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Abstract. We give an upper estimate for the Łojasiewicz exponent lðJ; IÞ of an ideal

JJAðK nÞ with respect to another ideal I in the ring AðK nÞ of germs analytic functions

f : ðK n
; 0Þ ! K , where K ¼ C or R, using Newton polyhedrons. In particular, we give

a method to estimate the Łojasiewicz exponent a0ð f Þ of a germ f A AðK nÞ that can be

applied when f is Newton degenerate with respect to its Newton polyhedron.

1. Introduction.

The technique of using Newton polyhedrons has many significant applications in

singularity theory, as can be seen in the works of Fukui [5], Kouchnirenko [8], Oka [13],

Varchenko [17], Yoshinaga [18] and other authors. In this article we are interested

in using Newton polyhedrons in order to give an upper estimate of the Łojasiewicz

exponent lðJ; IÞ of an ideal JJAðK nÞ with respect to another ideal IJAðK nÞ (see

Definition 2.1), where AðK nÞ is the local ring of analytic function germs f : ðK n
; 0Þ ! K

and K ¼ R or C . As we shall see, this estimation is possible when I admits a

generating system which is adapted to a Newton polyhedron, which is a notion introduced

in this paper. This class of systems contains the one defined by Fukui, Saia and the

author in [1] in order to compute multiplicities using the information given by Newton

filtrations. Therefore, ideals generated by adapted systems is a notion generalizing the

ideals generated by the components of a semi-weighted-homogeneous map germ.

The result of Lejeune-Teissier [10] characterizing the integral closure of an ideal

in AðC nÞ using a Łojasiewicz type inequality motivates the definition of the ideals I y,

where y is a positive rational number and I is an ideal of AðK nÞ (see Section 2). The

main result of this work (Theorem 3.5) gives a su‰cient condition for a monomial

xk ¼ xk1
1 � � � xkn

n to belong to an ideal I y, where y is a positive rational number. The

mentioned result on the estimation of Łojasiewicz exponents is seen as a consequence

of this result. Moreover, taking y ¼ 1, we have an approximation to the Newton

polyhedron determined by the monomials belonging to the integral closure of I .

If f : ðK n
; 0Þ ! K is an analytic function germ with an isolated singularity at the

origin, we can consider the Łojasiewicz exponent lðmn; Jð f ÞÞ, where Jð f Þ is the jacobian

ideal of f and mn the maximal ideal of AðK nÞ. This number, also denoted by a0ð f Þ, is

the least upper bound of those a > 0 such that
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for some constant C > 0 and all x in an open neighbourhood of 0 A K n. An upper

bound for a0ð f Þ was given by Fukui [5] when f is Newton non-degenerate in the sense

of Kouchnirenko [8]. We establish the notion of strongly adapted system in order to

give an upper estimate of a0ð f Þ. As we shall see in some examples, this estimation

can be given when the function f is Newton degenerate. In particular, we are dealing

with the problem of computing the order of C 0-determinacy of analytic function germs

f : ðK n; 0Þ ! ðK ; 0Þ, by virtue of the works of Chang-Lu [3] (when K ¼ C) and Kuo [9]

(when K ¼ R). The number a0ð f Þ is related with other relevant Łojasiewicz exponents

attached to f , as is shown in [7].

2. Basic definitions.

If SJAðK nÞ, we denote by VðSÞ the zero set germ at 0 of S in K n.

Definition 2.1. Let I be an ideal of AðK nÞ and h A AðK nÞ such that VðIÞJVðhÞ.

Let g1; . . . ; gs be a system of generators of I . By [12, p. 136] (see also [2, p. 493]), we

can consider the greatest lower bound of those y > 0 such that there exists an open

neighbourhood U of 0 in K n and a constant C > 0 such that

jhðxÞjyaC sup
i

jgiðxÞj;

for all x A U . We call this number the Łojasiewicz exponent of h with respect to I and

we denote it by lðh; IÞ. It is easy to see that this definition does not depend on the

chosen system of generators of I . If J ¼ hh1; . . . ; htiJAðK nÞ is any other ideal such

that VðIÞJVðJÞ, then we set lðJ; IÞ ¼ maxi lðhi; IÞ.

By the work [10] of Lejeune-Teissier, if IJAðC nÞ then lðh; IÞ is a rational number.

This is also true when IJAðRnÞ by the work of Bochnak-Risler [2].

When lðh; IÞa 1, then we will say that h is integral over I (see [6, p. 318]). The set

of elements which are integral over I is an ideal of AðK nÞ called the integral closure of

I. This ideal is denoted by I and obviously the inclusion IJ I holds. Moreover, if y

is a positive rational number, we define I y as the ideal generated by those h A AðK nÞ

such that lðh; IÞa 1=y. Then, we can express lðh; IÞ as

lðh; IÞ ¼
1

maxfy A Qþ : h A I yg
:

As can be seen in [10, p. 10] or [16, p. 289], if I is an ideal of AðC nÞ and h A AðC nÞ

is such that VðIÞJVðhÞ, then h A I if and only if h satisfies a relation of the form

hm þ a1h
m�1 þ � � � þ am�1hþ am ¼ 0 for some mb 1 and some ai A I i, i ¼ 1; . . . ;m.

Remark 2.2. If I ¼ hg1; . . . ; gsi is an ideal of AðK nÞ and g A I , then it is clear that

lðh; IÞ ¼ lðh; hg; g1; . . . ; gsiÞ.

