Generalized double tilted algebras

By Idun Reiten and Andrzej Skowroński

(Received Feb. 18, 2002)
(Revised Sept. 2, 2002)

Abstract

We introduce the class of generalized double tilted artin algebras and prove that it coincides with the class of artin algebras whose AR-quiver admits a faithful generalized standard almost directed component. A homological characterization of faithful generalized standard almost directed components is also established.

0. Introduction.

Tilted algebras have for a long time played a central role in the representation theory of artin algebras. Being a more general class than the class of hereditary algebras, they occur more frequently, and at the same time the module theory for tilted algebras is closely related to the module theory for hereditary algebras. The more general class of quasitilted algebras was introduced in [9]. This class contains also the canonical algebras, and has been the focus of much attention during the last years. A useful feature of the class of quasitilted algebras is the nice homological characterization as the algebras where each indecomposable module has projective or injective dimension at most one, and where in addition the global dimension is at most two. Dropping the last property we have the class of shod algebras, introduced and investigated in [2]. A shod algebra which is not quasitilted is said to be a strict shod algebra. Both for quasitilted algebras and for shod algebras there are several interesting descriptions and results (see [2], [6], [7], [9], [13], [18], [20], [23]), for example in terms of paths from indecomposable injective to indecomposable projective modules (9], [2]).

As shown in [18] the strict shod algebras are closely related to tilted algebras. A tilted algebra is characterized in terms of the existence of an AR-component with a faithful section Δ such that $\operatorname{Hom}(M, D \operatorname{Tr} N)=0$ for M and N on Δ (see [17] and [20]). The more general concepts of double section and double tilted algebras were introduced in [18], and the strict shod algebras were characterized in these terms. In particular, there are (left and right) tilted algebras naturally associated with a strict shod algebra, and the module theory for the strict shod algebras is closely related to the module theory for the associated tilted algebras.

In this paper we generalize the concepts of section and double section to what we call a multisection Δ, along with its left and right parts Δ_{l} and Δ_{r}. Modelled on defining the double tilted algebras on the basis of double sections in [18], we define generalized double tilted algebras on the basis of a multisection. We also characterize

[^0]the generalized double tilted algebras as those having an AR-component with a faithful multisection Δ such that $\operatorname{Hom}(M, D \operatorname{Tr} N)=0$ for M in Δ_{r} and N in Δ_{l}. On the other hand, this connects up with the work in [20], since we show that an algebra Λ is generalized double tilted if and only if there is an almost directed generalized standard faithful AR-component. We also describe the shape of all AR-components for such algebras.

For tilted algebras we have global dimension at most two, and for shod algebras it is at most three. For multisections we have the concept of n-section, where n may be infinite, and where a section is a 1 -section and a double section a 2 -section. Correspondingly we have n-double tilted algebras and we show that they have global dimension at most $n+1$.

We now describe the content of this paper section by section. In section 1 we recall some background material, including essential definitions. In section 2 we introduce the concept of multisection in a component of the AR-quiver of an artin algebra, along with its core, and the concept of generalized double tilted algebra is introduced and investigated in section 3. The results on global dimension are given in section 4 , and in section 5 we give a homological characterization of faithful generalized standard almost directed components.

We refer also to the recent papers [3], [4] for generalizations of (strict) shod algebras in other, but related, directions. Recently, we have been informed by I. Assem and F. U. Coelho that they are also working on generalizations of shod algebras.

1. Preliminaries.

In this section we recall some definitions which will be used in this paper. We also refer to [1] and [18] for relevant background material.

By an algebra we mean a basic artin algebra Λ over a fixed commutative artin ring R, and by a Λ-module is meant a finitely generated left Λ-module. We denote the category of these modules by $\bmod \Lambda$, and ind Λ denotes the full subcategory formed by the indecomposable modules. Then $\operatorname{rad}(\bmod \Lambda)$ denotes the radical of $\bmod \Lambda$, that is, the ideal in $\bmod \Lambda$ generated by all noninvertible morphisms between modules in ind Λ. The infinite radical $\operatorname{rad}^{\infty}(\bmod \Lambda)$ of $\bmod \Lambda$ is the intersection of all powers $\operatorname{rad}^{n}(\bmod \Lambda), n \geq 1$, of $\operatorname{rad}(\bmod \Lambda)$. We denote by Γ_{Λ} the AR-quiver of Λ and by τ_{Λ} and τ_{Λ}^{-}the AR-translations $D \operatorname{Tr}$ and $\operatorname{Tr} D$, with D the ordinary duality and Tr the transpose. We shall not distinguish between an indecomposable Λ-module and the vertex of Γ_{A} corresponding to it. Following [21], a component \mathscr{C} of Γ_{A} is said to be generalized standard if $\operatorname{rad}^{\infty}(X, Y)=0$ for all X and Y in \mathscr{C}. Finally, a full subquiver Σ of Γ_{A} is said to be directed (respectively, almost directed) if all modules from Σ (respectively, all but finitely many modules from Σ) do not lie on oriented cycles in Γ_{A}.

