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Abstract. We give an upper estimate for the Lojasiewicz exponent 7(J, 1) of an ideal
J < A(K") with respect to another ideal 7 in the ring A(K") of germs analytic functions
f:(K",0) —» K, where K = C or R, using Newton polyhedrons. In particular, we give
a method to estimate the Lojasiewicz exponent oy(f) of a germ f e A(K") that can be
applied when f is Newton degenerate with respect to its Newton polyhedron.

1. Introduction.

The technique of using Newton polyhedrons has many significant applications in
singularity theory, as can be seen in the works of Fukui [5], Kouchnirenko [8], Oka [13],
Varchenko [17], Yoshinaga and other authors. In this article we are interested
in using Newton polyhedrons in order to give an upper estimate of the tf.ojasiewicz
exponent /(J,I) of an ideal J < A(K") with respect to another ideal 7 = A(K") (see
Definition 2.1), where 4(K") is the local ring of analytic function germs f : (K",0) — K
and K =R or C. As we shall see, this estimation is possible when I admits a
generating system which is adapted to a Newton polyhedron, which is a notion introduced
in this paper. This class of systems contains the one defined by Fukui, Saia and the
author in in order to compute multiplicities using the information given by Newton
filtrations. Therefore, ideals generated by adapted systems is a notion generalizing the
ideals generated by the components of a semi-weighted-homogeneous map germ.

The result of Lejeune-Teissier characterizing the integral closure of an ideal
in A(C") using a Lojasiewicz type inequality motivates the definition of the ideals 10,
where 0 is a positive rational number and 7 is an ideal of 4(K") (see Section 2). The
main result of this work (Theorem 3.3) gives a sufficient condition for a monomial
xk = xF...x% to belong to an ideal 7%, where 0 is a positive rational number. The
mentioned result on the estimation of Lojasiewicz exponents is seen as a consequence
of this result. Moreover, taking # =1, we have an approximation to the Newton
polyhedron determined by the monomials belonging to the integral closure of 1.

If /:(K",0) — K is an analytic function germ with an isolated singularity at the
origin, we can consider the Lojasiewicz exponent /(m,,J(f)), where J(f) is the jacobian
ideal of f" and m, the maximal ideal of 4(K"). This number, also denoted by oy(f), is
the least upper bound of those o > 0 such that
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for some constant C > 0 and all x in an open neighbourhood of 0 € K". An upper
bound for oy(f) was given by Fukui [5] when f is Newton non-degenerate in the sense
of Kouchnirenko [8]. We establish the notion of strongly adapted system in order to
give an upper estimate of oo(f). As we shall see in some examples, this estimation
can be given when the function f is Newton degenerate. In particular, we are dealing
with the problem of computing the order of C’-determinacy of analytic function germs
/:(K",0) — (K,0), by virtue of the works of Chang-Lu [3] (when K = C) and Kuo [9]
(when K = R). The number oy (f) is related with other relevant Lojasiewicz exponents
attached to f, as is shown in [7].

2. Basic definitions.
If S< A(K"), we denote by V(S) the zero set germ at 0 of S in K".

DEerFINITION 2.1.  Let I be an ideal of A(K") and h € A(K") such that V(I) < V(h).
Let gi,...,g, be a system of generators of I. By [12, p. 136] (see also [2, p. 493]), we
can consider the greatest lower bound of those 6 > 0 such that there exists an open
neighbourhood U of 0 in K" and a constant C > 0 such that

h(x)|” < C sup |gi(x)].

for all xe U. We call this number the fojasiewicz exponent of h with respect to I and
we denote it by /(h,I). It is easy to see that this definition does not depend on the
chosen system of generators of 1. 1If J = {(hy,..., h;) = A(K") is any other ideal such
that V(1) < V(J), then we set /(J,1) = max;/(h;,I).

By the work of Lejeune-Teissier, if I = A(C") then /(h,I) is a rational number.
This is also true when I = A(R") by the work of Bochnak-Risler [2].

When /(h,I) < 1, then we will say that £ is integral over I (see [6, p. 318]). The set
of elements which are integral over I is an ideal of A(K") called the integral closure of
I. This ideal is denoted by I and obviously the inclusion I = I holds. Moreover, if 0
is a positive rational number, we define 7 as the ideal generated by those /€ A(K")
such that /(h,1) < 1/60. Then, we can express /(h,I) as

1
max{0 € Q+:heﬁ}'

As can be seen in [10, p. 10] or [16, p. 289], if [ is an ideal of A(C") and h e A(C")
is such that V(I) < V(h), then hel if and only if / satisfies a relation of the form
" +ah™ '+ . +a, \h+a,=0 for some m>1 and some a;el’, i=1,...,m.

