Harmonic functions on finitely sheeted unlimited covering surfaces

Dedicated to Professor Masayuki Itô on his sixtieth birthday

By Hiroaki MASAOKA and Shigeo SEGAWA

(Received Sept. 3, 2001)

Abstract. We denote by HP(R) and (HB(R), resp.) the class of positive (bounded, resp.) harmonic functions on a Riemann surface R. Consider an open Riemann surface W possessing a Green's function and a p-sheeted $(1 unlimited covering surface <math>\tilde{W}$ of W with projection map φ . We give a necessary and sufficient condition, in terms of Martin boundary, for $HX(W) \circ \varphi = HX(\tilde{W})$ (X = P, B). We also give some examples illustrating the above result when W is the unit disc.

1. Introduction.

Let W be an open Riemann surface possessing a Green's function. Consider a *p*-sheeted unlimited covering surface \tilde{W} of W with projection map φ . It is easily seen that \tilde{W} also possesses a Green's function (cf. e.g. [AS]). We denote by HP(R) (HB(R), resp.) the class of positive (bounded, resp.) harmonic functions on an open Riemann surface R. It is obvious that the inclusion relation

$$HX(W) \circ \varphi := \{h \circ \varphi : h \in HX(W)\} \subset HX(W)$$

holds for X = P, B. The main purpose of this paper is to give a necessary and sufficient condition, in terms of Martin boundary, in order that the relation $HX(W) \circ \varphi = HX(\tilde{W})$ holds for X = P, B.

For an open Riemann surface R, we denote by R^* , Δ^R and Δ_1^R the Martin compactification, the Martin boundary and the minimal Martin boundary of R, respectively. It is known that the projection map φ of \tilde{W} to W has the unique continuous extension to \tilde{W}^* , which is also denoted by φ , and $\varphi(\Delta^{\tilde{W}}) = \Delta^W$ (cf. [MS2]). For each $\zeta \in \Delta^W$, put

$$\mathcal{I}_{1}^{\tilde{W}}(\zeta) = \mathcal{I}_{1}^{\tilde{W}} \cap \varphi^{-1}(\zeta) = \{ \tilde{\zeta} \in \mathcal{I}_{1}^{\tilde{W}} : \varphi(\tilde{\zeta}) = \zeta \},\$$

which is the set of minimal boundary points of \tilde{W} lying over $\zeta \in \Delta^{W}$. Our main results are the followings.

THEOREM 1. In order that the relation $HP(W) \circ \varphi = HP(\tilde{W})$ holds, it is necessary and sufficient that $\Delta_1^{\tilde{W}}(\zeta)$ consists of a single point for every $\zeta \in \Delta_1^W$.

THEOREM 2. In order that the relation $HB(W) \circ \varphi = HB(\tilde{W})$ holds, it is necessary and sufficient that $\Delta_1^{\tilde{W}}(\zeta)$ consists of a single point for ω_z^W —almost all $\zeta \in \Delta_1^W$, where ω_z^W is a harmonic measure on Δ^W with respect to W and $z \in W$.

²⁰⁰⁰ Mathematics Subject Classification. Primary 30F15, 30F25, 31C35.

Key Words and Phrases. Unlimited covering surface, Positive harmonic function, Bounded harmonic function, Martin boundary.

Proofs of Theorems 1 and 2 will be given in §3 and §4, respectively.

Let D be the unit disc $\{|z| < 1\}$. In §5, we will be concerned with p-sheeted unlimited covering surfaces of D which illustrate Theorems 1 and 2. We will prove the following.

PROPOSITION. Set $A = \{(1 - 2^{-n-1})e^{i2\pi k/2^{n+2}} : n = 1, 2, ..., k = 1, ..., 2^{n+2}\}$. If \tilde{D} is a p-sheeted unlimited covering surface of D with projection map φ such that there is a branch point of \tilde{D} of order p - 1 (or multiplicity p) over every $z \in A$ and there are no branch points of \tilde{D} over $D \setminus A$, then $HP(D) \circ \varphi = HP(\tilde{D})$.

We will show a bit more (cf. Theorem 5.1). Modifying the above \tilde{D} , we will also give a *p*-sheeted unlimited covering surface \tilde{D}_1 of *D* with projection map φ such that $HB(D) \circ \varphi = HB(\tilde{D}_1)$ and $HP(D) \circ \varphi \neq HP(\tilde{D}_1)$.

2. Martin boundary of *p*-sheeted unlimited covering surfaces.

Let W be an open Riemann surface possessing a Green's function and \tilde{W} a p-sheeted unlimited covering surface of W with projection map φ . Since the pullback of a Green's function on W by φ is a nonconstant positive superharmonic function on \tilde{W} , we see that \tilde{W} possesses a Green's function (cf. e.g. [AS], [SN]). For the Martin compactifications, Martin boundaries and minimal Martin boundaries, we follow the notation in Introduction. We first note the following (cf. [MS2]).

PROPOSITION 2.1. The projection map φ of \tilde{W} onto W has the unique continuous extension to the Martin compactification \tilde{W}^* of \tilde{W} , which is also denoted by φ , and $\varphi(\Delta^{\tilde{W}}) = \Delta^{W}$.

We recall the definition of $\Delta_1^{\tilde{W}}(\zeta)$ $(\zeta \in \Delta^W)$ in Introduction:

$$\varDelta_1^{\tilde{W}}(\zeta) = \varDelta_1^{\tilde{W}} \cap \varphi^{-1}(\zeta) = \{ \tilde{\zeta} \in \varDelta_1^{\tilde{W}} : \varphi(\tilde{\zeta}) = \zeta \}.$$

We denote by $v_{\tilde{W}}(\zeta)$ the (cardinal) number of $\Delta_1^{\tilde{W}}(\zeta)$. We next fix a point $a \in W$ and a point $\tilde{a} \in \tilde{W}$ with

(2.1)
$$\varphi(\tilde{a}) = a.$$

We consider the Martin kernel $k_{\zeta}^{W}(\cdot)$ $(k_{\tilde{\zeta}}^{\tilde{W}}(\cdot), \text{ resp.})$ on $W(\tilde{W}, \text{ resp.})$ with pole at $\zeta(\tilde{\zeta}, \text{ resp.})$ and with reference point $a(\tilde{a}, \text{ resp.})$, that is,

$$k_{\zeta}^{W}(z) = \frac{g^{W}(z,\zeta)}{g^{W}(a,\zeta)} \quad \left(k_{\zeta}^{\tilde{W}}(\tilde{z}) = \frac{g^{\tilde{W}}(\tilde{z},\tilde{\zeta})}{g^{\tilde{W}}(\tilde{a},\tilde{\zeta})}, \text{ resp.}\right)$$

for $\zeta \in W$ ($\tilde{\zeta} \in \tilde{W}$, resp.), where $g^{W}(\cdot, \zeta)$ ($g^{\tilde{W}}(\cdot, \tilde{\zeta})$, resp.) is a Green's function on W (\tilde{W} , resp.) with pole at ζ ($\tilde{\zeta}$, resp.). Note that

(2.2)
$$k_{\zeta}^{W}(a) = k_{\tilde{\zeta}}^{\tilde{W}}(\tilde{a}) = 1.$$

We also note that the proof of Proposition 2.1 yields the following.

