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Abstract. Let $k$ be a number field and $\tilde{k}$ a fixed quadratic extension of $k$ . In this
paper and its companions, we find the mean value of the product of class numbers and
regulators of two quadratic extensions $F,$

$F^{*}\neq\tilde{k}$ contained in the biquadratic extensions
of $k$ containing $\tilde{k}$ .

1. Introduction.

This is part II of a series of three papers. We first recall the main result of this
series of papers. If $k$ is a number field, let $\Delta_{k},$ $h_{k}$ , and $R_{k}$ be the absolute discriminant
(which is an integer), the class number, and the regulator, respectively. We fix a number
field $k$ and a quadratic extension $\tilde{k}$ of $k$ . If $F\neq\tilde{k}$ is another quadratic extension of $k$ ,
let $\tilde{F}$ be the compositum of $F$ and $\tilde{k}$ . Then $\tilde{F}$ is a biquadratic extension of $k$ and so
contains precisely three quadratic extensions, $\tilde{k},$ $F$ and, say, $F^{*}$ of $k$ . We say that $F$

and $F$ ” are paired.
For simplicity we specialize to the case $k=Q$ . Let $\tilde{k}=Q(\sqrt{d_{0}})$ where $d_{0}\neq 1$ is a

square free integer. Suppose $|\Delta_{Q(\sqrt{d_{0}})}|=\prod_{p}p^{\overline{\delta}_{p}(d_{0})}$ is the prime decomposition. For
any prime number $p$ , we put

$E_{p}^{\prime}(d_{0})=\{$

$1-3p^{-3}+2p^{-4}+p^{-5}-p^{-6}$ if $p$ is split in $\tilde{k}$ ,
$(1+p^{-2})(1-p^{-2}-p^{-3}+p^{-4})$ if $p$ is inert in $\tilde{k}$ ,
$(1-p^{-1})(1+p^{-2}-p^{-3}+p^{-2\overline{\delta}_{p}(d_{0})-2\lfloor\overline{\delta}_{p}(d_{0})/2\rfloor-1})$ if $p$ is ramified in $\tilde{k}$ ,

where $\lfloor\tilde{\delta}_{p}(d_{0})/2\rfloor$ is the largest integer less than or equal to $\tilde{\delta}_{p}(d_{0})/2$ . We define

$c_{+}(d_{0})=\{$ $ 168\pi$ $d_{0}d_{0}<0>0,$
’

$c_{-}(d_{0})=\{$

$4\pi^{2}$ $d_{0}>0$ ,
$ 8\pi$ $d_{0}<0$ ,

$M(d_{0})=|\Delta_{Q(\sqrt{d_{0}})}|^{1/2}\zeta_{Q(\sqrt{d_{0}})}(2)\prod_{p}E_{p}^{\prime}(d_{0})$
.

The following two theorems are the main results of this series of papers.
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THEOREM 1.1. With either choice of sign we have

$\lim_{X\rightarrow\infty}X^{-2}$

$\sum_{[FQ]=2,0<\pm\Delta_{F}<X},$

$h_{F}R_{F}h_{F^{*}}R_{F^{*}}=c_{\pm}(d_{0})^{-1}M(d_{0})$ .

THEOREM 1.2. With either choice of sign we have

$\lim_{X\rightarrow\infty}X^{-2}$

$\sum_{[FQ]=2,0<\pm\Delta_{F}<X},$

$h_{F(\sqrt{d_{0}})}R_{F(\sqrt{d_{0}})}=c_{\pm}(d_{0})^{-1}h_{Q(\sqrt{d_{0}})}R_{Q(\sqrt{d_{0}})}M(d_{0})$ .

For a general introduction to this problem, the reader should see the introduction to
Part I. Throughout this part, $k$ is a number field and $\tilde{k}$ is a fixed quadratic extension of
$k$ unless otherwise stated. Let $W$ be the space of binary Hermitian forms. Our
approach to the above theorems is based on a consideration of the zeta function for the
following prehomogeneous vector space:

(1) $G=GL(2)\times GL(2)\times GL(2),$ $V=M(2,2)\otimes Aff$ ,

(2) $G=GL(2)_{\overline{k}}\times GL(2),$ $V=W$ OX $Aff^{2}$

where $GL(2)_{\overline{k}}$ is regarded as a group over $k$ . In both cases there exists a relative
invariant polynomial $P(x)$ of degree four and we put $V^{ss}=\{x\in V|P(x)\neq 0\}$ .

Let $v$ be a place of $k$ , and $k_{v}$ be the completion of $k$ at this place. We denote the
integer ring of $k_{v}$ by $\mathscr{O}_{v}$ . Let $K_{v}$ be the standard maximal compact subgroup of $G_{k_{v}}$ .
In this part, we only consider $(G_{k_{v}}, V_{k_{v}})$ for the above prehomogeneous vector spaces and
so the consideration in this part is of a purely local nature.

In Part $I$ , we formulated the filtering process required to prove Theorems 1.1 and
1.2. The only remaining task is to compute the local densities. In this part we
compute the local densities for all non-dyadic cases and for those dyadic cases that can
be dealt with in a similar manner. However, the computations of the local densities
that involve wild ramification at dyadic places are significantly more elaborate and so we
carry out these computations separately in Part III, on account of their length. We shall
point out which cases are postponed to Part III later in this introduction.

In Part I we selected standard representatives for the orbits in $G_{k_{v}}\backslash V_{k_{v}}^{ss}$ and intro-
duced an equivalence relation $\wedge\vee$ on $V_{k_{v}}^{ss}$ whose equivalence classes are unions of $G_{k_{v}}-$

orbits. These definitions will be reviewed in Section 2. If $v$ is a finite place, then we
use the measure on $V_{k_{v}}$ such that $vol(V_{\mathscr{O}_{v}})=1$ and the measure on $G_{yk_{v}}^{o}$ defined in
Definition 5.13 of Part I. The measure on $G_{yk_{v}}^{o}$ will be reviewed in Section 2.

If $v$ is a finite place, we define

$\epsilon_{v}(x)=vol(K_{v}\cap G_{xk_{v}}^{o})vol(K_{v}x)$ .

We put

$\overline{\epsilon}_{v}(x)=\sum_{Xy_{\wedge}^{\vee}}vol(K_{v}\cap G_{yk_{v}}^{o})vol(K_{v}y)$
,

where the sum is over standard representatives for orbits in the equivalence class of $x$ .
The local density at $v$ is then
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$E_{v}=\sum_{X}\epsilon_{v}(x)=\sum_{X}\overline{\epsilon}_{v}(x)$ ,

where the first sum is over all standard representatives for orbits in $G_{k_{v}}\backslash V_{k_{v}}^{ss}$ and the
second over a set containing one standard representative for an orbit in each class in
$ G_{k_{v}}\backslash V_{k_{v}}^{ss}/\wedge\vee$ . We have established in Theorem 6.22 and Lemma 7.3 in Part I that $E_{v}$

is the Euler factor at the place $v$ in the Euler product on the right hand side of the
equations in Theorems 1.1 and 1.2.

The values of $\overline{\epsilon}_{v}(x)$ calculated in this part are summarized in Tables 12 and 3.
The notation used in the tables will be explained in Section 2. This leaves us the cases
(rm $rm$)’, (rm rm $ur$) and (rm rm $rm$) (these notation will also be explained in Section 2)
for dyadic places, which are dealt with in Part III.

The values of $vol(K_{v}\cap G_{xk_{v}}^{o})$ used to determine the entries in the three tables are
determined in Propositions 3.2, 3.3, 3.5, 3.6, and the values of $vol(K_{v}x)$ in Propositions
4.14, 4.15, 4.25 and 4.26.

Table 1. $\epsilon_{v}(x)$ for $v$ finite and non-dyadic.

$\ovalbox{\tt\small REJECT} Index\epsilon_{v}(x)$

Table 2. $\epsilon_{v}(x)$ for ungrouped dyadic orbits.

$\ovalbox{\tt\small REJECT} Index\epsilon_{v}(x)$
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Table 3. $\overline{\epsilon}_{v}(x)$ for grouped dyadic orbits.

$\ovalbox{\tt\small REJECT} IndexConditions\overline{\epsilon}_{v}(x)$

We shall review and compute the local densities at the infinite places in Section 5.
The method we use is to reduce the problem to the computation of the Jacobian
determinants of certain maps. The contributions from the various orbits are given in
Propositions 5.2, 5.4, 5.6 and 5.7.

Even though we follow the notation and definitions in Part $I$ , a minimal review of
the basic concepts and definitions should help the reader and we shall provide this in
Section 2. In Sections 3 and 4 we compute the values of $vol(K_{v}\cap G_{xk_{v}}^{o} )$ and $vol(K_{v}x)$

for orbits listed in Tables 1, 2 and 3. In Section 5, we find the local densities at the
infinite places.

2. Review of facts from Part I.

In this section we give a minimal review of basic notation and definitions from Part
I that are needed in this part.

If $X$ is a finite set then $\# X$ will denote its cardinality. The standard symbols $Q,$ $R$ ,
$C$ and $Z$ will denote respectively the rational, real and complex numbers and the rational
integers. If $R$ is any ring then $R^{\times}$ is the set of invertible elements of $R$ and if $V$ is a
variety defined over $R$ then $V_{R}$ denotes its $R$-points. If $G$ is an algebraic group then $G^{O}$

denotes its identity component.
Throughout this paper, $k$ is a fixed number field and $\tilde{k}$ is a fixed quadratic extension

of $k$ , unless otherwise stated.
Let $\mathfrak{M},$ $\mathfrak{M}_{\infty},$ $\mathfrak{M}_{f},$ $\mathfrak{M}_{dy},$ $\mathfrak{M}_{R}$ and $\mathfrak{M}_{C}$ denote respectively the set of all places of $k$ ,

all infinite places, all finite places, all dyadic places (those dividing the place of $Q$ at 2),
all real places and all complex places. (Correspondingly we have $\tilde{\mathfrak{M}}$ and so on.) Let
$\mathfrak{M}_{rm},$ $\mathfrak{M}_{in}$ and $\mathfrak{M}_{sp}$ be the sets of places of $k$ which are respectively ramified, inert and
split on extension to $\tilde{k}$ . Recall that a real place of $k$ which lies under a complex place
of $\tilde{k}$ is regarded as ramified.

We denote the absolute value in $k_{v}$ by $||_{v}$ . If $v\in \mathfrak{M}_{f}$ , let $\mathscr{O}_{v}$ be the integer ring of
$k_{v}$ and $\mathfrak{p}_{v}=(\pi_{v})$ be its prime ideal. Let $q_{v}=\#\mathscr{O}_{v}/\mathfrak{p}_{v}$ .

As far as notation pertaining to number fields and local fields, we use the same
conventions as in Part $I$ : the notation for the $\tilde{k}$ object will be derived from that of the
$k$ object by adding a tilde and, for other fields, by writing the field in question as the
subscript. For example, $\mathscr{O}_{F}$ for the ring of integers of the field $F$ . If $a\in k_{v}$ and
$(a)=\mathfrak{p}_{v}^{i}$ then we write $ord_{k_{v}}(a)=i$ . If $i$ is a fractional ideal in $k_{v}$ and $a-b\in i$ then we
write $a\equiv b(i)$ or $a\equiv b(c)$ if $c$ generates $i$ .
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If $k_{1}/k_{2}$ is a finite extension either of local fields or of number fields then we shall
write $\Delta_{k_{1}/k_{2}}$ for the relative discriminant of the extension; it is an ideal in the ring of
integers of $k_{2}$ . We put $\Delta_{\overline{k}_{v}/k_{v}}=\mathfrak{p}_{v}^{\overline{\delta}_{v}}$ if $v\in \mathfrak{M}_{f}$ and $\tilde{k}_{v}=\tilde{k}\otimes k_{v}$ is a field. We shall use
the notation $Tr_{k_{1}/k_{2}}$ and $N_{k_{1}/k_{2}}$ for the $trace$ and the norm in the extension $k_{1}/k_{2}$ .

We assume that the reader is familiar with the basic definitions and facts concern-
ing local fields. These may be found in [5]. We choose Haar measures $dx_{v}$ on $k_{v}$ and
$d$ ’ $t_{v}k_{v}^{\times}$ so that $\int_{\mathscr{O}_{v}}dx_{v}=1$ and $\int_{\mathscr{O}_{v}^{\times}}d’$ $t_{v}=1$ .

Let $k$ be an arbitrary field of characteristic zero, and $\tilde{k}$ be a fixed quadratic
extension of $k$ . We denote the non-identity element of $Ga1(\tilde{k}/k)$ by $\sigma$ . Let $(G, V)$ be
either the prehomogeneous vector space (1) or (2) in the introduction.

If $g\in G$ then we shall write $g=(g_{1}, g_{2}, g_{3})$ in case (1) and $g=(g_{1}, g_{2})$ in case
(2). It will be convenient to identify $x=(x_{1}, x_{2})\in V$ with the $2\times 2$-matrix $M_{X}(v)=$

$v_{1}x_{1}+v_{2}x_{2}$ of linear forms in the variables $v_{1}$ and $v_{2}$ , which we collect into the row
vector $v=(v_{1}, v_{2})$ . With this identification, we define a rational action of $G$ on $V$ via

(2.1) $M_{gx}(v)=\{$
$g_{1}M_{X}(vg_{3}){}^{t}g_{2}$ in case (1),
$g_{1}M_{X}(vg_{2}){}^{t}g_{1}^{\sigma}$ in case (2).

In both cases we define $F_{X}(v)=-\det M_{X}(v)$ . Then

(2.2) $F_{gx}(v)=\{$

$\det g_{1}\det g_{2}F_{X}(vg_{3})$ in case (1),
$N_{\overline{k}/k}(\det g_{1})F_{X}(vg_{2})$ in case (2).

We let $P(x)$ be the discriminant of the binary quadratic form $F_{X}(v)$ . Then $P(x)\in k[V]$

and $P(gx)=\chi(g)P(x)$ where

(2.3) $\chi(g)=\{$

$(\det g_{1}\det g_{2}\det g_{3})^{2}$ in case (1),
$(N_{\overline{k}/k}(\det g_{1})\det g_{3})^{2}$ in case (2).

The polynomial $P(x)$ is not identically zero and we write $V^{ss}=\{x\in V|P(x)\neq 0\}$ .
As $\tilde{k}$-varieties,

(2.4) $G\times\tilde{k}\cong GL(2)\times GL(2)\times GL(2)$

and

(2.5) $W\times\tilde{k}\cong M(2,2)$

so that

(2.6) $ V\times\tilde{k}\cong M(2,2)\otimes$ Aff ,

and a calculation shows that the induced action of $G\times\tilde{k}$ on $V\times\tilde{k}$ is that of case (1).
The Galois automorphism $\sigma$ induces a $k$-automorphism of the $k$-varieties $G$ and $V$

which we denote by $i(\sigma)$ . If $(g_{1}, g_{2}, g_{3})\in G_{\overline{k}}$ then $i(\sigma)(g_{1}, g_{2}, g_{3})=(g_{2}^{\sigma}, g_{1}^{\sigma}, g_{3}^{\sigma})$ and if
$x\in W_{\overline{k}}$ then $i(\sigma)x={}^{t}x^{\sigma}$ , where $\sigma$ as a superscript denotes the entry-by-entry action of $\sigma$ .
In particular, $G_{k}$ is embedded in $G_{\overline{k}}\cong(G\times\tilde{k})_{\overline{k}}$ via the map $(g_{1}, g_{2})\mapsto(g_{1}, g_{1}^{\sigma}, g_{2})$ .

It is proved in [6], pp. 305-310 and [1], p. 324 that $G_{k}\backslash V_{k}^{ss}$ corresponds bijectively
with isomorphism classes of field extensions of $k$ of degree one or two. Moreover if
$x\in V$ then the corresponding field is generated by the roots of $F_{X}(v)=0$ . We denote
this field by $k(x)$ .
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Suppose that $p(z)=z^{2}+a_{1}z+$ a2 $\in k[z]$ has distinct roots $\alpha_{1}$ and $\alpha_{2}$ . We collect
these into a set $\alpha=\{\alpha_{1} , 22\}$ since the numbering is arbitrary. Define $w_{p}\in V_{k}$ by

(2.7) $w_{p}=(\left(\begin{array}{ll}0 & 1\\1 & a_{1}\end{array}\right),$ $\left(\begin{array}{lll}1 & & a_{1}\\a_{1} & a_{1}^{2} & -a_{2}\end{array}\right))$ ;

a computation shows that $F_{w_{p}}(z, 1)=p(z)$ and so $w_{p}\in V_{k}^{ss}$ and $k(w_{p})=k(\alpha)$ is the
splitting field of $p$ . We can choose a representative of the form $w_{p}$ for each orbit in the
orbit space $G_{k_{v}}\backslash V_{k_{v}}^{ss}$ . These are the standard representatives.

