J. Math. Soc. Japan
Vol. 55, No. 4, 2003

A certain Galois action on nearly holomorphic modular forms with

respect to a unitary group in three variables

By Atsuo YAMAUCHI

(Received May 7, 2002)

Abstract. In this paper we will consider Fourier-Jacobi expansions of nearly holo-
morphic modular forms on SU(2,1), whose coefficients are nearly holomorphic theta
functions, and will construct a certain Galois action on them.

0. Introduction.

The classical FEisenstein series

E)=| Y Im@)(cz+d) " lez+d|™>
c,deZ
(C, d) # (07 0) s=0
is a holomorphic modular form if k is an even integer and & > 4. In the case k = 2, it
is well known that

E)(z) =a-Im(z —|—Zb exp( 2n\/_mz)

m=0

with a,b,, € C, N € N, where Im(z) denotes the imaginary part of z. This is the
most famous example of a nearly holomorphic modular form. In general, a nearly
holomorphic modular form f in elliptic modular case can be expressed as

V4

f(z) = Z{ (rIm(z))™ Zc fojim) exp(27t\/_mz/N)} (0.1)

Jj=0

with ¢ ;myeC, peN and NeN. Then for any oe Aut(C) (the group of all
automorphisms of the complex number field), it is proved in that there exists
another holomorphic modular form f“ such that

zp:{(nlm Zcf/m eXp(27'C\/_mz/N)} (0.2)

In that book, this Galois action of ¢ € Aut(C) was constructed in case of any symplectic
groups.
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In [9], Shimura defined and investigated nearly holomorphic modular forms with
respect to unitary and orthogonal groups precisely. On the other hand, the author
constructed a Galois action on modular forms for certain unitary groups in [13]. The
main theme of this paper is to construct an extension of that Galois action on nearly
holomorphic modular forms for three dimensional unitary groups.

To be more concrete, let F be a totally real algebraic number field of finite degree
and K be its CM-extension, ie. totally imaginary quadratic extension. We denote by
a the set of all archimedean primes of F. Consider a non-degenerate skew-hermitian
matrix R of degree 3 with coefficients in K given by

1
R= s ,
—1
where s € K* is pure imaginary at each vea. Then v—1R is a hermitian matrix of

signature (1,2) or (2,1) for any embedding of K into C. Define the algebraic group G
of unitary similitudes with respect to R by

G(Q) ={ye GL(3,K)|"y"Ry =v(»)R, v(y) e F*},

where p stands for the non-trivial element of Gal(K/F); p is the complex conjugation for
any embedding of K into C. We can define the symmetric domain D corresponding to

G as
- -(0)-(2) e

where ¥, is the embedding of K into C that lies above v such that Im(s%) > 0. Take
CM-type ¥ = (¥,) and call it “the CM-type determined by s.” Put

\/—l(s"y”wvw_v—i— Zy — Zy) > 0}

for each vea

vea
71,0(5) - (S'PL.M}UMTU—FZ_U - ZU)_lv

Y,

ra,o(3) = =5 (s

) — — -1
LWUWU + Zy — Zv) 9

for each vea. Then a nearly holomorphic modular form f on D is written as a
polynomial of () _ {ri s 2.} with coefficients in holomorphic functions:

=X C(f;jl.,jz)(s)(Hm,da)’”) (Hrz,v(sV“’),

jl,jze(NU{O})“ vea vea
Ji+ip<p

with /1 = (J1.0)pew 2= (20)peas P = (Pv),eq € (NU{0})* and holomorphic functions
C(rij,p)- I f is C-valued, then f can be rewritten as

- Y Y {H((ﬂ\/—_l)_lrm(a))j"}gwy.f,m)(W)

je(NU{0})* 0<meF \vea
0<j<p

X exp <27z\/—_lz mb.zv> : (0.3)

vea
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We call this expression the Fourier-Jacobi expansion of f. Each “coefficient” g(s ;)
is a nearly holomorphic function (i.e. a polynomial of {i,|v e a} with coefficients in
holomorphic functions) on [],., C which satisfies the same property of classical theta
function. We will call such a function as ‘“‘nearly holomorphic theta function”. Then
9gir.j,m is a nearly holomorphic theta function with respect to LY, where L is a certain
Z-lattice in K. (We regard ¥ as an embedding of K into [[,_, C by b¥ = (b"")
Put

vea LEtl')

(9(7,j.m). (W) = exp (n\/——l Z(mS)%W_va> 9if.7m) (W)-

vea

Then for any ¢ € Aut(C), there exists a theta function gg‘j} l;”,;‘)) with respect to the lattice

(aL)*? of [],., C which satisfies

vea

(77 (@) ™) = {(g(s.jom). (")}

for any u € K, where Yo means the CM-type defined by Yo = {¥,0|vea} and the
symbol a denotes an element of K, the idele group of K, depending on ¢ and ¥ (cf.
(1.5)). This is a generalization of the theorem which is proven in the case of holo-
morphic theta functions (Theorem 3.1 of [13]).

The main theorem (Theorem 4.1) is as follows.

Let f be a nearly holomorphic modular form given by (0.3). Let o € Aut(C), ¥ be
CM-type of K determined by s, and choose a € K suitably (cf. (1.5)). Then there exists
be F* and another nearly holomorphic modular form £ .q with respect to another
group G of unitary similitudes and symmetric domain D corresponding to a skew-hermitian

1
form bs (b e F* is determined by a,¥ and a) whose Fourier-Jacobi expan-
-1
sion is

forag - 3 Y {H«nm i >>v}

jeZ® 0<meF \vea
0<j<p

x ggf;zj’_”;;j))(vb) exp <Z7W -1y ””12“) ’ (3 - (w

vea

%
\\_,/
Il

().
Wy vea

We shall review the results of holomorphic cases constructed mainly in in
section 1. In section 2, we examine the near holomorphy of modular forms explicitly
for three dimensional unitary groups. The Galois action to nearly holomorphic theta
functions will be constructed in section 3. Using these results, we can prove the main
theorem in section 4. And in section 5, the last section, we study an orthogonal pro-
jection map of nearly holomorphic modular forms to holomorphic ones which was
stated in [12], and prove that it is compatible with the Galois action in this paper.
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NotATION. For a ring 4, we denote by A4)" the set of all m x n-matrices with
entries in 4, and denote A simply by 4”. We express the identity matrix of degree
n as 1,. The transpose of a matrix X is denoted by ‘X. We denote as usual by
Z,N,Q,R and C the ring of rational integers, the set of all positive rational integers,
the field of rational numbers, real numbers, and complex numbers, respectively. For
ze C we denote by Re(z), Im(z), and Z the real part, the imaginary part, and the
complex conjugation of z, respectively. Moreover, when z = x ++/—1y with x, y € R,
we put 0/0z = (1/2)((8/dx) — V/—1(8/dy)), 6/0z = (1/2)((8/dx) + v—1(8/dy)) as dif-
ferential operators on C®-functions on C. If K is an algebraic number field, K,
denotes the maximal abelian extension of K, and we denote by K, (resp. K;) the adele
ring (resp. the idele group) of K. By class field theory, every element x of K defines
an element of Gal(K,/K). We denote this by [x,K]. We denote by Ox and O the
ring of algebraic integers of K and its unit group. For each finite prime p of K, we
denote the p-completion of K and its maximal compact subring by K, and ¢,. In the
same way, O, and Z, denote the p-completion of Q and Z for each rational prime
number p. For an algebraic group G defined over a field k, we denote by G(K) the
group of K-rational elements of G if K is an extension field of k. We denote by
G4, G, and Gj the adelization of G, the archimedean component of G4, and the non-
archimedean component of G4. By a variety, we understand a Zariski open subset of
an absolutely irreducible projective variety.

1. Unitary groups in three variables and corresponding modular forms.

In this section we shall recall the results of [13]. In that paper we constructed
the Galois action on holomorphic modular forms with respect to a unitary group. We
restrict ourselves to the case of 3-dimensional unitary groups in this paper.

Let F be a totally real algebraic number field of finite degree and K be its CM-
extension (namely, a totally imaginary quadratic extension of F). Such a field K is
called a CM-field. As is well known, the non-trivial element of Gal(K/F) is the
complex conjugation for any embedding of K into C. We denote this by p. Let a
be the set of all archimedean primes of F, which can be identified with those of K.
We denote by |a|, the number of elements in a, which is equal to [F : Q]. For each
v € a, there are two embeddings of K into C which lie above v. By a CM-type of K,
we denote a set ¥ = (¥,) where each ¥, is an embedding of K into C which lies
above v.

Define a non-degenerate skew-hermitian matrix R € K33 by

vea

1
R= s ,  where s€ K* and s’ = —s.

Determine the CM-type ¥ = (¥,),., of K so that Im(s*) >0 for each vea.
Let GV (s,¥) be the group of unitary similitudes with respect to R, and we view
GV (s, ) as an algebraic group defined over Q. Then

GV (s, ¥)(Q) = {y € GL(3,K)|'y*Ry = v()R with v(y) e F*}.
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We have v(y) > 0 (> 0 means totally positive from now on) for any y e GV (s, ¥)(Q),
since the hermitian matrix —v/—1/?%R%»% must have the same signature as
—+v/—1R% that is, (2,1) for each v e a. Note that for any y e GV (s, ¥)(Q), it holds
det(y) det(y)” = v(y)’. Next, we define an algebraic subgroup Gl(l’l)(s, ) of GUV (s, ¥)
as

GV (s, ¥)(Q) = {re G (s, W)(Q) | v(y) = det(y) = 1}.