PROPOSITION 2.2. Let $\tilde{\zeta}$ be a point of $\Delta^{\tilde{W}}$ and $\varphi(\tilde{\zeta}) = \zeta$. Then there exists a constant c depending only on $\tilde{\zeta}$ and ζ such that

$$\sum_{\epsilon \, \varphi^{-1}(z)} m(\tilde{z}) k_{\tilde{\zeta}}^{\tilde{W}}(\tilde{z}) = c k_{\zeta}^{W}(z)$$

on W, where $m(\tilde{\zeta})$ is multiplicity of φ at $\tilde{\zeta}$.

In our previous paper [MS2], we proved the following.

 \tilde{z}

PROPOSITION 2.3. Suppose $\zeta \in \Delta^W$. Then

- (i) If $\zeta \in \Delta^W \setminus \Delta_1^W$, then $v_{\tilde{W}}(\zeta) = 0$; (ii) If $\zeta \in \Delta_1^W$, then $1 \le v_{\tilde{W}}(\zeta) \le p$; (iii) If $\zeta \in \Delta_1^W$ and $\Delta_1^{\tilde{W}}(\zeta) = \{\tilde{\zeta}_1, \dots, \tilde{\zeta}_n\}$, then there exist positive numbers c_1, \dots, c_n such that

(2.3)
$$k_{\zeta}^{W} \circ \varphi = c_1 k_{\tilde{\zeta}_1}^{\tilde{W}} + \dots + c_n k_{\tilde{\zeta}_n}^{\tilde{W}}$$

In the relation (2.3) above, by (2.1) and (2.2), we have

$$\sum_{i=1}^{n} c_n = 1$$

Let s be a positive superharmonic function on W and E a subset of W. We denote by ${}^{W}\hat{R}_{s}^{E}$ the *balayage* of s with respect to E on W. We here give the definitions of minimal thinness and minimal fine neighborhood (cf. [B]).

DEFINITION 2.1. Let ζ be a point of Δ_1^W and E a subset of W. We say that E is minimally thin at ζ if ${}^W \hat{R}_{k_{\zeta}^W}^E \neq k_{\zeta}^W$.

DEFINITION 2.2. Let ζ be a point of Δ_1^W and U a subset of W. We say that $U \cup \{\zeta\}$ is a minimal fine neighborhood of ζ if $W \setminus U$ is minimally thin at ζ .

The following is easily verified from Proposition 3.1 of our previous paper [MS2] (see also [M]).

PROPOSITION 2.4. Let $\tilde{\zeta}$ be $\in \Delta_1^{\tilde{W}}$ and \tilde{U} a subset of \tilde{W} . Then $\tilde{U} \cup \{\tilde{\zeta}\}$ is a minimal fine neighborhood of $\tilde{\zeta}$ if and only if $\varphi(\tilde{U}) \cup \{\varphi(\tilde{\zeta})\}$ is a minimal fine neighborhood of $\varphi(\tilde{\zeta})$.

For $\zeta \in \Delta_1^W$, we denote by $\mathcal{M}_W(\zeta)$ the class of connected open sets M such that $W \setminus M$ is minimally thin at ζ . Moreover, for $M \in \mathcal{M}_W(\zeta)$ and a *p*-sheeted unlimited covering surface \tilde{W} of W with projection map φ , we denote by $n_{\tilde{W}}(M)$ the number of connected components of $\varphi^{-1}(M)$. Then $v_{\tilde{W}}(\zeta)$ is characterized by $n_{\tilde{W}}(M)$ as follows, which is a main result of our previous paper [MS2].

PROPOSITION 2.5. Suppose $\zeta \in \Delta_1^W$. Then $v_{\tilde{W}}(\zeta) = \max_{M \in \mathcal{M}_W(\zeta)} n_{\tilde{W}}(M)$.

3. Proof of Theorem 1.

In this section, we give the proof of Theorem 1. For the sake of simplicity, we introduce the following notation:

$$\Delta = \Delta^W, \quad \Delta_1 = \Delta_1^W, \quad \tilde{\Delta} = \Delta^W, \quad \tilde{\Delta_1} = \Delta_1^W, \quad \tilde{\Delta_1}(\zeta) = \Delta_1^W(\zeta)$$

and

326

$$k_{\zeta}=k_{\zeta}^W, \quad ilde{k}_{ ilde{\zeta}}=k_{ ilde{\zeta}}^{ ilde{W}}.$$

PROOF OF THEOREM 1. Assume that $HP(W) \circ \varphi = HP(\tilde{W})$. Let ζ be an arbitrary point in Δ_1 . We need to show that $\tilde{\Delta}_1(\zeta)$ consists of a single point. Take a point $\tilde{\zeta} \in \tilde{\Delta}_1(\zeta)$. By Proposition 2.3 (iii), there exists a positive constant c such that

on W. By assumption, there exists an $h \in HP(W)$ such that

on \tilde{W} . Hence, by (3.1), we see that $ch \leq k_{\zeta}$ on W. This with minimality of k_{ζ} implies that there exists a positive constant c_1 such that

$$(3.3) h = c_1 k_{\zeta}$$

on W. Hence, by (3.2), we see that $\tilde{k}_{\zeta} = c_1 k_{\zeta} \circ \varphi$ on \tilde{W} . From this with (2.1) and (2.2), it follows that $c_1 = 1$. Therefore we obtain

(3.4)
$$\tilde{k}_{\tilde{\zeta}} = k_{\zeta} \circ \varphi$$

on \tilde{W} . This yields that $\tilde{\Delta}_1(\zeta) = \{\tilde{\zeta}\}.$

Conversely, assume that $v_{\tilde{W}}(\zeta) = 1$ for every $\zeta \in \Delta_1$. We only need to show $HP(\tilde{W}) \subset HP(W) \circ \varphi$, since the reversed inclusion is trivial. By assumption, we set $\tilde{\Delta}_1(\zeta) = \{\tilde{\zeta}\}$ for each $\zeta \in \Delta_1$. By Proposition 2.3 (iii) and (2.4), we have

