup of G is FPy.

Proof. Let H be a finitely generated subgroup of G. Then the augmentation

Z½H �-module Z is FP2 over Z½H �. Hence the induced module Z½G �nH Z is FP2 over

Z½G �, and so is FPy, as Z½G � is coherent. Since the inclusion of Z½H � into Z½G � is
a faithfully flat ring extension it follows that Z is FPy as a Z½H �-module, i.e., that H

is FPy. r

This lemma suggests a common generalization of the notions of ‘‘coherent group’’

and ‘‘coherent group ring’’. We shall say that a group is almost coherent if every

finitely generated subgroup is FP2 (almost finitely presentable). In [BS79] it is shown

that if G is finitely generated and solvable then the conditions ‘‘G is coherent’’, ‘‘Z½G �
is coherent’’, ‘‘G is almost coherent’’ and ‘‘G is virtually an ascending HNN extension

with polycyclic base’’ are equivalent. (See also [Gr78].) Otherwise not much is known

about the relations between the various notions of coherence.

Theorem 2. Let H be an FPy group and f : H ! H a monomorphism. Let

G ¼ H�f. Then c:d:G ¼ c:d:H þ 1.

Proof. We may assume that n ¼ c:d:H < y, since in all cases, c:d:Ha c:d:Ga

c:d:H þ 1, by Proposition 6.2 of [Bi76]. There is an exact sequence

0 ! H nðH;Z½G �Þ ! H nðH;Z½G �Þ ! H nþ1ðG;Z½G �Þ ! 0;

by Theorem 0.1 of [BG85]. Now H nðH;Z½G �ÞGH nðH;Z½H �ÞnH Z½G �0 0, since H

is FPn and c:d:H ¼ n. The monomorphism on the left is not onto, by Lemma 3.4

and the subsequent Remark 3.5 of [BG85]. Hence H nþ1ðG;Z½G �Þ0 0 and so c:d:G ¼
nþ 1. r

We shall say that a group is restrained if it has no nonabelian free subgroup.
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Corollary. Let G be a finitely generated, locally virtually indicable, restrained

group such that v:c:d:G ¼ n < y and every finitely generated subgroup of G is FPn.

Then G is virtually solvable.

Proof. The result is clearly true if v:c:d:Ga 1. Suppose that it holds for all

groups H with v:c:d:H < v:c:d:G. We may assume that G is torsion free and indic-

able. Hence G is an HNN extension with finitely generated base and associated sub-

groups, by Theorem A of [BS78]. Since G has no nonabelian free subgroup the

extension is ascending, so GGH�f for some finitely generated subgroup H and mono-

morphism f : H ! H. Since H is FPn and c:d:Ha n it is FPy. Hence c:d:H < c:d:G,

by the Theorem, and so H is virtually solvable. Since G is an ascending HNN exten-

sion with virtually solvable base it is elementary amenable. As c:d:G < y it must be

virtually solvable, by Theorem I.3 of [Hi94]. r

Can the hypothesis that ‘‘every finitely generated subgroup is FPn’’ be relaxed to

‘‘G is almost coherent’’? If we assume instead that G is finitely generated, almost

coherent, elementary amenable and aðGÞ < y an easy induction on aðGÞ shows that G

is constructible and virtually solvable, hence virtually torsion free [BB76].

A group is a PDn-group if it is a Poincaré duality group of formal dimension n.

Virtually solvable PDn-groups are virtually poly-Z and of Hirsch length n, by Theorem

9.23 of [Bi76].

Theorem 3. Let H be a group and f : H ! H a monomorphism. If H is FPn�1

and the ascending HNN extension G ¼ H�f is a PDn-group then f is an isomorphism.

Hence H is normal in G and so is a PDn�1-group.

Proof. If G is a PDn-group then c:d:H ¼ n� 1 [St77]. (Therefore the FPn�1

group H is in fact FP.) Let X GR be the tree associated to the HNN extension. Let

D
n�1 be the local coe‰cient system on X which associates to each vertex or edge the

group H n�1ðH;Z½H �Þ and to the inclusions of the initial and terminal vertices of an

edge the identity homomorphism and the restriction induced by f, respectively. Then

H nðG;Z½G �ÞGH 1
c ðX ;D

n�1Þ, by Theorem 3.2 of [BG85].

This is in turn a direct limit lim
�!

Mk, indexed by Z, where the map from Mk to

Mkþ1 is equivalent to the direct sum of ½H : fðHÞ� copies of the restriction map from

H n�1ðH;Z½H �Þ to H n�1ðfðHÞ;Z½H �Þ. (See Remark 3.5 of [BG85].) Thus this direct

limit can only be infinite cyclic if ½H : fðHÞ� ¼ 1. r

Induction on n gives a sharper analogue of the Corollary to Theorem 2.

Corollary. A group G is virtually poly-Z of Hirsch length n if and only if it

is virtually a PDn-group, is locally virtually indicable and restrained and every finitely

generated subgroup is FPn�1.

This corollary also follows from the Corollary to Theorem 2 together with Theorem

9.23 of [Bi76].

A clearly necessary condition for a closed 4-manifold M with fundamental group

p to be aspherical is that H sðp;Z½p�Þ ¼ 0 for sa 2. In conjunction with a suitable

‘‘counting’’ argument, this condition is often su‰cient (cf. [Hi89], [Hi94], [Hi97]). We

shall next give two conditions under which such cohomology groups vanish.
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Theorem 4. If G has an almost coherent, locally virtually indicable, restrained nor-

mal subgroup E with a finitely generated, one-ended subgroup then either H sðG;Z½G �Þ ¼ 0

for sa 2 or G is elementary amenable and hðGÞ ¼ 2.

Proof. We may assume that E ¼ 6En where fEngnb1 is an increasing sequence

of finitely generated, one-ended subgroups. Since E is locally virtually indicable there

are subgroups FnaEn such that ½En : Fn� < y and which map onto Z. Since E is

almost coherent these subgroups are FP2, and since they are restrained they are

ascending HNN extensions over FP2 bases Hn. Since En has one end Hn has one or

two ends.

If Hn has two ends then En is elementary amenable and hðEnÞ ¼ 2. It follows

easily that if Hn has two ends for all n then ½Enþ1 : En� < y and E is elementary

amenable and hðEÞ ¼ 2. If ½G : E � < y then G is elementary amenable and hðGÞ ¼ 2,

so we may assume that ½G : E � ¼ y. If E is finitely generated then it is FP2 and so

H sðG;Z½G �Þ ¼ 0 for sa 2, by an LHSSS argument. This is also the case if E is not

finitely generated, for then H sðE;Z½G �Þ ¼ 0 for sa 2, by Theorem 3.3 of [GS81], and

we may again apply an LHSSS argument.

Otherwise we may assume that Hn has one end, for all nb 1. In this case

H sðFn;Z½Fn�Þ ¼ 0 for sa 2, by Theorem 0.1 of [BG85]. Therefore H sðp;Z½p�Þ ¼ 0 for

sa 2, by Theorem I.9 of [Hi94]. r

The theorem applies if E ¼
ffiffiffiffi

G
p

is large enough, since finitely generated nilpo-

tent groups are virtually poly-Z. A similar argument shows that if hð
ffiffiffiffi

G
p

Þb r then

H sðG;Z½G �Þ ¼ 0 for s < r. If moreover ½G :

ffiffiffiffi

G
p

� ¼ y then H rðG;Z½G �Þ ¼ 0 also.