Then Gl(l’l)(s, ¥) has the strong approximation property. Hereafter we write
G (s, ¥) (resp. Gl(l’l)(s, ¥)) as G (resp. Gp) if there is no fear of confusion.

For vea and b € F, we denote by b, the image of b by the embedding v: F — R.
For any o € Aut(C) and v € a, we denote by vs an element of a so that b, = (b,)°.
Given a set X, we denote by X“ the set of all indexed elements (x,),., with x, € X.
For x = (x;),., € X* and o € Aut(C), we denote by x” the element y = (y,),., € X*
such that y,, = x,.

We can view a CM-type ¥ as an embedding of K into C* such that b¥ = (b¥) _,
for any b € K. Through ¥, we can view K as a dense subset of C*. When b e F, we
drop the symbol ¥ (since b¥ does not depend on ¥) and regard b as the element (b,)
in R*. For x = (x,),., € C* we write e,(x) =exp(2nv—13,_,X).

For each v e a, we can define the v-component G, = GV (s, ¥) of the algebraic
group G as follows.

vea

G, = {ye GL(3,C) | 7yR""y = v(y)R™" with v(y) e R*}.

Note that for any y € G, v(y) > 0. We can define the corresponding symmetric domain
D, = DV(s, ¥)  as

e f(0)ee

Now we can define the action of G, on ©,. For any 3= (Z>ebv and o =
w
ay bl C1

V=1(stwiv 4+ 2 - z) > O}.

a by ¢ | eG, put
as b3 C3

a( Z) _ ((alz+b1W+ c1)(a3z + bsw + 63)_1)

w (a22+b2w+cz)(a32+b3w+03)71

Then the group G, acts on D, as a group of holomorphic automorphism by 3 — «(3).
The automorphic factors are

/,tv(O(, 3) =azz+ b3W + ¢3,

Gz+a  aw—by(sT) !
iv(%ﬁ) = - wo_ - — |
—stvipz — sy —sTraaw + by

Then for o, € G,, we have
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1o (o, 3) = 11, (2 B(3)) 1 (B, 3),
Av(aﬁa 5) = ib(“?ﬁ(ﬁ))&i(ﬂ? 3)7

(Zi) ou= V(“)ﬂu(%S)1%(0(73)1<:;;>’ (1.1)

det(4,(21.3)) = det(a) " v(2) s, (2. 3).

Put

zZ—z w (1.2)
&(3) = (s, W) (3) = VT ( )

Then the following assertions hold.

V()& (3) = ol 3)E((3)) Aol 3),
v(e)n,(3) = my(ot, 3)m,((3)) (2, 3),

for x€ G, and 3€®,. Put

G, =G" (s, w), =][6¢" V(s ¥),

vea

D=2, ) =DV (s, ¥),

vea

and G, acts on © componentwise. We can define an embedding of G(Q) = GV
(s, ¥)(0Q) into G, by o — («¥), ., and also define an action of G(Q) onto D, a(3) =

(" (3:))veq Where 2 € G(Q), 3= (3,),eq € D Set

/uv(a? 3) = /‘u(fquvv 30)7 j'v(aa 3) = iv(alﬂ;? 30);

Now let us consider a congruence subgroup of G(Q). For any integral ideal a of
K, set

= {7 G{""(s,¥)(Q)NGL(3,0x) |y = 15 modal},

where Ok denotes the ring of integers of K. By a congruence subgroup of G(Q), we
understand a subgroup I" of G(Q) which contains I, for some integral ideal a of K and
K*I, is a subgroup of K*I" of finite index.

Next let us define modular forms on . Take a rational representation @ of
GL(2,C)* x (C*)* on V,, where V, is a finite dimensional vector space over C. Then
for any V,,-valued function f on © and any o € G(Q), we define another V,,-valued
function f| o on D by

(F1o2)(3) = O((2(@,3))peas (%)) pea) S (2(3))-
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Clearly |, (¢f) = (f|,2) |, B for any a,f € G(Q). If f is holomorphic (or C*) on D,
so is f],o.

For any congruence subgroup I" of G-V (s, ¥)(Q), we denote by .V (s, ¥)(I'),
the set of all holomorphic V,,-valued functions f on L'D(l’l)(s, ¥) such that f|,y=f
for any y e I We denote by .4V (s, ¥), the union of .V (s, ¥)(I') for all con-
gruence subgroups I” of G(LU(s, ¥)(Q). We write simply %1 D, w), .MV (s, ) ()
by .4, H,(I") respectively if there is no fear of confusion.

Take k = (k;),., € Z* and consider the rational representation w; of GL(2,C)" x
(C)* as

wi(a,b) = [ [ ()",

where a = (a,),., € GL(2,C)* and b = (b,),., € (C*)". In this case we write simply |,
and .#,, by |, and .#.. From now on till the end of this section we treat the case when
f € M with some ke Z“.

Hereafter we identify Z“ with the free module ), _,Z-v by putting (k,),., =
Y veakov. Alsoput 1=(1),.,=> .0 We can define the action of g € Aut(C) on
Z° by (O ,cakov)” =3 ,cako(vo). For any ke Z“, we denote by F(k) the algebraic
number field corresponding to {o e Gal(Q/Q) |k° =k}. Then F(k) is contained in
the Galois closure of F' over Q. For p = (py),cps 9= (qv),cq € Z", we write p < g if
Py < ¢, for each vea.

We can define a certain parabolic subgroup of G = GV (s, ¥) and consider cor-
responding Fourier-Jacobi expansions of holomorphic modular forms. Set

Losy” b+ (1/2)syy? C K
NEY(s, w) (@) =Shp =0 1 y e F [
0 0 1

HOD (5, 9)(Q) = NO-U(s, ¥)(0) - {( 1 ) K}
(o)

o
pe K~
PO (s, w)(Q) = N (s, #)(Q) - ( B ) x
1 ane K
BB’ (o)
Then PV (s, ¥) is a parabolic subgroup of G and NV (s, ¥) is its unipotent radical.
We write simply N 1)(s, v), H(l’l)(s, ), P(l’l)(s, ¥) by N, H, P respectively if there is no
fear of confusion.
For any f € .4, we can write f as

SG3)=_ 9ir.m(w)exp <2n\/_ Zmz)

meF vea

= };Fg(f,m(W)ea(mZ) (3 = (i) —~ (VZV )a € 13), (1.3)
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where g, # 0 only if m belongs to a certain Z-lattice of F. Considering the action
of N(Q), the function g(s ,) must be a certain theta function.

For a lattice 4 in C* and a hermitian form H on C“ so that Im(H (/,,5)) € Z for
any ;,5,b € A, we denote by T(C“ A, H), the space of holomorphic functions g on C*
satisfying

gu+1) = g(u) exp(nH(l,u —I—%l)) for any /e, u=(u),.,€C* (1.4)

As is well known, T(C“ A,H) # {0} only if H is semi-positive definite.
Then in (1.3), the function g/, belongs to I(C* LY, H,; v), where L is a certain
Z-lattice in K and

Ht,Y’(uth) = —-2v-1 Zl%mulv?

vea

for te K* so that = —t. Since H,y 1is semi-positive definite if and only if
Im(¢%) > 0 for each v € a, the function g/, in (1.3) is non-zero only if m is totally
positive or 0. We rewrite (1.3) as

G = Y girmwedmz),

0<meF

where 0 < m means m is totally positive or 0.

We denote by T, w the union of T(C* LY H,y) for all Z-lattices L in K. The
Galois action on ¥, y was constructed in . To explain that, we must review the
reflex of CM-type. For a CM-field K, its CM-type ¥, and any o e Gal(Q/Q), we
can define another CM-type Yo = {¥,c|vea} of K. Note that (¥0), = ¥o0. We
denote by Ky (or simply K* if there is no fear of confusion), the algebraic number
field corresponding to {o € Gal(Q/Q)|¥Wo = ¥} which is a finite index subgroup of
Gal(Q/Q). As is well known, K is a CM-field contained in the Galois closure of
K. Viewing ¥ as a union of [F : Q] different Gal(Q/K)-cosets in Gal(Q/Q), we can
define a CM-type ¥* of Ky as

Gal(Q/Ky) V" = (Gal(Q/K)¥) ™.

We call ¥* by “the reflex of ¥ and the couple (K, ¥*) by “the reflex of (K, ¥)”.
From the definition, we have (K;)? = K, for any ¢ € Gal(Q/Q). By Ny,, we denote
the group homomorphism x — [], - x¥" from Ky to K*. It is a morphism of
algebraic groups if we view Ky and K* as algebraic groups defined over Q, and so it
can naturally be extended to the homomorphism of (Kj); to K.

For any g e I(C*% A,H), we define a function g, on C* (which may be non-
holomorphic) by

9.0 = exp( =5 HOw) Jotw) (e €.

Now for any Z-lattice L in K and g € T(C* LY, H, ), consider the restriction of g. to
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K?. Take any Z-lattice L; in K. Then there exists a certain sublattice L, of L; so
that
Y)

g*(yylﬂnyl) =g.(y for any ye L;, xe L,.