Let

(2.8) $w=(\left(\begin{array}{ll}1 & 0\\0 & 0\end{array}\right),$ $\left(\begin{array}{ll}0 & 0\\0 & 1\end{array}\right))$ ,

(2.9) $h_{\alpha}=\left(\begin{array}{ll}1 & -1\\-\alpha_{1} & \alpha_{2}\end{array}\right)$

and then define $g_{p}\in G_{k(w_{p})}$ by

(2.10) $g_{p}=\{$

$(h_{\alpha}, h_{\alpha}, (\alpha_{2}-\alpha_{1})^{-1}h_{\alpha})$ in case (1) or when $k(w_{p})=\tilde{k}$ ,
$(h_{\alpha}, (\alpha_{2}-\alpha_{1})^{-1}h_{\alpha})$ otherwise.

With these definitions it is easy to check that $w_{p}=g_{p}w$ .
We recall two propositions regarding the explicit description of how $G_{w_{p}k}$ is

embedded in $G_{k}$ in each case. Let

(2.11) $A_{p}(c, d)=\left(\begin{array}{ll}c & -d\\a_{2}d & c-a_{1}d\end{array}\right)$ and $\tau_{p}=\left(\begin{array}{ll}-1 & 0\\-a_{1} & 1\end{array}\right)$ .

Then the following are Lemmas 3.27, 3.30 of Part I.

LEMMA 2.12. In case (1), $G_{w_{p}k}^{o}$ consists of elements of $G_{k}$ of the form
(2.13) $(A_{p}(c_{1}, d_{1}),$ $A_{p}(c_{2}, d_{2}),$ $A_{p}(c_{3}, d_{3}))$

where $c_{i},$ $d_{i}\in k,$ $\det(A_{p}(c_{i}, d_{i}))\neq 0$ for $i=1,2$ and $(c_{3}, d_{3})$ is related to $(c_{1}, d_{1}, c_{2}, d_{2})$ by
the equation

(2.14) $A_{p}(c_{3}, d_{3})=A_{p}(c_{1}, d_{1})^{-1}A_{p}(c_{2}, d_{2})^{-1}$ .

Moreover $[G_{w_{p}k} : G_{w_{p}k}^{o}]=2$ and $G_{w_{p}k}/G_{w_{p}k}^{o}$ is generated by the class of $(\tau_{p}, \tau_{p}, \tau_{p})$ .

LEMMA 2.15. In case (2), $G_{w_{p}k}^{o}$ consists of elements of $G_{k}$ of the form
(2.16) $(A_{p}(c_{1}, d_{1}),$ $A_{p}(c_{2}, d_{2}))$

where $c_{1},$
$d_{1}\in\tilde{k},$

$c_{2},$ $d_{2}\in k,$ $\det(A_{p}(c_{1}, d_{1}))\neq 0$ and $(c_{2}, d_{2})$ is related to $(c_{1}, d_{1} )$ by the
equation

(2.17) $A_{p}(c_{2}, d_{2})=A_{p}(c_{1}, d_{1})^{-1}A_{p}(c_{1}^{\sigma}, d_{1}^{\sigma})^{-1}$ .

Moreover, $[G_{w_{p}k} : G_{w_{p}k}^{o}]=2$ and $G_{w_{p}k}/G_{w_{p}k}^{o}$ is generated by the class of $(\tau_{p}, \tau_{p})$ .

We now assume that $k$ is a number field again. Let $v\in \mathfrak{M}_{f}$ . Recall that $ p(z)\in$

$k_{v}[z]$ is called an Eisenstein polynomial if $a_{1}\in \mathfrak{p}_{v}$ and $a_{2}\in \mathfrak{p}_{v}\backslash \mathfrak{p}_{v}^{2}$ . If $F/k_{v}$ is a ramified
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extension then there is always an Eisenstein polynomial whose roots generate $F$ over $k_{v}$

and any such polynomial will satisfy a condition that either of its roots generates the
integer ring of a ramified quadratic extension of $k_{v}$ . For each $v\in \mathfrak{M}_{f},$ $k_{v}$ has a unique
unramified quadratic extension. If $F$ is this extension and $v\not\in \mathfrak{M}_{dy}$ then the integer ring
of $F$ is generated by a root of $p(z)$ with $a_{1}=0$ and -a2 any non-square unit in $k_{v}$ . If
$v\in \mathfrak{M}_{dy}$ then we must instead take $p(z)$ to be an Artin-Schreier polynomial, which
means, by definition, that $p(z)$ is irreducible in $k_{v}[z],$ $a_{1}=-1$ and a2 is a unit. Note
that $p$ stays irreducible modulo $\mathfrak{p}_{v}$ in this case by Hensel’s lemma.

For each $v\in \mathfrak{M}_{f}$ we choose a list of representatives $w_{v,1},$ $\ldots,$ $w_{v,N_{v}}$ , one for each
of the $G_{k_{v}}$ -orbits in $V_{k_{v}}^{ss}$ , in such a way that $P(w_{v,i})$ generates the ideal $\Delta_{k(w_{v,i})/k_{v}}$ for
$i=1,$

$\ldots,$
$N_{v}$ . This is possible, in light of the previous paragraph, if we take each $w_{v,i}$

to equal $w_{p}$ for a suitable $p(z)\in k_{v}[z]$ . In the special case where $k(w_{v,i})=k_{v}$ we take
$w_{v,i}=w$ or $w_{p}$ for $p(z)=z^{2}-z$ . For $v\in \mathfrak{M}_{\infty}$ we require instead that $|P(w_{v,i})|_{v}=1$ for
$i=1,$

$\ldots,$
$N_{v}$ , which is clearly possible. In both cases we assume for convenience that

$w_{v,1}$ represents the orbit corresponding to $k_{v}$ itself. If $x$ is a standard representative and
$k_{v}(x)\neq k_{v}$ then let $\Delta_{k_{v}(x)/k_{v}}=\mathfrak{p}_{v}^{\delta_{x,v}}$ .

Let v\in % and $x\in V_{k_{v}}^{ss}$ . If $v\not\in \mathfrak{M}_{sp}$ then $v$ extends uniquely to a place of $\tilde{k}$ which
we also denote by $v$ . In this case $\tilde{k}_{v}\cong k_{v}\otimes_{k}\tilde{k}$ . We denote by $\tilde{k}_{v}(x)$ the compositum
of $\tilde{k}_{v}$ and $k_{v}(x)$ .

Let $v\in\%.$ We now review the index attached to each orbit in $V_{k_{v}}^{ss}$ , which was
introduced in Part I as a bookkeeping device. The orbit corresponding to $k_{v}$ itself will
have index (sp), (in), or (rm) according as $v$ is in $\mathfrak{M}_{sp},$ $\mathfrak{M}_{in}$ , or $\mathfrak{M}_{rm}$ . The orbit corre-
sponding to the unique unramified quadratic extension of $k_{v}$ will have index (sp $ur$),
(in $ur$) and (rm $ur$) for $v\in \mathfrak{M}_{sp},$ $v\in \mathfrak{M}_{in}$ and $v\in \mathfrak{M}_{rm}$ , respectively. An orbit corre-
sponding to a ramified quadratic extension of $k_{v}$ will have index (sp $rm$) if $v\in \mathfrak{M}_{sp}$ and
(in $rm$) if $v\in \mathfrak{M}_{in}$ . If $v\in \mathfrak{M}_{rm}$ then the orbits corresponding to ramified quadratic
extensions of $k_{v}$ are subdivided into three types: the one corresponding to $\tilde{k}_{v}$ has index
(rm $rm$)’, those corresponding to quadratic extensions $k_{v}(x)/k_{v}$ such that $k_{v}(x)\neq\tilde{k}_{v}$ and
$\tilde{k}_{v}(x)/\tilde{k}_{v}$ is unramified have index (rm rm $ur$) and those corresponding to quadratic
extensions $k_{v}(x)/k_{v}$ such that $k_{v}(x)\neq\tilde{k}_{v}$ and $\tilde{k}_{v}(x)/\tilde{k}_{v}$ is ramified have index (rm rm $rm$).
This last index can occur only if $v\in \mathfrak{M}_{dy}$ . The type of $x\in V_{k_{v}}^{ss}$ will be the index
attached to the orbit $G_{k_{v}}x$ .

If $v\not\in \mathfrak{M}_{dy}$ or if $v\in \mathfrak{M}_{dy}$ but $k_{v}(x)/k_{v}$ is unramified (including the case $k_{v}(x)=k_{v}$ )
then we shall write $x_{\wedge}^{\vee}y$ if and only if $y\in G_{k_{v}}x$ . Suppose now that $v\in \mathfrak{M}_{dy}$ and that
$k_{v}(x)/k_{v}$ is ramified. If the type of $x$ is (sp $rm$) or (in $rm$) then we shall write $x_{\wedge}^{\vee}y$

if and only if $\Delta_{k_{v}(x)/k_{v}}=\Delta_{k_{v}(y)/k_{v}}$ . In this part we do not consider orbits with indices
(rm $rm$)’, (rm rm $ur$) or (rm rm $rm$) for dyadic places and so we shall not recall the
definition of $\wedge\vee$ for such orbits. It may be found in Section 7 of Part I and, in a
different but equivalent formulation, near the end of Section 3 of Part III.

As in Part $I$ , we use the following notation

(2.18) $a(t_{1}, t_{2})=\left(\begin{array}{ll}t_{1} & 0\\0 & t_{2}\end{array}\right)$ , $n(u)=\left(\begin{array}{ll}1 & 0\\u & 1\end{array}\right)$ .

We use coordinate systems on $G$ and $V$ similar to those in Part $I$ , as follows.
Elements of $G$ have the form $g=(g_{1}, g_{2}, g_{3})$ or $g=(g_{1}, g_{2})$ . In either case we shall
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write

(2.19) $g_{i}=\left(\begin{array}{ll}g_{i11} & g_{i12}\\g_{i21} & g_{i22}\end{array}\right)$

for each $i$ . Elements of $V$ are vectors $x=$ $(x_{1} , x_{2})$ . We shall put

(2.20) $x_{i}=\left(\begin{array}{ll}x_{i11} & x_{i12}\\x_{i21} & x_{i22}\end{array}\right)$

in case (1) and

(2.21) $x_{i}=\left(\begin{array}{ll}x_{i0} & x_{i1}\\x_{i1}^{\sigma} & x_{i2}\end{array}\right)$

in case (2).
Let $v\in \mathfrak{M}_{f}$ . We now review the parametrization and the measure on the stabilizer.

Define

(2.22) $H_{xk_{v}}=\{$

$(k_{v}^{\times})^{4}$ (sp),
$(k_{v}(x)^{\times})^{2}$ (sp $ur$), (sp $rm$),
$(\tilde{k}_{v}^{\times})^{2}$ (in), (rm), (in $ur$), (rm $rm$)’,
$\tilde{k}_{v}(x)^{\times}$ otherwise,

for each of the various indices then $G_{xk_{v}}^{o}\cong H_{xk_{v}}$ in all cases. We may regard $H_{xk_{v}}$ as
the $k_{v}$ -points of an algebraic group $H_{X}$ defined over $\mathscr{O}_{v}$ and we shall do so below.

If $k_{v}(x)/k_{v}$ is quadratic then we shall write $v$ for the generator of Gal $(k_{v}(x)/k_{v})$ . If
$\tilde{k}_{v}(x)\neq\tilde{k}_{v}$ then $v$ may also be regarded as the generator of Gal $(\tilde{k}_{v}(x)/\tilde{k}_{v})$ .

If $x$ is a point of type (sp), we write

(2.23) $s_{X}(t_{X})=(a(t_{11}, t_{12}),$ $a(t_{21}, t_{22}),$ $a((t_{11}t_{21})^{-1}, (t_{12}t_{22})^{-1}))$ ,

where $t_{X}=(t_{11}, \ldots, t_{22})\in(k_{v}^{\times})^{4}$ . Let $s_{x1}(t_{X}),$ $s_{x2}(t_{X}),$ $s_{x3}(t_{X})$ be the three components of
$s_{X}(t_{X})$ . If $x$ is a point of type (sp $ur$) or (sp $rm$), we write

(2.24) $s_{X}(t_{X})=(a(t_{11}, t_{11}^{v}),$ $a(t_{21}, t_{21}^{v}),$ $a((t_{11}t_{21})^{-1}, (t_{11}^{v}t_{21}^{v})^{-1}))$ ,

where $t_{X}=$ $(t_{11} , t_{21})\in(k(x)_{v}^{\times} )$ . We use the notation $s_{x1}(t_{X})$ et cetera for this case also.
If $x$ is a point of type (in) or (rm) then we write

(2.25) $s_{X}(t_{X})=(a(t_{11}, t_{12}),$ $a(N_{\overline{k}_{v}/k_{v}}(t_{11}^{-1}), N_{\overline{k}_{v}/k_{v}}(t_{12}^{-1}))$ ,

where $t_{X}=(t_{11}, t_{12})\in(\tilde{k}_{v}^{\times} )$ 2. We use the notation $s_{x1}(t_{X})$ et cetera for this case also. If
$x$ is a point of type (in $ur$) or $($rm $rm)^{*}$ then we write

(2.26) $s_{X}(t_{X})=(a(t_{11}, t_{12}),$ $a(t_{12}^{\sigma}, t_{11}^{\sigma}),$ $a((t_{11}t_{12}^{\sigma})^{-1}, (t_{11}^{\sigma}t_{12})^{-1}))$ ,

where $t_{X}=(t_{11}, t_{12})\in(\tilde{k}_{v}^{\times})^{2}$ . We use the notation $s_{x1}(t_{X})$ et cetera for this case also.
Finally if $x$ is a point of type (in $rm$), (rm $ur$), (rm rm $ur$), or (rm rm $rm$) then we write

(2.27) $s_{X}(t_{X})=(a(t_{11}, t_{11}^{v}),$ $a(N_{\overline{k}_{v}(x)/k_{v}(x)}(t_{11}^{-1}), N_{\overline{k}_{v}(x)/k_{v}(x)}(t_{11}^{-1})^{v}))$ ,

where $t_{X}=t_{11}\in\tilde{k}_{v}(x)^{\times}$ . We use the notation $s_{x1}(t_{X})$ et cetera for this case also. On
$H_{xk_{v}}$ we define an invariant measure $dt_{x,v}$ as follows:
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(2.28) $dt_{x,v}=\{$

$d$ ’ $t_{11v}d$
’

$t_{12v}d^{\times}t_{21v}d$
’

$t_{22v}$ (sp),
$d^{\times}t_{11v}d^{\times}t_{21v}$ (sp $ur$), (sp $rm$),
$d^{\times}t_{11v}d^{\times}t_{12v}$ (in), (rm), (in $ur$), $(rmrm)$ ’,
$d$ ’ $t_{11v}$ otherwise.

We note that if $v\in \mathfrak{M}_{f}$ then the volume of $H_{x\mathscr{O}_{v}}$ under this measure is 1 in every case.
Let

(2.29) $\tau=\left(\begin{array}{ll}0 & 1\\1 & 0\end{array}\right)$ .

Suppose that $x\in V_{k_{v}}^{ss}$ corresponds to a quadratic extension of $k_{v}$ . Then it is possible to
choose an element $g_{X}\in G_{k(x)}$ such that $x=g_{X}w$ and

(2.30) $g_{X}^{-1}g_{X}^{v}=(-\tau, -\tau, \tau)$ or $(-\tau, \tau)$ .

If $x=g_{X}w$ with $g_{X}\in G_{k_{v}}$ then we do not impose any condition on $g_{X}$ . Then in all cases

(2.31) $G_{xk_{v}}^{o}=g_{X}\{s_{X}(t_{X})|t_{X}\in H_{xk_{v}}\}g_{X}^{-1}$ .