Are the hypotheses that E be almost coherent and locally virtually indicable nec-

essary? Is it su‰cient that E be restrained and be an increasing union of finitely

generated, one-ended subgroups?

Theorem 5. Let G ¼ B�f be an HNN extension with FP2 base B and associated

subgroups I and fðIÞ ¼ J, and which has a restrained normal subgroup Na5B6. If

either N is locally virtually Z and G=N has one end or N has a finitely generated, one-

ended subgroup then H sðG;Z½G �Þ ¼ 0 for sa 2.

Proof. Let t be the stable letter, so that tit�1 ¼ fðiÞ, for all i A I . Suppose that

N V J0N VB, and let b A N VB� J. Then b t ¼ t�1bt is in N, since N is normal in

G. Let a be any element of N VB. Since N has no nonabelian free subgroup there is

a word w A F ð2Þ such that wða; b tÞ ¼ 1 in G. It follows from Britton’s Lemma that a

must be in I and so N VB ¼ N V I . In particular, N is the increasing union of copies

of N VB.

Hence G=N is an HNN extension with base B=N VB and associated subgroups

I=N V I and J=N V J. Therefore if G=N has one end the latter groups are infinite, and

so B, I and J each have one end. If N is virtually Z then H sðG;Z½G �Þ ¼ 0 for sa 2,

by an LHSSS argument. If N is locally virtually Z but is not finitely generated then

it is the increasing union of a sequence of two-ended subgroups and H sðN;Z½G �Þ ¼ 0

for sa 1, by Theorem 3.3 of [GS81]. Since H 2ðB;Z½G �ÞGH 0ðB;H 2ðN VB;Z½G �ÞÞ
and H 2ðI ;Z½G �ÞGH 0ðI ;H 2ðN V I ;Z½G �ÞÞ, the restriction map from H 2ðB;Z½G �Þ to

H 2ðI ;Z½G �Þ is injective. If N has a finitely generated, one-ended subgroup N1, we
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may assume that N1aN VB, and so B, I and J also have one end. Moreover

H sðN VB;Z½G �Þ ¼ 0 for sa 1, by Theorem I.9 of [Hi94]. We again see that the

restriction map from H 2ðB;Z½G �Þ to H 2ðI ;Z½G �Þ is injective. The result now follows

in these cases from Theorem 0.1 of [BG85]. r

§2. Groups of cohomological dimension 2.

In this section we shall examine more closely the case of groups of cohomological

dimension 2. In particular, we use a simple vanishing criterion for the first L2-Betti

number of a group to show that solvable groups with presentations of deficiency 1 have

cohomological dimensiona 2.

Let X be a finite complex with fundamental group p. The von Neumann algebra

AðpÞ is the algebra of bounded operators on the Hilbert space completion l
2ðpÞ of

C ½p� which commute with every C ½p�-linear operator (i.e., the bicommutant). The L2-

Betti numbers of X are defined by b
ð2Þ
i ðXÞ ¼ dimAðpÞðH

ð2Þ
2 ðX ÞÞ where the L2-homology

H
ð2Þ
i ðXÞ ¼ HiðC

ð2Þ
� Þ is the homology of the Hilbert AðpÞ-complex C

ð2Þ
� ¼ l

2 nC�ð ~XXÞ of

square summable chains on ~XX . ([At76]. See also [Ec94], [Lü94].) They are multi-

plicative in finite covers, and for i ¼ 0 or 1 depend only on p1ðX Þ. (In particular,

b
ð2Þ
0 ðpÞ ¼ 0 if p is infinite). The alternating sum of the L2-Betti numbers is the Euler

characteristic wðXÞ [At76]. The usual Betti numbers of a space or group (with coe‰-

cients Q) shall be denoted by biðX Þ.

If p is the fundamental group of a finite aspherical 2-complex we say that it has

geometric dimension at most 2, written g:d:pa 2. For each m0 0 A Z let Z�m be the

ascending HNN extension with presentation ha; t j tat�1 ¼ ami. The 2-complexes cor-

responding to these presentations are aspherical. Let D ¼ ðZ=2ZÞ � ðZ=2ZÞ be the

infinite dihedral group.

Theorem 6. Let G ¼ H�f be a finitely presentable group which is an ascending

HNN extension with finitely generated base H. Then b
ð2Þ
1 ðGÞ ¼ 0.

Proof. Let t be the stable letter and let Hn be the subgroup generated by H and

tn, and suppose that H is generated by g elements. Then ½G : Hn� ¼ n, so b
ð2Þ
1 ðHnÞ ¼

nb
ð2Þ
1 ðGÞ. But each Hn is also finitely presentable and generated by gþ 1 elements.

Hence b
ð2Þ
1 ðHnÞa gþ 1, and so b

ð2Þ
1 ðGÞ ¼ 0. r

This result extends part of Theorem 2.1 of [Lü94], which considered extensions of

Z by finitely presentable normal subgroups.

Corollary. Let G be a finitely presentable group which is an ascending HNN

extension with finitely generated base H. Then def ðGÞa 1, and def ðGÞ ¼ 1 if and only

if g:d:Ga 2 and b2ðGÞ ¼ b1ðGÞ � 1.

Proof. If X is a finite 2-complex corresponding to a presentation P for G then

wðX Þ ¼ 1� def ðPÞ. Now wðXÞ ¼ b
ð2Þ
2 ðXÞ by Theorem 6. Hence def ðPÞa 1, and if

def ðPÞ ¼ 1 then X is aspherical, by Theorem 1 of [Hi97]. In that case g:d:pa 2 and

b2ðGÞ ¼ b1ðGÞ � 1. Conversely, if X is a finite aspherical 2-complex with p1ðXÞGG

and b2ðGÞ ¼ b1ðGÞ � 1 then wðXÞ ¼ 0. After collapsing a maximal tree in X we may
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assume it has a single 0-cell, and then the presentation read o¤ the 1- and 2-cells has

deficiency 1. r

Theorem 7. Let G be a finitely generated group such that c:d:G ¼ 2. Then

GGZ�m for some m0 0 if and only if it is almost coherent, restrained and G=G 0 is

infinite.

Proof. The conditions are easily seen to be necessary. Conversely, if they hold

G is FP2 and so is an HNN extension with finitely generated base H, by Theorem A

of [BS78]. The HNN extension must be ascending, as G has no nonabelian free sub-

group, and the base H is FP2. Hence H 2ðG;Z½G �Þ is a quotient of H 1ðH;Z½G �ÞG
H 1ðH;Z½H �ÞnZ½G=H �, by Theorem 0.1 of [BG85]. Now H 2ðG;Z½G �Þ0 0, since

c:d:G ¼ 2, and so H 1ðH;Z½H �Þ0 0. Since H has no nonabelian free subgroup it must

have two ends, so HGZ and GGZ�m for some m0 0. r

Corollary. Let G be an almost finitely presentable group. Then the following

are equivalent:

(i) GGZ or Z�m for some m0 0;

(ii) G is torsion free, virtually solvable and hðGÞa 2.