(This does not mean g, is periodic on whole K¥.) Hence we can define g,(y¥) for
yeKy. (See, section 3 of [13])

For a CM-type ¥ and any o € Aut(C), a certain idele class gy (o) € K /K*K is
defined in [2] (or essentially in [TI]). Take an abelian variety (4,1) of type (K, ¥) with a
Z-lattice L in K and a complex analytic isomorphism @ of C*/LY onto A. (See, [11].)
We denote by Ay, the subgroup of all torsion elements of 4, which coincides with the
image of K/L by @ o ¥. Next take (4,7)°. Then it is an abelian variety of type
(K,%ag) and we have the following commutative diagram

K/L -2 A

Xa a

@()A”

tor

K/aL

with some a € K} and complex analytic isomorphism @, of C*/(aL)”” onto A°. The
coset aK* K’ is uniquely determined only by (K, ¥) and ¢ (not depending on A4 or L).
We denote this coset by gw(g). For a e gy(o), we have aa’” € y(o)F*F), where y(o) €
[1,Z; = @} which satisfies [x(0)", 0] = olg,- We define i(g,a) € F* by x(0)/(aa’) €
(o,a)FX. 1If o is trivial on Kj,, we have gy (o) = Nip(b)K* K> with be (Ky); such
that [p~!, Ky] = Kp, ; this fact is a main theorem of complex multiplication theory of

[11]. Note that gq/(ol)gyzal (02) = gy (o102). In [13], we defined
Cy(C)=A{(0,¥,a)|ceAut(C),ac gy(o)}. (1.5)
We have shown the following theorems in [13]. (See, Theorems 3.1 and 6.1 of
13])
TueoreM 1.1. For any ge I(C* LY H,y) and (o,¥,a) € Cy(C), there exists
g\ "D e T(C* (aL)", Hyy.ay wo) Which satisfies
(9", ((a0)"") = {g.(»")}" for any yeK.
THEOREM 1.2. For ke Z“, take f € %k(l’l)(s, ¥) and let
> e (5= ) e 7)),
O<meF w

be its Fourier-Jacobi expansion. For any (o,%¥,a)e Cy(C), there exists f@V9 ¢
%k(ﬂl’l)(l(a, a)s, Ya) whose Fourier-Jacobi expansion is

a v,
EROEEY gj,m“(w ea(mz),

0<meF

) e DV (i(a,a)s, Vo).

= N

where 3 = (
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We also have to review modular forms with respect to symplectic groups.
Let F,a be as above. Put GU(Q) = GSp(I,F), G\ (Q) = Sp(l, F), that is,

G(l)<Q):{yeGL(zl,FH’y(_Oll g)ysz)<_oll B’) with V(V)GFX}’

0 1 0 1
tio-peann(’, B-(5, 1)
()

We view G(’),Gl(l) as algebraic groups defined over Q. Then G,’ has the strong
approximation property. As is well known, we have det(y) =1 for any ye Gl(l)(Q).
Set

G(Q), = {re GY(Q)|v(y) » 0},
where >0 means totally positive, and set
9 ={z=1(2,),c, € (C*|'z, = z,, Im(z,) >0 for any v e a},

where >0 means positive definite. In case F = Q, 9 is the Siegel upper half space,
which is written as $;.
Now GU(Q), acts on 97 as o((zy),c,) = (avzo + b)) (cozo + dy) ), o, With o=

b
<ccl d) e GV(Q), and a,b,c,d e F!. The automorphic factor is defined by

jL(wl)(av (ZU)vea) = CvZyp + db

for each vea. We define congruence subgroups of G)(Q) . and modular forms on
97 with respect to them as in [I1]. For a congruence subgroup I’ ) and ke Z°,
we denote by %k(l)(F "), the space of holomorphic modular forms on 97 of weight k
with respect to '), that is, the set of all holomorphic functions f on $; which satisfy
f(y(z))Hveadet(jv(%z))*k“ = f(z) for any ye I''Y (and are holomorphic at any cusp
if F=Q and /=1). The union of /%k(l)(F ) for all congruence subgroups I'") is
denoted by %k(l). Set

A = s 1 fie k), 0% frea).
eeZ"

As 1s well known, any f € %k(l) has a Fourier expansion as

f(z) = Zcrea(tr(rz))7

relL

where L is a certain lattice in the space of symmetric matrices of degree / with
coefficients in F. (Note that ¢, # 0 only if r, is semi-positive definite for each v € a.)
Then for any ¢ € Aut(C), there exists f7 € %k(ll,) whose Fourier expansion is

[7(2) = clea(tr(rz)). (1.6)

relL
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This fact is proved in @] cf also in section 26 of [11]). We can also define f in case

f= fl/fzeﬂ (f e%k+e707éﬁe,/% ) by f7=f°/fy. (It is well defined.)
In [3], the canonical models for symplectic cases are constructed. Take G|

GSp(l, Ey) and set

0 _

%f):{xe(}f)] v(x) e FXFS, Q%, v(x), >0 for each vea}.

We denote by ) the 2 defined in (3], which is a certain family of subgroups X of GA(Z)
such that F Y= xngt )(Q) is a congruence subgroup of G(l)(Q)+. For X € 7", the
canonical model of Iy % \$7 (which is written Vy in [3]) is denoted by VXI), and the
projection map of $ to V() is written (p(;,) (which is ¢y in [3]). For X,Y € 2" and
X€ %(rl) so that X o xYx‘l, we can take the morphism J)((l))/(x) (called Jyy(x) in [3]) of
VYU) to (V)y))“(x), where o(x) € Aut(C) is determined by x, as in [3].

Take 0 # f1, f> € /%k(l) and f\°, f;7 in the sense of (1.6). Then for any Y e 7" such
that (f1/f2) o ((/)(Yl))_] is defined as a rational function on Vy), we have

el =1 e W e s (o0 )) odd (1)

where (o) € [], 2 so that [1(s) ', Q] = olg, and

- (1, 0 )—1 (1; 0 )
Y = Y .
(0 x(0); 0 x(@)
For any CM-extension K of F and its CM-type ¥, put

wO(P)={ze 9|z=1" for some €K/}

Then ¢ (z) is K, -rational for any ze W(¥) and X € Z?. For any z=1¥

W (), we define the group injection @) : K} — GAU) as

€

o - (e ot 1)
z ( ) ( (a—ap)(f—‘[/))fl (T—Tp)il(a/"c—af/’)

[ times

namely the /(a,...,a) in section 24.10 of with /& corresponding to z. Then

it satisfies @”(a)(f) = (Zf) and v(cbz(l)(a)) =aa’. If ae K*, then QDZU)(a) €
i -1y

G"(Q), and @ (a)(z) =z. We have the relation between canonical models and CM-
points as follows (Proposition 3.2 of [13]).

ProPOSITION 1.3. Take any z=1"e WO(¥) (teK/,t=1) and oe Aut(C).
For any Xezl, put

N I, 0 )1 (11 0 )
X = X ez
(0 x(o) 0 x(o)l

and
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0 1; 0 -1 ) ’ (D=
[JXX <( 0 ){(0)1/> )((DX (Z>)] =0y (2):

Then we have ze W) (¥q) and

)

o) (2) = o (7 + ) (w37 + 2a) ")),

where (al aZ) e GV(Q) (1,2, 03,04 € F) such that
o3 04

"o 0 ! ()
xnG'HeWe(ayn Y
(Oﬂz oc4) © (O ){(0’)11> ( 14) G5 @ (a) (0),

with a € gy (o).

To use Shimura’s many results in the symplectic cases, we must define some
embeddings of algebraic groups and corresponding symmetric domains.
For z = (z,),., € $% define an embedding into D'V (s, ¥) by

& (5, ¥)(2) = (S) B (20)

This is compatible with the injection Iél’l)(s, ) of Gl(l)(Q) = SL(2,F) into Gl(l’l)-
(s, ¥)(Q) defined by

(2 1)-

As Iél’l)(s, ¥) can be viewed as a homomorphism of algebraic groups, we can extend
I(gl’l)(s, ¥) to the map G&) — Gl(l’l)(s, ¥),. We denote I(gl’l)(s, lI’),gg)l’l)(s, ¥) by Iy, &
if there is no fear of confusion. We have

Io(#)(20(2)) = eo(2(2)),

u,(Io(2), 20(2)) = j{"(w,z) for any a e G{'(Q), z € .

vea

,  Where a,b,c,d e F.

o O
S~ O
SV IS

Hence we can consider the pull-back of modular forms on .
Lemma 1.4. For any f € My, we have foege ,ﬂk(l) (ke Z).

Next we will define the embedding of D = D'V (s, ¥) into $4. Take d € K* such
that 6 = —d. Put

zp — (1/2)s%ow? Wy —(1/2)6% 5% w?
55, ¥) () = e (=s~)" 5", ,
S(1/20%s 2w, —(0),2 — ((07),/2)5"W2 ).,
where 3 = (ZU ) e D (s, w).
v/vea
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This is compatible with the injection Iy = I\"" (s, ¥) of G(Q)= GU:V(s, ¥)(Q) into
G®)(Q) = GSp(3,F) defined by

1Y (5, %) () = C(s,é)( 0 2>C(s,5)1,

1 0 0 1 0 O
0 1 0 0O 1 0
o 0 0 -0 0 0
where C(s,0) = 0 0 ) 0 0 1
0 -—s 0 0 s O
0 0 —o! 0 0 o

Then we have

I5(2)(25(3)) = &s(2(3)),
v(Is(a)) = v(a), det(I5(a)) = det(a) det(a)”.
Put, for each vea

1 0 (1/2)6% Z
2,(3) = 0 1 (1/2)0%s%w, | for 3= ( ! ) e D.
(_5—1)‘1’0 0 (1/2) v/vea

Then we have

/10(067 3) 0

i) =26 (Y 0 e (18)

where o€ G(Q), 3¢ D. From and [1.8), we obtain
det(j\¥) (I5(@), (3))) = det(u, (1, 3))”

for each vea if o e Gi(Q) (since det(2,(3)) =1 for any 3€ D). Therefore for any
fe ), we have fo&lV(s, W) e. iy (s, W) (kez.
The last embedding is that of Sp(/,F) into Sp(/|a|,Q), stated in section 1 of [8].