The following is an interesting characterization of the integral closure of an ideal

in AðK nÞ that we shall use in Section 6.
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Proposition 2.3 ([6, p. 318]). If I is an ideal of AðK nÞ and h A AðK nÞ is such that

VðIÞJVðhÞ, then h A I if and only if, for each analytic map germ j : ðK ; 0Þ ! ðK n; 0Þ

we have that j�ðhÞ A j�ðIÞAðKÞ, where j�
: AðK nÞ ! AðKÞ is the natural morphism

induced by j�.

Newton polyhedrons have been already used in the problem of computing the

integral closure of an ideal. The first step in this fact is the result stating that the

integral closure of a monomial ideal IJAðC nÞ is generated by all the monomials xk

such that k belongs to the Newton polyhedron of I (see [4, p. 141] and [15]). The

same conclusion was obtained by Yoshinaga in [18] for ideals of the form I ¼

hx1qf =qx1; . . . ; xnqf =qxniJAðK nÞ, where f A AðK nÞ is a Newton non-degenerate

function in the sense of Kouchnirenko [8]. This result has been extended for a wider

class of ideals by Saia [14] thus leading to the notion of Newton non-degenerate ideal.

As a consequence of our study, we shall also continue the trajectory of results in this

direction introducing a new class of ideals for which we give an approximation of the

monomial zone of the integral closure of I , that is, the Newton polyhedron determined

by the monomials xk such that xk A I (consider the case y ¼ 1 in Theorem 3.5).

We now introduce the notion of Newton polyhedron. We set Rþ ¼ fx A R : xb0g,

Qþ ¼ QVRþ and Zþ ¼ Z VRþ. If x1; . . . ; xn is a coordinate system in K n, we denote

by xk the monomial xk1
1 � � � xkn

n , for any k ¼ ðk1; . . . ; knÞ A Z n
þ.

Definition 2.4. Let GþJRn
þ, we say that Gþ is a Newton polyhedron when there

exists a subset AJQn
þ such that Gþ is equal to the convex hull of fk þ v : k A A; v A Rn

þg.

The set Gþ will also be called the Newton polyhedron determined by A and it is denoted

by GþðAÞ.

Let g A AðK nÞ and gðxÞ ¼
P

k akx
k the Taylor development of g around the origin.

We define the support of g as suppðgÞ ¼ fk A Z n
þ : ak 0 0g. Given any set SJAðK nÞ,

the support of S, denoted by suppðSÞ, is the union of the supports of the elements

belonging to S. The Newton polyhedron of S is defined as GþðSÞ ¼ GþðsuppðSÞÞ.

If I is any ideal of AðK nÞ, it is easy to check that GþðIÞ is equal to the convex hull

of Gþðg1ÞU � � �UGþðgsÞ, where g1; . . . ; gs is any generating system of I .

Following the same proof of Lemma 3.3 of [14], which is based on Proposition 2.3,

it follows that GþðIÞ ¼ GþðI Þ, for any ideal IJAðK nÞ.

3. Adapted systems.

We denote by hu; vi the usual scalar product of two vectors u; v A Rn. If Gþ is a

fixed Newton polyhedron and v A Rn
þnf0g, then we define lðv;GþÞ ¼ minfhk; vi : k A Gþg

and Dðv;GþÞ ¼ fk A Gþ : hk; vi ¼ lðv;GþÞg. We say that a subset DJGþ is a face of

Gþ when there exists some vector v A Rn
þnf0g such that D ¼ Dðv;GþÞ. In this case, we

say that v supports D. It is easy to see that Dðv;GþÞ is compact if and only if vi 0 0,

for all i ¼ 1; . . . ; n, where v ¼ ðv1; . . . ; vnÞ. We denote by G the union of all compact

faces of Gþ.

A vector v A Z n
þnf0g is said to be primitive when it is the vector with smallest length

over all the vectors in the set flv : l A RþgV ðZ n
þnf0gÞ. Then, every face of dimension

n� 1 of a given Newton polyhedron GþJRn is supported by a unique primitive vector.
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Given a vector v A Rn
þnf0g and a series g ¼

P
k akx

k A AðK nÞ, we define lðv; gÞ ¼

lðv;GþðgÞÞ and Dðv; gÞ ¼ Dðv;GþðgÞÞV suppðgÞ.

Let GþJRn be a fixed Newton polyhedron. Suppose that the number of ðn� 1Þ-

dimensional faces of Gþ is r. Let v1; . . . ; vr be the primitive vectors of Gþ supporting

some face of dimension n� 1 of Gþ.

Definition 3.1. Let g ¼
P

k akx
k A AðK nÞ and let JJ f1; . . . ; rg, then we can

consider the set DðJ; gÞ ¼7
j A J

Dðv j
; gÞ. We define the principal part of g with respect

to J as the polynomial qJðgÞ given by the sum of those akx
k such that k A DðJ; gÞ. The

set DðJ; gÞ could be empty, in this case, we fix qJðgÞ ¼ 0.

Definition 3.2. Given S ¼ fg1; . . . ; gsgJAðK nÞ, we say that S is an adapted

system to Gþ (or that S is K-adapted to Gþ) when, for each JJ f1; . . . ; rg such that

7
j A J

Dðv j
;GþÞ is a compact face of Gþ, the system of equations

qJðg1ÞðxÞ ¼ � � � ¼ qJðgsÞðxÞ ¼ 0;ð1Þ

has no solution in ðKnf0gÞn. We say that S is an adapted system when S is adapted

to the Newton polyhedron determined by S.

Example 3.3. Let S ¼ fx3yþ x7
; xy3 þ y7gJAðR2Þ. Then, after some elemen-

tary computations, it follows that S is an adapted system. An example of a non

adapted system of AðR2Þ is S 0 ¼ fx3yþ x7 � x2y2; xy3 þ y7 � x2y2g.