(iii) G is virtually solvable and c:d:Ga 2;

(iv) G is elementary amenable and def ðGÞ ¼ 1; and

(v) G is almost coherent, restrained and def ðGÞ ¼ 1.

Proof. Condition (i) clearly implies the others. Suppose (ii) holds. We may

assume that hðGÞ ¼ 2 and hð
ffiffiffiffi

G
p

Þ ¼ 1 (for otherwise GGZ, Z2 ¼ Z�1 or Z��1).

Hence hðG=
ffiffiffiffi

G
p

Þ ¼ 1, and so G=
ffiffiffiffi

G
p

is an extension of Z or D by a finite normal

subgroup. If G=
ffiffiffiffi

G
p

maps onto D then GGA �C B, where ½A : C � ¼ ½B : C � ¼ 2 and

hðAÞ ¼ hðBÞ ¼ hðCÞ ¼ 1, and so GGZ��1. But then hð
ffiffiffiffi

G
p

Þ ¼ 2. Hence we may

assume that G maps onto Z, and so G is an ascending HNN extension with finitely

generated base H. Since H is torsion free, solvable and hðHÞ ¼ 1 it must be infinite

cyclic and so (ii) implies (i). If def ðGÞ ¼ 1 then G is an ascending HNN extension with

finitely generated base, so b
ð2Þ
1 ðGÞ ¼ 0, by Theorem 6. Hence (iv) and (v) each imply

(iii), by Theorem 7 and the Corollary to Theorem 6. Finally (iii) implies (ii). r

See [Wi96] for a more group-theoretic determination of the solvable groups of

deficiency 1. These are in fact the finitely generated solvable groups of cohomological

dimension at most 2 [Gi79]. Note also that if def ðGÞ > 1 then G contains nonabelian

free subgroups [Ro77].

Theorem 8. Let G be a finitely generated group such that c:d:G ¼ 2. If G has a

nontrivial normal subgroup E which is either almost coherent, locally virtually indicable

and restrained or is elementary amenable then either EGZ or G is metabelian.

Proof. Let E 0 be a finitely generated subgroup of E. Then E 0 is metabelian, by

Theorem 7 and its corollary, and so all words in E of the form ½½g; h�; ½g 0; h 0�� are

trivial. Hence E is metabelian also. Therefore A ¼
ffiffiffiffi

E
p

is nontrivial, and as A is

characteristic in E it is normal in p. Since A is the union of its finitely generated

subgroups, which are torsion free nilpotent groups of Hirsch lengtha 2, it is abelian.
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If AGZ then ½G : CGðAÞ�a 2. Moreover CGðAÞ
0 is free, by Theorem 8.8 of [Bi76].

If CGðAÞ
0 is cyclic then pGZ2 or Z ~��Z; if CGðAÞ

0 is nonabelian then E ¼ AGZ.

Otherwise c:d:A ¼ c:d:CGðAÞ ¼ 2 and so CGðAÞ ¼ A, by Theorem 8.8 of [Bi76]. If A

has rank 1 then AutðAÞ is abelian, so G 0
aCGðAÞ and G is metabelian. If AGZ2

then G=A is isomorphic to a subgroup of GLð2;ZÞ, and so is virtually free. As A

together with an element t A G of infinite order modulo A would generate a subgroup

of cohomological dimension 3, which is impossible, the quotient G=A must be finite.

Hence GGZ2 or Z ��1 Z. r

Can either of the hypotheses that E be almost coherent and locally virtually

indicable be removed from this theorem?

In higher dimensions FPy solvable groups need not be almost coherent. For

instance, the group G with presentation ha; x; y j xy ¼ yx; xax�1 ¼ a2; yay�1 ¼ a3i is

solvable and has a finite 3-dimensional Eilenberg-Mac Lane space, since it is an iterated

HNN extension. Hence c:d:G ¼ 3 ¼ hðGÞ and G is FPy. However the subgroup

generated by fa; xy�1g is not isomorphic to one of the groups allowed by the Corollary

to Theorem 5 and so cannot be FP2.

§3. PD3-groups.

By the Corollary to Theorem 3 a PD3-group is virtually poly-Z if and only if it is

almost coherent, virtually indicable and restrained. The results of §2 enable us to give

a corresponding Tits alternative for suitable subgroups of PD3-groups.

Theorem 9. Let G be a PD3-group. Then every almost coherent, locally virtually

indicable subgroup of G is either virtually solvable or contains a nonabelian free subgroup.

Proof. Let S be a locally virtually indicable subgroup of G which contains no

nonabelian free subgroup. If ½G : S � < y then S is again a PD3-group and so is

virtually poly-Z, by the Corollary to Theorem 3.

If ½G : S � ¼ y then c:d:Sa 2, by [St77]. The finitely generated subgroups of S are

virtually indicable, and hence are metabelian, by Theorem 7 and its Corollary. Hence

S is metabelian also. r

As the fundamental groups of virtually Haken 3-manifolds are coherent and locally

virtually indicable, this implies the ‘‘Tits alternative’’ for such groups [EJ73]. In fact

solvable subgroups of infinite index in 3-manifold groups are virtually abelian. This

remains true if KðG; 1Þ is a finite PD3-complex, by Corollary 1.4 of [KK99]. Does this

hold for all PD3-groups?

A slight modification of the argument gives the following corollary.

Corollary. A PD3-group G is virtually poly-Z if and only if it is coherent,

restrained and has a subgroup of finite index with infinite abelianization.

If the PD3-group G has a subgroup S of finite index such that b1ðSÞb 2 and is

restrained then the hypothesis of coherence is redundant, for there is then an epi-

morphism p : S ! Z with finitely generated kernel, by [BNS87], and Ker p is a PD2-

group, by Theorem 1 of [Hi98].
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The argument of Theorem 9 and its corollary extend to show by induction on m

that a PDm-group is virtually poly-Z if and only if it is restrained and every finitely

generated subgroup is FPm�1 and virtually indicable.

§4. 4-manifolds with Euler characteristic 0.

In this section we shall consider the 4-dimensional analogue of the above question,

imposing the further restriction that the Euler characteristic of the manifolds arising be

0. We shall determine almost completely the coherent elementary amenable groups

which arise in this way.

Lemma 10. Let M be a PDþ
4 -complex with wðMÞ ¼ 0 and such that p ¼ p1ðMÞ is

an extension of Z�m by a finite normal subgroup F, for some m0 0. Then the finite

abelian subgroups of F are cyclic. If F 0 1 then p has a subgroup of finite index which is

a central extension of Z�n by a nontrivial finite cyclic group, where n is a power of m.