Write a as {vi,02,...,0)q} and take a basis {f,...,B),} of F over Q. Put

B By, Bl (Bapo i
Boy - B, Bl (Blap, i
Let {B1,.... By} be the dual basis of {f,...,f,} with respect to Tr)g, that is,
(ﬁi)l/l T (ﬁ\la|)vl
(fB)*l:

(ﬁi)vla‘ e (ﬁ‘/a|)v‘a‘
We define the embedding Il(gl) of Sp(l,F) into Sp(l|a|,Q) as
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BO 0 y,, boy | (BDY™' 0
0 BN e dy, 0o g0 )

Coyy) dy,

where a,b,c,d e F!. As is well known, Sp(/|a],Q) acts on
Siq ={2eCll|'Z=2, Im(z) > 0}

as

(‘C’ 2)(2):(a2+b)(c2+d)_1 (a,b,c,d € Q)).

The corresponding embedding 853[) of 9] into £y, is defined by

Zy,
! :
8%)<(Zv)vea> = IB(I) . B(l)
s a, b
This embedding is compatible with / 1§1)~ For any a € Sp(/, F), put ( * d“) =7 él)(oc)
with ay, by, ¢y, d, € Qll“::‘l. Then we have Ca Qo
(1
il (e 2)
casg) (2) +d, = (BD)™! B (1.9)

(1
Jiu(@,2)
for any z € ;. Hence we can consider the pull-back of modular forms again in this

case. For any holomorphic modular form f on £, of weight x, we have f oeg) €

MY (e Z).

2. Nearly holomorphic modular forms.

We are going to define nearly holomorphic modular forms, which are basically

same as those in [9] or [12].

For any rational representation (w, V,,) of GL(2,C)" x (C*)“ and each v € a, define
new representations w ® 7, and o ® n, on Hom(Clz, V) as

(w0 ® 1) (a, b)h)(u) = w(a,b)h(‘a,ub,),
[(© @ 7,)(a, b)h](u) = w(a,b)h(a, ' ub, "),

where a = (a,),., € GL(2,C)* and b = (b,),., € (C*)".
We also define Hom(C?,V,,)-valued functions on D!V(s,¥). For any fe
c* (D (s, ¥), V,,), we take
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0w =(L L)
D = (5 L) wech),

for each v e a. Further put
(Do, f )W) = (&)™ Dl (&, 1) f1(u),

(Eof)(u) = (Dof)(Eoum,)

with 7= (1,),c0 €= (&),.,. Here 5, and ¢, are as in (1.2), and &, denotes the
complex conjugation of £,. By a formal computation, we have

Do, o(fp%) = (Deor,uf) |a)®rl, @,
El<f|w<x) = (Evf) |w®nv &,

for « € G(Q) such that v(x) =1. We have E,(fg) = f - (E,g) for any C-valued holo-
morphic function f. Especially E,f =0 if f is holomorphic.
For a representation (w, V,,) of GL(2,C)" x (C*)", we define a contraction

o, : Hom(Clz,Hom(Clz, V) — Va

as follows. Write an element 4 € Hom(C3;,Hom(C?, V,)) as h(uy,up) with uy,u, € C3.

QOO0

We can easily verify that
Opo(w®1,®7y)(a,b) =0,0 (0@, 1y)(a,b) =w(a,b)O,, (2.1)

for any (a,b) e GL(2,C)" x (C*)* and each v € a.
For each vea, put

ro(3) =15V (s ) 6) = VeInlt (s, ) (3) 7
ro(3) =15V (5, W) (3) = —V 1T iy D (s, ) (3)

Then by a calculation, we can get

d 5 0

— I, =77, 7'17‘21”17 7’27-
6ZU , U Lo @WU v vlh2, v,
0 0

2
oy =710 ny=Tr
0z, = ST Ow, v

(Evr10)(u) = (1,0)(u),

(Evra,o)(u) = (0,1)(u) (ue CY).
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Obviously, we have

Evrl,v’ :O,

Evr2,v’ :07

0 0 0 0 0
oMoy =73 T =730 =731y =
0z, ow, 0z, ow, ~ ’

if v#0v.

From now on we use the notion of nearly holomorphic functions stated in section 2
of [9]. Consider (J,_ {r1,o,72,0}, which is a set of C*-functions on DD, ¥). We
have det( (6/0?)“’” (6/8@%17“

(0/0Z5)r2,s  (0/0Wp)r2, s
as of [9]. For a polynomial P((x;),.,, (Vs),cq) Of 2|al-variables with coefficients in
holomorphic functions on D"V (s, ¥) and f = P((r1.1),cp (m2.0),cq)s We have

);AO. Hence we can define ), {0/0r1,,0/0r2 .}

0 0
f = (aXL P) ((rl,v/)v/ea, (1’271;/)0,6“)7

8r17v

¢ f = <aiyvp>((r170’)v’ea7 (rz«,b‘/)v’ea)'

6r27 v

Note that they are mutually commutative, that is, (0/0r; ., )(0/0r;v,) = (0/0r) v, )(0/01i v, )
for any i,j e {1,2} and v;,v; € a.
Then for any f e C* (DY (s, ¥),V,), we have

of  of

51”170 ’ 6}’2’U

(£ = ( Jw wech 22)
This implies E, E,, = E,,E, for any v,v; € a.

Now we can define nearly holomorphic modular forms on D(l’l)(s, ¥). For any
congruence subgroup I" of G(Q), any p = (p,),., € (NU{0})%, and any rational repre-
sentation (w, V,,) of GL(2,C)* x (C*)*, put

vea

AP = AP0 (s, w)(T)

w

= f for any ye I’
_ o= (D (s, @), 1, oy =171 Ty
{fe ( (s, ¥), Vo) Ef”“f =0 for each vea.

We denote by .47V (s ¥) (or 4.7 if there is no fear of confusion) the union of
AP (LD (s (M) for all congruence subgroups I” of G (s, ¥)(Q).
From (2.2) and [Cemma 2.1 of [9], any element f of 4/7(I') can be written as

= > C(f;jhm(a)(Hm,ds)"‘”) (Hrz,u(a)””) (23)

jl,jze(NU{O})" vea vea
Ji+h<p

where c¢(s.;, ;) are V,-valued holomorphic functions on D and ji = (ji,0)pcq 2=
(J2.0)pcq- We can easily verify the following lemma from (2.2).
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Lemma 2.1. For fe AP, assume ([[,.,ET)f =0 with some q=(q),.,€
(NU{0})*. Then cis.j 1,y =0 for any ji,j»e (NU{0})* such that q < ji + jo.

From now on till the end of this section, we restrict ourselves in the case
when o = wy (wi(a,b) =[],.,b*) with some k= (k,),.,€ Z* and V,=C. We
write s1mp1y NP Do and Oy, by NP Dy, and Or. We can identify Hom(C 5, C)
with C). For any q=(gv)ycq € (V U{O}) and C-valued function f, the function
(IT,cq ES)f can be viewed as a (X),_,(C3)®"-valued function. But (2.2) implies that

vea

(IL,c  EI) S is @UeaSquv(Cz)-valued where Squv(Cz) denotes the ¢,-th symmetric
tensor product of C,. This is because (3/dr1 ,)(0/r2,) = (8/0r2.,)(0)dr1.0).
For feP(I'), let us consider its Fourier-Jacobi expansion. As 7,72,
I 0 u
are invariant under the action of h={ 0 1 0 | e N(Q)NI, holomorphic functions
0 0 1

C(s.j,j» are also. Hence we can express ¢(r.; )

c(f;jl’j2)<3) - {H(n\/j).fl,v/lv} Z g(f%]hjz;m)(w)ea(mz)a

veEa meF

as

with C-valued holomorphic functions gs.;, j:m)- Of course g(s.j, j,:m) 1S nON-Zero only
if m belongs to a certain Z-lattice of F. Since rp,(3) = —s¥ w,r1 ,(3), we can rewrite

(23] as

- Y S|y {H< ) m}g<ﬁ,h,-_,-m)<w>

je(NO(0))* meF | jie (Do Lvea
0<j<p 0<jh<j

{H((ﬂ\/_) r1.0(3))” }e (mz).

vea

Further, rewriting the inside of the big square bracket by g, ;. (w), we can get

fG= > Z{H m/—_l)‘lrl,u(s))j“}g(f,j,m(W)ea(rnZ)- (2.4)

je NU{O} mekF \vea
0<j<p
We call this expression ‘“the Fourier-Jacobi expansion” of f. Hereafter we will fre-
quently use this type of expansion since it is more convenient to describe the Galois
action on f than the usual form of [2.3).

Now we must define nearly holomorphic theta functions, which are essentially same
as those defined in [10]. For je (N U{0})", we denote by T/(C* A, H), the space of
functions ¢ on C* which satisfy (1.4) and (9/di;)"'g = 0 for each vea. Note that
geI/(C* A,H) can be expressed as a polynomial of {if;|vea} with holomorphic
functions as coefficients, and the ‘““degree” of i, is not higher than j, for each vea. We
also express as I{;.‘,, the union of T/(C* LY, H, v) for all Z-lattices L in K.