Let $\theta_{g_{x}}$ : $G_{xk_{v}}^{o}\rightarrow H_{xk_{v}}$ be the isomorphism given by $\theta_{g_{x}}$ $(g_{X}s_{X}(t_{X})g_{X}^{-1} )$ $=t_{X}$ . If $g_{X}$ is
obvious from the text, we may simply write 0. We have established immediately before
Definition 5.13 of Part I that if $x\in G_{k_{v}}w$ or $k_{v}(x)\neq k_{v}$ and $g_{X}$ satisfies (2.30) then the
measure $dg_{x,v}^{\prime\prime}=\theta_{g_{x}}^{*}(dt_{x,v})$ on $G_{k_{v}(x)}^{o}$ does not depend on the choice of $g_{X}$ .

3. The volume of the integral points of the stabilizer.

Suppose that $v\in \mathfrak{M}_{f}$ and that $x\in V_{k_{v}}^{ss}$ is a standard orbital representative. In this
section we shall compute the volume of the intersection $K_{v}\cap G_{xk_{v}}^{o}$ under the measure
$dg_{x,v}^{\prime\prime}$ , unless $v\in \mathfrak{M}_{dy}$ and $x$ has type (rm rm $ur$) or (rm rm $rm$). These cases, which
involve additional technicalities, will be dealt with in [3].

As in Section 2, we let $\Delta_{\overline{k}_{v}/k_{v}}=\mathfrak{p}_{v^{v}}^{\overline{\delta}}$ . We shall use the parametrization of the
stabilizer introduced in Section 2. Note that since $w,$ $w_{p}\in V_{\mathscr{O}_{v}}$ in all cases, $G_{w}$ and $G_{w_{p}}$

are defined over $\mathscr{O}_{v}$ . The canonical measure on $G_{xk_{v}}^{o}$ is induced via the map 0 : $ G_{xk_{v}}^{o}\rightarrow$

$H_{xk_{v}}$ from the measure $dt_{x,v}$ (we are suppressing the element $g_{X}$ since it plays no essential
role here). Now $\theta(K_{v}\cap G_{xk_{v}}^{o})\subseteq H_{x\mathscr{O}_{v}}$ and the measure of $H_{x\mathscr{O}_{v}}$ under $dt_{x,v}$ is 1. Below
we shall consider the subgroup $\theta(K_{v}\cap G_{xk_{v}}^{o} )$ of $H_{x\mathscr{O}_{v}}$ in order to compute $vol(K_{v}\cap G_{xk_{v}}^{o} )$ .

LEMMA 3.1. Let $x=w_{p}$ with $p(z)=z^{2}+a_{1}z+a_{2}$ be a standard orbital representa-
tive. If $v\in \mathfrak{M}_{sp}$ then $g=$ $(A_{p} (c_{1} , d_{1} )$ , $A_{p}(c_{2}, d_{2}),$ $A_{p}(c_{3}, d_{3}))\in G_{xk_{v}}^{o}$ lies in $K_{v}$ if and only if
$c_{1},$ $c_{2},$ $d_{1},$ $d_{2}\in \mathscr{O}_{v}$ and $\det A_{p}(c_{j}, d_{j})\in \mathscr{O}_{v}^{\times}$ for $j=1,2$ . If $v\not\in \mathfrak{M}_{sp}$ then $g=(A_{p}(c_{1} , d_{1})$ ,
$A_{p}(c_{2}, d_{2}))\in G_{xk_{v}}^{o}$ lies in $K_{v}$ if and only if $c_{1},$

$d_{1}\in\tilde{\mathscr{O}}_{v}$ and $\det A_{p}(c_{1} , d_{1} )$
$\in\tilde{\mathscr{O}}_{v}^{\times}.$

PROOF. The conditions on $c_{j},$
$d_{j}$ and $\det A_{p}(c_{j}, d_{j})$ which are proposed in the

statement simply say that $A_{p}(c_{j}, d_{j})$ lies in the standard maximal compact subgroup in
that factor for $j=1,2$ (respectively $j=1$ ) and so they are certainly necessary. To see
that they are also sufficient we must show that they imply that the last entry in $g$ also
lies in the relevant maximal compact subgroup. But this follows immediately from
Lemmas 2.12 and 2.15. $[$
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In the following, when we consider $w_{p}$ we let $\alpha=\{\alpha_{1} , 22\}$ be the set of roots of $p(z)$

as usual. Also, when $k_{v}(w_{p})/k_{v}$ is quadratic, we denote by $v$ the non-trivial element of
$Ga1(k_{v}(w_{p})/k_{v})$ .

PROPOSITION 3.2. Suppose that the index of the orbit containing the standard rep-
resentative $x$ is on the list (sp), (in), (rm), (sp $ur$), (sp $rm$). Then $vol(K_{v}\cap G_{xk_{v}}^{o})=1$ .

PROOF. We have to show that in every case listed above $\theta(K_{v}\cap G_{xk_{v}}^{o})$ $=H_{x\mathscr{O}_{v}}$ . Of
the list (sp), (in), (rm) we deal only with the first, since the other two are very similar.
For this orbit, $p(z)=z^{2}-z$ , we have $H_{x\mathscr{O}_{v}}=(\mathscr{O}_{v}^{\times})^{4}$ and the map 0 is $\theta(A_{p}(c_{1} , d_{1} )$ ,
$A_{p}(c_{2}, d_{2}),$ $A_{p}(c_{3}, d_{3}))=(c_{1}, c_{1}+d_{1}, c_{2}, c_{2}+d_{2})$ . Note that in this case we may choose
$h_{\alpha}=\left(\begin{array}{l}1-1\\10\end{array}\right)$ in (2.10) and then computing $g_{p}s_{X}(t_{X})g_{p}^{-1}$ in (2.23) explicitly for $t_{X}=$

$(c_{1}, c_{1}+d_{1}, c_{2}, c_{2}+d_{2})$ we get the given forrnula for 0. If $h=(t_{1} , t_{2}, t_{3}, t_{4})\in H_{x\mathscr{O}_{v}}$ then
$\theta(g)=h$ where $g=(A_{p}(t_{1}, t_{2}-t_{1}),$ $A_{p}(t_{3}, t_{4}-t_{3}),$ $*)$ and, since $\det A_{p}(t_{i}, t_{j}-t_{i})=t_{i}t_{j}$ , it
follows from Lemma 3.1 that $g\in K_{v}$ .

This leaves the cases (sp $ur$) and (sp $rm$). Recall that $p(z)$ was chosen so that
$\mathscr{O}_{k_{v}(x)}=\mathscr{O}_{v}[\alpha_{1}]$ . We have $H_{x\mathscr{O}_{v}}=(\mathscr{O}_{k_{v}(x)}^{\times})^{2}$ and the map 0 is

$\theta(A_{p}(c_{1}, d_{1}),$ $A_{p}(c_{2}, d_{2}),$ $*)=(c_{1}+d_{1}\alpha_{1}, c_{2}+d_{2}\alpha_{1})$ .

If $h=$ $(t_{1} , t_{2})\in H_{x\mathscr{O}_{v}}$ then $t_{1}$ , $t_{2}\in \mathscr{O}_{k_{v}(x)}^{\times}$ and so we may find $c_{1},$ $d_{1},$ $c_{2},$
$d_{2}\in \mathscr{O}_{v}$ so that

$t_{1}=c_{1}+d_{1}\alpha_{1}$ and $t_{2}=c_{2}+d_{2}\alpha_{1}$ . If we set $g=(A_{p}(c_{1}, d_{1}),$ $A_{p}(c_{2}, d_{2}),$ $*)\in G_{xk_{v}}^{o}$ then
$\det A_{p}(c_{j}, d_{j})=(c_{j}+d_{j}\alpha_{1})(c_{j}+d_{j}\alpha_{2})=t_{j}t_{j}^{v}\in \mathscr{O}_{v}^{\times}.$ Thus $g\in K_{v}$ and $\theta(g)=h$ . $\square $

PROPOSITION 3.3. If the index of the orbit containing the standard representative $x$ is
(in $ur$) then $vol(K_{v}\cap G_{xk_{v}}^{o})=1$ . If it is $($rm $rm)^{*}$ then $vol(K_{v}\cap G_{xk_{v}}^{o})=(1-q_{v}^{-1})^{-1}q_{v}^{-\overline{\delta}_{v}}$ .

PROOF. For these cases $H_{x\mathscr{O}_{v}}=(\tilde{\mathscr{O}}_{v}^{\times})^{2}$ and 0 is $\theta(A_{p}(c, d),$ $*)=(c+d\alpha_{1} , c+d\alpha_{2})$ .
Note that we get this formula by explicitly computing $g_{p}s_{X}(t_{X})g_{p}^{-1}$ for $t_{X}=(c+d\alpha_{1}$ ,
$c+d\alpha_{2})$ in (2.26). Given $t_{1}$ , $t_{2}\in\tilde{\mathscr{O}}_{v}^{\times}$ we wish to determine whether there are integers
$c,$

$d\in\tilde{\mathscr{O}}_{v}$ such that $\theta(A_{p}(c, d),$ $*)=(t_{1}, t_{2})$ , because $(t_{1}, t_{2})\in\theta(K_{v}\cap G_{xk_{v}}^{o})$ if and only if
this is possible. Elementary linear algebra shows that

$c=(\alpha_{2}t_{1}-\alpha_{1}t_{2})/(\alpha_{2}-\alpha_{1})$ , $d=(t_{2}-t_{1})/(\alpha_{2}-\alpha_{1})$ .

Thus $(t_{1}, t_{2})$ $\in\theta(K_{v}\cap G_{xk_{v}}^{o} )$ if and only if $\alpha_{2}-\alpha_{1}$ divides $t_{2}-t_{1}$ and $\alpha_{2}t_{1}-\alpha_{1}t_{2}$ . If
$\tilde{k}_{v}=k_{v}(x)$ is unramified over $k_{v}$ then $\alpha_{2}-\alpha_{1}$ is a unit and this is no condition on $t_{1}$ and
$t_{2}$ . Thus $\theta(K_{v}\cap G_{xk_{v}}^{o} )$ $=H_{x\mathscr{O}_{v}}$ in this case and the first claim follows.

If $\tilde{k}_{v}=k_{v}(x)$ is ramified over $k_{v}$ then $(\alpha_{2}-\alpha_{1})$
$=\tilde{\mathfrak{p}}_{v}^{\overline{\delta}_{v}}$ and so we must have

$t_{1}\equiv t_{2}$
$(\tilde{\mathfrak{p}}_{v^{v}}^{\overline{\delta}} )$ . With this condition

$\alpha_{2}t_{1}-\alpha_{1}t_{2}=(\alpha_{2}-\alpha_{1})t_{1}+\alpha_{1}(t_{1}-t_{2})\in\tilde{\mathfrak{p}}_{v}^{\overline{\delta}_{v}}$

and so the second condition also holds. Thus

$\theta(K_{v}\cap G_{xk_{v}}^{o})=\{(t_{1} , t_{2})\in H_{x\mathscr{O}_{v}}|t_{1}\equiv t_{2}(\tilde{\mathfrak{p}}_{v}^{\overline{\delta}_{v}})\}$

$\cong\{(\overline{t}_{1},\overline{t}_{2})\in H_{x\mathscr{O}_{v}}|\overline{t}_{1}\equiv 1(\tilde{\mathfrak{p}}_{v}^{\overline{\delta}_{v}})\}$ ,
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where the isomorphism is by the measure preserving map $(t_{1} , t_{2})\mapsto(t_{1}t_{2}^{-1} , t_{2})$ . Thus
$vol(K_{v}\cap G_{xk_{v}}^{o})=vol(1+\tilde{\mathfrak{p}}_{v}^{\overline{\delta}_{v}})$ under the normalized multiplicative Haar measure on $\tilde{k}_{v}^{\times}$ .
The second claim follows. $\square $

In the remaining cases, the fields $\tilde{k}_{v}$ and $k_{v}(x)$ are distinct quadratic extensions of $k_{v}$

and we shall assume this to be so for the rest of this section.

LEMMA 3.4. We have 0 $(K_{v}\cap G_{xk_{v}}^{o})$
$=\tilde{\mathscr{O}}_{v}[\alpha_{1}]$ $\times.$

PROOF. As pointed out in the proof of Lemma 3.30 in [2] (whose statement is
recalled in Lemma 2.15 here), the map 0 is $\theta(A_{p}(c, d),$ $*)=c+d\alpha_{1}\in\tilde{k}_{v}(x)^{\times}.$ This can
also easily be verified by explicit computation. If $\kappa\in K_{v}\cap G_{xk_{v}}^{o}$ and $\kappa=(A_{p}(c, d),$ $*)$

then $c,$
$d\in\tilde{\mathscr{O}}_{v}$ and so $\theta(\kappa)\in\tilde{\mathscr{O}}_{v}[\alpha_{1}]$ . Moreover, $\det A_{p}(c, d)=\theta(\kappa)\theta(\kappa)^{v}$ and since

$\det A_{p}(c, d)$ $\in\tilde{\mathscr{O}}_{v}^{\times}$ and $\tilde{\mathscr{O}}_{v}[\alpha_{1}]$ is stable under $v$ , it follows that $\theta(\kappa)$ is a unit in the ring
$\tilde{\mathscr{O}}_{v}[\alpha_{1}]$ . Thus 0 $(K_{v}\cap G_{xk_{v}}^{o})$

$\subseteq\tilde{\mathscr{O}}_{v}[\alpha_{1}]$ $\times.$ Suppose that $c+d\alpha\in\tilde{\mathscr{O}}_{v}[\alpha_{1}]^{\times}.$ Then $c,$
$d\in\tilde{\mathscr{O}}_{v}$

and $\det A_{p}(c, d)=(c+d\alpha_{1})(c+d\alpha_{2})\in\tilde{\mathscr{O}}_{v}^{\times}$ and it follows from Lemma 3.1 that
$(A_{p}(c, d),$ $*)\in K_{v}\cap G_{xk_{v}}^{o}$ . This establishes the reverse inclusion. $\square $

PROPOSITION 3.5. If the index of the orbit containing the standard representative $x$

is (rm $ur$) or (in $rm$) then $vol(K_{v}\cap G_{xk_{v}}^{o})=1$ .

PROOF. If the index is (rm $ur$) then $p(z)\in k_{v}[z]$ either has the form $p(z)=z^{2}-r$

with $r$ a non-square unit, if $v\not\in \mathfrak{M}_{dy}$ , or is an Artin-Schreier polynomial, if $v\in \mathfrak{M}_{dy}$ . By
hypothesis, $p(z)$ is irreducible when regarded as an element of $\tilde{k}_{v}[z]$ . Thinking of $\tilde{k}_{v}$ as
the ground field, these facts imply that $\mathscr{O}_{\overline{k}_{v}(x)}=\tilde{\mathscr{O}}_{v}[\alpha_{1}]$ and so $\theta(K_{v}\cap G_{xk_{v}}^{o})=\mathscr{O}_{\overline{k}_{v}(x)}^{\times}=$

$H_{x\mathscr{O}_{v}}$ , by Lemma 3.4.
If the index is (in $rm$) then $p(z)\in k_{v}[z]$ is an Eisenstein polynomial and, since $\tilde{k}_{v}/k_{v}$

is unramified, $p(z)$ is still an Eisenstein polynomial when regarded as an element of $\tilde{k}_{v}[z]$ .
Thus $\mathscr{O}_{\overline{k}_{v}(x)}=\tilde{\mathscr{O}}_{v}[\alpha_{1}]$ and, again by the Lemma, $\theta(K_{v}\cap G_{xk_{v}}^{o} )$ $=H_{x\mathscr{O}_{v}}$ . $[$

We are left with the index (rm rm $ur$) with $v\not\in \mathfrak{M}_{dy}$ . In this case $\tilde{k}_{v}(x)=$

$k_{v}(\sqrt{\pi_{v}}, \sqrt{\eta})$ where $\pi_{v}$ is a uniformizer and $\eta$ is a non-square unit. We may assume
without loss of generality that $\tilde{k}_{v}=k_{v}(\sqrt{\pi_{v}})$ and $k_{v}(x)=k_{v}(\sqrt{\pi_{v}\eta})$ .

PROPOSITION 3.6. If $v\in \mathfrak{M}_{f}\backslash \mathfrak{M}_{dy}$ and $x$ is the standard orbital representative for an
orbit with index (rm rm $ur$) then $vol(K_{v}\cap G_{xk_{v}}^{o})=(q_{v}+1)^{-1}$ .