Proof. Let M̂M be the infinite cyclic covering space corresponding to the

subgroup IðpÞ ¼ fg A p j bn > 0; gn A p 0g. Since M is compact and L ¼ Z½Z� is noe-

therian the groups HiðM̂M;ZÞ ¼ HiðM;LÞ are finitely generated as L-modules. Since M

is orientable, wðMÞ ¼ 0 and H1ðM;ZÞ has rank 1 they are L-torsion modules, by the

Wang sequence for the projection of ŶY onto Y. Now H2ðM̂M;ZÞGExt1LðIðpÞ=IðpÞ
0;LÞ,

by Poincaré duality. There is an exact sequence 0 ! T ! IðpÞ=IðpÞ 0 ! IðZ�mÞG

L=ðt�mÞ ! 0, where T is a finite L-module. Therefore Ext1LðIðpÞ=IðpÞ
0;LÞG

L=ðt�mÞ and so H2ðIðpÞ;ZÞ is a quotient of L=ðmt� 1Þ, which is isomorphic to

Z½1=m� as an abelian group. Now IðpÞ=Ker f GZ½1=m� also, and H2ðZ½1=m�;ZÞG

Z½1=m�5Z½1=m� ¼ 0 (see page 334 of [Ro82]). Hence H2ðIðpÞ;ZÞ is finite, by an LHS

spectral sequence argument, and so is cyclic, of order relatively prime to m.

Let t in p generate p=IðpÞGZ. Let A be a maximal abelian subgroup of F and let

C ¼ CpðAÞ. Then q ¼ ½p : C � is finite, since F is finite and normal in p. In particular,

tq is in C and C maps onto Z, with kernel J, say. Since J is an extension of Z½1=m� by

a finite normal subgroup its centre zJ has finite index in J. Therefore the subgroup G

generated by zJ and tq has finite index in p, and there is an epimorphism f from G onto

Z�m q , with kernel A. Moreover IðGÞ ¼ f �1ðIðZ�m qÞÞ is abelian, and is an extension of

Z½1=m� by the finite abelian group A. Hence it is isomorphic to AlZ½1=m� (see page

106 of [Ro82]). Now H2ðIðGÞ;ZÞ is cyclic of order prime to m. On the other hand

H2ðIðGÞ;ZÞG ðA5AÞl ðAnZ½1=m�Þ and so A must be cyclic.

If F 0 1 then A is cyclic, nontrivial, central in G and G=AGZ�m s . r

A ring R is weakly finite if every onto endomorphism of Rn is an isomorphism,

for all nb 0. (In [Hi94] the term ‘‘SIBN ring’’ was used instead.) Finitely generated

stably free modules over weakly finite rings have well defined ranks, and the rank is

strictly positive if the module is nonzero. Skew fields are weakly finite, as are subrings

of weakly finite rings.

Lemma 11. Let M be a finite PD4-complex with fundamental group p. Suppose

that p has a nontrivial finite cyclic central subgroup F with quotient G ¼ p=F such that

g:d:G ¼ 2, G has one end and def ðGÞ ¼ 1. Then wðMÞb 0. If wðMÞ ¼ 0 and Fp½G � is

a weakly finite ring for some prime p dividing jF j then p is virtually Z2.

J. A. Hillman372



Proof. Let M̂M be the covering space of M with group F, and let X ¼ Fp½G �. Let

C� ¼ C�ðM;XÞ ¼ Fp nC�ðMÞ be the equivariant cellular chain complex of M̂M with

coe‰cients Fp, and let cq be the number of q-cells of M, for qb 0. Let Hp ¼

HpðM;XÞ ¼ HpðM̂M;FpÞ. For any left X-module H let eqH ¼ ExtqXðH;XÞ.

Suppose first that M is orientable. Since M̂M is a connected open 4-manifold

H0 ¼ Fp and H4 ¼ 0, while H1 GFp also. Since G has one end Poincaré duality and

the UCSS give H3 ¼ 0 and e2H2 GFp, and an exact sequence

0 ! e2Fp ! H2 ! e0H2 ! e2H1 ! H1 ! e1H2 ! 0:

In particular, e1H2 GFp or is 0. Since g:d:G ¼ 2 and def ðGÞ ¼ 1 the augmentation

module has a resolution 0 ! X r ! X rþ1 ! X ! Fp ! 0. The chain complex C� gives

four exact sequences 0 ! Z1 ! C1 ! C0 ! Fp ! 0, 0 ! Z2 ! C2 ! Z1 ! Fp ! 0,

0 ! B2 ! Z2 ! H2 ! 0 and 0 ! C4 ! C3 ! B2 ! 0. Using Schanuel’s Lemma sev-

eral times we find that the cycle submodules Z1 and Z2 are stably free, of stable

ranks c1 � c0 and c2 � c1 þ c0, respectively. Dualizing the last two sequences gives two

new sequences 0 ! e0B2 ! e0C3 ! e0C4 ! e1B2 ! 0 and 0 ! e0H2 ! e0Z2 ! e0B2 !

e1H2 ! 0, and an isomorphism e1B2 G e2H2 GFp. Further applications of Schanuel’s

Lemma show that e0B2 is stably free of rank c3 � c4, and hence that e0H2 is stably free

of rank c2 � c1 þ c0 � ðc3 � c4Þ ¼ wðMÞ. (Note that we do not need to know whether

e1H2 GFp or is 0, at this point). Since X maps onto the field Fp the rank must be non-

negative, and so wðMÞb 0.

If wðMÞ ¼ 0 and X ¼ Fp½G � is a weakly finite ring then e0H2 ¼ 0 and so e2Fp ¼

e2H1 is a submodule of Fp GH1. Moreover it cannot be 0, for otherwise the UCSS

would give H2 ¼ 0 and then H1 ¼ 0, which is impossible. Therefore e2Fp GFp.

If M is nonorientable and p > 2 the above argument applies to the orientation

cover, since p divides jKerðw1ðMÞjF Þj, and Euler characteristic is multiplicative in finite

covers. If p ¼ 2 a similar argument applies directly without assuming that M is

orientable.

Since G is torsion free and indicable it must be a PD2-group, by Theorem V.12.2

of [DD]. Since def ðGÞ ¼ 1 it follows that G is virtually Z2, and hence that p is also

virtually Z2. r

We may now give the main result of this section.

Theorem 12. Let M be a finite PD4-complex whose fundamental group p is an

ascending HNN extension with finitely generated base B. Then wðMÞb 0, and hence

qðpÞb 0. If wðMÞ ¼ 0 and B is FP2 and finitely ended then either p has two ends or has

a subgroup of finite index which is isomorphic to Z2 or pGZ�m or Z�m ~��ðZ=2ZÞ for

some m0 0 or G1 or M is aspherical.

Proof. The L2 Euler characteristic formula gives wðMÞ ¼ b
ð2Þ
2 ðMÞb 0, since

b
ð2Þ
i ðMÞ ¼ b

ð2Þ
i ðpÞ ¼ 0 for i ¼ 0 or 1, by Theorem 6.

Let f : B ! B be the monomorphism determining pGB�f. If B is finite then f

is an automorphism and so p has two ends. If B is FP2 and has one end then

H sðp;Z½p�Þ ¼ 0 for sa 2, by Theorem 0.1 of [BG85]. If moreover wðMÞ ¼ 0 then M

is aspherical, by Corollary 3.5 of [Ec94], since bð2ÞðpÞ ¼ 0. If B has two ends then it is

Tits alternatives and low dimensional topology 373



an extension of Z or D by a finite normal subgroup F. As f must map F iso-

morphically to itself, F is normal in p, and is the maximal finite normal subgroup of

p. Moreover p=F GZ�m, for some m0 0, if B=F GZ, and is a semidirect product

Z�m ~��ðZ=2ZÞ, with a presentation ha; t; u j tat�1 ¼ am; tut�1 ¼ uar; u2 ¼ 1; uau ¼ a�1i,

for some m0 0 and some r A Z, if B=F GD. (We may in fact assume that r ¼ 0

or 1).