Recall that a module M in Γ_{A} is called left stable (respectively, right stable) if $\tau_{A}^{n} M$ (respectively, $\tau_{\Lambda}^{-n} M$) is defined for all $n \in N$. Moreover, M is called stable if it is both left stable and right stable. For a component \mathscr{C} of Γ_{A}, we denote by \mathscr{C}_{l} (respectively, \mathscr{C}_{r}) the left stable part (respectively, right stable part) of \mathscr{C} obtained by deleting in \mathscr{C} the τ-orbits of projective (respectively, injective) modules, and by \mathscr{C}_{s} the stable part obtained by deleting in \mathscr{C} the nonstable modules and arrows attached to them. By a left stable
component (respectively, right stable component, stable component) of Γ_{A} we mean a connected component of $\left(\Gamma_{\Lambda}\right)_{l}$ (respectively, $\left.\left(\Gamma_{\Lambda}\right)_{r},\left(\Gamma_{\Lambda}\right)_{s}\right)$. We refer to [14] and [26] (respectively, [15]) for the shapes of stable (respectively, left stable and right stable) components of Γ_{A}.

For M and N in ind Λ a path from M to N in ind Λ is given by a sequence of morphisms

$$
M=X_{1} \xrightarrow{f_{1}} X_{2} \rightarrow \cdots \rightarrow X_{t} \xrightarrow{f_{t}} X_{t+1}=N
$$

where, for each i, X_{i} is in ind Λ and each f_{i} is a nonzero nonisomorphism, and $t \geq 1$. Then M is said to be a predecessor of N and N a successor of M in ind Λ. If the morphisms f_{i} are in addition irreducible, then the path is a path of irreducible morphisms. If M is isomorphic to N, then the path is an oriented cycle in ind Λ. Every indecomposable Λ-module M is also called its own (trivial) predecessor and successor.

Let $Z_{1} \rightarrow Z_{2} \rightarrow \cdots \rightarrow Z_{n} \rightarrow Z_{n+1}$ be a path of irreducible morphisms in ind Λ. If $Z_{i-1} \simeq \tau Z_{i+1}$ for some i with $2 \leq i \leq n$, we say that Z_{i} is a hook of the path. The path is said to be sectional if it has no hook. It is well known (see [1, (VII.2.4)]) that the composition of irreducible morphisms forming a sectional path is nonzero.

We shall prove a technical fact playing a crucial role in the proof of the main result of Section 4.

Let Λ be a finite dimensional algebra over an algebraically closed field K and \mathscr{C} a directed generalized standard component of Γ_{A}. For each indecomposable module X in \mathscr{C} we fix irreducible morphisms $f_{i}^{X}: X \rightarrow E_{i}^{X}, 1 \leq i \leq m_{X}$, where $E_{1}^{X}, \ldots, E_{m_{X}}^{X}$ are indecomposable modules from \mathscr{C} (not necessarily nonisomorphic) such that

$$
f=\left(f_{1}^{X}, \ldots, f_{m_{X}}^{X}\right)^{t}: X \rightarrow E_{1}^{X} \oplus \cdots \oplus E_{m_{X}}^{X}
$$

is a minimal left almost split morphism in $\bmod \Lambda$. Let M and N be indecomposable modules in \mathscr{C} such that there is a path of irreducible morphisms in \mathscr{C} from M to N and every such a path is sectional. Denote by $\mathscr{S}(M, N)$ the set of all (sectional) paths of irreducible morphisms of the forms

$$
M=X_{1} \xrightarrow{f_{i_{1}}^{X_{1}}} X_{2} \xrightarrow{f_{i_{2}}^{X_{2}}} \cdots \longrightarrow X_{r} \xrightarrow{f_{i_{r}}^{X_{r}}} X_{r+1}=N
$$

with $1 \leq i_{s} \leq m_{X_{s}}, 1 \leq s \leq r$. Observe that the compositions $f_{i_{r}}^{X_{r}} \cdots f_{i_{1}}^{X_{1}}$ are nonzero (see [1, (VII.2.4)]). Moreover, since \mathscr{C} is generalized standard, there is a natural number n such that $\operatorname{rad}^{n}(M, N)=\operatorname{rad}^{\infty}(M, N)=0($ see $[\mathbf{1},(\mathrm{V} .7 .2)])$, and consequently $\mathscr{S}(M, N)$ is finite. Denote by $\max (M, N)$ the maximum of length of paths in $\mathscr{S}(M, N)$. Finally, we note that $\operatorname{End}_{\Lambda}(X) \simeq K$ for any indecomposable module X in \mathscr{C}, because \mathscr{C} is generalized standard and directed. Then the following fact holds.