Remark 3.4. i) When we consider an R-adapted system S ¼ fg1; . . . ; gsgJAðRnÞ

to Gþ then, complexifying the variables, we could obtain another system in AðC nÞ which

is not C-adapted to Gþ in general. Unless some risk of confusion appears, we will not

specify which ground field we are dealing with.

ii) If some element of the system S ¼ fg1; . . . ; gsgJAðK nÞ is a monomial xk ¼

xk1
1 � � � xkn

n , then S is adapted to any Newton polyhedron.

iii) It is straightforward to check that, if S ¼ fg1; . . . ; gsgJAðC nÞ is a non-

degenerate system with respect to a Newton polyhedron GþJRn
þ in the sense of [1],

then S is also adapted to Gþ (the system S of Example 3.3 shows that the converse is

not true).

Now, we state the main result of this work, which will be proved in the next

section.

Theorem 3.5. Let GþJRn be a Newton polyhedron and let S ¼ fg1; . . . ; gsgJ
AðK nÞ be an adapted system to Gþ. Let IJAðK nÞ be the ideal generated by S and let

y AQþ. Suppose that xk is a monomial such that hk; v jibymaxflðv j
; g1Þ; . . . ; lðv

j
; gsÞg,

for all j ¼ 1; . . . ; r. Then xk A I y.

4. The proof of Theorem 3.5.

Along this section, we will suppose that Gþ is a Newton polyhedron contained in

Rn. As in the previous section, we denote by r the number of ðn� 1Þ-dimensional

faces of Gþ and we also denote by v1; . . . ; v r the primitive vectors supporting some

ðn� 1Þ-dimensional face of Gþ.
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We consider the equivalence relation in R
n
þnf0g given by v@ v 0 if and only if

DðvÞ ¼ Dðv 0Þ. Let G � denote the corresponding quotient space. Each equivalence class

can be identified with a convex cone with vertex at the origin s ¼ Rþa
1ðsÞ þ � � � þ

Rþa
sðsÞ, where we suppose that a1ðsÞ; . . . ; asðsÞ are primitive vectors (see [18, p. 810]).

When the vectors a1ðsÞ; . . . ; asðsÞ are linearly independent over R, then s is said to be a

simplicial cone. A face of s is any cone s
0 contained in the boundary of s and spanned

by a subset of fa1ðsÞ; . . . ; a sðsÞg.

We denote by S0 the collection of cones arising from the equivalence classes of

G
�. This collection can be considered as a subdivision of R

n
þ. Given a cone s A S0,

we say that s has dimension d when the smallest vector subspace containing s has

dimension d, where d A f1; . . . ; ng.

Suppose we are given a d-dimensional cone s A S0 and that this is written in the

form s ¼ Rþa
1ðsÞ þ � � � þ Rþa

sðsÞ, for some primitive vectors a1ðsÞ; . . . ; asðsÞ, sb d.

Since s is d-dimensional, we can suppose that a1ðsÞ; . . . ; adðsÞ are linearly indepen-

dent, by Carathéodory’s theorem (see [4, p. 139]). Let t be the cone spanned by

a1ðsÞ; . . . ; adðsÞ. If snt is a simplicial cone, then we replace the cone s in S0 by the

pair t; snt and all the faces of t and snt not yet included in S0, where we denote by

A the closure of a subset AJR
n. Otherwise, we apply again Carathéodory’s theorem

to the closure of each connected component of snt and proceed in the same way.

Therefore, from the collection of cones S0 we obtain, by a simple inductive process, a

collection of cones S such that each cone s A S is simplicial and the set of 1-dimensional

cones of S is equal to the set of 1-dimensional cones of S0.

Remark 4.1. If Gþ is a Newton polyhedron in R
2 then, the subdivision S can be

taken equal to S0, since all cones belonging to S0 are simplicial cones of dimension 1

and 2 in this case.

We denote the family of d-dimensional cones of S by S
ðdÞ, d ¼ 1; . . . ; n. Attached

to each s A S
ðnÞ, we will consider the primitive vectors a1ðsÞ; . . . ; anðsÞ arising from

the simplicial structure of s. We choose an order of these vectors that will be fixed

throughout this section. Moreover, we write a iðsÞ ¼ ða i
1ðsÞ; . . . ; a

i
nðsÞÞ, for all i ¼

1; . . . ; n.

For each s A S
ðnÞ, let K

nðsÞ be a copy of K
n and let ðys;1; . . . ; ys;nÞ be a system

of coordinates in K
nðsÞ. We define WC

s
¼ fys A C

nðsÞ : jys; j ja 1; Ej ¼ 1; . . . ; ng and

VC ¼ fx A C
n
: jxjja 1; Ej ¼ 1; . . . ; ng. Then, we consider the map p

C

s
: WC

s
! VC

defined as

p
C

s
ðys;1; . . . ; ys;nÞ ¼ ðy

a1
1
ðsÞ

s;1 � � � y
an
1
ðsÞ

s;n ; . . . ; y
a1
n ðsÞ

s;1 � � � yan
n ðsÞ

s;n Þ:

Let WC

S
be the disjoint union of the sets WC

s
, where s A S

ðnÞ, and let

p
C
: WC

S
! VC be the map given by p

C ðysÞ ¼ p
C

s
ðysÞ, for all ys AW

C

s
. We endow WC

S

with the natural topology. Given a cone s A S
ðnÞ, we also define WR

s
¼ ðpC

s
Þ�1ðVRÞJ

C
nðsÞ, where VR ¼ VC

VR
n. Then, we denote by WR

S
the disjoint union of the sets

WR

s
, where s A S

ðnÞ, and we define the map p
R
: WR

S
! VR as the restriction of p

C to

WR

S
.