Suppose first that M is orientable, and that F 0 1. Then p has a subgroup s of

finite index which is a central extension of Z�m q by a finite cyclic group, for some qb 1,

by Lemma 10. Let p be a prime dividing q. Since Z�m q is a torsion free solvable

group the ring X ¼ Fp½Z�m q � has a skew field of fractions L, which as a right X-module

is the direct limit of the system fXy j 00 y A Xg, where each Xy ¼ X, the index set is

ordered by right divisibility ðya fyÞ and the map from Xy to Xfy sends x to fx

[KLM88]. In particular, X is a weakly finite ring and so s is torsion free, by Lemma

11. Therefore F ¼ 1.

If M is nonorientable then w1ðMÞjF must be injective, and so another application

of Lemma 11 (with p ¼ 2) shows again that F ¼ 1. r

Is M still aspherical if B is assumed only finitely generated and one ended?

Corollary A. Let M be a closed 4-manifold with wðMÞ ¼ 0 and such that

p ¼ p1ðMÞ is locally virtually indicable, restrained and its finitely generated subgroups

are FP3. Then either p has two ends or is virtually Z2 or pGZ�m for some m0 0 or

G1 or M is homeomorphic to an infrasolvmanifold.

Proof. Let Mþ be the orientation cover of M. Then wðMþÞ ¼ 0 and so

b1ðM
þÞb 1, by Poincaré duality. Thus after passing to Mþ if necessary we may

assume that p maps onto Z. Hence p is an ascending HNN extension pGB�f, where

the base B is finitely generated and so FP3, and f : B ! B is a monomorphism. Since p

has no nonabelian free subgroup B has at most two ends. Hence Lemma 11 and

Theorem 12 apply. If B has one end then it must be a PD3-group and f an iso-

morphism, by Theorem 5. Therefore B is virtually poly-Z of Hirsch length 3, by the

Corollary to Theorem 3, and so M is homeomorphic to an infrasolvmanifold, by

Theorem VI.2 of [Hi94]. r

Although the two ended groups realized by PD4-complexes with w ¼ 0 are essen-

tially understood, the question of which are realized by closed 4-manifolds with w ¼ 0

seems rather di‰cult.

There are nine groups which are virtually Z2 and are fundamental groups of

PD4-complexes with Euler characteristic 0. All may be realized by closed S
2 � E

2-

manifolds. Moreover if wðMÞ ¼ 0 and p is virtually Z2 then M is finitely covered by

S2 � T . (See Chapter VII of [Hi94].)

Let w : Z�m ! Z� be a homomorphism. Attaching a 2-handle along a suitable

loop to S1 �D3\S1 �D3 or S1 �D3\S1 ~��D3 gives a bounded 4-manifold Y with

p1ðYÞGZ�m, w1ðYÞ ¼ w and wðYÞ ¼ 0. The double M ¼ Y UqYY is then a closed

4-manifold with wðMÞ ¼ 0 and ðp1ðMÞ;w1ðMÞÞG ðZ�m;wÞ. It may be shown that

homotopy equivalent closed 4-manifolds with fundamental group Z�m are homeo-
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morphic; however adequately characterizing the possible homotopy types remains a

problem.

Corollary B. A closed 4-manifold with wðMÞ ¼ 0 is homeomorphic to an infra-

solvmanifold if and only if p ¼ p1ðMÞ has no nonabelian free subgroup, its finitely gen-

erated subgroups are FP3 and it has a subgroup s of finite index which is an extension of

a poly-Z group of Hirsch length at least 2 by an infinite normal subgroup.

Each 4-dimensional infrasolvmanifold admits exactly one of the geometries E
4,

N il3 � E
1, N il4, Sol 4m;n, Sol 40 or Sol 41 .

§5. 2-Knots—the group F.

A 2-knot is a locally flat embedding K : S2 ! S4. The closed 4-manifold MðKÞ

obtained by surgery on the 2-knot K is orientable, wðMðKÞÞ ¼ 0 and p1ðMðKÞÞG

pK ¼ p1ðS
4 � KðS2ÞÞ. Thus we may apply the results of §4 to the study of such 2-knot

groups pK . Let MðKÞ 0 denote the covering space associated to the commutator sub-

group ðpKÞ 0.

In order to clarify the statements and arguments in §6, we shall give here several

characterizations of the group F ¼ Z�2, which is a 2-knot group [Fo62] that plays a

somewhat exceptional role.

Theorem 13. Let p be a 2-knot group such that c:d:p ¼ 2 and p has a nontrivial

normal subgroup E which is either elementary amenable or almost coherent, locally vir-

tually indicable and restrained. Then either pGF or E is central and p 0 is free; in either

case def ðpÞ ¼ 1.

Proof. If p is solvable then pGZ�m, for some m0 0, by the corollary to Theo-

rem 7. Since p=p 0
GZ we must have m ¼ 2 and so pGF. Otherwise EGZ, by

Theorem 8. Then ½p : CpðEÞ�a 2 and CpðEÞ
0 is free, by Theorem 8.8 of [Bi76]. This

free subgroup must be nonabelian for otherwise G would be solvable. Hence E V

CpðEÞ
0 ¼ 1 and so E maps injectively to H ¼ G=CGðEÞ

0. As H has an abelian normal

subgroup of index at most 2 and H=H 0
GZ we must in fact have HGZ. It follows

easily that CpðEÞ ¼ E, and so p 0 is free. The final observation follows readily. r

The following alternative characterizations of F shall be useful.

Theorem 14. Let p be a 2-knot group with maximal locally finite normal subgroup

T. Then p=T GF if and only if p is elementary amenable and hðpÞ ¼ 2. Moreover the

following are equivalent:

(i) p has an abelian normal subgroup A of rank 1 such that p=A has two ends;

(ii) p is elementary amenable, hðpÞ ¼ 2 and p has an abelian normal subgroup A of

rank 1;

(iii) p is almost coherent, elementary amenable and hðpÞ ¼ 2;

(iv) pGF.

Proof. Since p is finitely presentable and has infinite cyclic abelianization it is

an HNN extension pGH�f with base H a finitely generated subgroup of p 0 by The-

orem A of [BS78]. Since p is elementary amenable the extension must be ascen-
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ding. Since hðp 0=TÞ ¼ 1 and p 0=T has no nontrivial locally-finite normal subgroup

½p 0=T :

ffiffiffiffiffiffiffiffiffiffiffi

p 0=T
p

�a 2. The meridianal automorphism of p 0 induces a meridianal auto-

morphism on ðp 0=TÞ=
ffiffiffiffiffiffiffiffiffiffiffi

p 0=T
p

and so p 0=T ¼
ffiffiffiffiffiffiffiffiffiffiffi

p 0=T
p

. Hence p 0=T is a torsion free rank

1 abelian group. Let J ¼ H=H VT . Then hðJÞ ¼ 1 and Ja p 0=T so JGZ. Now f

induces a monomorphism c : J ! J and p=T G J�c. Since p=p 0
GZ we must have

J�c GF.