((hT) =

REMARK 2.2. If I =<{gy,...,g,» is an ideal of 4(K") and g € I, then it is clear that
/(h71) = /(h> <g7g17 v 7gs>)'

The following is an interesting characterization of the integral closure of an ideal
in A(K") that we shall use in Section 6.
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ProposITION 2.3 ([6, p. 318]). If I is an ideal of A(K") and he A(K") is such that
V(I) < V(h), then hel if and only if, for each analytic map germ ¢ : (K,0) — (K",0)
we have that ¢*(h) € p*(I)A(K), where ¢*: A(K") — A(K) is the natural morphism
induced by ¢*.

Newton polyhedrons have been already used in the problem of computing the
integral closure of an ideal. The first step in this fact is the result stating that the
integral closure of a monomial ideal / = A(C") is generated by all the monomials x*
such that k belongs to the Newton polyhedron of I (see [4, p. 141] and [15]). The
same conclusion was obtained by Yoshinaga in for ideals of the form [ =
{x10f J0x1, ..., x,0f [Oxyy = A(K"), where f e A(K") is a Newton non-degenerate
function in the sense of Kouchnirenko [8]. This result has been extended for a wider
class of ideals by Saia thus leading to the notion of Newton non-degenerate ideal.
As a consequence of our study, we shall also continue the trajectory of results in this
direction introducing a new class of ideals for which we give an approximation of the
monomial zone of the integral closure of I, that is, the Newton polyhedron determined
by the monomials x* such that x* e I (consider the case 6 =1 in Theorem 3.3).

We now introduce the notion of Newton polyhedron. We set R, ={xe R : x >0},
QO . =0NR, and Z, =ZNR,. If xy,...,x, is a coordinate system in K", we denote
by x* the monomial x|'---x%, for any k = (ki,...,k,) € Z".

DEFINITION 2.4, Let I, = R", we say that I', is a Newton polyhedron when there
exists a subset 4 = Q" such that I, is equal to the convex hull of {k +v:keAd,veR'}.
The set I, will also be called the Newton polyhedron determined by A and it is denoted

by I’ (A).

Let g € A(K") and g(x) = Y, axx* the Taylor development of g around the origin.
We define the support of g as supp(g) = {k € Z' : a; # 0}. Given any set S = A(K"),
the support of S, denoted by supp(S), is the union of the supports of the elements
belonging to S. The Newton polyhedron of S is defined as I, (S) = I} (supp(S)).

If I is any ideal of A(K"), it is easy to check that I", (1) is equal to the convex hull
of I''(g1)U---UTl(gs), where g,...,g, is any generating system of /.

Following the same proof of Lemma 3.3 of [14], which is based on [Proposition 2.3,
it follows that I',(I) = I',(I), for any ideal I = A(K").

3. Adapted systems.

We denote by <u,v) the usual scalar product of two vectors u,ve R". If I', is a
fixed Newton polyhedron and v € R \{0}, then we define /(v, ;) = min{<k,v) : ke I'\ }
and A(v,I'y) ={kel} : ko) =7,(v,I)}. We say that a subset 4 = I is a face of
I, when there exists some vector v e R}\{0} such that 4 = 4(v,I"y). In this case, we
say that v supports A. 1t is easy to see that 4(v,I’,) is compact if and only if v; # 0,
for all i=1,...,n, where v = (vy,...,v,). We denote by I" the union of all compact
faces of I;.

A vector v e Z''\{0} is said to be primitive when it is the vector with smallest length
over all the vectors in the set {iv:4Ae R} N(Z1\{0}). Then, every face of dimension
n— 1 of a given Newton polyhedron I, = R" is supported by a unique primitive vector.
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Given a vector ve R?\{0} and a series g = Y, axx* € A(K"), we define /(v,g) =
/(v,I'-(9)) and 4(v,g) = A4(v, I'.(g)) Nsupp(g).

Let I, = R" be a fixed Newton polyhedron. Suppose that the number of (n — 1)-
dimensional faces of I", is r. Let v!,... ,v" be the primitive vectors of I', supporting
some face of dimension n—1 of 7.

DeFINITION 3.1, Let g =Y, axx* € A(K") and let J = {1,...,r}, then we can
consider the set A(J,g) = ﬂje ,4(v/,g). We define the principal part of g with respect
to J as the polynomial ¢;(g) given by the sum of those a;x* such that k € 4(J,g). The
set 4(J,g) could be empty, in this case, we fix ¢;(g) =0.