Lemma 4.2. The map p
K
: WK

S
! VK is proper and surjective, for K ¼ C or R.
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Proof. The proof of the case K ¼ C is the same as the one of [5, Lemma 4.9].

The case K ¼ R follows from the complex case and the definition of the sets WR

s
,

s A S
ðnÞ. r

When there is no risk of confusion, we shall delete the superscripts from WK

s
, WK

S
,

p
K

s
, p

K and VK . We will also need the following auxiliary lemma from elementary

topology in the proof of Theorem 3.5.

Lemma 4.3. Let X and Y be topological spaces, where Y is locally compact and

Hausdor¤, let f : X ! Y a proper map and let p A Y . Then, for any open set A of X

such that f �1ðpÞJA, there exists an open set B in Y such that p A B and f �1ðBÞJA.

Proof. Since Y is locally compact and Hausdor¤, we can consider a base of com-

pact neighbourhoods fAngnb1 of p such that 7
nb1

An ¼ fpg and A1IA2I � � �I
AnI � � � :

Let A be an open set of X such that f �1ðpÞJA and suppose that f �1ðAnÞUA, for

all nb 1. Then f f �1ðAnÞnAgnb1 is a decreasing sequence of non void compact sets,

hence K ¼ ð7
nb1

f �1ðAnÞÞnA0q. It follows that f ðKÞ ¼ fpg, which contradicts the

hypothesis f �1ðpÞJA. r

Let s A S
ðnÞ and JJ f1; . . . ; ng, then we define the subset of K nðsÞ given by Es;J ¼

fys A Ws : ys; j ¼ 0; Ej A Jg.

Lemma 4.4. Let s A S
ðnÞ and JJ f1; . . . ; ng. Then, D ¼7

j A J
Dða jðsÞ;GþÞ is a

compact face of Gþ if and only if psðEs;JÞ ¼ f0g.

Proof. We observe that the condition psðEs;JÞ ¼ f0g is equivalent to say that all

the coordinates of the vector
P

j A J a
jðsÞ are positive, but this implies that the set

k A Gþ : k;
X

j A J

a jðsÞ

* +

¼
X

j A J

lða jðsÞ;GþÞ

( )

VZ
n
þ

is finite. Therefore, the result follows from the following equality:

7
j A J

Dða jðsÞ;GþÞ ¼ k A Gþ : k;
X

j A J

a jðsÞ

* +

¼
X

j A J

lða jðsÞ;GþÞ

( )

:

r

Let s A S
ðnÞ and let xk ¼ xk1

1 � � � xkn
n be a monomial, then we observe that

xk � psðysÞ ¼ y
hk;a1ðsÞi
s;1 � � � yhk;a

nðsÞi
s;n :

Thus, given the system S ¼ fg1; . . . ; gsgJAðK nÞ and s A S
ðnÞ, we can consider the

associated system Ss ¼ f~ggs;1; . . . ; ~ggs; sgJAðK nðsÞÞ, where each ~ggs; i is defined by the

equations

gi � psðysÞ ¼ y
liða

1ðsÞÞ
s;1 � � � yliða

nðsÞÞ
s;n � ~ggs; iðysÞ;ð2Þ

and we write liðvÞ for the number lðv; giÞ, for all i ¼ 1; . . . ; s, and all v A R
n
þnf0g.

Proposition 4.5. If the system S is adapted to Gþ then supij~ggs; iðysÞj0 0, for all

s A S
ðnÞ and all ys A p

�1
s
ð0Þ.
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Proof. Let us fix an index i A f1; . . . ; sg and a cone s A S
ðnÞ. Given a subset

JJ f1; . . . ; ng, J0q, we define

sJ ¼ fk A GþðgiÞ : hk; a
jðsÞi ¼ liða

jðsÞÞ; Ej A J; and hk; a jðsÞi > liða
jðsÞÞ; Ej B Jg:

It is clear that, if J1; J2J f1; . . . ; ng and sJ1 V sJ2 0q then J1 ¼ J2. Then, if we

define Zi ¼ fk A suppðgiÞ : hk; a
jðsÞi ¼ liða

jðsÞÞ, for some j A f1; . . . ; ngg and we sup-

pose that gi ¼
P

k akx
k, we can write the following:

gi � psðysÞ ¼
X

k AZi

akx
k þ

X

k BZi

akx
k

 !

� psðysÞ

¼
X

JJf1;...;ng

X

k A sJ

aky
liða

1ðsÞÞ
s;1 � � � yliða

nðsÞÞ
s;n

Y

n

j¼1

y
hk;a jðsÞi�liða

jðsÞÞ
s; j

þ
X

k BZi

akx
k � psðysÞ

¼ y
liða

1ðsÞÞ
s;1 � � � yliða

nðsÞÞ
s;n

 

X

JJf1;...;ng

X

k A sJ

ak
Y

j B J

y
hk;a jðsÞi�liða

jðsÞÞ
s; j

þ
X

k BZi

ak
Y

n

j¼1

y
hk;a jðsÞi�liða

jðsÞÞ
s; j

!

:

Then, we observe that the germ ~ggs; i defined in (2) is equal to the expression in

parenthesis of the last equality.

Let ys A p
�1
s
ð0Þ such that ~ggs; iðysÞ ¼ 0, for all i ¼ 1; . . . ; s, and let H ¼ f j : ys; j ¼ 0g.