(3.5)
$$\tilde{k}_{\tilde{\zeta}} = k_{\zeta} \circ \varphi$$

for every $\zeta \in \Delta_1$. Take an arbitrary \tilde{h} in $HP(\tilde{W})$. By the Martin representation theorem (cf. e.g. [CC], [HL] and [B]), there exists a Radon measure $\tilde{\mu}$ on $\tilde{\Delta}$ with $\tilde{\mu}(\tilde{\Delta}\backslash\tilde{\Delta}_1) = 0$ such that

(3.6)
$$\tilde{h} = \int \tilde{k}_{\tilde{\xi}} d\tilde{\mu}(\tilde{\xi})$$

Choose arbitrary two points \tilde{z}_1 and \tilde{z}_2 in \tilde{W} with $\varphi(\tilde{z}_1) = \varphi(\tilde{z}_2)$. In view of (3.5) and (3.6), we obtain

$$ilde{h}(ilde{z}_1) = \int ilde{k}_{ ilde{\xi}}(ilde{z}_1) d ilde{\mu}(ilde{\xi}) = \int ilde{k}_{ ilde{\xi}}(ilde{z}_2) d ilde{\mu}(ilde{\xi}) = ilde{h}(ilde{z}_2).$$

Therefore we deduce that $\tilde{h} \in HP(W) \circ \varphi$ for every $\tilde{h} \in HP(\tilde{W})$, and hence $HP(\tilde{W}) \subset HP(W) \circ \varphi$.

The proof is herewith complete.

In view of Theorem 1, we obtain the following.

COROLLARY 3.1. In order that the relation $HP(W) \circ \varphi = HP(\tilde{W})$ holds, it is necessary and sufficient that $\varphi^{-1}(\zeta)$ consists of a single point for every $\zeta \in \Delta$ $(=\Delta^W)$. PROOF. Assume that $\varphi^{-1}(\zeta)$ consists of a single point for every $\zeta \in \Delta$. Then Proposition 2.3 (ii) yields that $\tilde{\Delta}_1(\zeta)$ consists of a single point for every $\zeta \in \Delta_1$, since $\tilde{\Delta}_1(\zeta) \subset \varphi^{-1}(\zeta)$. Hence, by Theorem 1, we have $HP(W) \circ \varphi = HP(\tilde{W})$.

Conversely, assume $HP(W) \circ \varphi = HP(\tilde{W})$. Let $\zeta \in \Delta$ and take an arbitrary point $\tilde{\zeta} \in \varphi^{-1}(\zeta)$. Then, by assumption, there exists an $h \in HP(W)$ such that $\tilde{k}_{\tilde{\zeta}} = h \circ \varphi$ on \tilde{W} . Hence, in view of Proposition 2.2 and (2.2), we see that $\tilde{k}_{\tilde{\zeta}} = k_{\zeta} \circ \varphi$ on \tilde{W} . This means that $\varphi^{-1}(\zeta)$ consists of a single point $\tilde{\zeta}$.

4. Proof of Theorem 2.

In this section, we give the proof of Theorem 2. Let $\omega_z(\cdot)$ ($\tilde{\omega}_{\tilde{z}}(\cdot)$, resp.) be the harmonic measure on Δ ($\tilde{\Delta}$, resp.) with respect to W (\tilde{W} , resp.) and $z \in W$ ($\tilde{z} \in \tilde{W}$, resp.). It is well-known that harmonic measure is a Radon measure (cf. e.g. [CC]). It is also well-known that $\omega_z(\cdot)$ ($\tilde{\omega}_{\tilde{z}}(\cdot)$, resp.) can be extended to the outer measure on Δ ($\tilde{\Delta}$, resp.) by

$$\omega_z(E) = \inf \{ \omega_z(B) \colon B \text{ is an open set with } E \subset B \}$$
$$(\tilde{\omega}_{\tilde{z}}(\tilde{E}) = \inf \{ \tilde{\omega}_{\tilde{z}}(\tilde{B}) \colon \tilde{B} \text{ is an open set with } E \subset B \}, \text{ resp.})$$

for a subset $E(\tilde{E}, \text{ resp.})$ of $\Delta(\tilde{\Delta}, \text{ resp.})$. By definition, $h(z) = \omega_z(E)$ is a nonnegative harmonic function on W for every $E \subset \Delta$. By minimum principle, it is obvious that, for an arbitrary $E(\subset \Delta)$ ($\tilde{E} \subset \tilde{\Delta}$, resp.), $\omega_z(E) = 0$ ($\tilde{\omega}_{\tilde{z}}(\tilde{E}) = 0$, resp.) for a $z \in W$ ($\tilde{z} \in \tilde{W}$, resp.) if and only if $\omega_z(E) = 0$ ($\tilde{\omega}_{\tilde{z}}(\tilde{E}) = 0$, resp.) for all $z \in W$ ($\tilde{z} \in \tilde{W}$, resp.). Let f be a real-valued function on the Martin boundary Δ^R of an open Riemann surface R. We denote by $H_f^R(\overline{H}_f^R$, resp.) the solution (upper solution, resp.) of Dirichlet problem on R (=W or \tilde{W}) with boundary values f in the sense of Perron-Wiener-Brelot. We first prove the following.

LEMMA 4.1. Let \tilde{E} be a subset of $\tilde{\varDelta}$. Then $\tilde{\omega}_{\tilde{z}}(\tilde{E}) = 0$ if and only if $\omega_z(\varphi(\tilde{E})) = 0$.

