Stationary preserving ideals over $\mathscr{P}_{\kappa}\lambda$

By Yo Matsubara

(Received May 28, 2001) (Revised Apr. 10, 2002)

Abstract. We investigate the properties of ideals such that their corresponding partial orders preserve stationarity. We show that these ideals exhibit many large cardinal-like consequences. We also prove the existence of a certain non-reflecting stationary subset of $\mathcal{P}_{\kappa}\lambda$ under some hypotheses.

1. Introduction.

In this paper we say that I is an ideal over S when I is a countably complete fine (i.e. for every $i \in \bigcup S \{x \in S : i \notin x\} \in I$) ideal over S. For an ideal I, we denote the poset of I-positive sets ordered by inclusion by P_I . We refer the reader to Jech [12] for background about ideals, and Kunen [14] and Kanamori [13] for terminology from the theory of forcing (e.g. poset, antichain, predense, generic filter, etc.).

For an uncountable regular cardinal κ and a set X with $|X| \ge \kappa$, we let $\mathscr{P}_{\kappa}X$ denote the set $\{s \subseteq X : |s| < \kappa\}$. A set $W \subseteq \mathscr{P}_{\kappa}X$ is said to be *stationary in* $\mathscr{P}_{\kappa}X$ if for every function $f : \lambda^{<\omega} \to \mathscr{P}_{\kappa}X$, there exists a set $s \in W$ such that s is closed under f i.e. $\forall a \in s^{<\omega}f(a) \subseteq s$. The collection of non-stationary subsets of $\mathscr{P}_{\kappa}X$ forms a κ -complete normal ideal over $\mathscr{P}_{\kappa}X$. This ideal is known as the *non-stationary ideal* over $\mathscr{P}_{\kappa}X$. We denote the non-stationary ideal over $\mathscr{P}_{\kappa}X$ by $NS_{\kappa X}$. We refer the reader to Kanamori [13, Section 25] for basic facts about the combinatorics of $\mathscr{P}_{\kappa}X$.

In this paper we investigate ideals for which their corresponding posets preserve stationarity. We remind the reader that a poset P is said to be *proper* if P preserves stationarity of subsets of $\mathscr{P}_{\aleph_1}\lambda$ for every uncountable cardinal λ , i.e. for every $\lambda \geq \aleph_1$, if $X \subseteq \mathscr{P}_{\aleph_1}\lambda$ is stationary, then \Vdash_{P_I} " \check{X} is stationary in $\mathscr{P}_{\aleph_1}\check{\lambda}$ ". We will show that an ideal whose corresponding poset is proper possesses many interesting consequences. As an example we state one of our theorems.

THEOREM. Let λ be an uncountable cardinal and δ be a cardinal $\geq 2^{2^{2^{\lambda}}}$. If there is a λ^+ -complete normal ideal I over $\mathscr{P}_{\lambda^+}\delta$ such that \mathbf{P}_I is proper, then $NS_{\aleph_1\lambda}$ is precipitous. Furthermore $NS_{\aleph_1\lambda}$ is presaturated if $2^{\lambda^{\aleph_0}} = \lambda^+$.

We will restate and prove this theorem as Theorem 7 later. Let us discuss some terminology. We say that an ideal I is *precipitous* if for every generic filter G for P_I over the ground model V, $Ult_G(V)$, the generic ultrapower of V with respect to G, is well-founded. We refer the reader to Jech [12] for the definition of $Ult_G(V)$. The

²⁰⁰⁰ Mathematics Subject Classification. Primary 03E55; Secondary 03E35.

Key Words and Phrases. Forcing, large cardinals.

The author was partially supported by Grant-in-Aid for Scientific Research (No. 11640112), Ministry of Education, Science and Culture.

existence of a precipitous ideal is known as a large cardinal hypothesis. For example, see Theorem 86 of [12]. An ideal *I* over $\mathscr{P}_{\kappa}\lambda$ is said to be *presaturated* if it is precipitous and forcing with P_I preserves λ^+ .

We also present a result concerning "non-reflecting" stationary sets.

THEOREM. Let κ and λ be regular cardinals such that $\aleph_2 \leq \kappa < \lambda$ and $2^{\lambda^{<\kappa}} = \lambda^+$. If θ is a regular cardinal $\geq \lambda^+$ with a measurable cardinal above, then there exists a stationary $S \subseteq \mathscr{P}_{\kappa}H_{\theta}$ such that for any $X \in [H_{\theta}]^{\lambda}$, $\lambda \subseteq X$ implies that $S \cap \mathscr{P}_{\kappa}X$ is not stationary in $\mathscr{P}_{\kappa}X$.

Here H_{θ} stands for the collection of sets which are hereditarily of cardinality $<\theta$. We refer the reader to Kunen [14] for background about H_{θ} . The last theorem will be presented as Theorem 9.

The next theorem due to Gitik and Shelah [8] shows that the existence of an ideal I such that P_I is proper is always a large cardinal property. We present a different proof which shows this result can be strengthened slightly.

THEOREM 1. If I is an ideal such that P_I is proper, then I is precipitous.

PROOF. For a poset P we consider the following game $\Gamma(P)$ due to Gray [11]. $\Gamma(P)$ is a two player game of length ω . Player I as her first move chooses $p_0 \in P$ and a maximal antichain A_0 in P. Then Player II chooses a countable subset B_0^0 of A_0 . Next Player I chooses another maximal antichain A_1 and in response Player II chooses countable $B_0^1 \subseteq A_0$ and $B_1^1 \subseteq A_1$. In general as their *n*th moves, with the exception of the first move, Player I chooses a maximal antichain A_n and Player II chooses countable $B_i^n \subseteq A_i$ for each $i \leq n$. After ω moves Player II wins $\Gamma(P)$ if and only if there exists $q \leq p_0$ such that for each $i, B_i = \bigcup_{n \in \omega - i} B_i^n$ is predense below q. Gray proved that P is proper if and only if Player II has a winning strategy in $\Gamma(P)$. For the proof of this see Baumgartner [2].