Since ys A p
�1
s
ð0Þ, the set H is non empty. This implies that

~ggs; iðysÞ ¼
X

HJJJf1;...;ng

X

k A sJ

ak
Y

j B J

y
hk;a jðsÞi�liða

jðsÞÞ
s; j :ð3Þ

The closure sH of sH in R
n
þ is expressed as

sH ¼ fk A GþðgiÞ : hk; a
jðsÞi ¼ liða

jðsÞÞ; Ej A H and hk; a jðsÞib liða
jðsÞÞ; Ej B Hg

¼ DðH 0
; giÞ;

where H 0
J f1; . . . ; rg is the set of indexes ið jÞ such that a jðsÞ ¼ v ið jÞ, for some j A H.

Let ðgiÞsH the sum of those akx
k such that k A sH , or equivalently, let ðgiÞsH ¼ qH 0ðgiÞ.

Therefore, for any zs ¼ ðzs;1; . . . ; zs;nÞ A K
nðsÞ we have the following expression:

ðgiÞsH � psðzsÞ ¼ z
liða

1ðsÞÞ
s;1 � � � zliða

nðsÞÞ
s;n

X

HJJJf1;...;ng

X

k A sJ

ak
Y

j B J

z
hk;a jðsÞi�liða

jðsÞÞ
s; j

0

@

1

A:

In particular, if we consider the point ~yys A K
nðsÞ given by ~yys; j ¼ ys; j , when j B H

and ~yys; j ¼ 1, when j A H, we conclude that
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ðgiÞsH � psð~yysÞ ¼ ~yy
liða

1ðsÞÞ
s;1 � � � ~yyliða

nðsÞÞ
s;n

X

HJJJf1;...;ng

X

k A sJ

ak
Y

j B J

y
hk;a jðsÞi�liða

jðsÞÞ
s; j

0

@

1

A

¼ ~yy
liða

1ðsÞÞ
s;1 � � � ~yyliða

nðsÞÞ
s;n � ~ggs; iðysÞ ¼ 0;

where the second equality follows from (3).

Since psðEs;HÞ ¼ f0g, the set D ¼7
j AH

Dða jðsÞ;GþÞ ¼7j AH
Dðv ið jÞ;GþÞ is a com-

pact face of Gþ, by Lemma 4.4. On the other hand, we have that qH 0ðgiÞ � psð~yysÞ ¼

ðgiÞsH � psð~yysÞ ¼ 0, for all i ¼ 1; . . . ; s, which contradicts the hypothesis that S is an

adapted system to Gþ, since psð~yysÞ A ðKnf0gÞn. r

Proof of Theorem 3.5. From the hypotheses of the theorem and the fact that the

set of 1-dimensional cones of S0 is equal to the set of 1-dimensional cones of S we have

that

hk; a jðsÞib ymaxfl1ða
jðsÞÞ; . . . ; lsða

jðsÞÞg;

for all j ¼ 1; . . . ; n and all s A S
ðnÞ. Given any cone s A S

ðnÞ, this implies the inequality

(4) jxkj1=y � psðysÞ

¼ jys;1j
hk;a1ðsÞi=y � � � jys;nj

hk;anðsÞi=y
a jys;1j

maxi liða
1ðsÞÞ � � � jys;nj

maxi liða
nðsÞÞ;

for every ys A Ws.

Let U be a neighbourhood of 0 A K n where all the functions gi are defined. Then,

we have the following inequalities

sup
i

jgi � psðysÞj ¼ sup
i

jy
liða

1ðsÞÞ
s;1 � � � yliða

nðsÞÞ
s;n � ~ggs; iðysÞj

b jys;1j
maxi liða

1ðsÞÞ � � � jys;nj
maxi liða

nðsÞÞ sup
i

j~ggs; iðysÞj;

for all ys A p�1
s
ðUÞJWs.

Since S is an adapted system to Gþ, it follows that supij~ggs; iðysÞj0 0, for all

ys A p�1
s
ð0Þ, by Proposition 4.5. This implies that, for any s A S

ðnÞ, we can find a

compact neighbourhood As of p�1
s
ð0Þ contained in Ws such that supij~ggs; iðysÞj0 0, for

all ys A As. Then, the number cs ¼ infys AAs
supij~ggs; iðysÞj is a positive constant.

Joining the information above, we get that

sup
i

jgi � psðysÞjb jys;1j
maxi liða

1ðsÞÞ � � � jys;nj
maxi liða

nðsÞÞ sup
i

j~ggs; iðysÞj

b csjys;1j
maxi liða

1ðsÞÞ � � � jys;nj
maxi liða

nðsÞÞ

b csjx
kj1=y � psðysÞ;

for all ys A As.

Let c ¼ mins cs, where s varies in S
ðnÞ. Then, we have that

sup
i

jgi � psðysÞjb cjxkj1=y � psðysÞ;ð5Þ

for all ys A As. If C ¼ 1=c, we now conclude that
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jxkj1=yaC sup
i

jgiðxÞj;

for all x in an open neighbourhood of 0 in K
n, by Lemmas 4.2 and 4.3. But this means

that xk A I y, by Definition 2.1, and hence Theorem 3.5 is proved. r

If we know explicitly the partition S constructed in Section 4 we can improve

the statement of Theorem 3.5 as follows. Suppose that S ¼ fg1; . . . ; gsgJAðK nÞ is

an adapted system to Gþ. If s A S
ðnÞ, let HsJ f1; . . . ; rg, the set of indexes ið jÞ

such that v ið jÞ ¼ a jðsÞ, for some j A f1; . . . ; ng. Then, for each s A S
ðnÞ, we can choose

a subset AsJ f1; . . . ; sg with the condition that fx A K
n
: qH 0ðgiÞðxÞ ¼ 0; Ei A AsgJ

fx A K
n
: x1 � � � xn ¼ 0g, for all H 0JHs such that 7

j AH 0 Dðv
j;GþÞ is a compact face of

Gþ. Then, we obtain the following result, which is particularly useful when n ¼ 2 (see

Remark 4.1).