Then in the same way as the Fourier-Jacobi expansions of holomorphic modular
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forms, each function g ; ,») belongs to I‘,fi“,. From [Lemma 3.2 below, we can rewrite
(2.4) as

A= > > {H m/—“n1r1,u<a>>fv}gu-,.,;m)(w)ea(mz), (2.5)

je(NU{0})" 0<meF \vea
0<j<p

where 0 < m means that m is totally positive or 0.
Next let us review nearly holomorphic Hilbert modular forms. For f e C* (9], C)
and k = (k,),., € Z“, put

0
Ef = ~Im(z)" o~ f,

o,k

Dot = o, T 5T Im(zv)f

Then we have

(Eof) lk—2p 2t = Eu(f1i00),
(Di,of) 20 % = Di,o(f1520),

for « € SL(2,F). Note that E, E,, = E,,E, for any v;,v; €ea. For any p = (p,),., €
(NU{0})% any k € Z*, and any congruence subgroup I'‘V of G1)(Q) ., we denote by
,/Vkp’( )( (1) the space of all fe C* (9%, C) which satisfy f|,y = f for any y e I''V) and
EPHf =0 for each vea. We write 47" the union of 47" (rMy for all con-
gruence subgroups 'V of G1(Q),.

Any fe NP ‘1 has a Fourier expansion as

f@=>Y > {H(nlm(zv } c(s.j.mea(mz), (2.7)

jeZ* 0<meF \vea
0<j<p

where ¢(s ;n € C. These facts are stated in section 14 of [12]. For any vy € a, the
Fourier expansion of E, f is as

- S Ll Im(z%){H(nIm(zU))f”}cu,,-,m)ea(mz).

jeZ* 0<meF vea
0<j<p

We can also define a Galois action on nearly holomorphic Hilbert modular forms
as the following lemma.

LEmMMA 2.2. Let fe/Vp "0 \whose Fourier expansion is as (2.7). For any o€
Aut(C), there exists [ € /Vk’:, ‘D \vhose Fourier expansion is

Z Z {H 7Im Zw))_j”}C&-J’m)ea(mz).

jeZ* 0<meF \vea
0<j<p
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This lemma is also proved in section 14 of [12].

Let us consider the relation between this Galois action and the values of nearly
holomorphic Hilbert modular forms at so-called CM-points. For a CM-extension K
of F, take 7€ K and a CM-type ¥ = (¥,),., of K so that Im(z%) > 0 for each v € a.
Then zo = ¥ = (T%)Uea € W(l)(‘]’).

vea

THEOREM 23. Let fe thkp’(l)(F ) and g € ,/%( )(F( )Y with some congruence sub-
group T'V of GU N(Q),. Take X € 72U so that (/I?F( ) > F( ). For any zo € W(¥)
and any o € Aut(C), take zg € W) (¥a) as

[J,E‘;((é o )) <¢S§><ZO>>]6 = o}l @),
= o) (o in)

Assume that g(zo) #0. Then we have

() (9(z0) "/ (20))” = 9°(20)”'f*(20)-

PrOOF. In case when ¢ € Aut(C/Kjy,), this theorem is proved in (or essentially
in [4]). For an arbitrary o € Aut(C), we can prove it in the same way combining
IProposition 1.3.  We have only to prove this theorem for a sufficiently small X since the
left hand side of () is invariant when we substitute zo by y(zo) with ye '),

For an arbitrary b e K* such that bb” =1 and b> # 1, put = @ (b) Then
peSL(22,F) and f(z9) =z9. For I=(l,),., €N’ take fye %( ) s0 that Jo(zo) #0.
Set h = (fol,$)/fo € &/0(1). For D;, in (2.6), consider

.
0z, N_ 1Im(z,)

where

(Dr1,0fo)(z) = - Jo(2).

Then we have
(D1,0/0) |20 B = Dio(fol,8)
= Dy, ,(hfo)
= Dy fo) + fo(Do,ch).
Considering the value at z), we have

(Dr.ofo)(z0) - (02 = 1) JT(®")™ = fo(z0)(Do.oh)(z0), (2.8)

v'ea

since j' (B, z0) —b""’ and h(zo) = ea(bl‘”’)fl'/ for each v’ ea. Note that Dy /i€

z0) = [
,52/2(L) and ((zv—1)" DOU )7 = ((mv/—=1)" Do woh?). Clearly we can get D Uﬁ)Ethl+2(L)
and

(v =1) "' Do oo fi7 = (aV=1)"' Dy f5)°.
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Take Y € 2 (sufficiently small) so that fy, fo,f e /%1(1)(F(;) NSL(2,F)) and take
Zo € W (¥g) so that

I 0

. Put f=a(b). Th h
0 X(U)> ut f = (D) en we have

(
p-alore(, m)_lm athprnalh(y o).

This implies £,’|,.f = (fo|,8)" from Theorem 1.5 of [§]. In the same way as (2.8), we
can get

(Die e fi?)(20) - (079) 2 = 1) [T (0") ™ = 157 (20) (Do, oh") (50)-

v'ea

Combining (1.7) and [Proposition 1.3, we can show that (zv/—1) 'D;.fy satisfies
the property of this theorem. By the next lemma, we can write f as a polynomial of

{(n\/—l)*lDLv fo|vea} with meromorphic modular forms as coefficients. Hence the
proof of our theorem is completed (admitting [Lemma 2.4). O

Lemma 2.4, Take any | € N* and ke Z*. For any 0 # fy e,/% andfe,/tfp )
we can express f as

=" Y @ HEV-D)"(Drfo)@)}, (2.9)
jeézg{gog)“ vEa

with N e N and g; € k(l)z NI (S, )l

Proor. Put

fe) =) {H(ﬂ Im(z,)) " * }hu,j) (2),

0<j<p \vea

with holomorphic functions %, ;) on ${. Take a finite subset Pr of (NU{0})* as

P = {j e (NU{0})"

There exists j' € (NU{0})*
such that j < ;" and hy ;) #0/[°

Choose ¢ =(qv),c,€Pr so that >  _,¢g, 1is maximum. Then we have

(I, ea((—2V=DE)*}f = (I,ca(2*q:!)h(s.q) and hence ks, € .4, Define fe

)
%k+(21vea q“)l as

f) = f2)Z=e s (2) = by (D[]

vea TCIU

{N_< o)z >} .

Take F; in the same way as P;. Then ¢ ¢ F; and F; = By. Hence we can prove this
lemma inductively. L]
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3. Galois action on nearly holomorphic theta functions.

In the previous section, we defined a space of nearly holomorphic theta functions.
In this section we will construct a certain Galois action on T, which is an extension of

Mheorem 1.1 constructed in [13].

For ge If w, In the same way as holomorphic theta functions, we define

T

g« (u) = exp( 2H[70p(u7 u))g(u) (ue C).

We can also define g.(y¥) for y € K4 in the same way as the holomorphic case. Then
the action of NV (s, ¥)(Q) on Ty can be defined as

(glhy.5) (1) = g(u+ y*) exp (—nHmp <y5”, u+ ly"”> + 2n\/—_12(s1t)vbv>

2 .
vea

1 sy? b+ (1/2)syy”

for any ge I}y and h, , ={ 0 1 y e NIV (s, ¥)(Q). Then glhy €
0 0 1

I/y. Note that (glh,0)(0) = g.(y") for ye K and

I(C LY H, y)={ge Iy lglhyo=g for any yelL}. (3.1)
To know the space of nearly holomorphic theta functions, we must define a
differential operator x, on I/, as

(1009 () = j—g () + 209/ 1% Tog ()

for each vea. Then we have x,g € I/ J;,” and by a computation,

(rvg) [h = r,(glh) (3.2)

for any gei‘if.{, and any heN(Q). We can easily verify w, x,, = k,,k,, for any
v, € a. We have the following lemma.

LemMA 3.1. For pe (NU{0})*, we have

I(CLY Hop)= ) (H K,fv> I(CY LY H, ).

leZ* \vea
0<i<p

Proor. From (3.1) and (3.2), we can easily show
Kv(zj(ca7L¥I7Ht,'ly)> < zj+v(ca7LYI7Hl7S”>-
For any ge I”(C* LY H, y), put

gw) = > g [[@rv=1c"m)", (3.3)

jeZ* vEa
0<j<p
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with holomorphic functions g;. Take the finite subset P of (NU{0})* as

P:{je(NU{O})“

There exists /e (NU{0})*
such that /> j and ¢g; #0.]

Choose joe P so that > _,jo» 1S maximum. (In general, it is not uniquely
determined.) Then, by computing precisely, we get g;, € T(C* LY H,y). Note that
g, #0. This implies H, y is semi-positive definite, that is, Im(z¥) > 0 for any v e a.

Put
§(u) = g(u) - { (H x) gjo}w),

gy = > g [[erv=T%m)".

jeZ“ vEa
0<j<p

and set

In the same way, take

f’:{je(NU{O})"

There exists /e (N U{0})*
such that /> j and g, #0.)"

Then we have
P=P—{jo}.
Hence we can prove this lemma by an induction. ]
In this proof we showed the following lemma.
Lemma 3.2, The space T, # {0} only if Im(t*%) > 0 for each vea or t =0.
The purpose of this section is the following theorem.

TueoreM 3.3. For geIP(C* LY H,y) and (0,%¥,a)e Cy(C), there exists
glo.a) eI”J(C“,(aL)%,H,(Uva)L ws) such that

(97" ). ((a)") = {g-(»")}"
for each y e K.

To prove this, we have only to prove the following lemma.