PROOF. Suppose that $\tilde{\omega}_{\tilde{z}}(\tilde{E}) = 0$. By definition, there exists a Borel set $\tilde{B} \subset \tilde{\Delta}$ with $\tilde{E} \subset \tilde{B}$ such that

(4.1)
$$\tilde{\omega}_{\tilde{z}}(\tilde{B}) = H^{W}_{1_{\tilde{\sigma}}}(\tilde{z}) = 0,$$

where $1_{\tilde{B}}$ is the characteristic function of \tilde{B} on $\tilde{\Delta}$. Let \tilde{s} be an arbitrary positive superharmonic function on \tilde{W} such that $\liminf_{\tilde{z}\to\tilde{\zeta}}\tilde{s}(\tilde{z})\geq 1$ for every $\tilde{\zeta}\in\tilde{B}$. Set

$$s(z) := \sum_{\tilde{z} \in \varphi^{-1}(z)} m(\tilde{z}) \tilde{s}(\tilde{z}),$$

where $m(\tilde{z})$ is multiplicity of φ at \tilde{z} . Then s(z) is a positive superharmonic function on W and $\liminf_{z\to\zeta} s(z) \ge 1$ for every $\zeta \in \varphi(\tilde{B})$. Hence $s(z) \ge \overline{H}_{1_{\varphi(\tilde{B})}}^W(z)$. From this and the fact $\overline{H}_{1_{\varphi(\tilde{B})}}^W(z) \ge \omega_z(\varphi(\tilde{B}))$ (cf. e.g. [CC]), it follows that

$$s(z) \ge \omega_z(\varphi(\tilde{B})) \ge \omega_z(\varphi(\tilde{E})).$$

Therefore, by letting s(z) arbitrarily small in view of (4.1), we obtain $\omega_z(\varphi(\tilde{E})) = 0$.

Suppose $\omega_z(\varphi(\tilde{E})) = 0$. By definition, there exists a Borel set $B \subset \Delta$ with $B \supset \varphi(\tilde{E})$ such that

(4.2)
$$\omega_z(B) = H^W_{1_B}(z) = 0.$$

Let s be an arbitrary positive superharmonic function on W such that $\liminf_{z\to\zeta} s(z) \ge 1$ for every $\zeta \in B$. Then $s \circ \varphi(\tilde{z})$ is a positive superharmonic function on \tilde{W} and

$$\liminf_{\tilde{z}\to\tilde{\zeta}}\,s\circ\varphi(\tilde{z})\geq 1$$

for every $\tilde{\zeta} \in \varphi^{-1}(B)$. Hence $s \circ \varphi(\tilde{z}) \ge \overline{H}_{l_{\varphi^{-1}(B)}}^{\tilde{W}}(\tilde{z})$. From this and the fact $\overline{H}_{l_{\varphi^{-1}(B)}}^{\tilde{W}}(\tilde{z}) \ge \tilde{\omega}_{\tilde{z}}(\varphi^{-1}(B))$, it follows that

$$s \circ \varphi(\tilde{z}) \ge \tilde{\omega}_{\tilde{z}}(\varphi^{-1}(B)) \ge \tilde{\omega}_{\tilde{z}}(\varphi^{-1}(\varphi(\tilde{E}))) \ge \tilde{\omega}_{\tilde{z}}(\tilde{E}).$$

Therefore, letting $s \circ \varphi(\tilde{z})$ arbitrarily small in view of (4.2), we obtain $\tilde{\omega}_{\tilde{z}}(\tilde{E}) = 0$.

The proof is herewith complete.

We next consider the sets

$$N_1 := \{ \zeta \in \varDelta_1 : v_{\tilde{W}}(\zeta) = 1 \}$$

and

$$N_2 := \Delta_1 \setminus N_1 = \{ \zeta \in \Delta_1 : v_{\tilde{W}}(\zeta) \ge 2 \}.$$

Put $\tilde{N}_1 = \varphi^{-1}(N_1) \cap \tilde{\mathcal{A}}_1$ and $\tilde{N}_2 = \varphi^{-1}(N_2) \cap \tilde{\mathcal{A}}_1$. By means of Proposition 2.3, it is easily seen that $\tilde{N}_1 \cup \tilde{N}_2 = \tilde{\mathcal{A}}_1$ and $\varphi(\tilde{N}_i) = N_i$ (i = 1, 2). We denote by $\tilde{\mathcal{A}}(\cdot, \cdot)$ the metric on \tilde{W}^* defined by

$$ilde{d}(ilde{z}, ilde{\zeta}) = \sum_{n=1}^{\infty} rac{1}{2^n} \left| rac{ ilde{k}_{ ilde{z}}(ilde{z}_n)}{1+ ilde{k}_{ ilde{z}}(ilde{z}_n)} - rac{ ilde{k}_{ ilde{\zeta}}(ilde{z}_n)}{1+ ilde{k}_{ ilde{\zeta}}(ilde{z}_n)}
ight|,$$

where $\{\tilde{z}_n : n = 1, 2, ...\}$ is a dense subset of \tilde{W} . Set $\tilde{U}_r(\tilde{z}_0) = \{\tilde{z} \in \tilde{W}^* : \tilde{d}(\tilde{z}, \tilde{z}_0) < r\}$ for $\tilde{z}_0 \in \tilde{W}^*$ and r > 0.

LEMMA 4.2. Suppose $\omega_z(N_2) > 0$. Then there exists a $\tilde{\zeta}_0 \in \tilde{N}_2$ such that $\tilde{\omega}_{\tilde{z}}(\tilde{N}_2 \cap \tilde{U}_r(\tilde{\zeta}_0)) > 0$

for every r > 0.

PROOF. By virtue of Lemma 4.1, we have $\tilde{\omega}_{\tilde{z}}(\tilde{N}_2) > 0$, since $\varphi(\tilde{N}_2) = N_2$. Contrary to the assertion, assume that, for every $\tilde{\zeta} \in \tilde{N}_2$, there exists an $r_{\tilde{\zeta}} > 0$ such that $\tilde{\omega}_{\tilde{z}}(\tilde{N}_2 \cap \tilde{U}_{r_{\tilde{\zeta}}}(\tilde{\zeta})) = 0$. Then, by the Lindelöf covering theorem, there exists a sequence $\{\tilde{\zeta}_j\}_{j=1}^{\infty}$ in \tilde{N}_2 such that $\tilde{N}_2 \subset \bigcup_{j=1}^{\infty} \tilde{U}_{r_{\tilde{\zeta}_i}}(\tilde{\zeta}_j)$. Hence we have

$$ilde{\omega}_{ ilde{z}}(ilde{N}_2) \leq \sum_{j=1}^\infty ilde{\omega}_{ ilde{z}}(ilde{N}_2 \cap ilde{U}_{r_{ ilde{\zeta}_j}}(ilde{\zeta}_j)) = 0,$$

which is a contradiction.