We will show that if an ideal I over Z is not precipitous then Player I has a winning strategy in $\Gamma(\mathbf{P}_I)$. Suppose an ideal I is not precipitous. Assume for some I-positive set X that $X \Vdash_{\mathbf{P}_I} : \langle [\dot{\tau}_n] \mid n \in \omega \rangle$ is a descending sequence in $\langle Ult_G(\check{V}), E \rangle$." In particular for each $n \in \omega$, $X \Vdash_{\mathbf{P}_I} \dot{\tau}_n \in \check{V}$. Let A'_0 be a maximal antichain in $\{Y \in \mathbf{P}_I :$ $Y \subseteq X, Y \Vdash [\check{f}_Y] = [\dot{\tau}_0]$ for some $f_Y \in V\}$. Let $A_0 = A'_0 \cup \{Z - X\}$ if $Z - X \notin I$. If $Z - X \in I$, then let $A_0 = A'_0$. It is easy to see that A_0 is a maximal antichain in \mathbf{P}_I . As her first move let Player I choose X and A_0 . If $Z - X \notin I$, as her nth move $(n \ge 1)$, let Player I choose $A_n = A'_n \cup \{Z - X\}$ where A'_n is a maximal antichain in $\{Y \in \mathbf{P}_I :$ $Y \subseteq X, \exists f_Y \in V$ such that $Y \Vdash [\check{f}_Y] = [\dot{\tau}_n]\}$. If $Z - X \in I$ let Player I choose $A_n = A'_n$.

We want to show this is a winning strategy for Player I. Suppose Player II chooses a countable $B_i^n \subseteq A_i$ for all $i \le n$ as his *n*th move.

CLAIM. There is no
$$Y \leq X$$
 such that for each i, $\left(\int_{n \in \omega_{-i}} B_i^n \right)$ is predense below Y.

PROOF OF CLAIM. Suppose otherwise. Assume that $Y \leq X$ and $B_i = \bigcup_{n \in \omega - i} B_i^n$ is predense below Y for all *i*. For each *i* let $\langle X_m : m < \omega \rangle$ enumerate elements of B_i . Let $\overline{X}_0 = X_0$ and for $m \geq 1$, $\overline{X}_m = X_m - \bigcup_{k < m} X_k$. By the definition of B_i for each *m* there exists $f_{X_m} \in V$ such that $X_m \Vdash_{P_I} [\check{f}_{X_m}] = [\dot{\tau}_i]$. Define g_i by $g_i = \bigcup_{m \in \omega} f_{X_m} \upharpoonright \overline{X}_m$. Now we claim that $Y \Vdash_{P_I} [\check{g}_i] = [\dot{\tau}_i]$. Suppose otherwise. Then $\exists Z \leq Y : Z \Vdash_{P_I} [\check{g}_i] \neq [\dot{\tau}_i]$. Since B_i is predense below Y there is some $X_m \in B_i$ such that $X_m \cap Z$ is *I*-positive. Then $X_m \cap Z \Vdash_{P_I} [\check{f}_{X_m}] = [\dot{\tau}_i]$. Since $X_m \cap Z \subseteq \bigcup_{k \le m} \overline{X}_k$ there is some $k \le m$ such that $X_m \cap Z \cap \overline{X}_k$ is *I*-positive. Clearly $X_m \cap Z \cap \overline{X}_k \Vdash_{P_I} [\check{f}_{X_k}] = [\dot{\tau}_i] \land [\check{g}_i] = [\check{f}_{X_k}]$. So $X_m \cap Z \cap \overline{X}_k \Vdash_{P_I} [\check{g}_i] = [\dot{\tau}_i]$ contradicting $Z \Vdash_{P_I} [\check{g}_i] \neq [\dot{\tau}_i]$.

Therefore for each $i \in \omega$ there is some $g_i \in V$ such that $Y \Vdash_{P_I} [\check{g}_i] = [\dot{\tau}_i]$. For each $i \in \omega$ let $W_i = \{a \in Y : g_{i+1}(a) \in g_i(a)\}$. We know that for each $i \in \omega$, $Y \Vdash [\check{g}_{i+1}]E[\check{g}_i]$. Thus $Y \cap \bigcap_{i \in \omega} W_i$ is *I*-positive. But if $a \in \bigcap_{i \in \omega} W_i$ then $g_0(a) \ni g_1(a) \ni g_2(a) \cdots$. This contradiction completes the proof of Claim.

Therefore Player I has a winning strategy in $\Gamma(\mathbf{P}_I)$. So by Gray's thorem \mathbf{P}_I is not proper.

REMARK. The above proof of Theorem 1 shows that if I is an ideal such that Player I does not have a winning strategy in $\Gamma(\mathbf{P}_I)$, then I is precipitous. Since this hypothesis is weaker than " \mathbf{P}_I is proper", we proved a slightly stronger result.

2. Stationary preserving ideals.

In Matsubara [15] we adopted the proof of Theorem 4 in Galvin-Jech-Magidor [7] to show the following result:

THEOREM 2. If κ is a supercompact cardinal > an uncountable regular cardinal δ , then $\parallel_{\operatorname{Coll}(\delta, <\kappa)}$ "For every $\lambda \ge \delta^+$ there is a δ^+ -complete normal fine ideal I over $\mathscr{P}_{\delta^+}\lambda$ such that \mathbf{P}_I is $\prec \delta$ -strategically closed" where $\operatorname{Coll}(\delta, <\kappa)$ is the Levy collapse causing κ to be δ^+ .