DeriNiTION 3.2, Given S = {gi,...,9s} < A(K"), we say that S is an adapted
system to I'y (or that S is K-adapted to I'.) when, for each J < {1,...,r} such that
(V;e; 407, Iy) is a compact face of Iy, the system of equations

je

(1) qs(91)(x) = -+ = qs(gs5)(x) =0,

has no solution in (K\{0})". We say that S is an adapted system when S is adapted
to the Newton polyhedron determined by S.

ExampLE 3.3. Let S = {x’y+x7,xy +»7} < A(R?). Then, after some elemen-
tary computations, it follows that § is an adapted system. An example of a non
adapted system of A(R?) is S’ = {x’y +x7 — x%y?, x> +y7 — x%y?}.

REMARK 3.4. 1) When we consider an R-adapted system S = {g1,...,¢9s} = A(R")
to I, then, complexifying the variables, we could obtain another system in A(C") which
is not C-adapted to I, in general. Unless some risk of confusion appears, we will not
specify which ground field we are dealing with.

ii) If some element of the system S = {g,...,g,} < A(K") is a monomial x* =
x{“ -+-xk then S is adapted to any Newton polyhedron.

i) It is straightforward to check that, if S={gi,...,9;} = A(C") is a non-
degenerate system with respect to a Newton polyhedron Iy = R in the sense of [1],
then S is also adapted to I, (the system S of Example 3.3 shows that the converse is
not true).

Now, we state the main result of this work, which will be proved in the next
section.

THEOREM 3.5. Let Iy = R" be a Newton polyhedron and let S ={g,...,9s} <
A(K") be an adapted system to I'y. Let I = A(K") be the ideal generated by S and let
0e Q.. Suppose that x* is @ monomial such that {k,v’> > 0max{/(v/,g1),...,/(v/,g,)},
for all j=1,...,r. Then x* el

4. The proof of Theorem 3.5.

Along this section, we will suppose that /7y is a Newton polyhedron contained in
R". As in the previous section, we denote by r the number of (n — 1)-dimensional
faces of I, and we also denote by v!,...,v" the primitive vectors supporting some
(n — 1)-dimensional face of I,.
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We consider the equivalence relation in R\{0} given by v ~v' if and only if
A(v) = 4(v"). Let I'* denote the corresponding quotient space. Each equivalence class
can be identified with a convex cone with vertex at the origin ¢ = R a'(c) +---+
R, a’(c), where we suppose that a'(o),...,a*(c) are primitive vectors (see [18, p. 810]).
When the vectors a!(a),...,a’(c) are linearly independent over R, then ¢ is said to be a
simplicial cone. A face of o is any cone ¢’ contained in the boundary of ¢ and spanned
by a subset of {a!(s),...,a*(a)}.

We denote by X the collection of cones arising from the equivalence classes of
I'*. This collection can be considered as a subdivision of R’. Given a cone ¢ € Xy,
we say that ¢ has dimension d when the smallest vector subspace containing ¢ has
dimension d, where d € {1,...,n}.

Suppose we are given a d-dimensional cone g € Xy and that this is written in the
form ¢ =R a'(c) +---+ R,a*(c), for some primitive vectors a'(a),...,a’(c), s >d.
Since ¢ is d-dimensional, we can suppose that a!(g),...,a%(s) are linearly indepen-
dent, by Carathéodory’s theorem (see [4, p. 139]). Let t be the cone spanned by
a'(o),...,a%0). If 6\t is a simplicial cone, then we replace the cone ¢ in 2y by the
pair 7,0\t and all the faces of 7 and ¢\7 not yet included in %, where we denote by
A the closure of a subset 4 = R". Otherwise, we apply again Carathéodory’s theorem
to the closure of each connected component of o\t and proceed in the same way.
Therefore, from the collection of cones 2y we obtain, by a simple inductive process, a
collection of cones X such that each cone ¢ € X' is simplicial and the set of 1-dimensional
cones of X is equal to the set of 1-dimensional cones of Xj.

REMARK 4.1. If I, is a Newton polyhedron in R? then, the subdivision X can be
taken equal to X, since all cones belonging to X are simplicial cones of dimension 1
and 2 in this case.

We denote the family of d-dimensional cones of ~ by 2 d =1,...,n. Attached

to each o€ X", we will consider the primitive vectors a'(o),...,a"(s) arising from
the simplicial structure of 0. We choose an order of these vectors that will be fixed
throughout this section. Moreover, we write a'(c) = (al(0),...,d.(s)), for all i=
I,...,n.