328

Here, we again recall the definition of $\tilde{\varDelta}_1(\zeta)$:

$$\tilde{\mathcal{A}}_1(\zeta) = \tilde{\mathcal{A}}_1 \cap \varphi^{-1}(\zeta) = \{ \tilde{\zeta} \in \tilde{\mathcal{A}}_1 : \varphi(\tilde{\zeta}) = \zeta \}.$$

LEMMA 4.3. Let $\tilde{\xi}$ be a point in \tilde{N}_2 . Then there exists a $\rho > 0$ such that $\tilde{\mathcal{A}}_1(\zeta) \setminus \tilde{\mathcal{U}}_{\rho}(\tilde{\xi})$ is not empty for every $\zeta \in N_2 \cap \varphi(\tilde{\mathcal{U}}_{\rho}(\tilde{\xi}))$.

PROOF. Set $\varphi(\tilde{\xi}) = \xi$. Then, by definition, $\xi \in N_2$. Assume that the assertion is false. Then there exists a sequence $\{\zeta_j\}_{j=1}^{\infty}$ in $N_2 \setminus \{\varphi(\tilde{\xi})\}$ such that

(4.3)
$$\max_{\tilde{\eta}\in\tilde{\mathcal{A}}_1(\zeta_j)}\tilde{d}(\tilde{\eta},\tilde{\xi})<1/j.$$

From this and Proposition 2.2 it follows that

$$(4.4) \qquad \qquad \lim_{j \to \infty} k_{\zeta_j} = k_{\xi}$$

For each *j*, put $\tilde{\mathcal{A}}_1(\zeta_j) = {\{\tilde{\zeta}_{j1}, \ldots, \tilde{\zeta}_{jn_j}\}}$. By Proposition 2.3 and (2.4), there exist positive constants c_{j1}, \ldots, c_{jn_j} with $\sum_{i=1}^{n_j} c_{ji} = 1$ such that

(4.5)
$$k_{\zeta_j} \circ \varphi = \sum_{i=1}^{n_j} c_{ji} \tilde{k}_{\tilde{\zeta}_{ji}}$$

On the other hand, in view of (4.3), we see that

$$\lim_{j o\infty}\, ilde{k}_{ ilde{\zeta}_{ji_j}}= ilde{k}_{ ilde{\xi}}$$

independently of choice of i_j in $\{1, \ldots, n_j\}$. This with (4.4) and (4.5) implies that

$$k_{\xi} \circ \varphi = \tilde{k}_{\tilde{\xi}}.$$

Therefore, by means of Proposition 2.3, we obtain $\tilde{\mathcal{A}}_1(\xi) = \{\tilde{\xi}\}$, which contradicts $\xi \in N_2$. This completes the proof.

We can restate Theorem 2, in terms of the set N_2 , as follows: The relation $HB(W) \circ \varphi = HB(\tilde{W})$ holds if and only if $\omega_z(N_2) = 0$.

PROOF OF THEOREM 2. We first prove 'if' part. Suppose $\omega_z(N_2) = 0$. Then, by Lemma 4.1,

(4.6)
$$\tilde{\omega}_{\tilde{z}}(\tilde{N}_2) = 0.$$

Take an arbitrary $\tilde{h} \in HB(\tilde{W})$. We only need to show $\tilde{h} \in HB(W) \circ \varphi$. Adding a constant to \tilde{h} , we may assume that $\tilde{h} > 0$ on \tilde{W} . Let c (>0) be the supremum of \tilde{h} on \tilde{W} . By the Martin representation theorem, there exist Radon measures $\tilde{\mu}$ and $\tilde{\chi}$ on $\tilde{\Delta}$ with $\tilde{\mu}(\tilde{\Delta} \setminus \tilde{\Delta}_1) = 0$ and $\tilde{\chi}(\tilde{\Delta} \setminus \tilde{\Delta}_1) = 0$ such that

(4.7)
$$\tilde{h}(\tilde{z}) = \int \tilde{k}_{\tilde{\zeta}}(\tilde{z}) \, d\tilde{\mu}(\tilde{\zeta})$$

and

(4.8)
$$1 = \int \tilde{k}_{\tilde{\zeta}}(\tilde{z}) \, d\tilde{\chi}(\tilde{\zeta})$$

Then

$$c\int \tilde{k}_{\tilde{\zeta}}(\tilde{z})\,d\tilde{\chi}(\tilde{\zeta})=c\geq \tilde{h}(\tilde{z})=\int \tilde{k}_{\tilde{\zeta}}(\tilde{z})\,d\tilde{\mu}(\tilde{\zeta}).$$

Hence, by uniqueness of representing measure, we have

Note that $\tilde{k}_{\tilde{\zeta}}(\tilde{z}) d\tilde{\chi}(\tilde{\zeta}) = d\tilde{\omega}_{\tilde{z}}(\tilde{\zeta})$ (cf. [CC, p. 140]). From this and (4.9) it follows that

$$\int_{\tilde{N}_2} \tilde{k}_{\tilde{\zeta}}(\tilde{z}) \, d\tilde{\mu}(\tilde{\zeta}) \le c \int_{\tilde{N}_2} \tilde{k}_{\tilde{\zeta}}(\tilde{z}) \, d\tilde{\chi}(\tilde{\zeta}) = c \int_{\tilde{N}_2} d\tilde{\omega}_{\tilde{z}}(\tilde{\zeta}) = c\tilde{\omega}_{\tilde{z}}(\tilde{N}_2).$$

This with (4.6) yields that

$$\int_{ ilde N_2} ilde k_{ ilde \zeta}(ilde z) \, d ilde \mu(ilde \zeta) = 0.$$

Therefore, by (4.7) and the fact $\tilde{N}_1 \cup \tilde{N}_2 = \tilde{\varDelta}_1$, we have

(4.10)
$$\tilde{h}(\tilde{z}) = \int_{\tilde{N}_1} \tilde{k}_{\tilde{\zeta}}(\tilde{z}) \, d\tilde{\mu}(\tilde{\zeta}).$$

By Proposition 2.3 (iii) and (2.4), we see that $\tilde{k}_{\tilde{\zeta}} \in HP(W) \circ \varphi$ for every $\tilde{\zeta} \in \tilde{N}_1$. Hence, by (4.10) and the same argument as in the proof of Theorem 1, we obtain

$$h \in HP(W) \circ \varphi \cap HB(\tilde{W}) \subset HB(W) \circ \varphi.$$

We next prove 'only if' part. Suppose $\omega_z(N_2) > 0$. Then, by Lemma 4.2, there exists a $\xi \in \tilde{N}_2$ such that