PROOF. We may choose $ p(z)=z^{2}-\pi_{v}\eta$ as the Eisenstein polynomial associated
to the extension $k_{v}(x)/k_{v}$ . Then $\alpha_{1}=\sqrt{\pi_{v}\eta}$ and so $\theta(K_{v}\cap G_{xk_{v}}^{o})=\tilde{\mathscr{O}}_{v}[\sqrt{\pi_{v}\eta}]^{\times}$ by Lemma
3.4. Since $\tilde{\mathscr{O}}_{v}=\mathscr{O}_{v}[\sqrt{\pi_{v}}]$ , we have

$\tilde{\mathscr{O}}_{v}[\sqrt{\pi_{v}\eta}]$ $’=$ { $e_{1}+e_{2}\pi_{v}\sqrt{\eta}+e_{3}\sqrt{\pi_{v}}+e_{4}\sqrt{\pi_{v}\eta}|e_{1}\in \mathscr{O}_{v}^{\times}$ , e2, $e_{3},$
$e_{4}\in \mathscr{O}_{v}$ }.

On the other hand, $\mathscr{O}_{\overline{k}_{v}(x)}=\tilde{\mathscr{O}}_{v}[\sqrt{\eta}]$ and so $H_{x\mathscr{O}_{v}}=\mathscr{O}_{\overline{k}_{v}(x)}^{\times}$ is

{ $f_{1}+f_{2}\sqrt{\eta}+f_{3}\sqrt{\pi_{v}}+f_{4}\sqrt{\pi_{v}\eta}|f_{1},$
$\ldots,$

$f_{4}\in \mathscr{O}_{v},$ $f_{1}$ or $f_{2}$ a unit}.
From this it is clear that

$[H_{x\mathscr{O}_{v}} : \theta(K_{v}\cap G_{xk_{v}}^{o})]=q_{v}+1$

and so the volume has the indicated value. $\square $
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4. Orbital volumes at the finite places.

In this section we compute $vol(K_{v}x)$ for all standard orbital representatives, $x$ , when
$v$ is a finite, non-dyadic place. When $v$ is dyadic we compute the sum of $vol(K_{v}x)$ over
the equivalence class of $x$ under the relation $\wedge\vee$ introduced in Section 2, unless $x$ has type
(rm $rm$)’, (rm rm $ur$), or (rm rm $rm$). These cases will be treated in [3]. Throughout
this section, $v$ will be a finite place of $k$ .

Our strategy is to find a subset $\mathscr{D}$ of $K_{v}x$ , defined by congruence conditions, whose
translates cover the orbit and then to find its stabilizer modulo a certain high power of
the prime ideal. Since the entries of elements of $V$ may lie in different fields we need a
notation for congruences that takes this into account. Suppose that $v\not\in \mathfrak{M}_{sp}$ . We use
the coordinate system (2.21) on $V_{k_{v}}$ . If $x=(x_{ij})$ and $y=(y_{ij})$ are written with respect
to this coordinate system then $x\equiv y(\mathfrak{p}_{v}^{n_{1}},\tilde{\mathfrak{p}}_{v}^{n_{2}})$ means that $x_{i0}\equiv y_{i0}(\mathfrak{p}_{v}^{n_{1}}),$ $x_{i2}\equiv y_{i2}(\mathfrak{p}_{v}^{n_{1}})$

and $x_{i1}\equiv y_{i1}(\tilde{\mathfrak{p}}_{v}^{n_{2}})$ for $i=1,2$ . If $v\in \mathfrak{M}_{sp}$ then $x\equiv y(\mathfrak{p}_{v}^{n})$ will signify congruences to
the modulus pj on all the corresponding entries of the two pairs of matrices.

In addition to this, we shall require some further notation as follows: We put
$2\mathscr{O}_{v}=\mathfrak{p}_{v}^{m_{v}}$ (so that $m_{v}=0$ unless $v$ is dyadic) and if $k_{v}(x)/k_{v}$ is quadratic then we
put $\Delta_{k_{v}(x)/k_{v}}=\mathfrak{p}_{v}^{\delta_{x,v}}$ . If $p(z)=z^{2}+a_{1}z+$ a2 $\in k_{v}[z]$ then $\alpha=\{\alpha_{1} , 22\}$ will be its set of
roots. Our standard orbital representative for orbits with $k_{v}(x)=k_{v}$ is $x=w_{p}$ with
$p(z)=z^{2}-z$ . However, we shall find it convenient to make use of $x=w$ instead.
Note that if $g_{p}$ is as in (2.10) then $g_{p}\in K_{v}$ and so $K_{v}w_{p}=K_{v}w$ and this substitution is
permissible. So we shall use $w$ as the orbital representative for its orbit.

Since $w,$ $w_{p}\in G_{\mathscr{O}_{v}},$ $G_{w}$ and $G_{w_{p}}$ are defined over $\mathscr{O}_{v}$ . So for any $j\geq 0$ we may
consider $G_{x\mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}}$ and $G_{\chi \mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}}^{o}$ . We may also consider the reduction $\overline{x}$ of $x$ modulo
$\mathfrak{p}_{v}^{j+1}$ and its stabilizer, $G_{x^{-}\mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}}$ . In general, $G_{x\mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}}$ and $G_{x^{-}\mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}}$ may not coincide
and we have to proceed carefully. However, $G_{x\mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}}\subseteq G_{\overline{x}\mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}}$ in all cases.

The following lemma describes $G_{x\mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}}$ , when $v\in \mathfrak{M}_{sp}$ .

LEMMA 4.1. Suppose $v\in \mathfrak{M}_{sp}$ and $x=w_{p}$ is a standard orbital representative. Then
$G_{\chi \mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}}$ consists of elements of the form (2.13) such that

$\det A_{p}(c_{1} , d_{1}),$ $\det A_{p}(c_{2}, d_{2})\in(\mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1})^{\times}$

and $c_{3},$
$d_{3}\in \mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}$ are related to $c_{1},$ $c_{2},$ $d_{1},$ $d_{2}\in \mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}$ by (2.14). Moreover,

$[G_{x\mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}} : G_{x\mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}}^{o}]=2$

and the non-trivial class in $G_{x\mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}}/G_{\chi \mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}}^{o}$ is represented by $(\tau_{p}, \tau_{p}, \tau_{p})$ .

PROOF. We briefly sketch the proof here. The conditions in Lemma 2.12
determine the structure of $G_{X}$ as a scheme over $\mathscr{O}_{v}$ regarding $c_{1},$ $d_{1},$ $c_{2},$

$d_{2}$ as variables.
Note that the inequalities $A_{p}(c_{1}, d_{1}),$ $A_{p}(c_{2}, d_{2})\neq 0$ can be regarded as equations
$u_{1}A_{p}(c_{1}, d_{1})=u_{2}A_{p}(c_{2}, d_{2})=1$ after adding variables $u_{1},$ $u_{2}$ . Then $G_{x\mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}}$ is by defini-
tion the set of $(\mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1})$ -valued points of this scheme and so the equation (2.14) will
be regarded as an equation over $\mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}$ and the above inequalities, after reduction
modulo pp$.+1$ , can be regarded as the condition that $A_{p}(c_{1}, d_{1}),$ $A_{p}(c_{2}, d_{2})$ are units.
Since $(\tau_{p}, \tau_{p}, \tau_{p})$ is defined over $\mathscr{O}_{v}$ , this proves the lemma. $\square $
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Similarly, the following is an easy consequence of Lemma 2.15 and we will not give
a proof.

LEMMA 4.2. Suppose $v\not\in \mathfrak{M}_{sp}$ and $x=w_{p}$ is a standard orbital representative. Then
$G_{\chi \mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}}$ consists of elements of the form (2.16) such that $\det A_{p}(c_{1} , d_{1})\in(\tilde{\mathscr{O}}_{v}/\tilde{\mathfrak{p}}_{v}^{j+1})^{\times}$ or
$(\tilde{\mathscr{O}}_{v}/\tilde{\mathfrak{p}}_{v}^{2(j+1)})$

$\times$

, according as $\tilde{k}_{v}/k_{v}$ is ramified or unramified, and $c_{2},$
$d_{2}\in \mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}$ are

related to $c_{1},$
$d_{1}\in\tilde{\mathscr{O}}_{v}/\tilde{\mathfrak{p}}_{v}^{j+1}$ or $\tilde{\mathscr{O}}_{v}/\tilde{\mathfrak{p}}_{v}^{2(j+1)}$ by (2.17). Moreover,

$[G_{x\mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}} : G_{x\mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}}^{o}]=2$

and the non-trivial class in $G_{x\mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}}/G_{\chi \mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}}^{o}$ is represented by $(\tau_{p}, \tau_{p})$ .

DEFINITION 4.3. For $x=$ $(x_{1} , x_{2})\in V_{\mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}}$ let Span(x) be the $\mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}$ -module gen-
erated by $x_{1}$ and $x_{2}$ .

The following simple observation will be useful below. We will usually apply it
with $x$ being the reduction modulo $\mathfrak{p}_{v}^{j+1}$ of a standard orbital representative.

LEMMA 4.4. Let $v\in \mathfrak{M}_{sp}$ . Given $g_{1},$ $g_{2}\in GL$ (2)
$\mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}$ ’ there exists an element $ g_{3}\in$

$GL(2)_{\mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}}$ such thaatt $(g_{1}, g_{2}, g_{3})\in G_{x\mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}}$ if and only if $Span((g_{1}, g_{2},1)x)=$ Span(x).
Similarly, let $v\not\in \mathfrak{M}_{sp}$ . Given $g_{1}\in GL$ (2)

$\overline{\mathscr{O}}_{v}/\overline{\mathfrak{p}}_{v}^{j+1}$

or $GL(2)_{\overline{\mathscr{O}}_{v}/\overline{\mathfrak{p}}_{v}^{2(j+1)}}$ , according as $v\in \mathfrak{M}_{in}$

or $v\in \mathfrak{M}_{rm}$ , there exists $g_{2}\in GL(2)_{\mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}}$ such thaatt $(g_{1}, g_{2})\in G_{x\mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}}$ if and only if
Span $((g_{1} , 1)x)=$ Span(x).

Before continuing, we would like to mention a simple fact which we shall have to
use frequently below. If $v$ is a finite, non-dyadic place of $k$ and $v\not\in \mathfrak{M}_{sp}$ then any class
in $\tilde{\mathscr{O}}_{v}/\tilde{\mathfrak{p}}_{v}^{j}$ which is fixed by $\sigma$ has a representative which lies in $\mathscr{O}_{v}$ . To see this, simply
observe that if $u\in\tilde{\mathscr{O}}_{v}$ represents such a class then $u^{\sigma}\equiv u(\tilde{\mathfrak{p}}_{v}^{j})$ and so $u^{\prime}=(u+u^{\sigma})/2$

satisfies $u^{\prime}\equiv u(\tilde{\mathfrak{p}}_{v}^{j})$ and $u^{\prime}\in \mathscr{O}_{v}$ . Of course, the corresponding claim when $v$ is a dyadic
place is false.

PROPOSITION 4.5. If $k_{v}(x)/k_{v}$ is not ramifted then $G_{\overline{x}\mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}}=G_{x\mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}}$ .

PROOF. We first consider the case $x=w$ . Suppose $v\in \mathfrak{M}_{sp}$ . Note that $ G_{w\mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}}\cong$

$((\mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1})^{\times})^{4}$ in this case. Let $g=(g_{1}, g_{2}, g_{3})\in G_{\overline{w}\mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}}$ be as in (2.19) where the
entries are elements of $\mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}$ . By computation,

$(g_{1}, g_{2},1)w=(\left(\begin{array}{ll}g_{111}g_{211} & g_{111}g_{221}\\g_{121}g_{211} & g_{121}g_{221}\end{array}\right),$ $\left(\begin{array}{ll}g_{112}g_{212} & g_{112}g_{222}\\g_{122}g_{212} & g_{122}g_{222}\end{array}\right))$ .

Since $Span((g_{1}, g_{2},1)\overline{w})=$ Span $(\overline{w})$ ,

$g_{111}g_{221}=g_{121}g_{211}=g_{112}g_{222}=g_{122}g_{212}=0$ .

If $g_{111}$ is a unit then $g_{221}=0$ . Thus $g_{211},$ $g_{222}$ are units. So $g_{112}=g_{121}=0$ . This
implies $g_{122}$ is a unit and so $g_{212}=0$ . If $g_{111}$ is not a unit, $g_{121}$ must be a unit. By a
similar argument, we can conclude that $g_{111}=g_{122}=g_{211}=g_{222}=0$ and $g_{112},$ $g_{121},$ $g_{212}$ ,
$g_{221}$ are units. Multiplying by an element of $G_{x\mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}}$ if necessary, we may assume that
$g_{1}=g_{2}=1$ . Then it is easy to see that $g_{3}=1$ . It follows that $G_{\overline{w}\mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}}=G_{w\mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}}$ .
The case $v\not\in \mathfrak{M}_{sp}$ is similar.
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We now assume $k_{v}(x)/k_{v}$ is quadratic and unramified. Suppose $v\in \mathfrak{M}_{sp}$ . Let $g=$

$(g_{1}, g_{2}, g_{3})\in G_{x^{-}\mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}}$ . We choose representatives of $g_{1},$ $g_{2},$ $g_{3}$ in $GL(2)_{\mathscr{O}_{v}}$ and use the
same notation. Since $k_{v}(x)/k_{v}$ is unramified, if $c,$ $d\in \mathscr{O}_{v},$ $c+d\alpha_{1}$ is a unit if and only
if either $c$ or $d$ is a unit. The $(1 , 1 )$ -entry of $A_{p}(c_{i}, d_{i})g_{i}$ is $c_{i}g_{i11}-d_{i}g_{i21}$ and the $(1, 2)-$

entry is $c_{i}g_{i12}-d_{i}g_{i22}$ . Since either $g_{i12}$ or $g_{i22}$ is a unit, we may choose $c_{i}=g_{i22}$ and
$d_{i}=g_{i12}$ to make the $(1 , 2)$ -entry of $A_{p}(c_{i}, d_{i})g_{i}$ zero. Replacing $g_{i}$ by an element of the
form $(A_{p}(c_{1} , d_{1} )$ , $A_{p}(c_{2}, d_{2}),$ $A_{p}(c_{3}, d_{3}))g$ (with $c_{3},$

$d_{3}$ determined by $c_{1},$ $c_{2},$ $d_{1},$ $d_{2}$ ), we may
assume that

(4.6) $g_{1}=\left(\begin{array}{ll}1 & 0\\u_{1} & t_{1}\end{array}\right)$ , $g_{2}=\left(\begin{array}{ll}1 & 0\\u_{2} & t_{2}\end{array}\right)$ .

If $x=w_{p}$ and $ y=(_{y_{1}^{\sigma}}y0y_{2}y_{1}),\overline{y}\in$ $Span(\overline{x})$ if and only if $y_{1}=y_{1}^{\sigma}$ and $y_{2}-a_{1}y_{1}+a_{2}y_{0}=0$ .
By computation, $(g_{1} , g_{2},1)x=(M_{1} , M_{2})$ where

$M_{1}=\left(\begin{array}{ll}0 & t_{2}\\t_{1} & a_{1}t_{1}t_{2}+t_{2}u_{1}+t_{1}u_{2}\end{array}\right)$ ,

(4.7)
$M_{2}=\left(\begin{array}{ll}1 & a_{1}t_{2}+u_{2}\\a_{1}t_{1}+u_{1} & u_{1}u_{2}+a_{1}(t_{2}u_{1}+t_{1}u_{2})+(a_{1}^{2}-a_{2})t_{1}t_{2}\end{array}\right)$ .

Therefore $t_{1}=t_{2},$ $u_{1}=u_{2}$ , and

(4.8) $a_{1}(t_{1}-1)+2u_{1}=0$ , $u_{1}^{2}+a_{1}(2t_{1}-1)u_{1}+a_{1}^{2}(t_{1}^{2}-t_{1})+a_{2}(1-t_{1}^{2})=0$ .