Theorem 4.6. In the conditions described above, let IJAðK nÞ be the ideal gen-

erated by S. Let xk be any monomial such that hk; a jðsÞib ymaxi AAs
lða jðsÞ; giÞ, for

every s A S
ðnÞ and every j ¼ 1; . . . ; n. Then xk A I y.

Proof. It is a direct consequence of the proof arguments of Proposition 4.5 and

Theorem 3.5. r

5. Strongly adapted systems.

In this section, we show a special kind of adapted systems to Newton polyhedrons.

If SJAðK nÞ is one of these systems and I is the ideal of AðK nÞ generated by S, we

will obtain a monomial xk belonging to I y whose exponent k belongs to any fixed

coordinate axis, where y is a given rational number. This is not always possible if we

apply Theorem 3.5 to an arbitrary adapted system to a given Newton polyhedron, since

maxi lðv
j; giÞ could be positive when v j is some vector of the canonical basis in R

n.

Throughout this section, we will assume that GþJR
n is a Newton polyhedron

intersecting all coordinate axis. As is easy to check, in this situation we will have that

fv A R
n
þnf0g : DðvÞ is not compactg ¼ fv A R

n
þnf0g : lðv;GþÞ ¼ 0g.

Hence, if v1; . . . ; vr are the primitive vectors supporting some ðn� 1Þ-dimensional

face of Gþ, we can suppose that v1; . . . ; vl support some compact face of Gþ, where l < r

and n ¼ r� l, and that the least n vectors form the canonical basis in R
n.

Definition 5.1. If g A AðK nÞ and j A f1; . . . ; rg, we define l
�ðv j; gÞ ¼ lðv j; gÞ,

when Dðv j;GþÞ is a compact face of Gþ, and l
�ðv j; gÞ ¼ 0, otherwise. Therefore, we

also define D
�ðJ; gÞ ¼ fk A suppðgÞ : hk; v ji ¼ l

�ðv j ; gÞ; Ej A Jg.

Given g ¼
P

k akx
k A AðK nÞ and JJ f1; . . . ; rg, we denote by q�

J ðgÞ the polynomial

obtained as the sum of those akx
k such that k A D

�ðJ; gÞ. If D
�ðJ; gÞ ¼ q, then we

shall fix q�
J ðgÞ ¼ 0.

Definition 5.2. We say that S ¼ fg1; . . . ; gsgJAðK nÞ is a strongly adapted system

to Gþ when, for all JJ f1; . . . ; rg such that 7
j A J

Dðv j;GþÞ is a compact face of Gþ, the

system of equations

q�
J ðg1ÞðxÞ ¼ � � � ¼ q�

J ðgsÞðxÞ ¼ 0
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has no solution in ðKnf0gÞn. Moreover, we say that S is a strongly adapted system

when S is strongly adapted to the Newton polyhedron determined by S.

If g A AðK nÞ and JJ f1; . . . ; rg is such that D ¼7
j A J

Dðv j;GþÞ is a compact face

of Gþ, then q�
J ðgÞ ¼ qJðgÞ or q�

J ðgÞ ¼ 0. The equality q�
J ðgÞ ¼ 0 holds when there exists

some j A J such that Dðv j;GþÞ is not a compact face of Gþ and lðv j; gÞ > 0. Then, we

see that every strongly adapted system to Gþ is adapted to Gþ.

If LJ f1; . . . ; ng, we define ðRnÞL ¼ fx A Rn
: xj ¼ 0; Ej A Lg and ðGþÞL ¼

Gþ V ðRnÞL when GþJRn is a Newton polyhedron. If g ¼
P

k akx
k A AðK nÞ, then

we denote by gL the polynomial obtained as the sum of those akx
k such that

k A suppðgÞV ðRnÞL. If S ¼ fg1; . . . ; gsgJAðK nÞ, we write SL to denote the system

fg1L ; . . . ; gsLg.

For each JJ f1; . . . ; rg, J0q, we set J � ¼ fi A f1; . . . ; ng : ei is equal to some

vector v j, j A Jg. If we define J1 ¼ J V f1; . . . ; lg and J2 ¼ J V flþ 1; . . . ; rg, it is

straightforward to see that q�
J ðgÞ ¼ qJ1ðgJ �

2
Þ, for all g A AðK nÞ. In particular, we observe

that S is a strongly adapted system to Gþ if and only if SL is an adapted system to

ðGþÞL, for all LJ f1; . . . ; ng.

Example 5.3. Let us consider the system S ¼ fx5 þ xyðx� yÞ2; y5 þ xyðx� yÞ2;

z3gJAðR3Þ. This system is adapted, since it contains a monomial, but it is not

strongly adapted, because the system S 0 ¼ fx5 þ xyðx� yÞ2; y5 þ xyðx� yÞ2g is not

adapted.

Now we state an analogous result to Theorem 3.5 for strongly adapted systems. In

this case, we shall impose conditions depending on the compact faces of Gþ to a given

k A Rn in order to obtain that xk A I y, where y A Qþ.

Corollary 5.4. Let S ¼ fg1; . . . ; gsgJAðK nÞ be a strongly adapted system to Gþ

such that VðSÞ ¼ f0g. Let IJAðK nÞ be the ideal generated by S and let y A Qþ. If

xk is a monomial such that hk; v jib y maxflðv j; g1Þ; . . . ; lðv
j ; gsÞg, for all j ¼ 1; . . . ; l,

then xk A I y.