(4.11) $\tilde{\omega}_{\tilde{z}}(\tilde{N}_2 \cap \tilde{U}_r(\tilde{\xi})) > 0$

for every r > 0. Moreover, by Lemma 4.3, there exists $\rho > 0$ such that

(4.12)
$$\tilde{\mathcal{\Delta}}_1(\zeta) \setminus \tilde{\mathcal{U}}_{\rho}(\tilde{\xi}) \neq \emptyset$$

for every $\zeta \in N_2 \cap \varphi(\tilde{U}_{\rho}(\tilde{\xi}))$. Set

$$ilde{E}_1 = ilde{N}_2 \cap ilde{U}_{
ho/2}(ilde{\xi}).$$

Then, by (4.11) and Lemma 4.1, we have

(4.13)
$$\omega_z(\varphi(\tilde{E}_1)) > 0$$

Set

$$ilde{E}_2 = ilde{N}_2 \cap arphi^{-1}(arphi(ilde{U}_{
ho/2}(ilde{\xi})))arphi(ilde{\xi}).$$

In view of (4.12), we find that

(4.14)
$$\varphi(\tilde{E}_1) = \varphi(\tilde{E}_2)$$

Put $\tilde{h}(\tilde{z}) = \tilde{\omega}_{\tilde{z}}(\tilde{E}_1)$. Then $\tilde{h}(\tilde{z})$ is a bounded harmonic function on \tilde{W} . We only need to show $\tilde{h} \notin HB(W) \circ \varphi$. By the Fatou-Naïm-Doob theorem (cf. [CC, p. 152]), $\tilde{h}(\tilde{z})$ has

the minimal fine limit 1 (0, resp.) at almost all $\tilde{\zeta}$ in \tilde{E}_1 (\tilde{E}_2 , resp.) with respect to $\tilde{\omega}_{\tilde{z}}$, since $\overline{\tilde{E}_1} \cap \overline{\tilde{E}_2} = \emptyset$. Accordingly there exists a subset \tilde{F}_1 (\tilde{F}_2 , resp.) of \tilde{E}_1 (\tilde{E}_2 , resp.) with $\tilde{\omega}_{\tilde{z}}(\tilde{F}_1) = 0$ ($\tilde{\omega}_{\tilde{z}}(\tilde{F}_2) = 0$, resp.) such that, for every $\tilde{\zeta}$ in $\tilde{E}_1 \backslash \tilde{F}_1$ ($\tilde{E}_2 \backslash \tilde{F}_2$, resp.),

(4.15)
$$\mathscr{F} - \lim_{\tilde{z} \to \tilde{\zeta}} \tilde{h}(\tilde{z}) = 1 \quad (\mathscr{F} - \lim_{\tilde{z} \to \tilde{\zeta}} \tilde{h}(\tilde{z}) = 0, \text{ resp.})$$

where we denote by \mathscr{F} – lim minimal fine limit. Then, by Lemma 4.1, $\omega_z(\varphi(\tilde{F}_1) \cup \varphi(\tilde{F}_2)) = 0$. Hence, by (4.13) and (4.14), there exist points $\tilde{\zeta}_1 \in \tilde{E}_1 \setminus \tilde{F}_1$ and $\tilde{\zeta}_2 \in \tilde{E}_2 \setminus \tilde{F}_2$ with $\varphi(\tilde{\zeta}_1) = \varphi(\tilde{\zeta}_2)$. This with (4.15) implies that there exists an open subset \tilde{O}_1 (\tilde{O}_2 , resp.) of \tilde{W} such that $\tilde{O}_1 \cup \{\tilde{\zeta}_1\}$ ($\tilde{O}_2 \cup \{\tilde{\zeta}_2\}$, resp.) is a minimal fine neighborhood of $\tilde{\zeta}_1$ ($\tilde{\zeta}_2$, resp.) and that

(4.16)
$$\inf_{\tilde{z}\in\tilde{O}_1}\tilde{h}(\tilde{z})\geq \frac{2}{3}\quad (\sup_{\tilde{z}\in\tilde{O}_2}\tilde{h}(\tilde{z})\leq \frac{1}{3}, \text{ resp.}).$$

Then, by virtue of Proposition 2.4, we see that $(\varphi(\tilde{O}_1) \cap \varphi(\tilde{O}_2)) \cup \{\varphi(\tilde{\zeta}_1)\}$ is a minimal fine neighborhood of $\varphi(\tilde{\zeta}_1) = \varphi(\tilde{\zeta}_2)$, and hence $\varphi(\tilde{O}_1) \cap \varphi(\tilde{O}_2) \neq \emptyset$. Therefore, by (4.16), there exists a subset \tilde{U}_j of \tilde{O}_j (j = 1, 2) with $\varphi(\tilde{U}_1) = \varphi(\tilde{U}_2)$ such that

$$\inf_{\tilde{z}\in\tilde{U}_1}\tilde{h}(\tilde{z})\geq \frac{2}{3}\quad (\sup_{\tilde{z}\in\tilde{U}_2}\tilde{h}(\tilde{z})\leq \frac{1}{3}, \text{ resp.}).$$

This means that $\tilde{h} \notin HB(W) \circ \varphi$.

The proof is herewith complete.

COROLLARY 4.1. In order that the relation $HB(W) \circ \varphi = HB(\tilde{W})$ holds, it is necessary and sufficient that $\varphi^{-1}(\zeta)$ consists of a single point for ω_z^W —almost all $\zeta \in \Delta$ $(=\Delta^W)$.

PROOF. Note that $\omega_z^W(\Delta \setminus \Delta_1) = 0$ (cf. [CC]). Hence, by virtue of Theorem 2, it suffices to show that, for each $\zeta \in \Delta_1$, $\tilde{\Delta}_1(\zeta)$ consists of a single point if and only if $\varphi^{-1}(\zeta)$ consists of a single point.

If $\varphi^{-1}(\zeta)$ consists of a single point, then it instantly follows from Proposition 2.3 (ii) that $\tilde{\mathcal{A}}_1(\zeta)$ consists of a single point, since $\tilde{\mathcal{A}}_1(\zeta) \subset \varphi^{-1}(\zeta)$. Assume that $\tilde{\mathcal{A}}_1(\zeta)$ consists of a single point $\tilde{\zeta}$. Take an arbitrary point $\tilde{\xi} \in \varphi^{-1}(\zeta)$. Then, in view of Proposition 2.2 and Proposition 2.3 (iii), there exists a positive constant c such that $\tilde{k}_{\tilde{\xi}} \leq c\tilde{k}_{\tilde{\zeta}}$ on \tilde{W} . Hence, by minimality of $\tilde{k}_{\tilde{\zeta}}$ and (2.2), we have $\tilde{k}_{\tilde{\xi}} = \tilde{k}_{\tilde{\zeta}}$. This means that $\varphi^{-1}(\zeta)$ consists of a single point $\tilde{\zeta}$.