If $v$ is not dyadic, $a_{1}=0$ . So $u_{1}=t_{1}^{2}-1=0$ . Then $g_{1},$ $g_{2}$ are both the identity matrix
or both $-\tau_{p}$ . If $v$ is dyadic, $p$ is an Artin-Schreier polynomial. This means $a_{1}=-1$

and $a_{2}$ is a unit. By the first condition of (4.8), $t_{1}=2u_{1}+1$ . Substituting in the
second condition and simplifying, $(4a_{2} - 1)(u_{1}^{2}+u_{1})=0$ . Since $4a_{2}$ –1 is a unit,
$u_{1}^{2}+u_{1}=0$ . If $u_{1}$ is a unit, $u_{1}=-1$ , and if $u_{1}$ is not a unit, $u_{1}=0$ . Note that this
argument is valid in $\mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}$ (even though it is not a field). If $u_{1}=-1$ then $t_{1}=-1$

and $g_{1},$ $g_{2}$ are both $-\tau_{p}$ . If $u_{1}=0$ then $t_{1}=1$ and $g_{1},$ $g_{2}=1$ . Then since $(-1,$ $-1, 1)$ ,
$(\tau_{p}, \tau_{p}, \tau_{p})\in G_{x\mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}}$ , $(-\tau_{p}, -\tau_{p}, \tau_{p})\in G_{x\mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}}$ . This proves the proposition when
$v\in \mathfrak{M}_{sp}$ .

Suppose now that $v\not\in \mathfrak{M}_{sp}$ . Let $g=$ $(g_{1} , g_{2})\in G_{x^{-}\mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}}$ be as in (2.19) where entries
of $g_{2}$ are in $\mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}$ and entries of $g_{1}$ are in $\tilde{\mathscr{O}}_{v}/\tilde{\mathfrak{p}}_{v}^{j+1}$ or $\tilde{\mathscr{O}}_{v}/\tilde{\mathfrak{p}}_{v}^{2(j+1)}$ , according as $v\in \mathfrak{M}_{in}$

or $\mathfrak{M}_{IW}$ . We first show that the right $G_{x\mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}}$ -coset of $g$ contains an element of the
form

(4.9) $(\left(\begin{array}{ll}1 & 0\\u_{1} & t_{1}\end{array}\right),$ $*)$ .

If $v\in \mathfrak{M}_{rm}$ , roots of $p(z)$ still generates the unique unramified quadratic extension of $\tilde{k}_{v}$

and so an element $c_{1}+d_{1}\alpha_{1}$ with $c_{1},$
$d_{1}\in\tilde{\mathscr{O}}_{v}$ is a unit if and only if $c_{1}$ or $d_{1}$ is a unit.

We choose $c_{1}=g_{122},$ $d_{1}=g_{112}$ . Then either $c_{1}$ or $d_{1}$ is a unit. So there exist
$c_{2},$

$d_{2}\in \mathscr{O}_{v}$ such that $(A_{p}(c_{1}, d_{1}),$ $A_{p}(c_{2}, d_{2}))$
$\in G_{x\mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}}$ . Multiplying this element by $g$ ,

we may assume that $g_{112}=0$ .
If $v\in \mathfrak{M}_{in}$ then $k_{v}(x)=\tilde{k}_{v}$ is unramified over $k_{v}$ . Note that $p(z)$ is irreducible

modulo $\mathfrak{p}_{v}$ by assumption. Therefore, $\overline{x}\in V_{\mathscr{O}_{v}/\mathfrak{p}_{v}}^{ss}$ . Since $\mathscr{O}_{v}/\mathfrak{p}_{v}$ is a perfect field, one can
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use the same argument as in Proposition 2.10, (2) [1], p. 323 to determine the stabilizer
$G_{\overline{x}\mathscr{O}_{v}/\mathfrak{p}_{v}}$ . So the proposition is true if $j=0$ .

By the previous step, we can multiply $g$ by an element of $G_{x\mathscr{O}_{v}/\mathfrak{p}_{v}}$ to assume that
$g_{112},$ $g_{121}\in\tilde{\mathfrak{p}}_{v}$ . Let $c_{1}=g_{122},$ $d_{1}=g_{112}$ . Then $c_{1}\in\tilde{\mathscr{O}}_{v}^{\times}$ and $d_{1}\in\tilde{\mathfrak{p}}_{v}$ . So $ c_{1}-d_{1}\alpha_{1}\equiv$

$c_{1}-d_{1}\alpha_{2}\equiv c_{1}(\tilde{\mathfrak{p}}_{v})$ . Therefore, there exist $c_{2},$
$d_{2}\in \mathscr{O}_{v}$ such that $(A_{p}(c_{1} , d_{1} )$ , $ A_{p}(c_{2}, d_{2}))\in$

$G_{x\mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}}$ . Multiplying $g$ by this element, we may assume $g_{112}=0$ .
In both cases, $g_{112}=0$ and so $g_{111},$

$g_{122}\in\tilde{\mathscr{O}}_{v}^{\times}$ . Multiplying by an element of the
form $(A_{p}(c_{1},0),$ $A_{p}(c_{2}, d_{2}))\in G_{x\mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}}$ , we may further assume that $g_{111}=1$ .

This done, $(g_{1},1)w_{p}$ is given by (4.7) with $t_{2},$ $u_{2}$ replaced by $t_{1}^{\sigma}$ , $u_{1}^{\sigma}$ . Therefore, by
the same argument, $t_{1}=t_{1}^{\sigma},$ $u_{1}^{\sigma}=u_{1}$ , and the condition (4.8) holds also. After this, the
argument is the same as in the case $v\in \mathfrak{M}_{sp}$ . $\square $

DEFINITION 4.10. Let $x$ denote any of the standard orbital representatives. In
each of the cases enumerated below, we define $\mathscr{D}$ to be the set of $y\in V_{\mathscr{O}_{v}}$ such that
$y\equiv x(\mathfrak{p}_{v}^{n_{1}},\tilde{\mathfrak{p}}_{v}^{n_{2}})$ if $v\not\in \mathfrak{M}_{sp}$ or $y\equiv x(\mathfrak{p}_{v}^{n})$ if $v\in \mathfrak{M}_{sp}$ , where $n_{1},$ $n_{2}$ and $n$ are as indicated.

(1) $n=2m_{v}+1$ if $x$ has type (sp) or (sp $ur$),
(2) $n=2$ if $x$ has type (sp $rm$) and $v\not\in \mathfrak{M}_{dy}$ ,
(3) $n_{1}=n_{2}=2m_{v}+1$ if $x$ has type (in) or (in $ur$),
(4) $n_{1}=n_{2}=2$ if $x$ has type (in $rm$) and $v\not\in \mathfrak{M}_{dy}$ ,
(5) $n_{1}=2m_{v}+1,$ $n_{2}=4m_{v}+2$ if $x$ has type (rm) or (rm $ur$),
(6) $n_{1}=2,$ $n_{2}=4$ if $x$ has type $($rm $rm)^{*}$ or (rm rm $ur$) and $v\not\in \mathfrak{M}_{dy}$ .

PROPOSITION 4.11. Let $x$ have one of the types enumerated in Deftnition 4.10 and $\mathscr{D}$

be the corresponding set. If $y\in \mathscr{D}$ then $k_{v}(y)=k_{v}(x)$ .

PROOF. By the choice of orbital representatives, $P(x)$ is a unit when $k_{v}(x)/k_{v}$ is not
ramified (including the case $k_{v}(x)=k_{v}$ ) and $(P(x))=\mathfrak{p}_{v}^{\delta_{x,v}}$ when $k_{v}(x)/k_{v}$ is ramified. In
cases (1), (3) and (5), we have $P(y)\equiv P(x)(\mathfrak{p}_{v}^{2m_{v}+1})$ and $P(x)$ is a unit. This con-
gruence may be rewritten as $P(y)/P(x)\equiv 1(\mathfrak{p}_{v}^{2m_{v}+1})$ . By Hensel’s lemma, a unit is a
square if and only if it is a square modulo $\mathfrak{p}_{v}^{2m_{v}+1}$ . Note that this is true whether or not
$v$ is dyadic. So $P(y)/P(x)$ is a square. This implies that $k_{v}(y)=k_{v}(x)$ in all these
cases.

In case (2), the condition implies that $P(y)\equiv P(x)(\mathfrak{p}_{v}^{2})$ and hence that we have
$P(y)/P(x)\equiv 1(\mathfrak{p}_{v})$ , which again implies that $k_{v}(y)=k_{v}(x)$ , since $v$ is not dyadic. The
same argument works for case (4) because $\tilde{\mathfrak{p}}_{v}^{2}\cap \mathscr{O}_{v}=\mathfrak{p}_{v}^{2}$ in this case.

In case (6), the assumption implies that $P(y)\equiv P(x)(\mathfrak{p}_{v}^{2})$ and $ord_{k_{v}}(P(x))=1$ . So
$P(y)P(x)^{-1}\equiv 1(\mathfrak{p}_{v})$ . Since $v$ is not dyadic, $P(y)P(x)^{-1}\in(k_{v}^{\times})^{2}$ . Therefore, $k_{v}(y)=$

$k_{v}(x)$ . $\square $

Before proving the next proposition we recall the notion of omega sets. Let
$x\in V_{k_{v}}^{ss}$ .

DEFINITION 4.12. A set $\Omega_{x,v}\subseteq G_{k_{v}}$ is called an omega set for $x$ if it has the
following properties:

(1) $\Omega_{x,v}x=(G_{k_{v}}x)\cap V_{\mathscr{O}_{v}}$ .
(2) $K_{v}\Omega_{x,v}\theta_{g_{x}}^{-1}(H_{x\mathscr{O}_{v}})=\Omega_{x,v}$ .
(3) If $g_{1},$ $g_{2}\in\Omega_{x,v},$ $h\in G_{xk_{v}}^{o}$ and $g_{1}=g_{2}h$ then $h\in\theta_{g_{x}}^{-1}(H_{x\mathscr{O}_{v}})$ .
(4) If $g\in\Omega_{x,v}$ then $|\chi(g)|_{v}\leq 1$ with equality only if $g\in K_{v}$ .
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We have established in Section 8 [2] that omega sets exist for the representatives of
all the orbits with the indices considered in this section.

PROPOSITION 4.13. Let $x$ have one of the types enumerated in Deftnition 4.10 and $\mathscr{D}$

be the corresponding set. Then $\mathscr{D}\subseteq K_{v}x$ .

PROOF. We first deal with (1) $-(5)$ in Definition 4.10. Let $\Omega_{x,v}$ be the omega set
for $x$ . Suppose that $y\in \mathscr{D}$ . Then $k_{v}(y)=k_{v}(x)$ and so $y\in G_{k_{v}}x$ . Since $y$ is also
integral, it follows from the first property of omega sets that $y\in\Omega_{x,v}x$ . That is, $y=gx$

for some $g\in\Omega_{x,v}$ . We have seen above that the congruence conditions on $y$ also imply
that $|P(y)|_{v}=|P(x)|_{v}$ and so $g\in\{g\in\Omega_{x,v}||\chi(g)|_{v}=1\}=K_{v}$ by the last property of
omega sets. This proves the claim for (1) $-(5)$ .

Consider case (6). Let

$G(\pi_{v}^{2})=\{g\in K_{v}|g_{1}\equiv 1(\tilde{\mathfrak{p}}_{v}^{4}), g_{2}\equiv 1(\mathfrak{p}_{v}^{2})\}$ .

Then $G(\pi_{v}^{2})$ fixes the set $\mathscr{D}$ . Consider the usual coordinates $y=(y_{ij})$ as in (2.21).
Since $y_{20}\equiv 1(\mathfrak{p}_{v}^{2}),$ $(1, a(y_{20}^{-1},1))\in G(\pi_{v}^{2})$ . Applying this element, we may assume that
$y_{20}=1$ . Since $y_{10}\equiv 0(\mathfrak{p}_{v}^{2}),$ $(1,{}^{t}n(-y_{10}))\in G(\pi_{v}^{2})$ . Applying this element, we may
assume that $y_{10}=0$ . Since $y_{11}\equiv 1(\tilde{\mathfrak{p}}_{v}^{4}),$ $(a(y_{11}^{-1},1),$ $1)\in G(\pi_{v}^{2})$ . Applying this element,
we may assume that $y_{11}=1$ . Since we are assuming $v\not\in \mathfrak{M}_{dy}$ , we chose $p$ so that
$a_{1}=0$ . So $y_{12}\equiv 0(\mathfrak{p}_{v}^{2})$ . So by a similar argument, we may assume $y_{12}=0$ . Also
$y_{21}\equiv 0(\tilde{\mathfrak{p}}_{v}^{4})$ and $y_{22}\equiv-a_{2}(\mathfrak{p}_{v}^{2})$ . We may assume that $\tilde{k}_{v}=k_{v}(\sqrt{\pi_{v}})$ . Let $y_{21}=$

$\pi_{v}^{2}(c+d\sqrt{\pi_{v}})$ where $c,$
$d\in \mathscr{O}_{v}$ . Then $(n(-d\pi_{v}^{2}\sqrt{\pi_{v}}), n(-\pi_{v}^{2}c))\in G(\pi_{v}^{2})$ . Note that

$Tr_{k_{v}/k_{v}}$ $(-d\pi_{v}^{2}\sqrt{\pi_{v}})$ $=0$ . So applying this element, we may assume that $y_{21}=0$ .
Then $-y_{22}a_{2}^{-1}\equiv 1(\mathfrak{p}_{v})$ . So $-y_{22}a_{2}^{-1}=t^{2}$ with $t\in \mathscr{O}_{v}^{\times}$ by Hensel’s lemma. Applying
$(a(1, t^{-1}),$ $a(t, 1))$ , we get $y_{22}=-a_{2}$ . $\square $

PROPOSITION 4. 14. (1) If $x$ has type (sp) then $vol(K_{v}x)=(1/2)(1+q_{v}^{-1})(1-q_{v}^{-2})^{2}$ .
(2) If $x$ has type (sp $ur$) then $vol(K_{v}x)=(1/2)(1-q_{v}^{-1} )$ 3

$(1-q_{v}^{-2})$ .
(3) If $x$ has type (in) or (in $ur$) then $vol(K_{v}x)=(1/2)(1-q_{v}^{-1})(1-q_{v}^{-4})$ .
(4) If $x$ has type (rm) then $vol(K_{v}x)=(1/2)(1-q_{v}^{-2})^{2}$ .
(5) If $x$ has type (rm $ur$) then $vol(K_{v}x)=(1/2)(1-q_{v}^{-1} )$ 2

$(1-q_{v}^{-2})$ .

PROOF. Let $j=2m_{v}$ in all cases. Then $vol(K_{v}x)=vol(\mathscr{D})\#(G_{\mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}}/G_{\overline{x}\mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}} )$ .
By Proposition 4.5, $G_{\overline{x}\mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}}=G_{x\mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}}$ .

Consider (1). In this case, $ G_{\chi \mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}}^{o}\cong$
$((\mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1} ) \times)^{4}$ . So its order is $((q_{v}-1)q_{v}^{j})^{4}$ .

Therefore,

$vol(K_{v}x)=q_{v}^{-8(j+1)}\cdot\frac{(q_{v}^{2}-q_{v})^{3}(q_{v}^{2}-1)^{3}(q_{v}^{j})^{12}}{2(q_{v}-1)^{4}(q_{v}^{j})^{4}}=\frac{1}{2}(1+q_{v}^{-1})(1-q_{v}^{-2})^{2}$ .

Consider (2) and (3). Let $\mathfrak{p}_{X}\subseteq \mathscr{O}_{k_{v}(x)}$ be the prime ideal. In both cases, $ G_{\chi \mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}}\cong$

$((\mathscr{O}_{X}/\mathfrak{p}_{X}^{j+1})^{\times})^{2}$ , and $\#(\mathscr{O}_{X}/\mathfrak{p}_{X})=q_{v}^{2}$ . So its order is $((q_{v}^{2}-1)q_{v}^{2j})^{2}$ . Therefore, in
case (2),

$vol(K_{v}x)=q_{v}^{-8(j+1)}\cdot\frac{(q_{v}^{2}-q_{v})^{3}(q_{v}^{2}-1)^{3}(q_{v}^{j})^{12}}{2(q_{v}^{2}-1)^{2}(q_{v}^{2j})^{2}}=\frac{1}{2}(1-q_{v}^{-1})^{3}(1-q_{v}^{-2})$ .
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In case (3),

$vol(K_{v}x)=q_{v}^{-8(j+1)}\cdot\frac{(q_{v}^{4}-q_{v}^{2})(q_{v}^{4}-1)(q_{v}^{2j})^{4}(q_{v}^{2}-q_{v})(q_{v}^{2}-1)(q_{v}^{j})^{4}}{2(q_{v}^{2}-1)^{2}(q_{v}^{2j})^{2}}$

$=\frac{1}{2}(1-q_{v}^{-1})(1-q_{v}^{-4})$ .