Proof. Since VðIÞ ¼ f0g, there exists some Nb 1 such that mN
n J I , by [12,

p. 136] (see Definition 2.1). Here we denote by mn the maximal ideal of AðK nÞ. Let

GðxÞ ¼ xN
1 þ � � � þ xN

n and consider the system given by S 0 ¼ fg1 þ G; . . . ; gn þ Gg.

Then we have the inclusion

hg1 þ G; . . . ; gs þ GiyJ I y;ð6Þ

for any y A Qþ.

If j A f1; . . . ; lg, suppose that v j ¼ ðv j
1; . . . ; v

j
nÞ and let v j

0 ¼ minfv j
1; . . . ; v

j
ng. Given

any i A f1; . . . ; sg, we have that

lðv j
; gi þ GÞ ¼ lðv j

; giÞ , lðv j
; giÞaminfhk; v ji : k A suppðGÞg

, lðv j
; giÞaminfN v

j
t : t ¼ 1; . . . ; ng

, Nb
lðv j ; giÞ

v
j
0

:
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Therefore, if N satisfies the inequality

Nb max
i; j

lðv j ; giÞ

v
j
0

;

where j A f1; . . . ; lg and i A f1; . . . ; sg, then lðv j; gi þ GÞ ¼ lðv j; giÞ, for all j A f1; . . . ; lg.

Moreover, by the definition of G, we have that lðv j; gi þ GÞ ¼ 0, for all j ¼

lþ 1; . . . ; r. Hence, we get the equality q�
J ðgiÞ ¼ qJðgi þ GÞ, for all i ¼ 1; . . . ; s and all

JJ f1; . . . ; rg such that D ¼7
j A J

Dðv j;GþÞ is a compact face of Gþ. But this implies

that S 0 is an adapted system to Gþ, since S is strongly adapted to Gþ. Then, applying

Theorem 3.5 to the system S 0 and considering the inclusion (6), we obtain the desired

result. r

In the conditions of the above corollary, we define the following subset of Rn
þ:

MyðS;GþÞ ¼ fk A Rn
þ : hk; v jib ymaxflðv j; g1Þ; . . . ; lðv

j; gsÞg; Ej ¼ 1; . . . ; lg:ð7Þ

We observe that the set MyðS;GþÞ intersects each coordinate axis. When y ¼ 1, we

denote the set MyðS;GþÞ simply by MðS;GþÞ.

6. Estimation of Łojasiewicz exponents.

In this section, we apply Corollary 5.4 to obtain a result estimating Łojasiewicz

exponents. Along this section we will suppose that GþJRn is a Newton polyhedron

intersecting all coordinate axis. As in the previous section, we denote by v1; . . . ; vl the

primitive vectors supporting some compact face of dimension n� 1 of Gþ.

Theorem 6.1. Let S ¼ fg1; . . . ; gsgJAðK nÞ be a strongly adapted system to Gþ

such that VðSÞ ¼ f0g and let IJAðK nÞ be the ideal generated by S. Let J ¼

hh1; . . . ; htiJAðK nÞ and suppose that 0 A VðJÞ, then

lðJ; IÞa max
j¼1;...;l

maxflðv j; g1Þ; . . . ; lðv
j; gsÞg

minflðv j; h1Þ; . . . ; lðv j ; htÞg
:

Proof. Considering Definition 2.1 and Corollary 5.4, we obtain the following

inequalities:

lðJ; IÞ ¼ inffy A Q : JJ I 1=yg

a inffy A Q : GþðJÞJM1=yðS;GþÞg

¼ inf y A Q : lðv j; hiÞb
1

y
maxflðv j; g1Þ; . . . ; lðv

j ; gsÞg; for all i; j

� �

¼ max
j¼1;...;l

maxflðv j; g1Þ; . . . ; lðv
j; gsÞg

minflðv j; h1Þ; . . . ; lðv j ; htÞg
:

r

If we replace the ideal J by the maximal ideal in Theorem 6.1, the following upper

bound for the Łojasiewicz exponent lðmn; IÞ is obtained:
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lðmn; IÞa max
j¼1;...;l

lðv j; g1Þ

v
j
0

; . . . ;
lðv j; gsÞ

v
j
0

( )

;ð8Þ

where v0 ¼ minfv1; . . . ; vng, for any v ¼ ðv1; . . . ; vnÞ A ðRnf0gÞn.

If f : ðK n; 0Þ ! ðK ; 0Þ is an analytic function germ with an isolated singularity at

the origin, we denote by a0ð f Þ the Łojasiewicz exponent lðmn; Jð f ÞÞ, where Jð f Þ is the

jacobian ideal of f . We shall denote by Sf the system of AðK nÞ formed by the partial

derivatives of f and we call this the jacobian system of f .

If v ¼ ðv1; . . . ; vnÞ A ðRnf0gÞn and ab 0, then the largest of the distances from the

origin to some point in the intersection of the union of the coordinate axis with the

plane hk; vi ¼ a is equal to a=v0. From this observation, together with Remark 2.2, we

obtain the following consequence of Theorem 6.1.

Corollary 6.2. Let f : ðK n; 0Þ ! ðK ; 0Þ be an analytic function germ with an

isolated singularity at the origin, let S ¼ fg1; . . . ; gsgJAðK nÞ and let I be the ideal

generated by S. Suppose that S is strongly adapted to Gþ and that I ¼ Jð f Þ. Let

P1; . . . ;Pn the points in the intersection of MðS;GþÞ and the union of the coordinate axis

and let r ¼ maxfjP1j; . . . ; jPnjg. Then a0ð f Þa r.

For the sake of completeness, we state the result of Fukui [5] on the estimation of

the Łojasiewicz exponent a0ð f Þ of an analytic function germ. First, we need to give

some preliminary definitions.