For the definition of " $\prec \delta$ -strategically closed" we refer the reader to Apter-Shelah [1]. It is well-known that every ω -strategically closed poset is proper. Therefore after Levy collapsing a supercompact cardinal to δ^+ , $\mathcal{P}_{\delta^+}\lambda$ carries a δ^+ -complete normal fine ideal I such that P_I is proper. From now on by a κ -ideal over $\mathcal{P}_{\kappa}A$ we mean a κ complete normal fine ideal over $\mathcal{P}_{\kappa}A$. Furthermore we say that an ideal I is "proper" if P_I is proper. The existence of a "proper" δ^+ -ideal on $\mathcal{P}_{\delta^+}\lambda$ implies a certain reflection principle.

DEFINITION. If S is a stationary subset of $\mathscr{P}_{\aleph_1}\lambda$ and $X \subseteq \lambda$, then we say that S reflects to X if $S \cap \mathscr{P}_{\aleph_1}X$ is stationary in $\mathscr{P}_{\aleph_1}X$.

The following is a slight generalization of the Reflection Principle due to Foreman, Magidor, and Shelah [6].

DEFINITION. The Reflection Principle at λ to size δ holds if the following proposition is true:

Every stationary set $S \subseteq \mathscr{P}_{\aleph_1} \lambda$ reflects to some $X \in [\lambda]^{\delta}$ such that $\delta \subseteq X$.

THEOREM 3. If there exists a "proper" δ^+ -ideal over $\mathscr{P}_{\delta^+}\theta$, then for every λ such that $\delta^+ \leq \lambda \leq \theta$ the Reflection Principle at λ to size δ holds.

PROOF. If T is a stationary subset of $\mathscr{P}_{\aleph_1}\lambda$ then $\{x \in \mathscr{P}_{\aleph_1}\theta : x \cap \lambda \in T\}$ is a stationary subset of $\mathscr{P}_{\aleph_1}\theta$. It is also known that the projection of a stationary subset of $\mathscr{P}_{\aleph_1}\theta$ onto $\mathscr{P}_{\aleph_1}X$ with $\aleph_1 \subseteq X \subseteq \theta$ is stationary in $\mathscr{P}_{\aleph_1}X$. For the proofs of these facts, see Foreman-Magidor-Shelah [5]. From these facts it is easy to see that the Reflection Principle at θ to size δ implies the Reflection Principle at λ to size δ for every λ such that $\delta^+ \leq \lambda \leq \theta$.

Let S be a stationary subset of $\mathscr{P}_{\aleph_1}\theta$ in V. Let I be a δ^+ -ideal over $\mathscr{P}_{\delta^+}\theta$ such that P_I is proper. Let G be a P_I -generic filter over V. Let $j: V \to M \cong Ult_G(V)$ be the corresponding generic elementary embedding.

Now work in V[G]. Since P_I is proper, S is stationary in $\mathscr{P}_{\aleph_1}\theta$. Define $S^* = \{j''x : x \in S\}$. Since $j \upharpoonright \theta$ is a bijection between θ and $j''\theta$, we know that S^* is stationary in $\mathscr{P}_{\aleph_1}j''\theta$.

Define a map f on $(\mathscr{P}_{\delta^+}\theta)^V$ by $f(a) = S \cap \mathscr{P}_{\aleph_1}a$. It is easy to see that $S^* \subseteq [f] \subseteq (\mathscr{P}_{\aleph_1}j''\theta)^M$. Thus $M \models [f]$ is stationary in $\mathscr{P}_{\aleph_1}j''\theta$." Therefore $\{a \in (\mathscr{P}_{\delta^+}\theta)^V : S \cap \mathscr{P}_{\aleph_1}a \text{ is stationary in } \mathscr{P}_{\aleph_1}a\} \in G$. So it is clear that $\{a \in \mathscr{P}_{\delta^+}\theta : S \cap \mathscr{P}_{\aleph_1}a \text{ is stationary in } \mathscr{P}_{\aleph_1}a\} \notin I$. Hence there exists some $X \in [\theta]^\delta$ such that S reflects to X and $\delta \subseteq X$.

The Reflection Principle at \aleph_2 to size \aleph_1 implies that the continuum is at most \aleph_2 (Shelah [17] and Todorčević [18]). This gives the following corollary.

COROLLARY 4. If there exists a "proper" \aleph_2 -ideal over $\mathscr{P}_{\aleph_2}\lambda$, then $2^{\aleph_0} \leq \aleph_2$.

Magidor proved that if for every regular $\lambda \ge \aleph_2$ the Reflection Principle at λ to size \aleph_1 holds then NS_{\aleph_1} , the nonstationary ideal on \aleph_1 , is presaturated i.e. NS_{\aleph_1} is precipitous and \aleph_2 remains a cardinal through forcing with $P_{NS_{\aleph_1}}$. The following corollary is also immediate.

COROLLARY 5. If for cofinally many λ 's $\mathcal{P}_{\aleph_2}\lambda$ carries a "proper" \aleph_2 -ideal, then NS_{\aleph_1} is presaturated.

It turns out that under some conditions for δ sufficiently large the existence of a "proper" λ^+ -ideal over $\mathscr{P}_{\lambda^+}\delta$ implies the presaturation of $NS_{\aleph_1\lambda}$. We will present a result that is more general, using the following concept:

DEFINITION. Let δ and κ be uncountable regular cardinals such that $\kappa < \delta$. We say that a δ -ideal over $\mathcal{P}_{\delta}A$ is $\mathcal{P}_{\kappa}A$ -stationary preserving if the following hold:

(1) I is precipitous,

(2) If S is a stationary subset of $\mathscr{P}_{\kappa}A$, then there exists some $X \in \mathbf{P}_I$ such that

 $X \parallel_{P_I} S$ remains stationary in $\mathscr{P}_{\kappa}A$.

REMARK. By an argument similar to the one given at the beginning of the proof of Theorem 3, if P_I preserves every stationary subset of $\mathscr{P}_{\kappa}A$ as in the sense of (2) then it preserves every stationary subset of $\mathscr{P}_{\kappa}B$ for every $B \subseteq A$.