Consider (4). In this case, $G_{\chi \mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}}\cong((\tilde{\mathscr{O}}_{v}/\tilde{\mathfrak{p}}_{v}^{2(j+1)})^{\times})^{2}$ and $\#(\tilde{\mathscr{O}}_{v}/\tilde{\mathfrak{p}}_{v})=q_{v}$ . So its
order is $((q_{v}-1)q_{v}^{2j+1})^{2}$ . Therefore,

$vol(K_{v}x)=q_{v}^{-8(j+1)}\cdot\frac{(q_{v}^{2}-q_{v})^{2}(q_{v}^{2}-1)^{2}(q_{v}^{2j+1})^{4}(q_{v}^{j})^{4}}{2(q_{v}-1)^{2}(q_{v}^{2j+1})^{2}}=\frac{1}{2}(1-q_{v}^{-2})^{2}$ .

Consider (5). Let $\mathfrak{p}_{X}\subseteq \mathscr{O}_{k_{v}(x)}$ be the prime ideal. In this case, $ G_{\chi \mathscr{O}_{v}/\mathfrak{p}_{v}^{j+1}}\cong$

$(\mathscr{O}_{X}/\mathfrak{p}_{X}^{2(j+1)})^{\times}$ and $\#(\mathscr{O}_{X}/\mathfrak{p}_{X})=q_{v}^{2}$ . So its order is $(q_{v}^{2}-1)q_{v}^{2(2j+1)}$ . Therefore,

$vol(K_{v}x)=q_{v}^{-8(j+1)}\cdot\frac{(q_{v}^{2}-q_{v})^{2}(q_{v}^{2}-1)^{2}(q_{v}^{2j+1})^{4}(q_{v}^{j})^{4}}{2(q_{v}^{2}-1)(q_{v}^{2(2j+1)})}=\frac{1}{2}$ $(1-q_{v}^{-1})^{2}(1-q_{v}^{-2})$ . $\square $

PROPOSITION 4.15. (1) Suppose that $x$ has type (sp $rm$) and that $v\not\in \mathfrak{M}_{dy}$ . Then

$vol(K_{v}x)=\frac{1}{2}q_{v}^{-1}(1-q_{v}^{-1})(1-q_{v}^{-2})^{3}$ .

(2) Suppose that $x$ has type (in $rm$) and that $v\not\in \mathfrak{M}_{dy}$ . Then

$vol(K_{v}x)=\frac{1}{2}q_{v}^{-1}(1-q_{v}^{-1})(1-q_{v}^{-2})(1-q_{v}^{-4})$ .

PROOF. We prove that $[G_{x^{-}\mathscr{O}_{v}/\mathfrak{p}_{v}^{2}} : G_{x\mathscr{O}_{v}/\mathfrak{p}_{v}^{2}}^{o}]=2q_{v}$ . Let $p(z)=z^{2}+a_{1}z+$ a2 be the
Eisenstein polynomial corresponding to $x$ . Since $v$ is not dyadic, we assume $a_{1}=0$ .

Consider (1). Elements of the form $(A_{p}(c_{1} , d_{1} )$ , $A_{p}(c_{2}, d_{2}),$ $A_{p}(c_{3}, d_{3}))$ are in $G_{x\mathscr{O}_{v}/\mathfrak{p}_{v}^{2}}$

if and only if $c_{1}^{2}+a_{2}d_{1}^{2}$ , $c_{2}^{2}+a_{2}d_{2}^{2}\in(\mathscr{O}_{v}/\mathfrak{p}_{v}^{2})^{\times}$ (see Lemma 4.1). Since $a_{2}\in \mathfrak{p}_{v}$ , this is
equivalent to $c_{1},$

$c_{2}\in(\mathscr{O}_{v}/\mathfrak{p}_{v}^{2})^{\times}$ . So the order of $G_{x\mathscr{O}_{v}/\mathfrak{p}_{v}^{2}}^{o}$ is $((q_{v}-1)q_{v}^{3})^{2}$ . Suppose $g=$

$(g_{1}, g_{2}, g_{3})$ $\in G_{x^{-}\mathscr{O}_{v}/\mathfrak{p}_{v}^{2}}$ . Since $F_{X}(v)$ reduces to $v_{1}^{2}$ modulo $\mathfrak{p}_{v},$

$g_{321}\in \mathfrak{p}_{v}/\mathfrak{p}_{v}^{2}$ . Let $x=$

$(x_{1}, x_{2})$ . Then $(g_{1}, g_{2},1)x_{2}$ is a unit scalar multiple of $x_{2}$ modulo $\mathfrak{p}_{v}$ . By computation,

$(g_{1}, g_{2},1)x_{2}\equiv\left(\begin{array}{ll}g_{111}g_{211} & g_{111}g_{221}\\g_{121}g_{212} & g_{121}g_{222}\end{array}\right)(\mathfrak{p}_{v})$ .

So $g_{111},$ $g_{211}$ are units. By a similar argument as in the proof of Proposition 4.5,
$g_{121},$ $g_{221}\in \mathfrak{p}_{v}/\mathfrak{p}_{v}^{2}$ . This implies that $g_{122},$ $g_{222}$ are units. Since

$A_{p}(c_{i}, d_{i})g_{i}=(_{*}^{*}$ $c_{i}g_{i12}-d_{i}g_{i22}*)$ ,

for $i=1,2$ , the right coset $G_{x\mathscr{O}_{v}/\mathfrak{p}_{v}^{2}}^{o}g$ contains an element $g=$ $(g_{1} , g_{2}, g_{3})$ where $g_{1}$ , $g_{2}$ are
in the form (4.6). Moreover, it is easy to see that $t_{1},$ $t_{2},$ $u_{1},$ $u_{2}$ are determined by the
coset $G_{x\mathscr{O}_{v}/\mathfrak{p}_{v}^{2}}^{o}g$ . We use Lemma 4.4 to determine the possibilities for $g$ . By compu-
tation,
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$(g_{1}, g_{2},1)x=(\left(\begin{array}{ll}0 & t_{2}\\t_{1} & t_{1}u_{2}+t_{2}u_{1}\end{array}\right),$ $\left(\begin{array}{ll}1 & u_{2}\\u_{1} & u_{1}u_{2}-a_{2}t_{1}t_{2}\end{array}\right))$ .

The condition $Span((g_{1}, g_{2},1)x)=$ Span(x) is equivalent to the condition that $t_{1}=t_{2}$ ,
$u_{1}=u_{2},$ $t_{1}u_{2}+t_{2}u_{1}=0$ , and $u_{1}u_{2}-$ a2 $t_{1}t_{2}=-a_{2}$ . Since $v$ is not dyadic, $u_{1}=u_{2}=0$

and a2 $(t_{1}^{2}-1)=0$ . Therefore, $t_{1}\equiv\pm 1(\mathfrak{p}_{v})$ . So there are $2q_{v}$ possibilities for $t_{1}$

modulo $\mathfrak{p}_{v}^{2}$ . This proves that $[G_{\overline{x}\mathscr{O}_{v}/\mathfrak{p}_{v}^{2}} : G_{x\mathscr{O}_{v}/\mathfrak{p}_{v}^{2}}.]=2q_{v}$ .
In case (2), by a similar argument as in case (1), we can assume that $g_{1}$ is in the

form (4.6) with $t_{1}$ unit and $u_{1}\in\tilde{\mathscr{O}}_{v}/\tilde{\mathfrak{p}}_{v}^{2}$ . Note that the order of $G_{x\mathscr{O}_{v}/\mathfrak{p}_{v}^{2}}^{o}$ is $(q_{v}^{2}-1)q_{v}^{6}$

in this case. By the same consideration, we get $t_{1}=t_{1}^{\sigma}$ , $u_{1}=u_{1}^{\sigma}$ , and the rest of the
conditions turn out to be the same. Since $\tilde{\mathfrak{p}}_{v}^{2}\cap \mathscr{O}_{v}=\mathfrak{p}_{v}^{2}$ , there are $2q_{v}$ possibilities for $t_{1}$ .
So $[G_{\overline{x}\mathscr{O}_{v}/\mathfrak{p}_{v}^{2}} : G_{x\mathscr{O}_{v}/\mathfrak{p}_{v}^{2}}]=2q_{v}$ in this case also.

Since the volume of $\mathscr{D}$ in Definition 4.10(2) is $q_{v}^{-16}$ , if $v\in \mathfrak{M}_{sp}$ ,

$vol(K_{v}x)=q_{v}^{-16}\cdot\frac{(q_{v}^{2}-q_{v})^{3}(q_{v}^{2}-1)^{3}q_{v}^{12}}{2q_{v}((q_{v}-1)q_{v}^{3})^{2}}=\frac{1}{2}q_{v}^{-1}(1-q_{v}^{-1})(1-q_{v}^{-2})^{3}$

and if $v\in \mathfrak{M}_{in}$ ,

$vol(K_{v}x)=q_{v}^{-16}$ . $\frac{(q_{v}^{4}-q_{v}^{2})(q_{v}^{4}-1)q_{v}^{8}(q_{v}^{2}-q_{v})(q_{v}^{2}-1)q_{v}^{4}}{2q_{v}(q_{v}^{2}-1)q_{v}^{6}}$

$=\frac{1}{2}q_{v}^{-1}(1-q_{v}^{-1})(1-q_{v}^{-2})(1-q_{v}^{-4})$ .
$\square $

Next we assume that $v$ is dyadic and that $x$ has type (sp $rm$) or (in $rm$). We shall
compute the sum of $vol(K_{v}x)$ over the equivalence class of $x$ under the relation $\wedge\vee$ . For
these orbits, this amounts to summing $vol(K_{v}x)$ over all $x$ having a given value of $\delta_{x,v}$ .
Let $x$ be coordinatized as in (2.20) or (2.21). If $v\in \mathfrak{M}_{sp}$ then $F_{X}(v)=a_{0}(x)v_{1}^{2}+$

$a_{1}(x)v_{1}v_{2}+$ a2 $(x)v_{2}^{2}$ where

$a_{0}(x)=x_{112}x_{121}-x_{111}x_{122}$ ,

(4.16) $a_{1}(x)=x_{112}x_{221}+x_{121}x_{212}-x_{111}x_{222}-x_{122}x_{211}$ ,

$a_{2}(x)=x_{212}x_{221}-x_{211}x_{222}$ .

If $v\not\in \mathfrak{M}_{sp}$ then $F_{X}(v)=a_{0}(x)v_{1}^{2}+a_{1}(x)v_{1}v_{2}+a_{2}(x)v_{2}^{2}$ where

$a_{0}(x)=N_{\overline{k}_{v}/k_{v}}(x_{11} )$ $-x_{10}x_{12}$ ,

(4.17) $a_{1}(x)=Tr_{\overline{k}_{v}/k_{v}}(x_{11}x_{21}^{\sigma} )$ $-x_{10}x_{22}-x_{12}x_{20}$ ,

$a_{2}$ $(x)=N_{\overline{k}_{v}/k_{v}}(x_{21} )$ $-x_{20}x_{22}$ .

DEFINITION 4.18. (1) If $v\in \mathfrak{M}_{sp}$ then we define $\mathscr{D}_{\ell}$ for 11, . . . , $m_{v}+1$ to be the
set of $x$ such that

$x_{112},$ $x_{121},$ $x_{211}\in \mathscr{O}_{v}^{\times}$ , $x_{122},$ $x_{212},$ $x_{221}\in \mathfrak{p}_{v}$ ,

$ord_{k_{v}}$ (X222) $=1$ , $ord_{k_{v}}(a_{1}(x))\{$

$=\ell$ if $1\leq m_{v}$ ,
$\geq m_{v}+1$ if $\ell=m_{v}+1$ .
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(2) If $v\in \mathfrak{M}_{in}$ then we define $\mathscr{D}_{\ell}$ for 11, . . . , $m_{v}+1$ to be the set of $x$ such
that

$x_{11}\in\tilde{\mathscr{O}}_{v}^{\times}$ , $x_{20}\in \mathscr{O}_{v}^{\times}$ , $x_{12}\in \mathfrak{p}_{v}$ , $x_{21}\in\tilde{\mathfrak{p}}_{v}$ ,

$ord_{k_{v}}(x_{22})=1$ , $ord_{k_{v}}(a_{1}(x))\{$

$=\ell$ if $1\leq m_{v}$ ,
$\geq m_{v}+1$ if $\ell=m_{v}+1$ .

PROPOSITION 4. 19. (1) If $v\in \mathfrak{M}_{sp}$ then

$vol(\mathscr{D}_{\ell})=\{$ $q^{\frac{v}{v}3}(1-q^{\frac{v-}{v}1})^{4}q^{\frac{v}{v}(m_{v}+1)}q^{-3}(1-q^{1})^{5}q^{-\ell}$ $ifif\ell=m_{v}+1\ell\leq m_{v},$

.

(2) If $v\in \mathfrak{M}_{in}$ then

$vol(\mathscr{D}_{\ell})=\{$ $q^{\frac{v-}{v}3}(1-q^{\frac{v-}{v}1})^{2}(1-q^{\frac{v}{v}2})q^{\frac{v}{v}(m_{v}+1)}q^{3}(1-q^{1})^{3}(1-q^{-2})q^{-\ell}$ $ifif\ell=m_{v}+1\ell\leq m_{v},$

.

PROOF. Suppose $v\in \mathfrak{M}_{sp}$ . It is easy to see that if $x\in V_{\mathscr{O}_{v}}$ satisfies all the conditions
in Definition 4.18(1) except for the last condition, then $a_{0}(x)\in \mathscr{O}_{v}^{\times}$ and $ord_{k_{v}}$ (a2(x)) $=1$ .
Suppose

$ x_{112}x_{221}+x_{121}x_{212}-x_{122}x_{211}=e_{1}\pi_{v}+\cdot$ . . $+e_{\ell}\pi_{v}^{\ell}+\cdot$ . . ,

where $e_{j}$ is a unit or zero for all $j$ (see I.4, Corollary 2 in [5], p. 14). Let $x_{222}=\pi_{v}x_{222}^{\prime}$

where $x_{222}^{\prime}\in \mathscr{O}_{v}^{\times}.$ Then by (4.16), $a_{1}(x)$ satisfies the condition in Definition 4.18(1) if
and only if $x_{111}$ has an expansion of the form

$x_{111}=(x_{222}^{\prime})^{-1}(e_{1}+\cdots+e_{\ell-1}\pi_{v}^{\ell-2}+f\pi_{v}^{\ell-1}+\cdots)$

such that $f\not\equiv e_{\ell}(\mathfrak{p}_{v})$ if $1\leq m_{v}$ (and no condition on $f$ if $1=m_{v}+1$ ). If $1\leq m_{v}$ , the
volume of the set of such $x_{111}$ is $(q_{v}-1)q_{v}^{-\ell}=$ $(1-q_{v}^{-1})q_{v}^{-\ell+1}$ if $1\leq m_{v}$ and $q_{v}^{-m_{v}}$ if
$1=m_{v}+1$ . The volumes of the sets of $x_{112},$ $x_{121},$ $x_{211}$ are $1-q_{v}^{-1}$ , the volumes of the
sets of $x_{122},$ $x_{212},$ $x_{221}$ are $q_{v}^{-1}$ , and the volume of the set of x222 is $q_{v}^{-1}(1-q_{v}^{-1})$ .
Therefore,

$vol(\mathscr{D}_{\ell})=(1-q_{v}^{-1})^{3}q_{v}^{-3}q_{v}^{-1}(1-q_{v}^{-1})\times\{$ $q^{\frac{1}{v}m_{v}}(-q_{v}^{-1})q_{v}^{-\ell+1}$

if $1\leq m_{v}$ ,
if $1=m_{v}+1$ .

Simplifying, we get (1).
If $v\in \mathfrak{M}_{in}$ , similar considerations apply to $x_{10}$ as to $x_{111}$ in the case $v\in \mathfrak{M}_{sp}$ . The

volumes of the sets of $x_{11},$ $x_{20}$ are 1 $-q_{v}^{-2}$ and 1 $-q_{v}^{-1}$ , respectively, the volumes of
the sets of $x_{12},$ $x_{21}$ are $q_{v}^{-2}$ and $q_{v}^{-1}$ , respectively, and the volume of the set of $x_{22}$ is
$q_{v}^{-1}(1-q_{v}^{-1})$ . Therefore,

$vol(\mathscr{D}_{\ell})=(1-q_{v}^{-2})(1-q_{v}^{-1})q_{v}^{-2}q_{v}^{-1}q_{v}^{-1}(1-q_{v}^{-1})\times\{$ $q_{v}^{-m_{v}}(1-q_{v}^{-1})q_{v}^{-\ell+1}$

if $1\leq m_{v}$ ,
if $1=m_{v}+1$ .