For each o e X, let K"(s) be a copy of K" and let (ys.1,..., Vs.n) be a system
of coordinates in K”(a). We define WS ={y,eC"(0): |y, ;| <1,Vj = 1 ,n} and

={xeC":|xj<1,¥j=1,...,n}. Then, we consider the map =< WC — Ve
defined as

1 "((7) 6’1 - n
7S (Yot oo Yon) = (-t vy ).

Let WS be the disjoint union of the sets WS, where geX™, and let

€. W& — V€ be the map given by n¢(y,) = n¢(y,), for all y, e WE. We endow WE
with the natural topology. Given a cone o € 2™, we also define WR = (nf)_l(VR) =
C"(c), where V® = VCNR". Then, we denote by WL the disjoint union of the sets
WR where g e X, and we define the map 7® : WR — VR as the restriction of 7€ to

g )

Wk,

LemMa 4.2. The map =% : WX — VK is proper and surjective, for K = C or R.
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PrOOF. The proof of the case K = C is the same as the one of [S, Lemma 4.9].
The case K = R follows from the complex case and the definition of the sets WX,
geXm, [l

When there is no risk of confusion, we shall delete the superscripts from WK Wk,
X, 7K and VK. We will also need the following auxiliary lemma from elementary

g

topology in the proof of [Theorem 3.3.

LemMA 4.3. Let X and Y be topological spaces, where Y is locally compact and
Hausdorff, let f : X — Y a proper map and let p € Y. Then, for any open set A of X
such that f~'(p) < A, there exists an open set B in Y such that pe B and f~1(B) < A.

Proof. Since Y is locally compact and Hausdorff, we can consider a base of com-
pact neighbourhoods {A4,},., of p such that () _, 4,={p} and 41 >4, >--->
A, > -,

Let A be an open set of X such that f~!(p) < 4 and suppose that f~'(4,) & 4, for
all n>1. Then {f~'(4,)\4},-, is a decreasing sequence of non void compact sets,
hence K = ((),-,/ ' (4.))\4 # . It follows that f(K) = {p}, which contradicts the
hypothesis f~'(p) < 4. H

Let 6 e X and J < {1,...,n}, then we define the subset of K"(g) given by E, ; =
{yo'e WO’-_yo'.J O, VJEJ}

LeMMA 44. Let e X" and J < {l,...,n}. Then, A= ﬂ]ej o), I}) is a
compact face of I'y if and only if n,(E; ;) = {0}

ProOOF. We observe that the condition 7,(E, ;) = {0} is equivalent to say that all
the coordinates of the vector ), ;a/(g) are positive, but this implies that the set

{kef+:<k,2aj(a)> Z/af }ﬂZ”

jedJ jeJ

is finite. Therefore, the result follows from the following equality:

N 4(a’(0),I}) = {kef+ : <k,2aj(a)> = Zf(aj(a),F+)}.

jeJ jeJ jeJ D
Let o e 2™ and let x* = x}'-..x* be a monomial, then we observe that
k
xFo (Vo) = J’; 1a . J’§kna 0,
Thus, given the system S = {gi,...,gs} < A(K") and oeX™, we can consider the
associated system S, = {g, 1,...,d,,} S A(K"(c)), where each g, ; is defined by the
equations
li(al (o /(a ~

@) g0 75(yo) =y -y - G (o),

and we write /;(v) for the number /(v,g;), for all i=1,...,s, and all ve R\{0}.

PROPOSITION 4.5.  If the system S is adapted to I’y then sup;|g, ;(v.)| # 0, for all
ceX" and all y,en;'(0).
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Proor. Let us fix an index ie {l,...,s} and a cone o€ X". Given a subset
J<Al,....,n}, J # J, we define

o5 = {keI'\(9) : <k,a/(0)) = 1i(a/(0)),Yj € J, and <k,a’(a)) > li(a'(a)),¥j ¢ J}.

It is clear that, if Jy,J, < {l,...,n} and g, Noy, # & then J; = J,. Then, if we
define Z; = {k e supp(y;) : <k,a’(0)) = ¢;(a’(5)), for some je{l,...,n}} and we sup-
pose that g; = >, axx*, we can write the following:

gioy(ys) = <Zakx —|—Zakx ) o 7t5(Vs)

keZ, k¢ Z;

= Y Sy Hy“”“ o)>—/i(a’(2))
a, O’l’l

Je{l,...,n} keay

+ ) ax* ons(ys)

k¢ Zi

/i 10' /(a (o k/ / /
:ya,(la())"'yg,(r(zl())< Z ZakHy< a’(0)y—ti(a’ (o))

J{l,..,n}kea;  j¢J
Xl )
k¢Z j=1

Then, we observe that the germ g, ; defined in (2) is equal to the expression in
parenthesis of the last equality.