The proof of the next lemma follows Foreman-Magidor-Shelah [6], Goldring [9] and [10] closely. Although all of the ingredients of the proof of the following lemma can be found in [9] and [10], since the theorems below depend on its proof we have decided to present the lemma below.

LEMMA 6. Let κ and θ be uncountable regular cardinals and λ a cardinal such that $2^{\lambda^{<\kappa}} < \theta$. If there exists a $\mathscr{P}_{\kappa}H_{\theta}$ -stationary preserving λ^+ -ideal over $\mathscr{P}_{\lambda^+}H_{\theta}$, then $NS_{\kappa\lambda}$ is precipitous. Furthermore $NS_{\kappa\lambda}$ is presaturated if $2^{\lambda^{<\kappa}} = \lambda^+$.

PROOF. Let *I* be a $\mathscr{P}_{\kappa}H_{\theta}$ -stationary preserving λ^+ -ideal over $\mathscr{P}_{\lambda^+}H_{\theta}$. Let $\mathfrak{H} = \langle H_{\theta}, \epsilon, \Delta_{\theta}, \ldots \rangle$ where Δ_{θ} stands for a well-ordering of H_{θ} . CLAIM 1. $C = \{N \in \mathcal{P}_{\kappa}H_{\theta} : N \prec \mathfrak{H} \land \forall \vec{A} \in N \ [\vec{A} \text{ enumerates a maximal antichain in} NS_{\kappa\lambda} \Rightarrow \exists \beta \in dom(\vec{A})(N \cap \lambda \in \vec{A}(\beta) \land N \cap \lambda = Sk^{\mathfrak{H}}(N \cup \{\beta\}) \cap \lambda)]\}$ contains a club subset of $\mathcal{P}_{\kappa}H_{\theta}$. Here $Sk^{\mathfrak{H}}(N \cup \{\beta\})$ stands for the Skolem hull of $N \cup \{\beta\}$ in \mathfrak{H} .

PROOF OF CLAIM 1. Suppose otherwise i.e. $\mathscr{P}_{\kappa}H_{\theta} - C$ is stationary in $\mathscr{P}_{\kappa}H_{\theta}$. By the usual normality argument there is some \vec{A}^* which enumerates a maximal antichain in $NS_{\kappa\lambda}$ such that $S = \{N \in \mathscr{P}_{\kappa}H_{\theta} : \vec{A}^* \in N \land \forall \beta \in dom(\vec{A}^*)(N \cap \lambda \in \vec{A}^*(\beta) \Rightarrow N \cap \lambda \neq Sk^{\$}(N \cup \{\beta\}) \cap \lambda)\}$ is stationary in $\mathscr{P}_{\kappa}H_{\theta}$. Let G be a P_I -generic filter over V such that S remains stationary in V[G]. Let j be the corresponding generic elementary embedding from V into M. It is clear that $M \models "S$ is stationary in $\mathscr{P}_{\kappa}H_{\theta}^V$ and $|H_{\theta}^V| = \lambda$." Let f be a function in M such that f is a bijection from λ to H_{θ}^V .

Now work in M. Let $T = \{N \in \mathscr{P}_{\kappa}\lambda : f''N \in S \land (f''N) \cap \lambda = N\}$. Then T is a stationary subset of $\mathscr{P}_{\kappa}\lambda$. Since $crit(j) = (\lambda^+)^V$, $j(\vec{A^*})$ is an enumeration of a maximal antichain in $NS_{\kappa\lambda}$. Therefore there exists some $\alpha^* \in dom(j(\vec{A^*}))$ such that $j(\vec{A^*})(\alpha^*) \cap T \notin NS_{\kappa\lambda}$.

Let $D = \{N \in j(\mathscr{P}_{\kappa}H_{\theta}) : N \prec j(\mathfrak{H}), \alpha^* \in N, \text{ and } N \text{ is closed under } f, f^{-1} \text{ and } j \upharpoonright H_{\theta}^V \}$. It is clear that D is club in $\mathscr{P}_{\kappa}j(H_{\theta}^V)$. Thus there exists some $N \in D$ such that $N \cap \lambda \in j(\vec{A^*})(\alpha^*) \cap T$. Let $N^* = f''(N \cap \lambda)$. From $N \cap \lambda \in T$ we get $N^* \in S$. Since N is closed under f and $j \upharpoonright H_{\theta}^V$ we know that $j''N^*(=j(N^*)) \subseteq N$. Note that since N is also closed under f^{-1} , we have $j(N^*) \cap \lambda = N \cap \lambda$. So $j(N^*) \cap j(\lambda)$ $(=j(N^*) \cap \lambda)$ belongs to $j(\vec{A^*})(\alpha^*)$. From $N \prec j(\mathfrak{H}), j(N^*) \subseteq N$, and $\alpha^* \in N$ we see that $Sk^{j(\mathfrak{H})}(j(N^*) \cup \{\alpha^*\}) \cap j(\lambda) \subseteq N \cap j(\lambda) = N \cap \lambda = j(N^*) \cap j(\lambda)$. So clearly $Sk^{j(\mathfrak{H})}(j(N^*) \cup \{\alpha^*\}) \cap j(\lambda) = j(N^*) \cap j(\lambda)$. We can now conclude $j(N^*) \notin j(S)$. By the elementarity of j we have $N^* \notin S$. This contradiction completes the proof of Claim 1.

CLAIM 2. $NS_{\kappa\lambda}$ is precipitous.

PROOF. Let S be a stationary subset of $\mathscr{P}_{\kappa}\lambda$. Let $\langle W_n | n < \omega \rangle$ be a sequence of maximal antichains in $\mathbb{P}_{NS_{\kappa\lambda}} \upharpoonright S = \{X : X \subseteq S \text{ and } X \text{ is stationary in } \mathscr{P}_{\kappa}\lambda\}$. Assume $W_0 \ge W_1 \ge \cdots \ge W_n \ge \cdots$ where $W_i \ge W_{i+1}$ denotes that every $X \in W_{i+1}$ is a subset of some $Y \in W_i$. We would like to show that there exists a sequence of sets $X_0 \supseteq X_1 \supseteq \cdots \supseteq X_n \supseteq \cdots$ such that $X_n \in W_n$ for each n, and $\bigcap_{n \in \omega} X_n \neq \emptyset$.