If (i) holds then p is elementary amenable and hðpÞ ¼ 2. Suppose (ii) holds. We

may assume without loss of generality that A is the normal closure of an element of

infinite order, and so p=A is finitely presentable. Since p=A is elementary amenable and

hðp=AÞ ¼ 1 it is virtually Z. Therefore p is virtually an HNN extension with base a

finitely generated subgroup of A, and so is coherent. If (iii) holds then pGF, by

Corollary A of Theorem 12. Since F clearly satisfies conditions (i)–(iii) this proves the

theorem. r

Corollary. If p=T GF then T is either trivial or infinite.

In fact we believe that in this case T must be trivial, but have not yet been able

to prove this.

§6. Abelian normal subgroups.

In this section we shall consider 2-knot groups with infinite abelian normal sub-

groups. The class with rank 1 abelian normal subgroups includes the groups of

torus knots and twist spins, the group F, and all 2-knot groups with finite com-

mutator subgroup. If there is such a subgroup of rank > 1 the knot manifold is

aspherical.

Theorem 15. Let K be a 2-knot such that p ¼ pK has an almost coherent, locally

virtually indicable, restrained normal subgroup E which is not locally finite. Then either

p 0 is finite or pGF or MðKÞ is aspherical or E is abelian of rank 1 and p=E has infinitely

many ends or E is elementary amenable, hðEÞ ¼ 1 and p=E has one or infinitely many

ends.

Proof. Let F be a finitely generated subgroup of E. Since F is FP2 and virtually

indicable it has a subgroup of finite index which is an HNN extension over a finitely

generated base [BS79]. Since F is restrained the HNN extension is ascending, and so

b
ð2Þ
1 ðFÞ ¼ 0, by Theorem 6. Hence b

ð2Þ
1 ðEÞ ¼ 0 and so b

ð2Þ
1 ðpÞ ¼ 0, by Theorem 3.3 of

[Lü98].

If E is almost coherent, locally virtually indicable and has a finitely generated,

one-ended subgroup and p is not elementary amenable of Hirsch length 2 then

H 2ðp;Z½p�Þ ¼ 0, by Theorem 4. Hence MðKÞ is aspherical, by Eckmann’s Theorem

[Hi97].

Otherwise every finitely generated infinite subgroup of E has two ends, so E is

elementary amenable and hðEÞ ¼ 1. If p=E is finite then p 0 is finite. If p=E has two

ends then pGF, by Theorem 14. If E is abelian and p=E has one end p is 1-connected

at y, by Theorem 1 of [Mi87], and so H sðp;Z½p�Þ ¼ 0 for sa 2, by [GM86]. Hence

MðKÞ is again aspherical, by Eckmann’s Theorem [Hi97].
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The remaining possibilities are that either p=E has infinitely many ends or that E

is nonabelian and p=E has one end. r

Does this theorem hold without any coherence hypothesis? Note that the other

hypotheses hold if E is elementary amenable and hðEÞb 2. If E is elementary ame-

nable, hðEÞ ¼ 1 and p=E has one end is H 2ðp;Z½p�Þ ¼ 0?

If E is locally FP3 and M is aspherical then E is virtually solvable, and then p has

nontrivial torsion free abelian normal subgroups (for instance, z
ffiffiffiffi

E
p

).

Corollary. If
ffiffiffi

p
p

is not locally finite then either p 0 is finite or pGF or MðKÞ is

aspherical or hð ffiffiffi

p
p Þ ¼ 1 and p=

ffiffiffi

p
p

has one or infinitely many ends.

Proof. Finitely generated nilpotent groups are polycyclic. r

Theorem 16. Let K be a 2-knot whose group p ¼ pK has an infinite abelian normal

subgroup A, of rank rb 1. Then ra 4 and

(i) if r ¼ 1 either p 0 is finite or pGF or MðKÞ is aspherical or eðp=AÞ ¼ y;

(ii) if r ¼ 1, eðp=AÞ ¼ y and p 0 aCpðAÞ then A and
ffiffiffi

p
p

are virtually Z;

(iii) if r ¼ 1 and AE p 0 then MðKÞ 0 is a PDþ
3 -complex, and is aspherical if and

only if p 0 is a PDþ
3 -group if and only if eðp 0Þ ¼ 1;

(iv) if r ¼ 2 then AGZ2 and MðKÞ is aspherical;

(v) if r ¼ 3 then AGZ3, Aa p 0 and MðKÞ is homeomorphic to an infra-

solvmanifold;

(vi) if r ¼ 4 then AGZ4 and MðKÞ is homeomorphic to a flat 4-manifold.

Proof. The four possibilities in case (i) correspond to whether p=A is finite or

has one, two or infinitely many ends, by Theorem 15. These possibilities are mutually

exclusive; if eðp=AÞ ¼ y then a Mayer-Vietoris argument implies that p cannot be a

PD4-group.

Suppose that r ¼ 1, and Aa zp 0. Then A is a module over Z½p=p 0�GL. On

replacing A by a subgroup, if necessary, we may assume that A is cyclic as a L-module

and is Z-torsion free. If moreover eðp=AÞ ¼ y then
ffiffiffi

p
p

=A must be finite and N ¼
p 0=A is not finitely generated. We may write N as an increasing union of finitely

generated subgroups N ¼ 6
nb1

Nn. Let S be an infinite cyclic subgroup of A and let

G ¼ p 0=S. Then G is an extension of N by A=S, and so is an increasing union

G ¼ 6Gn, where Gn is an extension of Nn by A=S. If A is not finitely generated then

A=S is an infinite abelian normal subgroup. Therefore if some Gn is finitely generated

then it has one end, and so H 1ðGn;FÞ ¼ 0 for any free Z½Gn�-module F. Otherwise we

may write Gn as an increasing union of finitely generated subgroups Gn ¼ 6
mb1

Gnm,

where Gnm is an extension of Nn by a finite cyclic group Z=dmZ, dm divides dmþ1 for

all mb 1, and A=S ¼ 6Z=dmZ. Let u be a generator of the subgroup Z=d1Z, and

let Gn ¼ Gn=hui and Gnm ¼ Gnm=hui for all mb 1. Then Gn1 GNn, and so Gn G
Nn � ðA=d�1

1 SÞ. Since Nn is finitely generated and A=d�1
1 S is infinite we again find that

H 1ðGn;FÞ ¼ 0 for any free Z½G �-module F. Therefore H 1ðG;F Þ ¼ 0 for any free Z½G �-
module F, by Theorem I.9 of [Hi94]. An application of the LHSSS for p 0 as an

extension of G by the normal subgroup d�1
1 SGZ then gives H sðp 0

;Z½p�Þ ¼ 0 for

sa 2. Another LHSSS argument then gives H sðp;Z½p�Þ ¼ 0 for sa 2 and so MðKÞ
is aspherical. As observed above, this contradicts the hypothesis eðp=AÞ ¼ y.
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Suppose next that r ¼ 1 and A is not contained in p 0. Let x1; . . . xn be a set of

generators for p and let s be an element of A which is not in p 0. As each commutator

½s; xi� is in p 0 VA it has finite order, ei say. Let e ¼ Pei. Then ½se; x� ¼ seðxs�1x�1Þe ¼
ðsxs�1x�1Þe, so se commutes with all the generators. The subgroup generated by

fsegU p 0 has finite index in p and is isomorphic to Z � p 0, so p 0 is finitely pre-

sentable. Hence MðKÞ 0 is an orientable PD3-complex, by Theorem III.3 of [Hi94], and

MðKÞ is aspherical if and only if p 0 has one end, by Poincaré duality in MðKÞ 0. (In

particular, A is finitely generated.)