Simplifying, we get (2). $\square $

We employ coordinates on $G$ as in (2.19). If $v\in \mathfrak{M}_{sp}$ then we define
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$H_{1}=\{g\in K_{v}|g_{121}, g_{221}, g_{321}\in \mathfrak{p}_{v}\}$ ,
(4.20)

$\overline{H}_{1}=\{g\in(GL(2)_{\mathscr{O}_{v}/\mathfrak{p}_{v}})^{3}|g_{121}=g_{221}=g_{321}=0\}$

and if $v\in \mathfrak{M}_{IH}$ then we define

$H_{2}=\{g\in K_{v}|g_{121}\in\tilde{\mathfrak{p}}_{v}, g_{221}\in \mathfrak{p}_{v}\}$ ,
(4.21)

$\overline{H}_{2}=\{g\in GL(2)_{\overline{\mathscr{O}}_{v}/\overline{\mathfrak{p}}_{v}}\times GL(2)_{\mathscr{O}_{v}/\mathfrak{p}_{v}}|g_{121}=0, g_{221}=0\}$ .

Note that

(4.22) $\#(K_{v}/H_{1})=\#(G_{\mathscr{O}_{v}/\mathfrak{p}_{v}}/\overline{H}_{1})=\frac{(q_{v}^{2}-1)^{3}(q_{v}^{2}-q_{v})^{3}}{(q_{v}-1)^{6}q_{v}^{3}}=(q_{v}+1)^{3}$

and

(4.23) $\#(K_{v}/H_{2})=\#(G_{\mathscr{O}_{v}/\mathfrak{p}_{v}}/\overline{H}_{2})=\frac{(q_{v}^{4}-1)(q_{v}^{4}-q_{v}^{2})(q_{v}^{2}-1)(q_{v}^{2}-q_{v})}{(q_{v}^{2}-1)^{2}q_{v}^{2}(q_{v}-1)^{2}q_{v}}$

$=(q_{v}^{2}+1)(q_{v}+1)$ .

LEMMA 4.24. (1) If $v\in \mathfrak{M}_{sp}$ and $g\in H_{1}$ then $g\mathscr{D}_{\ell}=\mathscr{D}_{\ell}$ .
(2) If $v\not\in \mathfrak{M}_{sp}$ and $g\in H_{2}$ then $g\mathscr{D}_{\ell}=\mathscr{D}_{\ell}$ .

PROOF. A simple, direct calculation shows that elements of $H_{1}$ and $H_{2}$ preserve
all the conditions for membership in $\mathscr{D}_{\ell}$ , with the possible exception of the last.
Consider (1) and suppose that $y=gx$ with $g\in H_{1}$ and $x\in \mathscr{D}_{\ell}$ . Then $F_{y}(v)=$

$\det(g_{1} )$ $\det(g_{2})F_{X}(vg_{3})$ and so $a_{1}(y)$ is equal to

$\det(g_{1})\det(g_{2})(a_{1}(x)[g_{311}g_{322}+g_{321}g_{312}]+2a_{0}(x)g_{311}g_{321}+2a_{2}(x)g_{312}g_{322})$ .

We must investigate the order of this number. Since $\det(g_{1})$ and $\det(g_{2})$ are units, they
may be ignored. Both $g_{311}$ and $g_{322}$ are units and, since $g_{321}\in \mathfrak{p}_{v},$ $g_{311}g_{322}+g_{321}g_{312}$ is
also a unit. Thus the order of $a_{1}(x)[g_{311}g_{322}+g_{321}g_{312}]$ equals 1 if $1\leq m_{v}$ and is
greater than or equal to $m_{v}+1$ if $1=m_{v}+1$ . Also, $ord_{k_{v}}$ $(2a_{0}(x)g_{311}g_{321} )$ $\geq m_{v}+1$ and
$ord_{k_{v}}(2a_{2}(x)g_{312}g_{322})\geq m_{v}+1$ , in the first case because $g_{321}\in \mathfrak{p}_{v}$ and in the second
because $a_{2}(x)\in \mathfrak{p}_{v}$ . It follows that the order of $a_{1}(y)$ is 1 if $1\leq m_{v}$ and is greater than
or equal to $m_{v}+1$ if $1=m_{v}+1$ . Thus $y\in \mathscr{D}_{\ell}$ , as required. Similar arguments apply
in case (2). lm

PROPOSITION 4.25. (1) Suppose $v\in \mathfrak{M}_{sp}$ is dyadic. Then

$\sum_{2\leq\delta_{x,v}=2\ell\leq 2m_{v}}vol(K_{v}x)=(1-q_{v}^{-1})^{2}(1-q_{v}^{-2})^{3}q_{v}^{-\ell}$
,

$\sum_{\delta_{x,v}=2m_{v}+1}vol(K_{v}x)=(1-q_{v}^{-1})(1-q_{v}^{-2})^{3}q_{v}^{-(m_{v}+1)}$
.

(2) Suppose $v\in \mathfrak{M}_{in}$ is dyadic. Then
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$\sum_{\delta_{x,v}=2\ell\leq 2m_{v}}vol(K_{v}x)=(1-q_{v}^{-1})^{2}(1-q_{v}^{-2})(1-q_{v}^{-4})q_{v}^{-\ell}$
,

$\sum_{\delta_{x,v}=2m_{v}+1}vol(K_{v}x)=(1-q_{v}^{-1})(1 - q_{v}^{-2})(1 - q_{v}^{-4})q_{v}^{-(m_{v}+1)}$
.

PROOF. Consider (1). We first show that $\mathscr{D}_{\ell}\subseteq\bigcup_{X}K_{v}x$ , where $x$ runs through the
standard orbital representatives for the orbits of type (sp $rm$) whose corresponding fields
have a fixed discriminant. As in the statement, the discriminant is related to 1 by
$1=\lfloor(\delta_{x,v}+1)/2\rfloor$ . By construction, if $y\in \mathscr{D}_{\ell}$ then $|P(y)|_{v}=q_{v}^{-\delta_{x,v}}$ and so if $x$ is the
standard representative for the orbit corresponding to $k_{v}(y)$ then $|P(y)|_{v}=|P(x)|_{v}$ .
Since $y\in G_{k_{v}}x\cap V_{\mathscr{O}_{v}}$ , the theory of omega sets implies that there exists $g\in\Omega_{x,v}$ such that
$y=gx$ . But then $|\chi(g)|_{v}=1$ and so $g\in\Omega_{x,v}^{1}=K_{v}$ . That is, $y\in K_{v}x$ .

Each one of the standard orbital representatives itself lies in $\mathscr{D}_{\ell}$ and so the $K_{v^{-}}$

translates of $\mathscr{D}_{\ell}$ cover $\bigcup_{X}K_{v}x$ . In order to find the volume of $\bigcup_{X}K_{v}x$ it remains
to determine the number of distinct $K_{v}$ -translates of $\mathscr{D}_{\ell}$ . Suppose that $g\in K_{v}$ and
$ g\mathscr{D}_{\ell}\cap \mathscr{D}_{\ell}\neq\emptyset$ ; say $x,$ $y\in \mathscr{D}_{\ell}$ and $y=gx$ . We shall show that $g\in H_{1}$ . Since $F_{X}(v)$ ,
$F_{y}(v)$ both reduce to unit scalar multiples of $v_{1}^{2}$ modulo $\mathfrak{p}_{v}$ , the assumption implies that
$g_{321}\in \mathfrak{p}_{v}$ . Since $(1, 1, g_{3})\in H_{1}$ , we may assume $g_{3}=1$ . Let $x=(x_{ijk})$ and $\overline{x}=(\overline{x}_{ijk})$ be
the reduction of $x$ modulo $\mathfrak{p}_{v}$ . We define $\overline{g}_{ijk},\overline{y}$ similarly. Then

$(g_{1}, g_{2},1)\overline{x}=\overline{y}=(*,\overline{x}_{211}\left(\begin{array}{ll}\overline{g}_{111}\overline{g}_{211} & \overline{g}_{111}\overline{g}_{221}\\\overline{g}_{121}\overline{g}_{212} & \overline{g}_{121}\overline{g}_{222}\end{array}\right))$ .

Since $\overline{g}_{212}\neq 0$ or $\overline{g}_{222}\neq 0,\overline{g}_{121}=0$ . This implies that $\overline{g}_{111}\neq 0$ and therefore $\overline{g}_{221}=0$ .
Thus $g\in H_{1}$ , as claimed.

It follows from this and Lemma 4.24 that two $K_{v}$ -translates of $\mathscr{D}_{\ell}$ are either
disjoint or equal and that the number of them is $\#(K_{v}/H_{1})=(q_{v}+1)^{3}$ by (4.22).
Using Proposition 4.19, the result follows. Similar arguments apply to prove the
formula in case (2). lm

PROPOSITION 4.26. If $v$ is not dyadic and $x$ has type (rm rm $ur$) or $($rm $rm)^{*}$ then

$vol(K_{v}x)=\frac{1}{2}q_{v}^{-1}(1-q_{v}^{-1})(1-q_{v}^{-2})^{2}$ .

PROOF. Consider $\mathscr{D}$ in Definition 4. 10(6). Obviously $vol(\mathscr{D})=q_{v}^{-16}$ . In both
cases, $G_{x\mathscr{O}_{v}/\mathfrak{p}_{v}^{2}}^{o}$ consists of elements of the form $(A_{p}(c, d),$ $*)$ where $c\in(\tilde{\mathscr{O}}_{v}/\tilde{\mathfrak{p}}_{v}^{4})^{\times},$ $d\in\tilde{\mathscr{O}}_{v}/\tilde{\mathfrak{p}}_{v}^{4}$ .
So $\# G_{x\mathscr{O}_{v}/\mathfrak{p}_{v}^{2}}^{o}=(q_{v}-1)q_{v}^{7}$ .

We show that $[G_{x^{-}\mathscr{O}_{v}/\mathfrak{p}_{v}^{2}} : G_{x\mathscr{O}_{v}/\mathfrak{p}_{v}^{2}}]=2q_{v}$ . Suppose $g\in G_{x^{-}\mathscr{O}_{v}/\mathfrak{p}_{v}^{2}}$ . We consider the
coordinates (2.19) again. Since $F_{X}(v)$ is a unit scalar multiple of $v_{1}^{2}$ modulo $\mathfrak{p}_{v}$ ,
$g_{221}\equiv 0(\mathfrak{p}_{v})$ . Then since $g_{1}\left(\begin{array}{ll}1 & 0\\0 & 0\end{array}\right){}^{t}g_{1}^{\sigma}$ is a unit scalar multiple of $\left(\begin{array}{ll}1 & 0\\0 & 0\end{array}\right),$ $g_{121}\equiv 0(\tilde{\mathfrak{p}}_{v})$ .
So $g_{111},$ $g_{122},$ $g_{211},$ $g_{222}$ are units. This implies that the right $G_{x\mathscr{O}_{v}/\mathfrak{p}_{v}^{2}}$ -coset of $g$ contains
an element of the form $(\left(\begin{array}{ll}1 & 0\\u & t\end{array}\right), *)$ . We use Lemma 4.4 again. By computation,

$(\left(\begin{array}{ll}1 & 0\\u & t\end{array}\right),$ $1)x=\{$ $\left(\begin{array}{ll}0 & t^{\sigma}\\t & Tr_{\overline{k}_{v}/k_{v}}(tu^{\sigma})\end{array}\right),$ $\left(\begin{array}{ll}1 & u^{\sigma}\\u & N_{\overline{k}_{v}/k_{v}}(u)-a_{2}N_{\overline{k}_{v}/k_{v}}(t)\end{array}\right))$ .
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So $t=t^{\sigma}$ , $u=u^{\sigma}$ , $2tu=0$ , and a2 $(t^{2}-1)-u^{2}=0$ . Since $v\not\in \mathfrak{M}_{dy}$ , $u=0$ , and
$t\equiv\pm 1(\mathfrak{p}_{v})$ . Since $t\in(\mathscr{O}_{v}/\mathfrak{p}_{v}^{2})^{\times},$ there are $2q_{v}$ possibilities for $t$ . Therefore, in both
cases,

$vol(K_{v}x)=q_{v}^{-16}$ . $\frac{(q_{v}^{2}-1)^{2}(q_{v}^{2}-q_{v})^{2}q_{v}^{16}}{2(q_{v}-1)q_{v}^{8}}=\frac{1}{2}q_{v}^{-1}(1-q_{v}^{-1})(1-q_{v}^{-2})^{2}$ . $\square $

5. Computation of $b_{x,v}$ at the infinite places.

In this section we shall compute the constants $b_{x,v}$ when $v$ is an infinite place of $k$ .
We shall first review the definition of the constants $b_{x,v}$ .

Let $v\in \mathfrak{M}_{\infty}$ and $x\in V_{k_{v}}^{ss}$ be a standard representative. Let $dg_{x,v}^{\prime\prime}$ be the measure on
$G_{xk_{v}}^{o}$ defined in Section 2. We choose a left invariant measure $dg_{x,v}^{\prime}$ on $G_{k_{v}}/G_{xk_{v}}^{o}$ so that
if $\Phi$ is a Schwartz-Bruhat function on $V_{k_{v}}$ then

(5.1) $\int_{G_{k_{v}}/G_{xk_{v}}^{\circ}}|P(g_{x,v}^{\prime}x)|_{v}^{s}\Phi(g_{x,v}^{\prime}x)dg_{x,v}^{\prime}=\int_{G_{k_{v}}x}|P(y)|_{v}^{s-2}\Phi(y)dy$ ,

where $dy$ is the Lebesgue measure if $v\in \mathfrak{M}_{R}$ and $2^{8}$ times Lebesgue measure if $v\in \mathfrak{M}_{C}$ .
Let $dg_{v}$ be the standard measure on $G_{k_{v}}$ . Then there exists a constant $b_{x,v}>0$ such that
$dg_{v}=b_{x,v}dg_{x,v}^{\prime}dg_{x,v}^{\prime\prime}$ .

It is established in Section 7 [2] that the contribution of the orbit of $x$ to the local
density is $b_{x,v}^{-1}|P(x)|_{v}^{2}$ . Since $x$ is a standard representative, $|P(x)|_{v}=1$ . It was proved
in Proposition 5.23 [2] that if $y\in G_{k_{v}}x$ then $b_{x,v}=b_{y,v}$ . So we are free to make use of
any orbital representative to carry out this calculation and we shall take advantage of
this freedom to simplify our task as much as possible. In the proof of each of the four
propositions in this section we shall have to calculate the $8\times 8$ Jacobian determinant
associated with the map $g\rightarrow gx$ in some coordinate system. Each of these calculations
was carried out using the MAPLE computer algebra package [4].

Before we begin, we recall a fact about the Haar measure on $GL(2)_{F}$ where $F=R$
or $C$ . As is usual, we shall take Lebesgue measure to be the standard measure on the
real numbers and twice Lebesgue measure to be the standard measure on the complex
numbers. If $g=\left(\begin{array}{ll}a_{11} & a_{12}\\a_{21} & a_{22}\end{array}\right)$ then $d\mu(g)=da_{11}da_{12}da_{21}da_{22}/|\det(g)|_{F}^{2}$ defines a Haar mea-
sure on $GL(2)_{F}$ and it is well known that if $dg$ denotes our standard choice of Haar
measure on this group then $dg=p_{F}d\mu(g)$ where $ p_{F}=1/\pi$ if $F=R$ and $ p_{F}=1/2\pi$ if
$F=C$ . For example if $F=R$ , using the usual paramatrization of each factor of the
Iwasawa decomposition, all one has to do is to find the Jacobian of the map $O(2)\times$

$T_{R}\times N_{R}\rightarrow G_{R}$ and the degree of this covering and this can be done easily. When
$F=k_{v}$ we shall use the notation $p_{v}$ in place of $p_{F}$ . We shall refer to $d\mu(g)$ as the
coordinate measure on $GL(2)_{F}$ .