Let η be a regular cardinal $>\theta$ such that $C \in H_{\eta}$ where C is the club set from Claim 1. Let Δ_{η} be a well-ordering extending Δ_{θ} . Let $\mathfrak{H}^* = \langle H_{\eta}, \in, \Delta_{\eta}, \ldots \rangle$. Let $C^* = \{N \in \mathscr{P}_{\kappa}H_{\eta} : N \prec \mathfrak{H}^*, C \in N, N \cap \kappa \in \kappa\}$. Clearly C^* is a club subset of $\mathscr{P}_{\kappa}H_{\eta}$.

SUBCLAIM. If $N \in C^*$ and $\vec{A} \in N$ is an enumeration of a maximal antichain in $NS_{\kappa\lambda}$, then there is some $\beta \in dom(\vec{A})$ such that $N \cap \lambda \in \vec{A}(\beta)$ and $N \cap \lambda = Sk^{\mathfrak{H}^*}(N \cup \{\beta\}) \cap \lambda$.

For a proof of the Subclaim we refer the reader to p. 292 of Goldring [9].

Let *S* and $\langle W_n | n < \omega \rangle$ be as above. Suppose $N_0 \in C^*$ such that $S, \langle W_n | n < \omega \rangle \in N_0$, and $N_0 \cap \lambda \in S$. Let $\vec{A}_0 \in N_0$ be an enumeration of the maximal antichain $W_0 \cup \{\mathscr{P}_{\kappa}\lambda - S\}$ (or simply W_0 if $\mathscr{P}_{\kappa}\lambda - S$ is nonstationary.) By the Subclaim there is some $\beta_0 \in dom(\vec{A}_0)$ such that $N_0 \cap \lambda \in \vec{A}_0(\beta_0)$ and $N_0 \cap \lambda = Sk^{\mathfrak{H}^*}(N_0 \cup \{\beta_0\}) \cap \lambda$. Since $N_0 \cap \lambda \in S$ we must have $\vec{A}_0(\beta_0) \in W_0$. Let $X_0 = \vec{A}_0(\beta_0)$ and $N_1 = Sk^{\mathfrak{H}^*}(N_0 \cup \{\beta_0\})$. So $X_0 \in N_1$. Since $N_1 \in C^*$ we can repeat the procedure as follows: By $W_1 \upharpoonright X_0$ we denote the set $\{X \in W_1 : X \subseteq X_0\}$. Then $W_1 \upharpoonright X_0 \cup \{\mathscr{P}_{\kappa}\lambda - X_0\}$ is a maximal antichain. Let $\vec{A_1} \in N_1$ enumerate this antichain. Then there exists $\beta_1 \in dom(\vec{A_1})$ such that $N_1 \cap \lambda \in \vec{A_1}(\beta_1)$ and $N_1 \cap \lambda = Sk^{\mathfrak{S}^*}(N_1 \cup \{\beta_1\}) \cap \lambda$. Since $N_1 \cap \lambda \in X_0$ we know $\vec{A_1}(\beta_1) \in W_1 \upharpoonright X_0$. Let $X_1 = \vec{A_1}(\beta_1)$ and $N_2 = Sk^{\mathfrak{S}^*}(N_1 \cup \{\beta\})$. The above procedure will produce a sequence of sets $X_0 \supseteq X_1 \supseteq \cdots \supseteq X_n \supseteq \cdots$ such that $X_n \in W_n$ for each n and $N_0 \cap \lambda \in \bigcap_{n \in \omega} X_n$. (Claim 2) \Box

CLAIM 3. Suppose $\langle \vec{A}_{\alpha} | \alpha < \lambda \rangle$ is a sequence of enumerations of maximal antichains in $NS_{\kappa\lambda}$. Assume *B* is a stationary subset of $\mathcal{P}_{\kappa}\lambda$. Then $S = \{N \in \mathcal{P}_{\kappa}H_{\theta} : N \prec \mathfrak{H} \land \forall \alpha \in N \cap \lambda \exists \beta \in N \ N \cap \lambda \in \vec{A}_{\alpha}(\beta) \land N \cap \lambda \in B\}$ is stationary.

PROOF OF CLAIM 3. Let D be an arbitrary club subset of $\mathscr{P}_{\kappa}H_{\theta}$. We will show that $S \cap D \neq \emptyset$. Let \mathfrak{H}^* be as in the proof of Claim 2 and C be as in Claim 1. Let $E = \{N \in \mathscr{P}_{\kappa}H_{\eta} : N \prec \mathfrak{H}^*, \langle \vec{A}_{\alpha} | \alpha < \lambda \rangle \in N, \theta, C, D \in N, N \cap H_{\theta} \in D \text{ and } N \cap \kappa \in \kappa\}$. Clearly E is a club subset of $\mathscr{P}_{\kappa}H_{\eta}$ and $E \subseteq C^*$. Since B is stationary, there is some $N_0 \in E$ such that $N_0 \cap \lambda \in B$. By the Subclaim if $N \in E$ and $\vec{A} \in N$ is an enumeration of a maximal antichain in $NS_{\kappa\lambda}$, then there is some $\beta \in dom(\vec{A})$ such that $N \cap \lambda \in \vec{A}(\beta)$ and $N \cap \lambda = Sk^{\mathfrak{H}^*}(N \cup \{\beta\}) \cap \lambda$. By induction we can define a sequence $\langle N_{\gamma} | \gamma < o.t.(N_0 \cap \lambda) \rangle$ of elements of E such that $N_0 \cap \lambda = N_{\gamma} \cap \lambda$ for each $\gamma < o.t.(N_0 \cap \lambda)$ and $\forall \alpha \in N_0 \cap \lambda \exists \beta \in \bigcup_{\gamma < o.t.(N_0 \cap \lambda)} N_{\gamma} N_0 \cap \lambda \in \vec{A}_{\alpha}(\beta)$. Let $N^* = \bigcup_{\gamma < o.t.(N_0 \cap \lambda)} N_{\gamma} \cap H_{\theta}$. From $\bigcup_{\gamma < o.t.(N_0 \cap \lambda)} N_{\gamma} \in E$ we see $N^* \in D$. Since $\forall \alpha \in N^* \cap \lambda (= N_0 \cap \lambda) \exists \beta \in N^* N_0 \cap \lambda \in \vec{A}_{\alpha}(\beta)$, and $N^* \cap \lambda = N_0 \cap \lambda \in B$, we conclude $N^* \in S \cap D$. (Claim 3) \Box