Suppose that u1; . . . ; um is the family of primitive vectors supporting some compact

face of dimension n� 1 of the Newton polyhedron Gþð f Þ of f . Then, we denote by

m0ð f Þ the largest of the distances from the origin to some point in the intersection of

the union of the coordinate axis with some plane of equation hk; u ji ¼ lðu j ; f Þ, where

j ¼ 1; . . . ;m.

Given a series g ¼
P

k akx
k A AðK nÞ and a compact subset DJR

n, we denote by

gD the polynomial obtained by the sum of those akx
k such that k A D. We recall that

an analytic function germ f : ðK n; 0Þ ! ðK ; 0Þ is said to be Newton non-degenerate

when, for each compact face DJGþð f Þ, the system of equations ðx1qf =qx1ÞD ¼ � � � ¼

ðxnqf =qxnÞD ¼ 0 has no solution in ðKnf0gÞn (see [8] and [17] for more information

on this kind of functions). If f is not Newton non-degenerate, then we say that f is

Newton degenerate.

Theorem 6.3 ([5]). Let f : ðK n; 0Þ ! ðK ; 0Þ be an analytic map germ with an

isolated singularity at the origin. Suppose that f is Newton non-degenerate, then a0ð f Þa

m0ð f Þ � 1.

The above theorem was proved by Lichtin [11] in the case n ¼ 2 under stronger

conditions.

Remark 6.4. i) As we see, Theorem 6.3 uses the Newton polyhedron of the

function f as a tool to obtain an upper estimation for a0ð f Þ. On the other hand, in

Corollary 6.2 we are considering a Newton polyhedron Gþ such that Jð f Þ is determined

by a strongly adapted system S to Gþ. Observe that S must not be equal to Sf .

ii) The next example shows that the class of those functions whose jacobian system
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Sf is strongly adapted to some Newton polyhedron is not included in the class of

Newton non-degenerate function germs.

Example 6.5. Let f : ðR3; 0Þ ! ðR; 0Þ given by f ðx; y; zÞ ¼ ðxþ yÞ3 þ 2x2zþ z11.

This function is Newton degenerate and the jacobian system Sf is strongly adapted (to

its Newton polyhedron). Therefore, we have that a0ð f Þa 10, by Corollary 6.2.

We give some examples showing how Corollary 6.2 can be applied to estimate the

number a0ð f Þ when f is Newton degenerate and the system of partial derivatives of f

is not strongly adapted. The following lemma is very useful in this task. We shall

denote by Ið f Þ the ideal of AðK nÞ generated by x1qf =qx1; . . . ; xnqf =qxn.

Lemma 6.6 ([16]). Let f : ðK n; 0Þ ! ðK ; 0Þ be an analytic function germ. Then

f A Ið f Þ.

Proof. If g A AðKÞ, we denote by nðgÞ the order of g at the origin. Then, by

Proposition 2.3, it is enough to see that nð f � jÞbmini nððxiqf =qxiÞ � jÞ, for any analytic

map germ j : ðK ; 0Þ ! ðK n; 0Þ. Let ji, i ¼ 1; . . . ; n; denote the component functions of

j. If we apply the chain rule to ðd=dtÞð f � jÞ, we obtain that

nð f � jÞ � 1b min
i
ðnððqf =qxiÞ � jÞ þ nðjiÞ � 1Þ ¼ min

i
nððxiqf =qxiÞ � j� 1Þ;

which gives the desired inequality. r

Example 6.7. Consider the map germ f : ðR3; 0Þ ! ðR; 0Þ given by f ðx; y; zÞ ¼

xa þ yb þ zc þ ðx2y� xy2Þ2, where 6a a; b and c > 0. It is straightforward to check

that f has an isolated singularity at the origin, that f is Newton degenerate and that the

jacobian system Sf is not strongly adapted. On the other hand, we have that

hðx; y; zÞ :¼ x
qf

qx
þ y

qf

qy
� 6f ðx; y; zÞ ¼ ða� 6Þxa þ ðb� 6Þyb � 6zc A Ið f Þ;

by Lemma 6.6. In particular, h is integral over Jð f Þ and then we can apply Theorem

6.1 to the system S ¼ fh; qf =qx; qf =qy; qf =qzg, since S is strongly adapted. Therefore,

we obtain that a0ð f Þamaxfa; b; cg.

Example 6.8. Let f : ðR2; 0Þ ! ðR; 0Þ given by f ðx; yÞ ¼ ðx2 � y3Þ2 þ ya, where

ab 7. This function germ is Newton degenerate and the system Sf is not strongly

adapted. Nevertheless, by Lemma 6.6 and the relation

3x
qf

qx
þ 2y

qf

qy
� 12f ðx; yÞ ¼ 2ða� 6Þya;

we have that ya A Jð f Þ. Since the system fya; qf =qx; qf =qyg is strongly adapted we

can apply Theorem 6.1 to state that a0ð f Þa a.

Finally, we state a known result showing the relevance of the number a0ð f Þ. For

f A AðK nÞ, we say that the r-jet j rf ð0Þ of f at 0 A K
n is C 0-su‰cient if, for any

g A AðK nÞ such that j rgð0Þ ¼ j rf ð0Þ, there is a germ of homeomorphism f : ðK n; 0Þ !

ðK n; 0Þ such that g ¼ f � f.
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Theorem 6.9 ([3], [9]). Let f : ðK n
; 0Þ ! ðK ; 0Þ be an analytic function germ with

an isolated singularity at the origin, then j rf ð0Þ is C0-su‰cient if a0ð f Þ < r.
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