LemMA 3.4. Take any ge T(C* LY H,v), (0,%¥,a)e Cy(C) and p = (p,)
(NU{0})*. Then there exists a non-zero constant ¢ which satisfies

R

for any y e K.

vea €
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Combining this lemma and [Lemma 3.1, we can easily get [Theorem 3.3.
Before the proof, we must review basic facts about theta functions. For /e N, let
$; be the Siegel upper half space of degree /. Put

0w, Z; i, p2) = D exp(av/=1('"(x + p)Z(x + p1) +2'(x + p1)(u+ p2))),

xeZ!
o (u, Z; pr, p2) = exp(nvV—1'w(Z — Z)"'u)0") (u, Z; p1, p2),
with u e Cl, Ze$®H;, and p,pr € Ql. As stated in , take (w; wy) € Cél such that
Z=w;'w €9, (w1, € GL(I,C)) and set

1

o (u, (01 @); p1, pa; pt) = 01(0, Z; pi,0) " o (w3 u, Z; p1, p2)

where p| e 0’ so that 0(1)(0,2; p1,0) #0 (it is possible from [5]). Next we consider
theta functions on (C')*. Take B and BY) as in section 1 and put

Uy,
05w,z pr,pa) = 0V BO| o |l (2); p1,p2 |
Uy
Uy,
/ . /
¢§7?B(u7 Z; P1, ]72) = (ﬂ(”aD tl;(l) : ,853) (Z), P1,p2 |,
Uy

for ue (C*, ze 9 and p;,pre Q. Take (w1 wy) e (CL)" such that w;'w; € HF
(w1, € GL(I,C)") and set

! I
o 5, (01 @); p1, p2i p}) = OF)

)

— / _
B(O7Z;p{70) 1(05;?3(602 lu,Z;pl,pz)

for ue (Cl)“, z=w'w; € 9! and pi, pr, p| € 0" 5o that Hg)B(O,z;p{,O) # 0. For
fixed pi, p2, p; (by the same reason as in [Sf), there exists a congruence subgroup I 0
of GY(Q), which satisfies

I !
¢%?B(M, (01 @)'y; p1, p2; py) = (P%?B(M, (01 @); p1, p2; Py)

for any ye I') and (w; ).

PrOOF OF LEMMA 3.4.

This lemma can be proved by combining and the proof of the main
theorem of [5] (or proved in [13]).

As stated in [13], the space T(C* LY H, ) is span by functions

g(u) = 05w, (2, 2)); ,0; /)
= 00500, (1535 7,0) oy () uy ()Y, 0) (3.5)

with some 71,7, € K*, j,j' € 0% and zy = (rlrz‘l)l‘” € 9{. Fix this g. Then from the
proof of Theorem 3.1 of [13], we have
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gt (y) = (/)5717)3(01, (1 + 0072, 0371 + 0472)" %5 j, 0; 7). (3.6)

a2
o =
o3 0y

e GL(2,F)N (X NSL(2,Ey)) (

Here

1 0 \! M
0 X(g)) GL(2,F,,)®)(a)

with (sufficiently small) X € 21 so that ¢F B( (w1 @2)y;7,0; 7" —(p%)B(u, (w1 @);
J,0;j') for any (w; @wy) and any y e FE 'n SL(2,F). Note that the right hand side of
is independent of the choice of cx Put

Zo = (171 + 072) (oaT) 4 o12) " ']7,

* = ((1) x(()ff))/?((l) X(Oa))l e 2

ag

o (1 0N, o ()=
[@((0 o) )(wx <ZO>>] ~ o (3)

can be verified by [Proposition 1.3. Take any he,;z/ W, )E)) so that # and 1/h are
holomorphic at zy. (If it is impossible, take X, and hence X,zy again.) By Theorem

1.5 of [8], we get h° e;zfpa)(l“)g ) and both of 47 and 1/h° are holomorphic at z.
Hereafter let us prove

[h(Zo) {(H((n\/_) 7" 0)’ )g}(yq’>]

— h"(z’?))l{ (H((n\/—_l)l(ocg,rl + a4fz)%ﬂxvﬂ)Pv> g %a)} (a)"?), (3.7)

vea

Then

for any y e K.
We can rewrite

{(H((n\/—_l)_lm)””>g} (yW)ZHH((ﬂ\/_) )”}(glhy,o)](o)- (3-8)

vea vea

And by a calculation, we can get
(91hy.0) (1) = exp(=nV/=1'q1,42,)05 s 0, (7 T )i+ qupna2if),  (39)

where

By o ﬁ\a| 0 qi1,y : |al
y=(u Tz)( 0 By -+ By (Clz,y) with 1.5, ¢2,, € Q.
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Hence (3.8) is equal to

owtcr o {[1 (im0 () }

vea

1 _ . 1 . —
o 0 s ((t) ", 203 + 1,y 42, o0 50, 03 /7, 0) 7. (3.10)

As is well known, 91(;17)3(0,2; j',0) is a so-called modular form of half integral weight.

We can rewrite (3.10) as

oot {1~ ()

vea

1 _ . 1 . 1 .
0 0 s ((T) ", 203 7+ 1,y 42, o0 50, 20 /7, 0) /01 5(0, 203 /7,007, (3.11)

Put

vea

g0 =t {1 (/707 (i) )

1 — . 1 .
o oy () 25 j + g1,y 42,0) uco0y 5(0, 23 ', 0). (3.12)

Then f, € thp’ifl) can be verified and clearly 0}1,)3(0, z; j', 0)2 € ,/%1(1). The left hand side
of (3.7) is equal to [fy(zo)/ég)B(O,zo;j’,O)Zh(zo)]". Note that (9(F17)B(O,z;j’,0)2 has a
Fourier expansion with Q-coefficients, hence it is stable under the action of ¢ € Aut(C)
in the sense of (1.6).

In the same way, the right hand side of (3.7) can also be expressed as a value
of nearly holomorphic modular form at a CM-point. Take ¢, , € Q“'| so that ¢, , =
7(0),92. mod(Z) and 'q1,3(q2., — %(0),92,y) €2(Z) for each finite prime /, where
x(c), denotes the I-component of y(s). Next take ¥ e 2V such that ¥ = X and
(/’97)3(”, (@1 @)y j+ Gy, G0, J') = (ﬂ(Fl,)B(u, (01 @2); 7+ 41,5423 ]")
for any ye I’ él) NSL(2,F) and (w; w,). Since g% % is independent of the choice of
o, we can take o' instead of « so that

,_<O<i aé)
x = / !
O(3 OC4
e GL(2,F)N (Y NSL(2,E)) SR GL(2,F,.) @Y (a)
! N0 x(o) e
and take
)71]5”0’

26/ = [(OC{Tl + O(é’[z)((xg’[l + OC!“L'Q

Note that «(a/)" € SL(2,F)ﬂF)§]) and (o))" (zy)) = Z,. Then we have
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{(H((TC\/_> Kuo)” )g(g’lp’a)}((ay)lpa)

vea

= exp(—nvV—1'q1 14, ) { 11 ((”\/—> (ﬁuw) )pv }

vea

1 o 4 TRl q
o (p%)B((agfl‘P 4 %"7;2"” ) 1u,zo/;] + Q1,y742,y)|u:0
% 000,74 ,0)". G-13)

Since ;¥ (a(e!) 7", 7)) = (oaty + og7) " (471 + 2f72)"7} !, we can rewrite the right

hand side of (3.7) as
(1)

1
° ‘PF,B((“éfl% + oty 7)) 205 4 @1y G,y 09;)3(0 z0'3j',0)"

h"(éf)’)_lexp(—n\/—_ltqlquzy){n((n\/—_l)_l(ocgrl + af1y) <

vea

Put

£(z) = eXp(—n\/—_ltql,yq;y){H ((n\/—_l ) (o7 + oy2) "™ (azf) )”}

vea
1 . ~ 1 .
o gy (AT + a4ty ) u, 2 j + q1.yy Gy o5 5(0, 23 7, 0).

Then fy e W and by a computation, we obtain fy /. We can prove

o+1 )
(3.7) by usmg Theorem 2.3 since the right hand side of (3.7) is equal to f£,(z')/
O 5(0. 51, 0)h (). O

In the rest of this section, we will make important examples of nearly holomorphic
modular forms which satisfy [Theorem 4.1 (the main theorem of this paper) and will be
used in order to prove that theorem. To construct nearly holomorphic modular forms,
we use the embeddings defined in section 1.

As stated in [6], we can define a C3“ |‘-Valued holomorphic function 7" on £, by

0 0
6—0(3|a|)<u’ Z qgl), 0) - 6_9(3\14)(% Z: q?‘”“, 0)
0(3|a|)(0 7 C](O) 0) (231 uj
T(Z): A1
2nv/ -1 Lgolal)(u 7. W 0) Lema\)(u 7. o3l 0)
au3‘a‘ ) 791 ) au3|a| ) aql ) o
(3.14)
1231
where u = : e 4 and qgo),...,qf‘al) e 0. For each Z € 93)q, We can take
U3|al

suitable q(lo),...,q(ﬁ‘”') e 0% such that det(T(Z)) #0. As stated in [6], T is vector-
valued modular form which satisfies
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T(y(Z)) = det(y3Z +14) - (13Z +y4)T(Z)

for y = (3:1 zz) contained in a certain congruence subgroup of Sp(3|al, Q) (¥, 72,73,
3 V4

V4 € Q;I‘Zb‘ Note that det(7(Z)) is a holomorphic modular form of weight 3|a| + 1.