From now on we will assume that $2^{\lambda^{<\kappa}} = \lambda^+$. Therefore we can assume that if \vec{A} is an enumeration of a maximal antichain in $NS_{\kappa\lambda}$ then $dom(\vec{A}) \leq \lambda^+$. Presaturation of $NS_{\kappa\lambda}$ follows immediately from the next claim.

CLAIM 4. Let $\langle \vec{A}_{\alpha} | \alpha < \lambda \rangle$ be a sequence of enumerations of maximal antichains in $NS_{\kappa\lambda}$ and B be a stationary subset of $\mathcal{P}_{\kappa}\lambda$. There exists some stationary subset D of B such that for each $\alpha < \lambda$

 $|\{\beta \in dom(\vec{A}_{\alpha}) : D \cap \vec{A}_{\alpha}(\beta) \text{ is stationary}\}| \leq \lambda.$

PROOF. Let S be as in Claim 3. Let G be a P_I -generic filter over V and $j: V \to M$ be the corresponding generic elementary embedding such that

 $M \models "S$ is stationary in $\mathscr{P}_{\kappa} H_{\theta}^{V}$ ".

Since $M \models |H_{\theta}^{V}| = \lambda$ there is some $g \in M$ such that g is a bijection from λ to H_{θ}^{V} . We will work in M for a while. Let $S^* = \{N \in S : N \text{ is closed under } g \text{ and } g^{-1}\}$. Note that S^* is a stationary set such that if $N \in S^*$ then $N \cap \lambda = g^{-1''}N$.

Let $E = \{N \cap \lambda : N \in S^*\} = \{g^{-1''}N : N \in S^*\}$. So *E* is a stationary subset of $B(\subseteq j(B)) \subseteq \mathscr{P}_{\kappa}\lambda$.

We will show that for every $\alpha < \lambda = j(\lambda)$

$$|\{\beta < dom(j(\vec{A}_{\alpha})) : j(\vec{A}_{\alpha})(\beta) \cap E \text{ is stationary}\}| \le \lambda.$$
^(†)

We will show that if $j(\vec{A}_{\alpha})(\beta) \cap E$ is stationary for some $\beta < dom(j(\vec{A}_{\alpha})) \le j((\lambda^{+})^{V})$ then $\beta < (\lambda^{+})^{V}$ i.e. $\{\beta < dom(j(\vec{A}_{\alpha})) : j(\vec{A}_{\alpha})(\beta) \cap E$ is stationary $\} \subseteq (\lambda^{+})^{V}$. Then since $|(\lambda^{+})^{V}| = \lambda$ (in M), this gives (†). Let $T = \{g''x : x \in j(\vec{A}_{\alpha})(\beta) \cap E\} \cap \{N \in \mathscr{P}_{\kappa}H_{\theta} :$ $\alpha \in N$. Since $E = \{g^{-1''}N : N \in S^*\}$, *T* is a stationary subset of S^* . Therefore if $N \in T$ then there is some $\gamma \in N$ such that $N \cap \lambda \in \vec{A}_{\alpha}(\gamma)$. By the usual normality argument there are stationary $T^* \subseteq T$ and $\beta^* < (\lambda^+)^V$ such that if $N \in T^*$ then $\beta^* \in N$ and $N \cap \lambda \in \vec{A}_{\alpha}(\beta^*)$.

Note that $\vec{A}_{\alpha}(\beta^*) \subseteq j(\vec{A}_{\alpha}(\beta^*)) = j(\vec{A}_{\alpha})(\beta^*)$. So $\{N \cap \lambda : N \in T^*\} \subseteq j(\vec{A}_{\alpha})(\beta^*)$. On the other hand $\{N \cap \lambda : N \in T^*\} = \{g^{-1''}N : N \in T^*\} \subseteq \{g^{-1''}g''x : x \in j(\vec{A}_{\alpha})(\beta) \cap E\} = j(\vec{A}_{\alpha})(\beta) \cap E$. Thus $\beta = \beta^* < (\lambda^+)^V$.

We now have $M \models \exists E \subseteq j(B)$ [E is stationary $\land \forall \alpha < j(\lambda)(|\{\beta < dom(j(\vec{A}_{\alpha})) : j(\vec{A}_{\alpha})(\beta) \cap E \text{ is stationary}\}| \le j(\lambda))$]. Thus by the elementarity of j, we are done. (Claim 4)

(Lemma 6)

To carry out the arguments in the proof of Lemma 6, it is enough to have a precipitous ideal over $\mathscr{P}_{\lambda^+}\delta$ for $\delta \ge |H_{\theta}| = 2^{<\theta}$ that preserves stationary subsets of $\mathscr{P}_{\kappa}\delta$.

THEOREM 7. Let λ be an uncountable cardinal and δ be a cardinal $\geq 2^{2^{2^{\lambda}}}$. If there is a "proper" λ^+ -ideal over $\mathscr{P}_{\lambda^+}\delta$, then $NS_{\aleph_1\lambda}$ is precipitous. Furthermore $NS_{\aleph_1\lambda}$ is presaturated if $2^{\lambda^{\aleph_0}} = \lambda^+$.