Proposition 1.1. Let \mathscr{C} be a directed generalized standard component of Γ_{Λ}, M and N indecomposable modules in $\mathscr{C}, \varphi_{1}, \ldots, \varphi_{t}$ be the compositions of irreducible morphisms forming pairwise different paths p_{1}, \ldots, p_{t} in $\mathscr{S}(M, N)$ and let ξ_{1}, \ldots, ξ_{t} be automorphisms of N. Then the sum $\xi_{1} \varphi_{1}+\cdots+\xi_{t} \varphi_{t}$ is nonzero.

Proof. We prove the claim by induction on $\max (M, N)$. We may assume that $t \geq 2$, because the composition of irreducible morphisms on a sectional path is nonzero.

Assume $\max (M, N)=1$. Then $\mathscr{S}(M, N)$ consists of irreducible morphisms $f_{i_{1}}^{M}$, $f_{i_{2}}^{M}, \ldots, f_{i_{q}}^{M}, 1 \leq i_{1}<i_{2}<\cdots<i_{q} \leq m_{M}$, such that the residue classes

$$
f_{i_{1}}^{M}+\operatorname{rad}^{2}(M, N), f_{i_{2}}^{M}+\operatorname{rad}^{2}(M, N), \ldots, f_{i_{q}}^{M}+\operatorname{rad}^{2}(M, N)
$$

form a basis of $\operatorname{rad}(M, N) / \operatorname{rad}^{2}(M, N)$ over $K=\operatorname{End}_{\Lambda}(N)$. Since $\varphi_{1}, \ldots, \varphi_{t} \in \mathscr{S}(M, N)$ are pairwise different, we obtain $\xi_{1} \varphi_{1}+\cdots+\xi_{t} \varphi_{t} \neq 0$.

Assume $\max (M, N) \geq 2$. Observe that there is a minimal right almost split morphism of the form $A \oplus B \xrightarrow{(g, h)} N$, where $A=A_{1} \oplus \cdots \oplus A_{s}$, the modules A_{i} are indecomposable, $g=\left(g_{1}, \ldots, g_{s}\right)$ and the irreducible morphisms $g_{1}: A_{1} \rightarrow N, \ldots, g_{s}: A_{s}$ $\rightarrow N$ form a complete family of the final irreducible morphisms $f_{i_{r}}^{X_{r}}: X_{r} \rightarrow N$ on the paths of irreducible morphisms in $\mathscr{S}(M, N)$. Clearly, there are no paths of irreducible morphisms from M to indecomposable direct summands of B. We note also that $\operatorname{End}_{\Lambda}(N) \cong K \cong \operatorname{End}_{\Lambda}\left(A_{i}\right), \quad 1 \leq i \leq s$. In particular, we have $\xi_{i}=\lambda_{i} \mathrm{id}_{N}$ with $\lambda_{i} \in K \backslash\{0\}$, for $i \in\{1, \ldots, t\}$. For each $i \in\{1, \ldots, t\}$, there is $j(i) \in\{1, \ldots, s\}$ such that $\varphi_{i}=g_{j(i)} \varphi_{i}^{\prime}$ for φ_{i}^{\prime} being the composition of irreducible morphisms on a path from $\mathscr{S}\left(M, A_{j(i)}\right)$. Then consider $\xi_{i}^{\prime}=\lambda_{i} \operatorname{id}_{A_{j(i)}} \in \operatorname{End}_{\Lambda}\left(A_{j(i)}\right)$. For $j \in\{1, \ldots, s\}$, denote by $\psi_{j}: M \rightarrow A_{j}$ the sum of all morphisms $\xi_{i}^{\prime} \varphi_{i}^{\prime}$ with $j(i)=j$, and put $\psi=\left[\psi_{1}, \ldots, \psi_{s}\right]^{t}$: $M \rightarrow A$. Then we have $\varphi=\xi_{1} \varphi_{1}+\cdots+\xi_{t} \varphi_{t}=g \psi$. Note that all paths of irreducible morphisms from M to the modules A_{1}, \ldots, A_{s} are sectional and $\max \left(M, A_{j}\right)<$ $\max (M, N)$ for any $j \in\{1, \ldots, s\}$. For the inductive step, we may assume that the proposition holds for the compositions of irreducible morphisms of sectional paths from $\mathscr{S}\left(M, A_{1}\right), \ldots, \mathscr{S}\left(M, A_{s}\right)$ and automorphisms of A_{1}, \ldots, A_{s}. Then $\psi \neq 0$. Suppose $\varphi=g \psi=0$. Then N is nonprojective and there is an almost split sequence of the form