5. Harmonic functions on covering surfaces of the unit disc.

Let *D* be the unit disc $\{|z| < 1\}$. In this section, we are concerned with application of Theorems 1 and 2 in case base surface is *D*. As is well-known, the Martin compactification D^* of *D* is identified with the closure \overline{D} of *D* with respect to Euclidian topology and the Martin boundary Δ^D of *D* consists of only minimal points. In this view, we regard $\partial D = \{|z| = 1\}$ as the (minimal) Martin boundary of *D*.

To state our main result of this section, we introduce some notations. For a discrete subset A of D, we denote by $\mathscr{B}_p(A)$ the class of p-sheeted unlimited covering surface \tilde{D} of D such that there exists a branch point in \tilde{D} of order p-1 (or multiplicity

p) over every $z \in A$ and there exist no branch points in D over $D \setminus A$. In addition to the Euclidean metric, we consider the pseudohyperbolic metric on D given by

$$\rho(z,w) = \left| \frac{z-w}{1-\overline{w}z} \right|.$$

For $\zeta \in \partial D$ and a positive number C (<1), we also consider the Stolz type domain with vertex ζ given by

$$S_C(\zeta) = \{ z \in D : C | z - \zeta | < 1 - |z| \}.$$

THEOREM 5.1. Let $A = \{a_n : n \in N\}$ be a discrete subset of D and D belong to $\mathscr{B}_p(A)$. Suppose that there exists a positive constant C (<1) satisfying the following two conditions

- (i) for every pair (a_m, a_n) in A with $a_m \neq a_n$, $\rho(a_m, a_n) \ge C$;
- (ii) for every $\zeta \in \partial D$, there exists a subset $B_{\zeta} = \{b_n : n \ge n_0\}$ $(n_0 = n_0(\zeta))$ of A such that $b_n \in \{z : \sigma^{n+1} \le |z \zeta| \le \sigma^n\} \cap S_C(\zeta)$ for every $n \ge n_0$, where σ is a positive number with $\sigma < 1$.

Then $HP(\tilde{D}) = HP(D) \circ \varphi$, where φ is the projection map.

For a bounded Borel subset K of C, we denote by $\lambda(K)$ the logarithmic capacity. As a necessary condition for minimal thinness, the following is available (cf. [L], [J]).

LEMMA 5.1. Let ζ be in $\partial D = \Delta_1^D$ and E a relatively closed subset of $S_C(\zeta)$. If E is minimally thin at ζ , then

$$\sum_{n=1}^{\infty} \frac{1}{\log(1/(\lambda(E_n)))} < \infty,$$

where $E_n = E \cap \{z : \tau^{n+1} \le |z - \zeta| \le \tau^n\}$ and τ is a positive number with $\tau < 1$.

PROOF OF THEOREM 5.1. Let ζ be an arbitrary point in ∂D . By virtue of Theorem 1, we only have to show that $\Delta_1^{\tilde{D}}(\zeta)$ consists of a single point. Take an arbitrary $M \in \mathcal{M}_D(\zeta)$. Our goal is to show that $\varphi^{-1}(M)$ is connected. In fact, in view of Proposition 2.5, connectivity of $\varphi^{-1}(M)$ for all $M \in \mathcal{M}_D(\zeta)$ implies $\Delta_1^{\tilde{D}}(\zeta)$ consists of a single point.

We first assume that there exists an $a_n \in M \cap A$. Then, it is easily seen that $\varphi^{-1}(M)$ is connected, since \tilde{D} has a branch point of order p-1 over $a_n \in M$ and M is connected.

We next assume $M \cap A = \emptyset$. Put $F = D \setminus M$. Note that F is minimally thin at ζ and relatively closed in D. For each $n \ (\ge n_0)$, let F_n be the connected component of F which contains $b_n \in B_{\zeta}$. We first consider the case that there exists an $F_n \ (n \ge n_0)$ such that

$$(5.1) d(F_n) < C^2 \sigma^{n+1},$$

where $d(F_n)$ indicates the diameter of F_n . Then there exists a closed Jordan curve γ_n in M such that γ_n surrounds F_n and

(5.2)
$$d(F_n) < d(\gamma_n) < C^2 \sigma^{n+1}.$$

By (i) and (ii), we have

$$|a_m - b_n| \ge C|1 - \overline{b_n}a_m| \ge C(1 - |b_n|) \ge C^2|b_n - \zeta| \ge C^2\sigma^{n+1},$$

for every $a_m \in A \setminus \{b_n\}$. Hence, by means of (5.2), we see that γ_n surrounds only one point b_n in A. Therefore, $\varphi^{-1}(\gamma_n)$ is connected, since \tilde{D} has a branch point of order p-1 over b_n . This with $\gamma_n \in M$ and connectivity of M yields that $\varphi^{-1}(M)$ is connected. Accordingly, we complete the proof if we show that there exists an F_n $(n \ge n_0)$ satisfying (5.1).

Now we may assume that

(5.3)
$$d(F_n) \ge C^2 \sigma^{n+1}$$

for every $n (\ge n_0)$. Set $E = F \cap S_{C/2}(\zeta)$. Note that E is minimally thin at ζ . We denote by F_n^* the connected component of E which contains b_n . Then, in view of (ii) and (5.3), we find that there exists a positive constant $C_1 (\le C^2 \sigma)$ such that

(5.4)
$$d(F_n^*) \ge C_1 \sigma'$$

for every $n \ (\geq n_0)$. Set $E_m = E \cap \{z : \sigma^{3(m+1)} \leq |z - \zeta| \leq \sigma^{3m}\}$. Note that $b_{3m+1} \in E_m$. Then, by (5.4), taking an appropriate constant $C_2 \ (< C_1)$, we see that, for every m with $3m + 1 \geq n_0$, E_m contains a continuum whose diameter is equal to or greater than $C_2 \sigma^{3m+1}$. From this it follows that

$$\lambda(E_m) \ge 4^{-1} C_2 \sigma^{3m+1}$$

for every *m* with $3m + 1 \ge n_0$ (cf. [T]). Hence we see that

$$\frac{1}{\log(1/(\lambda(E_m)))} \ge \frac{1}{(3m+1)\log(1/\sigma) + \log(4/C_2)}$$

for every *m* with $3m + 1 \ge n_0$. Therefore we deduce

$$\sum_{3m+1 \ge n_0} \frac{1}{\log(1/(\lambda(E_m)))} \ge \sum_{3m+1 \ge n_0} \frac{1}{(3m+1)\log(1/\sigma) + \log(4/C_2)} = \infty.$$

By Lemma 5.1, this is absurd, since E is minimally thin at ζ .