Unfortunately, for $\kappa \ge \aleph_2$ the hypotheses of Lemma 6 cannot be realized. For $\kappa = \lambda = \aleph_2$ the following theorem of Feng and Magidor shows the impossibility of our hypotheses.

THEOREM OF FENG-MAGIDOR [5]. If $\theta \ge (2^{\aleph_2})^{++}$ is regular, then there exists a stationary $S \subseteq \mathscr{P}_{\aleph_2}H_{\theta}$ such that for any $X \in [H_{\theta}]^{\aleph_2}$, $\omega_2 \subseteq X$ implies that $S \cap \mathscr{P}_{\aleph_2}X$ is not stationary in $\mathscr{P}_{\aleph_2}X$.

Let S be a "non-reflecting" stationary subset of $\mathscr{P}_{\aleph_2}H_{\kappa}$ as in Feng-Magidor. Suppose I is a precipitous \aleph_3 -ideal over $\mathscr{P}_{\aleph_3}H_{\theta}$. Let $F:\mathscr{P}_{\aleph_3}H_{\theta} \to V$ be defined by $F(X) = S \cap \mathscr{P}_{\aleph_2}X$. So $1 \Vdash_{P_I} ``Ult_V(G) \models `[F]$ is not stationary in $\mathscr{P}_{\aleph_2}j''H_{\theta}^{V}$ ". Let G be an arbitrary P_I -generic filter over V. Then in V[G], [F] is a nonstationary subset of $\mathscr{P}_{\aleph_2}j''H_{\theta}^{V}$. It is easy to see that $\{j''y: y \in S\} \subseteq [F]$. Thus S cannot stay stationary in V[G]. Feng and Magidor obtained their theorem by proving that the negation of their conclusion implies the presaturation of NS_{\aleph_2} and invoking Shelah's theorem [16] which refutes the presaturation of NS_{κ} for every successor cardinal $\geq \aleph_2$. For general $\kappa \geq \aleph_2$ and λ we will imitate their proof using the following result.

THEOREM 8 (Burke-Matsubara [3]). If κ is a regular cardinal $\geq \aleph_2$ and λ a regular cardinal $>\kappa$, then $NS_{\kappa\lambda}$ cannot be presaturated.

REMARK. Even when $\kappa = \lambda$ the same conclusion as in Theorem 8 holds provided κ is a successor cardinal $\geq \aleph_2$ using the above mentioned theorem of Shelah.

The following is our result on "non-reflecting" stationary sets.

THEOREM 9. Let κ and λ be regular cardinals such that $\aleph_2 \leq \kappa < \lambda$ and $2^{\lambda^{<\kappa}} = \lambda^+$. If θ is a regular cardinal $\geq \lambda^+$ with a measurable cardinal above, then there exists a stationary $S \subseteq \mathscr{P}_{\kappa}H_{\theta}$ such that for any $X \in [H_{\theta}]^{\lambda}$, $\lambda \subseteq X$ implies that $S \cap \mathscr{P}_{\kappa}X$ is not stationary in $\mathscr{P}_{\kappa}X$. Furthermore the same conclusion holds even if we replace " $\kappa < \lambda$ " by " $\kappa = \lambda = \delta^+$ for some δ ". **PROOF.** Suppose otherwise. Let κ , λ , and θ be as in the hypothesis of our theorem. Let $\delta > \theta$ be a measurable cardinal. We are assuming the following:

(*) For every stationary $S \subseteq \mathscr{P}_{\kappa}H_{\theta}$, there exists $X \in [H_{\theta}]^{\lambda}$ such that $S \cap \mathscr{P}_{\kappa}X$ is stationary in $\mathscr{P}_{\kappa}X$ and $\lambda \subseteq X$.

We will show that (*) implies the presaturation of $NS_{\kappa\lambda}$ thus deriving the desired contradiction.

We will use the following notion:

DEFINITION. $C \subseteq \mathscr{P}_{\mu}H_{\theta}$ is λ -club if

(i) if $\langle a_{\alpha} : \alpha < \lambda \rangle$ is a \subseteq -chain from C then $\bigcup_{\alpha < \lambda} a_{\alpha} \in C$,

(ii) C is unbounded in $\mathcal{P}_{\mu}H_{\theta}$.

We say $T \subseteq \mathscr{P}_{\mu}H_{\theta}$ is λ -stationary if $T \cap C \neq \emptyset$ for every λ -club $C \subseteq \mathscr{P}_{\mu}H_{\theta}$.

By adopting the proof of Theorem 3.1 and Corollary 3.2 in Feng-Jech [4], we can show the following claim.

CLAIM 1. Assume (*) holds. If $S \subseteq \mathscr{P}_{\kappa}H_{\theta}$ is stationary then $R(S) = \{X \in [H_{\theta}]^{\lambda} : S \cap \mathscr{P}_{\kappa}X \text{ is stationary in } \mathscr{P}_{\kappa}X \text{ and } X \supseteq \lambda\}$ is a λ -stationary subset of $\mathscr{P}_{\lambda^{+}}H_{\theta}$.

Let *h* be a bijection from H_{θ} to $\mathscr{P}_{\kappa}H_{\theta}$. Given a stationary $S \subseteq \mathscr{P}_{\kappa}H_{\theta}$, let $R(S)^* = R(S) \cap \{X \in [H_{\theta}]^{\lambda} : \forall a \in X \ h(a) \subseteq X \land \forall t \in \mathscr{P}_{\kappa}X \ h^{-1}(t) \in X\}$. So $R(S)^*$ is stationary in $\mathscr{P}_{\lambda^+}H_{\theta}$ for every stationary $S \subseteq \mathscr{P}_{\kappa}H_{\theta}$.