Let y, € 7,'(0) such that g, ;(y,) =0, foralli=1,...,s, and let H = {j : y,; = 0}.
Since y, € 7;!(0), the set H is non empty. This implies that

(3) Gy = Y. Y a0,
HeJc{l,..,n}kea;  j¢J
The closure G of oy in R’ is expressed as
o = {k eI (g): <k,a’(0)y = ;(a’(0)),Vj e H and <k,a’(0)) > (i(a’(0)),Vj ¢ H}
= A(H', g:),

where H' = {1,...,r} is the set of indexes i(j) such that a/(¢) = v'/), for some je H.
Let (gi);, the sum of those arx* such that k € Gy, or equivalently, let (9i)s, = qu'(9:)-
Therefore, for any z, = (z5.1,...,2,.,) € K"(0) we have the following expression:

(@0 o) = 45 S S g [ ko
HcJ<{l,..,n}kea; jé¢J

In particular, if we consider the point y, € K"(o) given by y, ; =y, ;, when j ¢ H
and y,,; =1, when je H, we conclude that
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S\ @) (e kol (0)y—i(a
(91)5, © Tol(F) = 735 el ST S [ e

HceJs{l,..,n}kea; jé¢J

,.,,,'CIIO' ~li(a" (o 71
= JN D g, (30) =0,

where the second equality follows from (3).

Since 7(Eq 1) = {0}, the set 4 = ("), , 4(a’(0),I}}) = ﬂjeHA(vi(f),F+) is a com-
pact face of I\, by [Lemma 4.4. On the other hand, we have that gz(g;) o 7,(¥,) =
(9i)s, ©7s(¥,) =0, for all i=1,... s, which contradicts the hypothesis that S is an
adapted system to Iy, since 7,(y,) € (K\{0})". O

PrOOF OF THEOREM 3.5. From the hypotheses of the theorem and the fact that the
set of 1-dimensional cones of X is equal to the set of 1-dimensional cones of 2 we have
that

(k,a’(0)y = Omax{/(a’(a)),...,l(a’ (o))},
forall j=1,...,nand all ¢ € 2. Given any cone g € X, this implies the inequality
() X" 0 7g(vs)
= Ly a[SI [y [T < [y [Py o),

for every y, e W,.
Let U be a neighbourhood of 0 € K" where all the functions g; are defined. Then,
we have the following inequalities

/,' 1 ag [ n ~
sup |g; o 7,(v5)| = sup |ya,(f‘ N .. -yf;f: @) G, (7o)
1 l

max; /; , max; Z; :

> | o1l Vol D sup g, (o).
1

for all y, e n;'(U) < W,.
Since S is an adapted system to I, it follows that sup,|g, ;(vs)| # 0, for all

¥, € 7;1(0), by [Proposition 4.3. This implies that, for any oeX™ we can find a

compact neighbourhood 4, of 7,'(0) contained in W, such that sup,|g, (ys)| # 0, for

all y, € A;. Then, the number ¢, = inf,, ¢4, sup;|g, ;(ys)| is a positive constant.
Joining the information above, we get that

1 A ~
Sup|gi © 7o (35| = | [P Ay ™) sup |, ()]
1
max; Z;( max; Z;(a" (o))
= CJ|ya 1| |y0 n|
> ¢|x*"" o 7, ys),

for all y, € 4,.
Let ¢ = min, ¢,, where ¢ varies in X". Then, we have that

k|1/9

(5) sup [g; © o (yo)| = | x| 0 1o (ys),

for all y, € 4,. If C =1/c, we now conclude that
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17 < € suplgi(x)],
l
for all x in an open neighbourhood of 0 in K", by Lemmas 4.2 and 3. But this means

that x* € 17, by [Definition 2.1, and hence is proved. O

If we know explicitly the partition 2 constructed in Section 4 we can improve
the statement of as follows. Suppose that S = {gi,...,9,} < A(K") is
an adapted system to I.. If ¢eX™, let H, = {l,...,r}, the set of indexes i(})
such that v'/) = a/(g), for some je {l,...,n}. Then, for each ¢ € X we can choose
a subset A, = {l,...,s} with the condition that {xe K" : qn/(g:)(x) =0,Vie A,} =
{xeK":xy---x, =0}, for all H' < H, such that (),_,, 4(v/,I") is a compact face of
I'.. Then, we obtain the following result, which is particularly useful when n =2 (see
Remark 4.1).