PROPOSITION 5.2. Let $v\in \mathfrak{M}_{\infty}$ and suppose that $x$ is a representative for the orbit of
index (sp). Then

$b_{x,v}=\{$

$\frac{2}{\pi^{3}}$ if $v\in \mathfrak{M}_{R}$ ,

$\frac{1}{4\pi^{3}}$ if $v\in \mathfrak{M}_{C}$ .
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PROOF. As noted above, it suffices to compute $b_{x,v}$ where $x=w$ , the element
introduced in (2.8). Let $d\mu_{v}$ be the product of the coordinate measures on each of the
three factors of $G_{k_{v}}$ so that $dg_{v}=p_{v}^{3}d\mu_{v}(g)$ .

Let $\mathscr{B}$ denote the set of $(g_{1}, g_{2}, g_{3})\in G_{k_{v}}$ such that $g_{1}$ and $g_{2}$ lie in the big Bruhat
cell. Then $\mathscr{B}$ is dense in $G_{k_{v}}$ and it is on this set that we shall carry out the comparison
of measures. Any element $g$ of $\mathscr{B}$ may be written as

(5.3) $g=$ $({}^{t}n(u_{1})n(y_{1})a(t_{11}, t_{12}),{}^{t}n(u_{2})n(y_{2})a(t_{21}, t_{22}),$ $g_{3}a(t_{11}^{-1}t_{21}^{-1}, t_{12}^{-1}t_{22}^{-1} ))$

with $g_{3}=\left(\begin{array}{ll}a_{11} & a_{12}\\a_{21} & a_{22}\end{array}\right)$ and when $g$ is written in this form, $u_{i},$ $y_{i}$ and $a_{ij}$ for $i,$ $j=1,2$ may
be regarded as coordinates on $G_{k_{v}}/G_{xk_{v}}^{o}$ . Note that the map

$ k_{v}^{2}\times$ $(k_{v}^{\times} )^{2}\ni(u, y, t_{1}, t_{2})\rightarrow {}^{t}n(u)n(y)a(t_{1}, t_{2})\in GL(2)_{k_{v}}$

is injective. With respect to these coordinates, the Jacobian determinant of the map
$g\rightarrow gx$ is found to be $|\det(g_{3})|_{v}^{2}$ . Note that this map is a double cover because
$[G_{xk_{v}} : G_{xk_{v}}^{o}]=2$ . Since $P(gx)=\chi(g)P(x)=\det(g_{3})^{2}P(x)$ and $P(x)=1$ , it follows that
the pullback of the measure $dy/|P(y)|_{v}^{2}$ to $G_{k_{v}}/G_{xk_{v}}^{o}$ is $dg_{x,v}^{\prime}=(1/2)du_{1}dy_{1}du_{2}dy_{2}$ .

$d\mu_{3,v}(g_{3})$ , where $d\mu_{3,v}(g_{3})$ denotes the coordinate measure on the third factor. (The
measure has been divided by 2 because the map $g\rightarrow gx$ is a double cover and, in (5.1),
the measure $dg_{x,v}^{\prime}$ was defined via an integral over $V_{k_{v}}.$ ) In (5.3), $t_{ij}$ may be regarded as
coordinates on $G_{xk_{v}}^{o}$ and as such $dg_{x,v}^{\prime\prime}=\prod_{i,j=1,2}dt_{ij}/|t_{ij}|_{v}$ . It follows from the definition
and the remarks above that $d\mu_{v}(g)=p_{v}^{-3}b_{x,v}dg_{x,v}^{\prime}dg_{x,v}^{\prime\prime}$ and so all that remains is for us
to determine the relationship between the coordinate measure and the measure $dudydt_{1}$ .
$dt_{2}/|t_{1}t_{2}|_{v}$ on the big cell inside $GL(2)$ when it is coordinatized as ${}^{t}n(u)n(y)a(t_{1}, t_{2})$ . A
simple Jacobian calculation shows that in fact these two measures are equal. This gives
$(1/2)p_{v}^{-3}b_{x,v}=1$ or equivalently $b_{x,v}=2p_{v}^{3}$ . Using the remarks before the proof, this
gives the stated values. $\square $

PROPOSITION 5.4. Let $v\in \mathfrak{M}_{R}$ and suppose that $x$ is a representative for the orbit of
index (rm). Then

$b_{x,v}=\frac{1}{\pi^{2}}$ .

PROOF. We shall again use $x=w$ as the orbital representative. Let $\tilde{v}$ be the
complex place of $\tilde{k}$ which divides $v$ . Let $d\mu_{v}$ be the product of the coordinate measures
on two factors of $G_{k_{v}}$ so that $dg_{v}=p_{\overline{v}}p_{v}d\mu_{v}(g)$ .

We let $\mathscr{B}$ denote the set of $(g_{1}, g_{2})\in G_{k_{v}}$ such that $g_{1}$ lies in the big Bruhat cell.
An element of $\mathscr{B}$ may be written as

(5.5) $g=({}^{t}n(u)n(y)a(t_{1}, t_{2}),$ $g_{2}a(N_{\overline{k}_{\overline{v}}/k_{v}}(t_{1})^{-1}, N_{\overline{k}_{\overline{v}}/k_{v}}(t_{2})^{-1}))$

with $g_{2}=\left(\begin{array}{ll}a_{11} & a_{12}\\a_{21} & a_{22}\end{array}\right)$ and when $g$ is written in this form, $u,$ $y$ and $a_{ij},$
$i,$ $j=1,2$ may be

regarded as coordinates on $G_{k_{v}}/G_{xk_{v}}^{o}$ . With respect to the real coordinates ${\rm Re}(u),$ ${\rm Im}(u)$ ,
${\rm Re}(y),$ ${\rm Im}(y),$

$a_{ij}$ , the Jacobian determinant of the map $g\rightarrow gx$ is found to be
$4|\det(g_{2})|_{v}^{2}$ . Since the map is a double cover, $P(g\cdot x)=\det(g_{2})^{2}$ and the canonical
measures du and $dy$ are $du=2d{\rm Re}(u)d{\rm Im}(u)$ and $dy=2d{\rm Re}(y)d{\rm Im}(y)$ , it follows that
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the pullback of the measure $dy/|P(y)|_{v}^{2}$ to $G_{k_{v}}/G_{xk_{v}}^{o}$ is $dg_{x,v}^{\prime}=(1/2)dudyd\mu_{2,v}(g_{2})$ , where
$d\mu_{2,v}(g_{2})$ denotes the coordinate measure on the second factor. In (5.5), $t_{j}$ may be
regarded as coordinates on $G_{xk_{v}}^{o}$ and as such $dg_{x,v}^{\prime\prime}=\prod_{j=1,2}dt_{j}/|t_{j}|_{\overline{v}}$ . It follows from
the definition and the remarks above that $d\mu_{v}(g)=p_{\overline{v}}^{-1}p_{v}^{-1}b_{x,v}dg_{x,v}^{\prime}dg_{x,v}^{\prime\prime}$ and since the
coordinate measure restricted to the big cell inside $GL(2)_{\overline{k}_{\overline{v}}}$ is $dudydt_{1}dt_{2}/|t_{1}t_{2}|_{\overline{v}}$ , we have
$b_{x,v}=2p_{\overline{v}}p_{v}$ . $\square $

PROPOSITION 5.6. Suppose that $v\in \mathfrak{M}_{R}$ and that $x$ is a representative for the orbit of
index (sp $rm$). Then

$b_{x,v}=\frac{2}{\pi^{3}}$ .

PROOF. We shall use $x=w_{p}$ , where $p(z)=z^{2}+1$ , as the orbital representative for
this orbit. The roots of $p$ are $\pm\sqrt{-1}$ . Let $A_{p}(c, d)$ be as in (2.11). As we discussed in
Lemma 2.12, any $g\in G_{xk_{v}}^{o}$ has the forrn $g=$ $(A_{p}(c_{1} , d_{1} )$ , $A_{p}(c_{2}, d_{2}),$ $A_{p}(c_{3} , d_{3}))$ where

$c_{3}=\frac{c_{1}c_{2}-d_{1}d_{2}}{(c_{1}^{2}+d_{1}^{2})(c_{2}^{2}+d_{2}^{2})}$ , $d_{3}=\frac{-(c_{1}d_{2}+c_{2}d_{1})}{(c_{1}^{2}+d_{1}^{2})(c_{2}^{2}+d_{2}^{2})}$ .

The isomorphism 0 from $G_{xk_{v}}^{o}$ to $H_{xk_{v}}=(C^{\times})^{2}$ may be taken as

$\theta(A_{p}(c_{1}, d_{1}),$ $A_{p}(c_{2}, d_{2}),$ $A_{p}(c_{3}, d_{3}))=(c_{1}+\sqrt{-1}d_{1}, c_{2}+\sqrt{-1}d_{2})$ .

Recalling that the canonical measure on C’ is $dz/|z|_{C}$ where $dz$ is twice Lebesgue
measure, we see that

$dg_{x,v}^{\prime\prime}=\frac{4dc_{1}dd_{1}dc_{2}dd_{2}}{(c_{1}^{2}+d_{1}^{2})(c_{2}^{2}+d_{2}^{2})}$ .

For any $r$ and any $\kappa\in SO(2)$ we may find $c$ and $d$ such that $a(r, r)\kappa=A_{p}(c, d)$

and it follows from this and the Iwasawa decomposition that any $g\in GL(2)_{R}$ may be
expressed as $g=n(u)a(1, t)A_{p}(c, d)$ . Thus any $g\in G_{k_{v}}$ may be expressed as

$g=(n(u_{1})a(1, t_{1} )A_{p}(c_{1}, d_{1}),$ $n(u_{2})a(1, t_{2})A_{p}(c_{2}, d_{2}),$ $g_{3}A_{p}(c_{3}, d_{3}))$

where $g_{3}=\left(\begin{array}{ll}a_{11} & a_{12}\\a_{21} & a_{22}\end{array}\right)$ . Then $a_{ij},$ $t_{j}$ and $u_{j},$
$i,$ $j=1,2$ may be regarded as coordinates on

$G_{k_{v}}/G_{xk_{v}}^{o}$ . With respect to these coordinates, the Jacobian determinant of the map
$g\rightarrow gx$ is found to be $4|t_{1}^{2}t_{2}^{2}\det(g_{3})^{2}|_{v}$ . Since the map is a double cover, $P(gx)=$

$\chi(g)P(x)=t_{1}^{2}t_{2}^{2}\det(g_{3})^{2}P(x)$ and $P(x)=-4$ this shows that the pullback of the measure
$dy/|P(y)|_{v}^{2}$ to $G/G_{xk_{v}}^{o}$ is

$dg_{x,v}^{\prime}=\frac{du_{1}dt_{1}du_{2}dt_{2}}{8|t_{1}^{2}t_{2}^{2}|_{v}}d\mu_{3,v}(g_{3})$

where $d\mu_{3,v}(g_{3})$ is the coordinate measure on the third factor. An easy Jacobian
calculation shows that if $g=n(u)a(1, t)A_{p}(c, d)$ then the coordinate measure is
$dudtdcdd/|t^{2}|_{v}(c^{2}+d^{2})$ and so, with $d\mu_{v}$ denoting the product of the coordinate
measures on the three factors, $d\mu_{v}=2dg_{x,v}^{\prime}dg_{x,v}^{\prime\prime}$ . Since $dg_{v}=p_{v}^{3}d\mu_{v}(g)=2p_{v}^{3}dg_{x,v}^{\prime}$ .
$dg_{x,v}^{\prime\prime}$ , it follows that $b_{x,v}=2p_{v}^{3}$ . $\square $
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PROPOSITION 5.7. Suppose that $v\in \mathfrak{M}_{R}$ and that $x$ is a representative for the orbit of
index (rm $rm$)’. Then

$b_{x,v}=\frac{1}{\pi^{2}}$ .

PROOF. We again use $x=w_{p}$ , where $p(z)=z^{2}+1$ , as the orbital representative.
We let $\tilde{v}$ be the complex place of $\tilde{k}$ dividing $v$ . With $A_{p}(c, d)$ as in (2.11) and

$c_{2}=\frac{|c_{1}|_{\overline{v}}-|d_{1}|_{\overline{v}}}{|c_{1}^{2}+d_{1}^{2}|_{\overline{v}}}$ , $d_{2}=\frac{-(c_{1}\overline{d}_{1}+\overline{c}_{1}d_{1})}{|c_{1}^{2}+d_{1}^{2}|_{\overline{v}}}$ ,

any element of $G_{xk_{v}}^{o}$ has the forrn $g=$ $(A_{p}(c_{1} , d_{1} )$ , $A_{p}(c_{1} , d_{2}))$ where $c_{1}^{2}+d_{1}^{2}\neq 0$ . The
isomorphism 0 from $G_{xk_{v}}^{o}$ to $H_{xk_{v}}=(C^{\times})^{2}$ may be taken as

$\theta(A_{p}(c_{1}, d_{1}),$ $A_{p}(c_{2}, d_{2}))=(c_{1}+d_{1}\sqrt{-1}, c_{1}-d_{1}\sqrt{-1})$ .

From this it follows that

$dg_{x,v}^{\prime\prime}=\frac{4dc_{1}dd_{1}}{|c_{1}^{2}+d_{1}^{2}|_{\overline{v}}}$ .

It was shown during the proof of Lemma 9.2 [2] that any matrix $\left(\begin{array}{ll}m_{11} & m_{12}\\m_{21} & m_{22}\end{array}\right)$ in $GL(2)_{C}$

may be written in the form $n(u)a(1, t)A_{p}(c_{1} , d_{1} )$ provided that $m_{11}^{2}+m_{12}^{2}\neq 0$ . Since the
complement of the set of matrices satisfying this condition has measure zero it suffices to
make the comparison of measures on the set of elements of $G_{k_{v}}$ whose first entry satisfies
this condition. Any $g$ in this set may be expressed as

$g=(n(u)a(1, t)A_{p}(c_{1} , d_{1} )$ , $g_{2}A_{p}(c_{2}, d_{2}))$

where $g_{2}=\left(\begin{array}{ll}a_{11} & a_{12}\\a_{21} & a_{22}\end{array}\right)$ . We may use $a_{ij},$
$i,$ $j=1,2,$ ${\rm Re}(u),$ ${\rm Im}(u),$ ${\rm Re}(t)$ and ${\rm Im}(t)$ as real

coordinates on (a set of comeasure zero in) $G_{k_{v}}/G_{xk_{v}}^{o}$ . With respect to these coordinates
the Jacobian determinant of the map $g\rightarrow gx$ is $16|t|\frac{2}{v}|\det(g_{2})|_{v}^{2}$ . This shows, as usual,
that the pullback of the measure $dy/|P(y)|_{v}^{2}$ to $G_{k_{v}}/G_{xk_{v}}^{o}$ is

$dg_{x,v}^{\prime}=\frac{dudt}{8|t|\frac{2}{v}}d\mu_{2,v}(g_{2})$

where $d\mu_{2,v}(g_{2})$ is the coordinate measure on the second factor. (Note that
$du=2d{\rm Re}(u)d{\rm Im}(u)$ and $dt=2d{\rm Re}(t)d{\rm Im}(t)$ again.) An easy Jacobian calculation
shows that if $g=n(u)a(1, t)A_{p}(c_{1}, d_{1})$ then the coordinate measure is du $dtdc_{1}dd_{1}/$

$|t|\frac{2}{v}|c_{1}^{2}+d_{1}^{2}|_{\overline{v}}$ and so, with $d\mu_{v}$ denoting the product of the coordinate measures on the
two factors, $d\mu_{v}=2dg_{x,v}^{\prime}dg_{x,v}^{\prime\prime}$ . Since $dg_{v}=p_{v}p_{\overline{v}}d\mu_{v}(g)=2p_{v}p_{\overline{v}}dg_{x,v}^{\prime}dg_{x,v}^{\prime\prime}$ , it follows
that $b_{x,v}=2p_{v}p_{\overline{v}}$ . $[$

Even though we made use of results obtained from the software package MAPLE in
the above proofs, everything in this section could have been proved manually without
undue difficulty. For example, in the proof of Proposition 5.2, the only place we used
MAPLE was to determine the Jacobian of the map $g\rightarrow gx$ . Using the invariance
properties of the measures, one can easily prove that this is a constant multiple of
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$|\det(g_{3})|_{v}^{2}$ . To determine this constant we only have to compute the Jacobian of the
above map at the identity element. At this point the Jacobian matrix is a fairly sparse
$8\times 8$ matrix and its determinant is easily found by hand. Indeed, the value of this
constant was verified manually in this case. However, we chose not to include the
details of these manual calculations in this paper.
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