Using this 7 and the embedding gg) (defined in section 1), we can define a C;‘Lﬁ-valued
holomorphic function 4 on $%5 by
4(2) = BIT(e5)(2)) (=€ 99).
By [1.9), there exists a congruence subgroup I'® of G®)(Q), such that
:(3)

n (7:2)
A(y(2)) = (H det(]’é”(%Z))) A(z),
- Jon (7,2)
for any y e I'®).  Next define a C;';’l‘-valued holomorphic function A on D(l’l)(s, V) by
Q,()"
A(3) = 00, (=57)":47,0)2 A(es(3))

2,6
where ¢/ € 0 so that (91(;17)3(0,(—S_1)l1/;q{,0> # 0. Then by [1.8], there exists a con-
gruence subgroup I of G(Q) = GV(s, ¥)(Q) such that

Jay (%5 3)
1, (24, 3)

A(a(3)) = (H 1, (2, 5)2) A(3)

el Dy (2:3)
lub*|a| (O(7 3)

for any aeI. Note that det(4(3)) is non-zero constant times det(7'(ez o &5(3)) and

hence contained in %((61"‘1112),1(& ¥). Put

A(3) = det(4(3))'4() "

Then A is holomorphic on the whole © and satisfies

sy, (,3)7"
A(a(3)) = (H (0, 3)“') - 1 A(3)
vea l}’“\a\ (OC, 3)7

:uv‘a‘ (OC7 3)7

for o contained in a certain congruence subgroup of GIV(s, ¥)(Q).
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For each v=uv,€a (1 <k <|a|), take Q€ Q3‘“| and put

(IZ;EZ; Zi:g) = (055 12 032\a|73k+1>A<5>Q (3.15)

where 0" denotes the m x n matrix whose entries are all 0. Then (wl’v>, <w3’”> €

lp2,v lp4,v
My, with @(a,b) = ([T, ., b2) a;'. At each 3, D" (s, ¥), we can take T so that
le(So) lp3,v(30)> =+ 0.
lﬁz,u((’)o) ¢4,u(30>
Note that w is equivalent to wg|e.14y @ 7,. For some /e /%1(1) so that A((—s~1)¥) #0,

we can take @, ¢, , € Ny q4,(5: ¥) as

det(A4(3,)) # 0. For such A, we can choose Q such that det(

= 0V D) (=) Y) " O o Dw,v(j;z )

= (n\/jl)*lh((—s*1)E”)J@éw_lﬂ oDy v ( Zzb ) .

By a computation, we have

oy, Oy,
:(n\/——l)_lh((—sl)yl)_l{ ;pzl;w (;b; —(6|a|—2>(r1.,ut//1,v+rz.,un//2,u)},
W

v [ W
= (/) s T (sl = 2) (s 4 )
Zy W,
This implies

Evpr, = —(@V=1)""h((=s")") " ((6la] = 2)1.,, (6la] = 2)y2,,),
vy, = —(nV=1)""((=s"1)") " ((6la] = 2)3,,, (6la] = 2).,),

ED v . v v
and so det( 7, ) # 0 at 3, if we take 4 and Q so that det(lpl’ (3o) s (30)) # 0.

Ev¢2,v Eu¢1 lp2,v(30) w4,v<30)
We take ¢, ,,¢,, so that det( ’”) £ 0.
' ' EU¢27U
Lemma 3.5, Take ¢, ,, ¢, , as above. Let their Fourier-Jacobi expansions be
= 3 (9w0mO0 + @1 AL 5 B) )i, 0 (0) ) alm),
0<meF

(izl,z, 3=(Z)c—:b<“><s, av>),
w

with gy, ,.0.m) € Tmsw and gy, v.m) € Ty p- For any (o,¥,a) e Cy(C), there exist

¢(J,‘I’,a) ¢(J’W7H)EJVDU7(17I)

Lo 5 6lal 1 Lwoltla,a)s, Pa) whose Fourier-Jacobi expansions are
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070G = D (95 0 + V=D o, a)s, o) B)gg 0 (9) ) ea(m?),

0<meF

where i =1,2 and 3 = <;) e DV(i(a,a)s, Wo).

ProoOF. For (0,%,a) e Cy(C), take o = (Zl 22) e GV (Q) = GL(2,F) so that
30 04

. 1o\
(1) (1) g (1)
€ ((Xm GIA) (O X(O_>> Goo ¢(_S1)Y’<a)> m G (Q)7
where X € U satisfies the following conditions (1) and (2).

(1) For any y= (yl yz) GF;) NG (Q), put

V3 Y4
1
71 V2
R 1
§ = | e G(Q).
73 V4
1
Then
-1
S (75G.z)
<H det(]’ﬁ”(?ﬁ))) A(9(2)) = 4(2),
vea (3 N
Jo (5,2)
for z e H5.

() 0p)5(0.2:41,0)%, b .47 (13" 0 G (Q)).
Note that v(x) = i(o,a)”". For such o, take o € G1(3)(Q) by
1

1(o,a)o o0

(o, a)os o4

and consider the C3‘| |‘ -valued function 4 on D D(i(0,a)s, Po) by

AG3) = 0750, [0 (=57 ") + ) (o3(—s7") + ) 11775 g1, 0) 2

2,3) 7Y @ e3)!

20, 3) i) (o 5(3))
x (2 ((3))),
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> :( ) e DV (i(g,a)s, Po). In the same way as above, put
vea
A(3) = det(4(3))4(3) ",
and

l%l, L(g) %3,1}(3)
lpZ, 0(3) lp4, b(%)

) (0 1 02y )0,

where v =wv; and Q is same as that which was used in the construction of ¢, , and
¢, ,. For each vea, put

b0 = (@1 ([ (=) + o) (o(=s) + )17
x { [T (=571 + o) }

v'ea

oWy

b0 = (@V=1)" h ([0 (—s7") + o) (s (—57") + o) ] 7) !

v'ea

6&3,1) l;4..1; ~ ~
) { 2t e~ (Ol =2 )
Then qgmg and qEZ’M satisfy the properties of ¢§¢?;¥’,a) and ¢g’7,v'1',a). -

EU¢1,U
EL‘¢2,U
can prove the following lemma by looking at the constructions of | ) _ {4 ,.¢,,} and

o, ¥, g, ¥,
Uvea{¢s,b /a)> ¢(270 a)} Carefully,

LEMMA 3.6. There exists a non-zero constant c € C* so that
EU¢1 . (O’, 5”,[1) Eva¢§(77;l1”761)
det 5 ’ = ¢ -det o) |
U¢2,U EU(7¢27;; ’

4. Galois action on modular forms.

The non-zero holomorphic function det< ) is contained in A pg.1—p. We

In this section we will construct a certain Galois action on the space of nearly
holomorphic modular forms. The purpose of this section is to prove the following
theorem.
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THEOREM 4.1. Let fe,/Vp (s V) and let

- Y {H«nm s, mw} o (8)ealn),

jeZ* 0<meF \vea
0<j<p

i z
(g(_//,j.,fﬂ) E zl{nS,W’ 3 = (W) E D(lil)(“% W))?

be its Fourier-Jacobi expansion. Then for any (o,¥,a) € Cy(C), there exists f(%% e
N ’(1’1)(1(0, a)s, Ya) whose Fourier-Jacobi expansion is

ASIOEID DD {H((n\/_) Iy UJ((G,a)Syg’J)(é))j"}

jeZ* 0<meF \vea
0<j<p

o, ¥.a)/~ - - z
X ggf’j’m))(w)ea(mz), (3 = (W) € Q(l’l)(l(a, a)s, ?’0)).

To prove this theorem, we have to show the following lemma.

LeMMA 4.2. Take any fe A"V (s, W), Let Usead @182} be as in section 3.

. . Eyp, . (1,1)
Then there exists | = (,),., € N* and ¢ = Hveadet(Ev% ) S/ 20l ) (5, ) s0
that -
3) - (P(% Z Z thj H ¢1,v(3)qr¢2,v(3)]’viqv)7 (41)
jeZ* qeZ*® vea
0<j<p 0<q<j
. (1,1)
with some hy ;€ %{ﬂa\@lea L jv)}~1—j—l+k(s’ ¥).

PrOOF. As stated in section 2, f can be written as

fG3) = Z C(fih) (H ro(3)"" ) (H Vz,u(ﬁ)jz‘”) (4.2)

J].JQE(NU{O}) vea vea
h+i<p

with C-valued holomorphic functions ¢(y.; ;) on D. Put

P {j c (NU{0})* There exist /;,5, € (NU{0})* }

such that j </y + L and c¢(s,, 1) #0.

Then Py is a finite set contained in [[,_,{0,1,...,p,}. Take jo = (Jo,v),c, € Pr so that
> vea oo 1s maximum. (Of course, it is not uniquely determined in general.) Take the
set

QjO - {H( ;117/ jO l_ql) |q = (qb)vea € Za 0 < q < ]O} “ z/‘/éj‘aKZveajO.r)'l_._jO.

vea
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Then @), contains [, .,(jo,, +1) elements. Consider the rational represen-
tation (w,V,) of GL(2,C)* x (C*)* so that ([[,., E"")Q;, = #,. The space V,
is 2Xweafor-dimensional, but, as stated in section 2, the elements contained in
(HveaEUjO‘“)Qjo are 3 eaSyij(C%) (which is  [],.,(jo,o + 1)-dimensional)-valued
functions on D. Hence we can define the “determinant” of ([],., E"")Q;, if we fix a
basis of (X),_,Sym,, (C3). Put d(jo) =[I,cq(jo.c +1). Then, by a computation, the

274 d(jo)jo,
determinant is (up to non-zero constant times) [], Eadet( EUZI L) , which is a
2,0

non-zero holomorphic modular form of weight >, _,27'd(jo)jo.,(12]a] -1 —v) on
DU(s, ). Put this function ¢,. Consider the holomorphic function ([],., EX")f,
which is also (X) Symjo‘v(Czl)-valued. Then we can write

{ (H EJ“)f}(a) =003 Y hq(3){ (H Eb{'o,v) <H¢ o qb) }< )
vea qeZ* vea vea
0<g</o

with holomorphic C-valued functions /4, on ol 1)(s V). Clearly each £, is uniquely
determined. Since ([],., Ei"")f, oo and (I ca B TT,ca #1922~ ") are all modular
forms with respect to a certain sufficiently small congruence subgroup of GV (s, ¥)(Q),
the C-valued functions A, are also. By a formal calculation, we obtain that 4, is a
holomorphic modular form of weight 6|a|(d(jo) — 1)(>,c, jo.o) - 1+ 271(d(jo) — 2)jo + k
on DV(s, ¥). Put

f@ =06 G — Y. h <H¢ ""q‘))

qu" veEa
0<¢qg<jo

and consider

P {j e (VU {0})" There exist /;,5 € (NU{0})* }
= .

so that j </j + 1/ and C(f.h,b) # 0.