THEOREM 4.6. In the conditions described above, let I = A(K") be the ideal gen-
erated by S. Let x* be any monomial such that Ckyal(0)) = Omaxiey, £ (a’(0),9:), for
every o€ X" and every j=1,...,n. Then x*eI0.

Proor. It is a direct consequence of the proof arguments of [Proposition 4.5 and
eOre 3. L]

5. Strongly adapted systems.

In this section, we show a special kind of adapted systems to Newton polyhedrons.
If S < A(K") is one of these systems and / is the ideal of A4(K") generated by S, we
will obtain a monomial x* belonging to 19 whose exponent k belongs to any fixed
coordinate axis, where 0 is a given rational number. This is not always possible if we
apply to an arbitrary adapted system to a given Newton polyhedron, since
max; Z(v/,g;) could be positive when v/ is some vector of the canonical basis in R".

Throughout this section, we will assume that I, < R" is a Newton polyhedron
intersecting all coordinate axis. As is easy to check, in this situation we will have that
{ve R7\{0} : 4(v) is not compact} = {v e R'\{0} : /(v,I,) = 0}.

Hence, if v',...,v" are the primitive vectors supporting some (7 — 1)-dimensional
face of I'y, we can suppose that v!,... v/ support some compact face of I",, where / < r
and n =r—/, and that the least n vectors form the canonical basis in R".

DEeFINITION 5.1. If ge A(K") and je{l,...,r}, we define /*(v/,g9) =/(v/,9g),
when A(v/,I';) is a compact face of I',, and /*(v/,g) = 0, otherwise. Therefore, we
also define 4%(J,g) = {k e supp(g) : <k,v/> =(*(v/,g),VjeJ}.

Given g =Y, axx¥ € A(K") and J = {1,...,r}, we denote by ¢}(g) the polynomial
obtained as the sum of those a;x* such that ke 4*(J,g). If 4*(J,g) = &, then we
shall fix ¢;(g) =0.

DErFINITION 5.2. We say that S = {g1,...,9s} < A(K") is a strongly adapted system
to I'y when, for all J = {1,...,r} such that ﬂjeJA(vf,F+) is a compact face of Iy, the
system of equations

q;(g1)(x) = - =q;(g5)(x) =0
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has no solution in (K\{0})". Moreover, we say that S is a strongly adapted system
when S is strongly adapted to the Newton polyhedron determined by S.

If ge A(K") and J = {1,...,r} is such that 4 = (), _, 4(v/,I';) is a compact face
of I';, then ¢j(g9) = qs(g) or ¢;(g9) =0. The equality ¢;(g) = 0 holds when there exists
some j € J such that A(v/,I',) is not a compact face of I, and /(v/,g) > 0. Then, we
see that every strongly adapted system to I, is adapted to I7,.

If L<{l,...,n}, we define (R"),={xeR":x;=0,YjelL} and (I}), =
I''N(R"), when I'' = R" is a Newton polyhedron. If g=>, atx* e A(K"), then
we denote by ¢g; the polynomial obtained as the sum of those arx* such that
kesupp(g)N(R"),. If S={gi1,...,9s} < A(K"), we write Sy to denote the system
{glp s 7gsL}-

For each J = {1,...,r}, J # &, we set J*={ie{l,...,n}:e is equal to some
vector v/, jeJ}. If we define J;=JN{1,..../} and J,=JN{/+1,...,r}, it is
straightforward to see that ¢3(g) = q,(gs;), for all ge A(K"). In particular, we observe
that S is a strongly adapted system to I, if and only if S; is an adapted system to
(I'y),, for all L<{1,...,n}.

EXAMPLE 5.3. Let us consider the system S = {x°+ xy(x — »)%, »° + xp(x — »)?,
23} < A(R?). This system is adapted, since it contains a monomial, but it is not
strongly adapted, because the system S’ = {x° +xy(x—y)2,y5 +xy(x—y)2} is not
adapted.

Now we state an analogous result to for strongly adapted systems. In
this case, we shall impose conditions depending on the compact faces of I', to a given
k € R" in order to obtain that x¥ e ¢, where 0 ¢ ..

COROLLARY 5.4. Let S={g1,...,9s} < A(K") be a strongly adapted system to I,
such that V(S) ={0}. Let I = A(K") be the ideal generated by S and let 0 Q. If
x* is @ monomial such that {k,v’y > 0 max{/(v/,q1),...,/(v/,g,)}, for all j=1,...,7,
then x* eI0.