Now we carry out the arguments given in the proof of Lemma 6. Note that if for every stationary $S \subseteq \mathscr{P}_{\kappa}H_{\theta}$ there exists some generic elementary embedding $j_s: V \to M_s \cong Ult(V, G_s)$ such that $M_s \models "S$ is stationary in $\mathscr{P}_{\kappa}H_{\theta}^{V}$ ", then we can carry out the same proof. Furthermore this M_s need not be entirely well-founded. If $j_s(\theta) \in wfp(\langle M_s, E \rangle)$ where $wfp(\langle M_s, E \rangle)$ is the well-founded part of $\langle M_s, E \rangle$ and $\langle M_s, E \rangle \models "S$ is stationary", then these arguments will survive.

In order to obtain such a generic "elementary embedding" we use Woodin's stationary tower forcing [19].

Let δ be a measurable cardinal $>\theta$. Suppose $S \subseteq \mathscr{P}_{\kappa}H_{\theta}$ is stationary. There is some Ramsey cardinal ξ such that $\theta < \xi < \delta$. So $p = \{X \subseteq V_{\xi} : X \cap H_{\theta} \in R(S)^* \land |X \cap \xi| = \xi\} \in P_{<\delta}$. We refer the reader to Woodin [20] for the definition of $P_{<\delta}$. Let *G* be a $P_{<\delta}$ -generic object containing *p*. Let $j: V \to M$ be the corresponding generic "elementary embedding." Note that $j(\xi) = \xi$. Thus all of the pertinent parts are in wfp(M).

The following claim completes the proof:

CLAIM 2. The function $F_S : p \to V$ defined by $F_S(X) = S \cap \mathscr{P}_{\kappa}(X \cap H_{\theta})$ represents $\{j''y : y \in S\}$ in M.

PROOF. Clearly $\{j''y: y \in S\} \subseteq [F_S]$. Suppose $[g] \in [F_S]$. We may assume that $g: \mathscr{P}(V_\beta) \to V$ where $\xi < \beta < \delta$.

Then $q = \{X \subseteq V_{\beta} : X \cap V_{\xi} \in p \land g(X) \in S \cap \mathscr{P}_{\kappa}(X \cap H_{\theta})\} \in G$. If $X \in q$ then $h^{-1}(g(X)) \in X \cap H_{\theta}$. Thus by the normality, there exists some $a \in H_{\theta}$ such that $q^* = \{X \subseteq V_{\beta} : X \in q \land h^{-1}(g(X)) = a\} \in G$. Therefore [g] = j''h(a) where $h(a) \in S$.

(Claim 2) \square

(Theorem 9) \square

We conclude this paper by raising the following questions:

QUESTION 1. Is it consistent to have a "proper" λ^+ -ideal over $\mathcal{P}_{\lambda^+}H_{\theta}$ for some singular λ ?*

Of course by Theorem 7 a positive answer to this question implies the consistency of the precipitousness of $NS_{\aleph_1\lambda}$ for some singular λ .

QUESTION 2. Can we drop some conditions from the hypothesis of Theorem 9?

References

- A. Apter and S. Shelah, On the Strong Equality between Supercompactness and Strong Compactness, Trans. Amer. Math. Soc., 349 (1997), 103–128.
- [2] J. Baumgartner, Applications of the Proper Forcing Axiom, Handbook of set-theoretic topology (K. Kunen and J. E. Vaughan, eds.), 913–959, Elsevier 1984.
- [3] D. Burke and Y. Matsubara, The extent of strength in the club filters, Israel J. Math., to appear.
- [4] Q. Feng and T. Jech, Local clubs, reflection, and preserving stationary sets, Proc. London Math. Soc., 58 (1989), 237–257.
- [5] Q. Feng and M. Magidor, On reflection of stationary sets, Fund. Math., 140 (1992), 175-181.
- [6] M. Foreman, M. Magidor and S. Shelah, Martin's Maximum, saturated ideals and nonregular ultrafilters I, Ann. of Math., 127 (1988), 1–47.
- [7] F. Galvin, T. Jech and M. Magidor, An ideal game, J. Symbolic Logic, 43 (1978), 284-292.
- [8] M. Gitik and S. Shelah, Forcings with ideals and simple forcing notions, Israel J. Math., 68 (1989), 129–160.
- [9] N. Goldring, Woodin cardinals and presaturated ideals, Ann. Pure Appl. Logic, 55 (1992), 285-303.
- [10] N. Goldring, The entire NS ideal on $P_{\gamma}\mu$ can be precipitous, J. Symbolic Logic, **62** (1997), 1161–1172.
- [11] C. Gray, Ph. D. dissertation, University of California, Berkeley, 1982.
- [12] T. Jech, Set Theory, Academic Press, New York, 1978.
- [13] A. Kanamori, The Higher Infinite: large cardinals in set theory from their beginnings, Perspect. Math. Logic, Springer-Verlag, Berlin, 1994.
- [14] K. Kunen, Set Theory, An Introduction to Independence Proofs, North-Holland, Amsterdam, 1980.
- [15] Y. Matsubara, Stronger Ideals over $\mathcal{P}_{\kappa}\lambda$, to appear in Fund. Math.
- [16] S. Shelah, Proper Forcing, Lecture Notes in Math., 940, Springer-Verlag, 1982.
- [17] S. Shelah, Around classification theory of models, Lecture Notes in Math., **1182**, Springer-Verlag, 1986.
- [18] S. Todorčević, Reflecting stationary sets, Partition problems in topology, Contemp. Math., vol. 84, Amer. Math. Soc., 1989.
- [19] H. Woodin, Σ_1^2 absoluteness and supercompact cardinals, circulated notes (May 1985).
- [20] H. Woodin, The Axiom of determinacy, Forcing Axioms, and the Nonstationary Ideals, de Gruyter series in Logic and its Applications, 1, de Gruyter, Berlin, 1999.

Yo Matsubara

Graduate School of Information Science Nagoya University Chikusa-ku, Nagoya, 464-8601 Japan E-mail: yom@math.nagoya-u.ac.jp

^{*}This question was answered by S. Shelah negatively.