Considering the usual expansions of [],., #", é"b‘ " as we can verify P; < Py
Since (HbeaE]‘“)f 0, we can get Py = Py — {]0} from _ Hence we can
write f as [4.1) by using an induction. O

Now we can construct the Galois action of Mheorem 4.1. For |J _ {4 . ¢}
constructed in section 3, write f as and set

FErAE =G S D [H{«zﬁ“”“ “”“’(a)"“‘f“}]héi’;“”’“)@)- (4:3)

jeZ* qeZ" |vea
0</<p0<qg<j

We can easily verify f(*»% % is independent of the choice of Uvea{¢1,m¢2,y}~ It is
because, if f can also be written

f@=66""> > [H{fﬁl,U(a)q"fﬁz,v(a)j”_q”}]ilq,j(a),

jeZ* qeZ" |vea
0<j<p 0<g<j
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with another Uvea{qflm,q;z’v}, ?, izq,j, then we have

RS [lew@wz,v(ﬁw%}]ﬁm

jeZ* gqeZ" |vea
0<j<p 0<¢g<j

=9() > D [H{sbl,u(s)q”¢z,v(3)j”_q”}]hq.,j(s)-

jeZ* qeZ® |vea
0<j<p 0<g<j
Considering the Fourier-Jacobi expansions of both hands sides of this equation, we can
easily see that f(@¥9 is well defined.
From the definition, the function f(%9 is expressed as a polynomial of
U, ea{rﬁ’vl)(z(a, a)s, ‘Pa),réw (i(g,a)s, WPo)} with coefficients in meromorphiNC f1~1nc-
tions on D'V (1(g,a)s, Wo). But at each 3, € DV (1(a,a)s, Po), take Upeal®1.0:02.,}

EU¢~1.U
v¥2 v
Ubea{¢] e ,¢2 o o } instead of () _ {4y, ¢,,} in [Lemma 42 Then by
Lemma 3.6, each “coefficient” is holomorphic at 3,. This means f(@¥ ¢
Mk’,’f’(l’l)(z(a, a)s,¥o). The Fourier-Jacobi expansion of f(®¥%:@ can easily be com-
puted.

(functions on D(l’l)(l(a,a)s, Yo)) so that det #0 at 3, and take

5. Holomorphic projections.

In section 15 of [12], the projection map of nearly holomorphic modular forms to
holomorphic ones was constructed. In this section, we will prove that the projection is
compatible with the Galois action constructed in the previous section.

For any ke Z*, pe (NU{0})* and v € a, define an operator Ly, of 4, to itself
by

Ly, = —0) 0D, & o E,. (5.1)
Put the Fourier-Jacobi expansion of f e A4}” ’(1’1)(s, V) as

ITER S {H«nﬂ n(3)] '}g<f»,,,-,m><w>ea<mz>.

jeZ* 0<meF \v'ea
0<j<p

Then by a computation, we obtain

L3 =- 3 % {H«nf ) (3) "}ea<mz>

jeZ* 0<meF \v'ea
0<j<p

X []U(]L —k, + 2)g(f7j,m)<w) + 2(]@ + l)mvg(f,j—i-um)(w)
= @D o (T o gm0 (52

This explicit expansion implies the following lemma.
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Lemma 5.1. For fe NP, we have
Liof + po(po— ko +2)f e 4P

This operator L , is compatible with the Galois action constructed in the previous
section.

THEOREM 5.2. For any f € Jiflcp7(l’l)(s, ) and any (o,%¥,a) € Cy(C), we have

(Lk,vf)(m £8) — Lk”,w(f(m Wﬂ))'
(Note that the Lo . in the right hand side is an operator on A/,(’iﬂ’(l’l)(z(a, a)s,¥a).)
To prove this theorem we need the following lemma.

LemMA 5.3. Take any 0 € T(C* LY H, w) with any Z-lattice L in K and any CM-
type ¥ of K. For any j= (js),c, € (NU{0})* and vy € a, we have

(nv/—1)~ <x %) o { (H K]> o 9} = 2j, 1T (H KJ> 0 0.

This lemma can easily be verified by a computation, since

o=l
(H Kf) ofl= > (H ,p,) <H 2n¢—_1zy’%)“> (H (%)J ) 00,
vEa 1e(NU{0})* \vea vEa vea v

0<i<j

where ,,C, = m!/((m —n)!n!).
Hence we can obtain the following lemma.

LemMA 5.4. For ge IP(C* LY H,w) and any vy € a, we have

(+) { @Dy (xai_g)}“”

0
= (nv —1)_1(1(0, a)voat%o”)_l (KLM 050 g l‘”?”) ,
i

where (a,¥,a) € Cy(C).

Proor. In case g = ([[,., Kk/})o0 with HEI(C“ LY H, '{/) and ]—(],,)

vea v vea

(NU{0})*, the left hand side of (%) is equal to 2j,¢'" %% from Usmg
Lemma 3.4, we have
0' Va) _ C(HK ) (0,¥,a)

with some non-zero constant ¢ € C*. By [Lemma 5.3, the right hand side of (x) is equal
to 2j,,9% 9. [Lemma 3.1 shows that any g € I”(C* LY, H, ) can be expressed as a
finite sum of such functions, hence we can get this lemma. ]
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Looking at carefully and using this lemma, we can easily verify [Theorem 5.2.
Now we can define a projection of nearly holomorphic modular forms to holo-
morphic ones using this Ly ,.

THEOREM 5.5. Take p = (p,)
each vea. Put

k= (k,),., e (NU{0})* so that p, < k,—3 for

vea’ vea

= H{pﬁ(l + (po —l')_l(pv—i—kv+2)‘1Lk7v)}’

vea* i=0

where a* ={vea|p, >0} Take any f€ Jiflcp’(l’l)(s, ¥). Then Uf e %k(l’l)(s, ¥).
Moreover, for such f and any (o,¥,a) € Cy(C), we have

(+) ()7 = w(re ),

where the U in the right hand side is an operator of ,/Vk’f’(l’l)(z(a,a)s, Ya) to
1,1

%k(g’ )(Z(O', a)s, Vo).

ReEMARK. This U is essentially same as that introduced in section 15 of [12], and
so the inner product of (Af — f) and any cusp form with respect to GV (s, ¥) is
always zero.

Proor. Using [Lemma 5.1, we can easily obtain 2f € .#,. The property (x) is
obvious from [Theorem 3.2l O

The above theorem needs the assumption p, <k, —3, but it is not so diffi-
cult. The next lemma says that the degree of near holomorphy is bounded by the
weight of a modular form.

LEMMA 5.6. Take k = (ky),., € Z* so that k,>5 for each vea. Then N <
ME for any p=(po)yeq € (NU{0})"
k=3-1,(1)

Proor. First let us prove ;" JON= N , the same assertion for Hilbert
modular forms. For any C-valued nearly holomorphic Hilbert modular form /& of
weight k, take p = (p,),., € (NU{0})* which satisfies & € ,/t/kp’(l) and ), _, py is mini-

mum. Then E?*h #0 for each vea. Put
(H Ejv)h + 0}.

Take any vy € @ and fix it. Since Elff)”‘)h # 0, we can choose ¢q € Oy, so that g, > p,,
and there exists no other ¢’ € Q) which satisfies ¢’ > ¢. Then ([[,., EZ)h is contained
in (), ,KerE, From the definition of E,, it means ([],.,EZ)h is a (non-zero)
holomorphic Hilbert modular form. Hence we have ([[,., EZ)h € ﬂ;@zq- As 1s well
known, a holomorphic Hilbert modular form of weight / = (/,),., is non-zero only if
I, > 0 for each vea. Hence we have k,, > 2¢q,, > 2p,,. We obtain p,, <k, — 3 from
kv, = 5.

On = {1 = (b)yeq € (NU{0})*
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For any nearly holomorphic modular form f of weight k = (k,),., with respect
to GV (s, ¥), take p = (pu),., € (NU{0})* so that fe 4" (s, ¥) and 3°,_, po is
minimum. Express f as

Z Z H((n\/jl)_lrl,v(S))jv g(f.,j,m)(w>ea(mz)'

jeZ® 0<meF \vea
0<j<p

Consider a nearly holomorphic Hilbert modular form (f|.h,¢)oe for h,o=
Losy? (1/2)syy?

0 1 y with y € K. Clearly it is of weight k, and since 7| ,(&0(z)) =
0 0 1
(vV/=1/2)Im(z,)"", we have (f1chy.0) © €0 e%p7(l). Its Fourier expansion is

(flehpo)oeo@) = Y > S[[@Im(z) ™ p272ecat (g1 m), (37 )ea(mz).

jeZ* 0<meF \vea
0<j<p

Now for each v € a, there exists jo € (N U{0})“ which satisfies jo , = p, and 9itjom) 0
with some m e F. (If not, we have f e .#,""".) For such j, and m, we can choose
a suitable ye K so that (g¢s j,m),(»¥) #0 for some meF. Note that jjo, = p,.

For such y, (f|;h,0)ceo€ ,/qu"(l) only if ¢, > p,. This implies p, < k, — 3 since
k, > 5. ]
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