The proof is herewith complete.

Using the notation above, we restate Proposition in Introduction as follows:

COROLLARY 5.1. Let $A = \{(1 - 2^{-n-1})e^{i2\pi k/2^{n+2}} : n = 1, 2, ..., k = 1, ..., 2^{n+2}\}$ and \tilde{D} belong to $\mathscr{B}_p(A)$. Then $HP(D) \circ \varphi = HP(\tilde{D})$, where φ is the projection map.

PROOF. For a pair $(z, w) = (1 - 2^{-n}, 1 - 2^{-n-1})$ or $(1 - 2^{-n}, (1 - 2^{-n})e^{i2\pi/2^{n+1}})$, by a calculation, it is easily checked that there exists a positive constant *C* independent of n = 1, 2, ... such that $\rho(z, w) \ge C$. This implies that *A* and the above constant *C* satisfy the condition (i) of Theorem 5.1. Let ζ be an arbitrary point in ∂D . For every positive integer *n*, we can choose a positive integer k_n with $1 \le k_n \le 2^{n+2}$ such that

(5.5)
$$\left|\arg\zeta - \frac{2\pi k_n}{2^{n+2}}\right| \le \frac{\pi}{2^{n+2}}$$

Set

$$b_n = (1 - 2^{-n-1})e^{i2\pi k_n/2^{n+2}}$$
 $(n = 1, 2, ...).$

Then, by (5.5), we have

$$(2^{-n-1})^2 \le |b_n - \zeta|^2 \le (2^{-n-1})^2 + 4\sin^2\frac{\pi}{2^{n+3}}.$$

In view of this with (5.5), it is easily seen that $B_{\zeta} := \{b_n : n \ge 1\}$ and a positive constant C satisfy the condition (ii) of Theorem 5.1 for $\sigma = 2^{-1}$.

At the last, we give a *p*-sheeted unlimited covering surface \tilde{D}_1 of *D* with projection map φ such that $HB(D) \circ \varphi = HB(\tilde{D}_1)$ and $HP(D) \circ \varphi \neq HP(\tilde{D}_1)$. Let *A* be the same as in Corollary 5.1. Set $M = \{|z - 1/2| < 1/2\}$ and $A_1 = A \setminus M$. Consider a covering surface $D_1 \in \mathscr{B}_p(A_1)$ with projection map φ . We now show that $HB(D) \circ \varphi = HB(\tilde{D}_1)$ and $HP(D) \circ \varphi \neq HP(\tilde{D}_1)$. As is proved in the proof of Corollary 5.1, A_1 and a positive constant *C* satisfy the following two conditions:

- (i) for every pair (a_m, a_n) in A_1 with $a_m \neq a_n$, $\rho(a_m, a_n) \ge C$;
- (ii) for every $\zeta \in \partial D \setminus \{1\}$, there exists a subset $B_{\zeta} = \{b_n : n \ge n_0\}$ $(n_0 = n_0(\zeta))$ of A_1 such that $b_n \in \{z : 2^{-n-1} \le |z \zeta| \le 2^{-n}\} \cap S_C(\zeta)$ for every $n \ge n_0$.

Therefore the proof of Theorem 5.1 yields that $v_{\tilde{D}_1}(\zeta) = 1$ for every $\zeta \in \partial D \setminus \{1\}$. Hence, by virtue of Theorem 2, we have $HB(D) \circ \varphi = HB(\tilde{D}_1)$. On the other hand, it is easily seen that M belongs to $\mathcal{M}_D(1)$ and $\varphi^{-1}(M)$ consists of p components. Hence, by Proposition 2.5 and Proposition 2.3 (ii), $v_{\tilde{D}_1}(1) = p$. Therefore, by Theorem 1, we see that $HP(D) \circ \varphi \neq HP(\tilde{D}_1)$.

References

- [AS] L. Ahlfors and L. Sario, Riemann Surfaces, Princeton, 1960.
- [BH] J. Bliedtner and W. Hansen, Potential Theory, Springer, 1986.
- [B] M. Brelot, On Topologies and Boundaries in Potential Theory, Lecture Notes in Math., 175, Springer, 1971.
- [CC] C. Constantinescu and A. Cornea, Ideale Ränder Riemanncher Flächen, Springer, 1969.
- [F] O. Forster, Lectures on Riemann Surfaces, Grad. Texts in Math., 81, Springer.
- [H] M. Heins, Riemann surfaces of infinite genus, Ann. of Math., 55 (1952), 296-317.
- [HL] L. Helms, Introduction to Potential Theory, Wiley-Interscience, 1969.
- [J] H. L. Jackson, Some results on thin sets in a half plane, Ann. Inst. Fourier, 20 (1970), 201–218.
- [L] J. Lelong-Ferrand, Etude au voisinage de la frontière des fonctions surharmoniques positives dans un demi-espace, Ann. Ecole N. Sup., 66 (1949), 125–159.
- [JMS] N. Jin, H. Masaoka and S. Segawa, Kuramochi boundary of unlimited covering surfaces, Analysis, 20 (2000), 163–190.
- [M] H. Masaoka, Criterion of Wiener type for minimal thinness on covering surfaces, Proc. Japan Acad., 72 (1996), 154–156.
- [MS1] H. Masaoka and S. Segawa, Harmonic dimension of covering surfaces and minimal fine neighborhood, Osaka J. Math., 34 (1997), 659–672.
- [MS2] H. Masaoka and S. Segawa, Martin boundary of unlimited covering surfaces, J. d'Analyse Math., 81 (2000), 55-72.
- [SN] L. Sario and M. Nakai, Classification Theory of Riemann Surfaces, Springer, 1970.
- [T] M. Tsuji, Potential Theory in Modern Function Theory, Maruzen, 1959.

Hiroaki MASAOKA Department of Mathematics Faculty of Science Kyoto Sangyo University Kyoto 603-8555 Japan E-mail: masaoka@cc.kyoto-su.ac.jp Shigeo SEGAWA

Department of Mathematics Daido Institute of Technology Nagoya 457-8530 Japan E-mail: segawa@daido-it.ac.jp