If r ¼ 2 then MðKÞ is aspherical by Theorem VI.11 of [Hi94], and has an abelian

normal subgroup A1 GZ2. An LHSSS argument shows that H 2ðp=A1;Z½p=A1�ÞGZ,

and so p=A1 is virtually a surface group [Bo99]. Hence we also must have AGZ2.

If r > 2 then ra 4, AGZ r and MðKÞ is homeomorphic to an infrasolvmanifold by

Theorem VI.2 of [Hi94]. In particular, p is virtually poly-Z and hðpÞ ¼ 4. If r ¼ 3

then Aa p 0, for otherwise hðp=p 0 VAÞ ¼ 2, which is impossible for a group with abe-

lianization Z. If r ¼ 4 then ½p : A� < y and so MðKÞ is homeomorphic to a flat 4-

manifold. r

The 2-knot groups with finite commutator subgroup are listed in Chapter V of

[Hi89]. The group F is the group of Fox’s Examples 10 and 11 [Fo62]. If K is an

r-twist spin of a classical knot for some r > 2 then zpK0 1 and MðKÞ is aspheri-

cal. The final possibility of (i) is represented by Artin spins of torus knots. (The

corresponding knot manifolds are not aspherical.) If r ¼ hð ffiffiffi
p

p Þ ¼ 2 it can be shown

that MðKÞ is s-cobordant to a fSLSL� E
1-manifold.

It remains an open question whether abelian normal subgroups of PDn groups must

be finitely generated. If this is so, F is the only 2-knot group with an abelian normal

subgroup of positive rank which is not finitely generated.

The argument goes through with A a nilpotent normal subgroup. Can it be

extended to the Hirsch-Plotkin radical? The di‰culties are when hð ffiffiffi
p

p Þ ¼ 1 and p=
ffiffiffi
p

p

has one or infinitely many ends.

Corollary A. If A has rank 1 its torsion subgroup T is finite, and if moreover p 0

is infinite and p 0=A is finitely generated T ¼ 1.

The evidence suggests that if p 0 is finitely generated and infinite then A is free

abelian. Little is known about the rank 0 case. All the other possibilities allowed by

this theorem occur. In particular, if p is torsion free and p 0 VA ¼ 1 then p 0 is a free

product of PDþ
3 -groups and free groups, and the various possibilities (p 0 finite, or having

one or infinitely many ends) are realized by twists spins of classical knots. Is every 2-

knot K such that zpE p 0 and p is torsion free s-concordant to a fibred knot?

Corollary B. If p 0 is finitely generated then either p 0 is finite or p 0 VA ¼ 1 or

MðKÞ is aspherical. If moreover p 0 VA has rank 1 then zp 0 0 1.

Proof. As p 0 VA is torsion free Autðp 0 VAÞ is abelian. Hence p 0 VAa zp 0. r

If p 0 is FP2 and p 0 VA is infinite then p 0 is the fundamental group of an aspherical

Seifert fibred 3-manifold. There are no known examples of 2-knot groups p with p 0

finitely generated but not finitely presentable.
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We may construct examples of 2-knots p with zp 0 GZ as follows. Let N be a

closed 3-manifold such that n ¼ p1ðNÞ has weight 1 and n=n 0 GZ, and let w ¼ w1ðNÞ.

Then H 2ðN;ZwÞGZ. Let Me be the total space of the S1-bundle over N with Euler

class e A H 2ðN;ZwÞ. Then Me is orientable, and p1ðMeÞ has weight 1 if e ¼G1 or if

w0 0 and e is odd. In such cases surgery on a weight class in Me gives S4, so

Me GMðKÞ for some 2-knot K.

In particular, we may take N to be the result of 0-framed surgery on a classical

knot. If the classical knot is 31 or 41 (i.e., is fibred of genus 1) then the resulting 2-knot

group has commutator subgroup the nilpotent group with presentation hx; y j ½x; ½x; y�� ¼

½y; ½x; y�� ¼ 1i. For examples with w0 0 we may take one of the nonorientable

surface bundles with group ht; ai; bi ð1a ia nÞ jP½ai; bi� ¼ 1; tait
�1 ¼ bi; tbit

�1 ¼ aibi
ð1a ia nÞi, where n is odd.

§7. 2-Knot groups with special HNN bases.

Since knot groups are finitely presentable and have infinite cyclic abelianization they

are HNN extensions with finitely generated base and associated subgroups, and a knot

group is restrained if and only if the HNN extension is ascending and the base is

restrained. In all known cases a 2-knot K has a minimal Seifert hypersurface, i.e.,

there is an orientable submanifold V of S4 such that qV ¼ K and all small normal

displacements of V into S4 � V induce monomorphisms on fundamental groups. The

knot group is then an HNN extension with finitely presentable base and associated

subgroups.

Theorem 17. Let K be a 2-knot with a minimal Seifert hypersurface, and such that

p ¼ pK has an abelian normal subgroup A. Then p 0 VA is finite cyclic or is torsion free,

and zp is finitely generated.

Proof. By assumption, p ¼ HNNðH; f : I G JÞ for some finitely presentable group

H and isomorphism of f of subgroups I and J, where I G JG p1ðVÞ for some Seifert

hypersurface V. Let t A p be the stable letter. Either H VA ¼ I VA or H VA ¼ J VA

(by Britton’s Lemma). Hence p 0 VA ¼ 6
n AZ

tnðI VAÞt�n is a monotone union. Since

I VA is an abelian normal subgroup of a 3-manifold group it is finitely generated

[Ga92], and since V is orientable I VA is torsion free or finite. If I VA is finite cyclic

or is central in p then I VA ¼ tnðI VAÞt�n, for all n, and so p 0 VA ¼ I VA. (In

particular, zp is finitely generated.) Otherwise p 0 VA is torsion free. r

This argument derives from [Yo92], [Yo97], where it was shown that if A is a

finitely generated abelian normal subgroup then p 0 VAa I V J.

Corollary. Let K be a 2-knot with a minimal Seifert hypersurface. Then zpG 1,

Z=2Z, Z, Zl ðZ=2ZÞ or Z2.

A 2-knot with a minimal Seifert hypersurface and such that zp ¼ Z=2Z is con-

structed in [Yo82]. This paper also gives an example with zpGZ, zp < p 0 and such

that p=zp has infinitely many ends. The other possibilities are realized by fibred 2-

knots (Artin spins and twist spins of the trefoil and figure-eight knots).
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It is plausible that if K is a 2-knot such that p ¼ pK has an infinite restrained

normal subgroup N then either p 0 is finite or pGF or MðKÞ is aspherical and
ffiffiffi

p
p

0 1

or N is virtually Z and p=N has infinitely many ends. This tetrachotomy was

established in Theorems 15 and 16 under mild coherence hypotheses on N. We shall

show it holds also under hypotheses only slightly stronger than requiring that K be an

HNN extension with finitely presentable base and associated subgroups.