Proor. Since V(1) = {0}, there exists some N >1 such that m" I, by [12,
p. 136] (see [Definition 2.1). Here we denote by m, the maximal ideal of A(K"). Let
G(x) =x{¥+---+xY and consider the system given by S'={g1+G,...,g, + G}.
Then we have the inclusion

(6) i +G,...,gs+ G =10,

for any 0e Q.. . ‘
If je{l,...,/}, suppose that v/ = (v{,...,v/) and let v} = min{v{,...,v/}. Given
any i€ {l,...,s}, we have that

/(Ujvgi + G) = {(Uj7gl') g /(Uj7gl'> < mln{<k7 vj> ke Supp(G>}
oW, g) <min{Nv/:1=1,...,n}

f<vj7 gl)
z

& N >
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Therefore, if N satisfies the inequality

/(v g
N > max (v ,'gz)7
1] U-é

where je {1,...,/} andie {l,...,s}, then /(v/,g; + G) = £(v/, g:), forall je{l,...,/}.

Moreover, by the definition of G, we have that /(v/,g; + G) =0, for all j=
/+1,...,r. Hence, we get the equality ¢;(g;) = qs(9: + G), for all i=1,...,s and all
J<={l,....r} such that 4= (), ,4(v/,I"}) is a compact face of I',. But this implies
that S’ is an adapted system to /7y, since S is strongly adapted to 7°,. Then, applying
to the system S’ and considering the inclusion (6), we obtain the desired
result. ]

In the conditions of the above corollary, we define the following subset of R:
(7) MO(Sa F—i—) = {k € R-’;,l- : <k7 Uj> = 0max{/<vjvgl)a T ,/(Uj,gs>},VJ = 13 st a/}

We observe that the set My(S, 1) intersects each coordinate axis. When 0 =1, we
denote the set My(S, ;) simply by M(S,I).

6. Estimation of Lojasiewicz exponents.

In this section, we apply [Corollary 5.4 to obtain a result estimating Lojasiewicz
exponents. Along this section we will suppose that /', = R" is a Newton polyhedron

intersecting all coordinate axis. As in the previous section, we denote by v',... v’ the
primitive vectors supporting some compact face of dimension n—1 of I,.

THEOREM 6.1. Let S ={gi1,...,9s} = A(K") be a strongly adapted system to I,
such that V(S)={0} and let 1 < A(K") be the ideal generated by S. Let J =
hyyoooshyy < A(K™) and suppose that 0 € V(J), then

max{/(v"',gl),---/(Uj,gs)}
1) < - ~ :
/(1) < X, min{/(v/,h),...,/(v/, h)}

Proor. Considering [Definition 2.1 and we obtain the following

inequalities:

((J, 1) =inf{0e Q:J < T/0}
<inf{0eQ: I, (J) = M,(S,I',)}

. 1 . .
= inf{@e O: /(W hi) > 7 max{/(v’,g1),...,2(v/,g5)}, for all i,j}

~ max max{/(v’/,g1),...,/(v/,gs)}
= AN {0, ), L0 )} 0

If we replace the ideal J by the maximal ideal in [Theorem 6.1, the following upper
bound for the Lojasiewicz exponent /(m,,I) is obtained:
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(8) {(my, 1) < ‘max,{

where vy = min{vy,...,v,}, for any v = (vy,...,v,) € (R\{0})".

If /:(K",0) — (K,0) is an analytic function germ with an isolated singularity at
the origin, we denote by oy (f) the Lojasiewicz exponent 7 (m,,J(f)), where J(f) is the
jacobian ideal of f. We shall denote by Sy the system of A(K") formed by the partial
derivatives of f and we call this the jacobian system of f.

If v=(v1,...,0,) € (R\{0})" and @ > 0, then the largest of the distances from the
origin to some point in the intersection of the union of the coordinate axis with the
plane <k,v) = a is equal to a/vy. From this observation, together with Remark 2.2, we
obtain the following consequence of [Theorem 6.1.

COROLLARY 6.2. Let f:(K",0)— (K,0) be an analytic function germ with an
isolated singularity at the origin, let S ={gi,...,g;} < A(K") and let I be the ideal
generated by S. Suppose that S is strongly adapted to I', and that T=J(f). Let
Py, ..., P, the points in the intersection of M(S,I\) and the union of the coordinate axis
and let r = max{|Py|,...,|Pu|}. Then ao(f) <r.

For the sake of completeness, we state the result of Fukui on the estimation of
the Lojasiewicz exponent ay(f) of an analytic function germ. First, we need to give
some preliminary definitions.

Suppose that u!,... u™ is the family of primitive vectors supporting some compact
face of dimension n — 1 of the Newton polyhedron 77, (f) of f. Then, we denote by
my(f) the largest of the distances from the origin to some point in the intersection of
the union of the coordinate axis with some plane of equation <{k,u’» = /(u’, f), where
j=1,....m.

Given a series g = Y, axx* € A(K") and a compact subset 4 = R", we denote by
g4 the polynomial obtained by the sum of those a;x* such that k € 4. We recall that
an analytic function germ f :(K",0) — (K,0) is said to be Newton non-degenerate
when, for each compact face 4 < I, (f), the system of equations (x10f/0x1), ="--=
(x,0f /0xn), = 0 has no solution in (K\{0})" (see and for more information
on this kind of functions). If f is not Newton non-degenerate, then we say that f is
Newton degenerate.

THEOREM 6.3 ([5]). Let f:(K",0) — (K,0) be an analytic map germ with an
isolated singularity at the origin. Suppose that f is Newton non-degenerate, then oy(f) <

Wl()(f)— 1

The above theorem was proved by Lichtin in the case n = 2 under stronger
conditions.

REMARK 6.4. i) As we see, uses the Newton polyhedron of the
function f as a tool to obtain an upper estimation for oo(f). On the other hand, in

Corollary 6.2) we are considering a Newton polyhedron ", such that J(f) is determined
by a strongly adapted system S to /.. Observe that S must not be equal to Sy.

ii) The next example shows that the class of those functions whose jacobian system
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Sy 1s strongly adapted to some Newton polyhedron is not included in the class of
Newton non-degenerate function germs.

EXAMPLE 6.5. Let f: (R? 0) — (R,0) given by f(x,y,z) = (x+ )" + 2x%z + z!L.
This function is Newton degenerate and the jacobian system Sy is strongly adapted (to
its Newton polyhedron). Therefore, we have that o(f) < 10, by [Corollary 6.2

We give some examples showing how can be applied to estimate the
number oy(f) when f is Newton degenerate and the system of partial derivatives of f
is not strongly adapted. The following lemma is very useful in this task. We shall
denote by I(f) the ideal of A(K") generated by x,0f/0xi,...,x,0f /0xy.

LEemMMA 6.6 ([16]). Let f:(K",0) — (K,0) be an analytic function germ. Then

felf).

Proor. If ge A(K), we denote by v(g) the order of g at the origin. Then, by
IProposition 2.3, it is enough to see that v(f o ¢) > min; v((x;0f /0x;) o ¢), for any analytic
map germ ¢ : (K,0) — (K",0). Let ¢;, i =1,...,n, denote the component functions of
@. If we apply the chain rule to (d/dt)(f o), we obtain that

v(fop) =12 min(v((3f/0xi) o) + v(p;) — 1) = min v((x;f /Ox;) 0 ¢ — 1),

which gives the desired inequality. OJ

ExaMPLE 6.7. Consider the map germ f : (R®,0) — (R,0) given by f(x,y,z) =
Xyt oz (xPy — xyz)z, where 6 < a,b and ¢ > 0. It is straightforward to check
that f has an isolated singularity at the origin, that /" is Newton degenerate and that the
jacobian system Sy is not strongly adapted. On the other hand, we have that

0 0 —
hx,.2) =Xy D 6 302) = (0= 637+ (b= 6)y — 627 € T(7),
by Cemma 6.6. In particular, /4 is integral over J(f) and then we can apply
6.1 to the system S = {h,df /0x,0f /0y, df /0z}, since S is strongly adapted. Therefore,
we obtain that oy(f) < max{a,b,c}.

ExaMPLE 6.8. Let f: (R?0) — (R,0) given by f(x,y) = (x2—y*)? + y“, where
a>7. This function germ is Newton degenerate and the system S; is not strongly
adapted. Nevertheless, by [Lemma 6.6 and the relation

of of

L inZ 12 =2(a—6)y°
3xax+ Yoy f(x,y) = 2(a—6)y“,

we have that y*e J(f). Since the system {y“ 0f/0x,0f/0y} is strongly adapted we
can apply [Theorem 6.1 to state that oy(f) < a.

Finally, we state a known result showing the relevance of the number oy(f). For
feA(K"), we say that the r-jet j'f(0) of f at 0e K" is CP-sufficient if, for any
g € A(K") such that j"g(0) =;"f(0), there is a germ of homeomorphism ¢ : (K",0) —
(K",0) such that g = f o ¢.
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THEOREM 6.9 ([3], [9]). Let f:(K",0) — (K,0) be an analytic function germ with

an isolated singularity at the origin, then jf(0) is CC-sufficient if oao(f) < r.
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