Theorem 18. Let K be a 2-knot whose group p ¼ pK is an ascending HNN exten-

sion over an FP2 base H with finitely many ends. Then either p 0 is finite or pGF or

MðKÞ is aspherical.

Proof. Most of this theorem follows from Theorem 12. If p is virtually torsion

free solvable of Hirsch length 2 then pGF, by Theorem 14. r

Corollary. If H is FP3 and has one end then p 0 is a PDþ
3 -group.

Proof. This follows from Theorem 3. r

Does this remain true if we assume only that H is FP2 and has one end?

The class of groups considered in the next result probably includes all restrained

2-knot groups.

Theorem 19. Let p be a 2-knot group. Then the following are equivalent:

(i) p is restrained, locally FP3 and locally virtually indicable;

(ii) p is an ascending HNN extension H�f where H is FP3, restrained and virtually

indicable;

(iii) p is elementary amenable and has an abelian normal subgroup of rank > 0;

(iv) p is elementary amenable and is an ascending HNN extension H�f where H

is FP2;

(v) p 0 is finite or pGF or p is torsion free virtually poly-Z and hðpÞ ¼ 4.

Proof. Condition (i) implies (ii) by Corollary A of Theorem 12. If (ii) holds

and H has one end then p 0 ¼ H and is a PD3-group, by the Corollary to Theorem

18. Since H is virtually indicable and admits a meridianal automorphism, it must have

a subgroup of finite index which maps onto Z2. Hence H is virtually poly-Z, by the

Corollary to Theorem 3. Hence (ii) implies (v). Conditions (iii) and (iv) imply (v) by

Theorems 16 and 18, respectively. On the other hand (v) implies (i)–(iv). r

This is a first approximation to a ‘‘Tits alternative’’ for 2-knot groups.

Theorem 20. Let K be a 2-knot whose group p ¼ pK is an HNN extension with

FP2 base H and associated subgroups I and fðIÞ ¼ J, and which has an infinite restrained

normal subgroup N. Suppose either that the HNN extension is ascending or that

b
ð2Þ
1 ðpÞ ¼ 0 and N is not locally finite. Then either p 0 is finite or pGF or MðKÞ is

aspherical or N is locally virtually Z and p=N has infinitely many ends.

Proof. Suppose first that the HNN extension is ascending. If H is finite or

N VH is infinite then H has finitely many ends (cf. the Corollary to Theorem I.9 of

[Hi94]) and Theorem 18 applies. Therefore we may assume that H has infinitely many

ends and N VH is finite. But then NE p 0, so p is virtually p 0 � Z. Hence p 0 ¼ H and
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the infinite cyclic cover MðKÞ 0 is a PD3-complex. In particular p 0 VN ¼ 1 and p=N

has infinitely many ends.

Suppose next that p 0 VN is locally finite, and let G ¼ p 0N. Then ½p : G � < y, and

G also is an HNN extension with FP2 base and associated subgroups. Since p 0 VN is

locally finite this must be an ascending HNN extension, and so either p 0 is finite or

pGF or MðKÞ is aspherical, by Theorem 18. If p 0 VN is locally virtually Z and

p=p 0 VN has two ends then p is elementary amenable and hðpÞ ¼ 2, so

pGF. Otherwise we may assume that either p=p 0 VN has one end or p 0 VN has a

finitely generated, one-ended subgroup. In either case H sðp;Z½p�Þ ¼ 0 for sa 2, by

Theorem 5, and so MðKÞ is aspherical, by Eckmann’s Theorem (see [Hi97]). r

Note that b
ð2Þ
1 ðpÞ ¼ 0 if N is amenable.

We may also complete Yoshikawa’s study of 2-knot groups which are HNN

extensions with abelian base. (The first two paragraphs of the following proof outline

the arguments of [Yo86], [Yo92].)

Theorem 21. Let p be a 2-knot group which is an HNN extension with abe-

lian base. Then either p is metabelian or it has a deficiency 1 presentation

ht; x j txnt�1 ¼ xnþ1i for some n > 1.

Proof. Suppose that p ¼ HNNðA; f : B ! CÞ, where A is abelian. Since p is

finitely presentable and p=p 0
GZ it is also an HNN extension with finitely generated

base and associated subgroups [BS78]. Moreover we may assume the base is a sub-

group of A. If A is not finitely generated considerations of normal forms with respect

to the latter HNN structure imply that it must be ascending, and so p is metabelian

[Yo92].

Suppose that A is finitely generated. Let j be the inclusion of B into A. Then

f� j : B ! A is an isomorphism, by the Mayer-Vietoris sequence for homology with

coe‰cients Z for the HNN extension. Hence rankðAÞ ¼ rankðBÞ ¼ r, say, and the

torsion subgroups of A, B and C coincide. In particular the image of the torsion

subgroup of A in p is a finite normal subgroup N, and p=N is torsion free. Consider

now the Mayer-Vietoris sequence for homology with coe‰cients L. Then tf� j is

injective and p 0=p 00
GH1ðp;LÞ has rank r as an abelian group. Now H2ðA;ZÞGA5A

(see page 334 of [Ro82]) and so H2ðp;LÞGCokðt52 f�52 jÞ. Therefore H2ðp;LÞ has

rank r
2

� �

, and so r
2

� �

a r, since H2ðp;LÞ is a quotient of Ext1LðH1ðp;LÞ;LÞ, by Hopf ’s

Theorem and Poincaré duality. If r ¼ 0 then clearly B ¼ A and so p is metabelian.

Yoshikawa goes on to show that if r ¼ 3 then B ¼ A also, while r ¼ 2 is impossible. A

similar argument using coe‰cients FpL instead he shows that if r ¼ 1 then N must be

cyclic of odd order.

Thus we may assume that AGZlN and NGZ=bZ for some bb 1. The group

p=N then has a presentation ht; x j txnt�1 ¼ xnþ1i (with nb 1), and has one end. Let p

be a prime. There is an isomorphism of the subfields FpðX
nÞ and FpðX

nþ1Þ of the

rational function field FpðX Þ which carries X n to X nþ1. Therefore FpðX Þ embeds in a

skew field L containing an element t such that tX nt�1 ¼ X nþ1, by Theorem 5.5.1 of

[Co95]. It is clear from the argument of this theorem that the group ring Fp½p=N �

embeds as a subring of L, and so this group ring is weakly finite.
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As CpðNÞ has finite index in p the associated covering space MC is a closed 4-

manifold, while CpðNÞ=N has one end and g:d:CpðNÞ=N ¼ 2. As Fp½CpðNÞ=N � is a

subring of Fp½p=N � it is also weakly finite. Therefore we may apply Lemma 11 to

conclude that N must be trivial, since a knot group cannot be virtually Z2. Since p is

metabelian if n ¼ 1 this completes the proof. r
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