$$
0 \longrightarrow \tau_{\Lambda} N \xrightarrow{(u, v)^{t}} A \oplus B \xrightarrow{(g, h)} N \longrightarrow 0,
$$

and a nonzero morphism $\psi^{\prime}: M \rightarrow \tau_{A} N$ such that $\psi=u \psi^{\prime}$. Since the component \mathscr{C} is generalized standard, ψ^{\prime} is a sum of compositions of irreducible morphisms between indecomposable modules in \mathscr{C}. Therefore, there is a nonsectional path of irreducible morphisms

$$
M \rightarrow \cdots \rightarrow \tau_{A} N \rightarrow A_{1} \rightarrow N
$$

from M to N, a contradiction. Hence $\xi_{1} \varphi_{1}+\cdots+\xi_{t} \varphi_{t}=g \psi \neq 0$.

2. Almost directed components.

In this section we introduce some concepts playing a fundamental role in our further investigations.

Let Λ be an artin algebra and let \mathscr{C} be a component of Γ_{Λ}. Recall that following [15], [20], a full connected valued subquiver Δ of \mathscr{C} is called a section of \mathscr{C} if Δ is directed, convex in \mathscr{C} and intersects each τ_{A}-orbit in \mathscr{C} exactly once. We introduce the following more general concept. A full connected valued subquiver Δ of \mathscr{C} is said to be a multisection in \mathscr{C} if the following conditions are satisfied:
(1) Δ is almost directed.
(2) Δ is convex in \mathscr{C}.
(3) For each τ_{Λ}-orbit \mathcal{O} in \mathscr{C} we have $1 \leq|\Delta \cap \mathcal{O}|<\infty$.
(4) $|\Delta \cap \mathcal{O}|=1$ for all but finitely many τ_{Λ}-orbits \mathcal{O} in \mathscr{C}.
(5) No proper full convex valued subquiver of Δ satisfies the conditions (1)-(4).

We also note that the double sections, defined in [18], are special types of multisections.

For a multisection Δ in a component \mathscr{C} of Γ_{Λ}, we consider also the following full valued subquivers of \mathscr{C} :

$$
\begin{aligned}
& \Delta_{l}^{\prime}=\{X \in \Delta ; \text { there is a nonsectional path } X \rightarrow \cdots \rightarrow P \text { with } P \text { projective }\}, \\
& \Delta_{r}^{\prime}=\left\{X \in \Delta^{\prime} ; \text { there is a nonsectional path } I \rightarrow \cdots \rightarrow X \text { with I injective }\right\}, \\
& \Delta_{l}^{\prime \prime}=\left\{X \in \Delta_{l}^{\prime} ; \tau_{\Lambda}^{-} X \notin \Delta_{l}^{\prime}\right\}, \\
& \Delta_{r}^{\prime \prime}=\left\{X \in \Delta_{r}^{\prime} ; \tau_{A} X \notin \Delta_{r}^{\prime}\right\}, \\
& \Delta_{l}=\left(\Delta \backslash \Delta_{r}^{\prime}\right) \cup \tau_{A} \Delta_{r}^{\prime \prime}, \\
& \Delta_{r}=\left(\Delta \backslash \Delta_{l}^{\prime}\right) \cup \tau_{\Lambda}^{-} \Delta_{l}^{\prime \prime}, \\
& \Delta_{c}=\Delta_{l}^{\prime} \cap \Delta_{r}^{\prime}(\text { the core of } \Delta) .
\end{aligned}
$$

The following example shows that in general Δ_{l} and Δ_{r} are not subquivers of Δ.
Example 2.1. Let Λ be the bound quiver algebra $K Q / I$, where $K Q$ is the paths algebra of the quiver

over a field K and I is the ideal in $K Q$ generated by $\alpha \beta, \beta \sigma, \sigma \delta, \delta \xi, \xi \varrho$ and ϱv. Then Γ_{A} is of the form

where $S_{i}, P_{i}, I_{i}, 1 \leq i \leq 10$, denote the simple, projective, injective module given by the vertex i. Since the modules $P_{2}=I_{1}$ and $P_{10}=I_{9}$ are projective-injective, the full translation subquiver Δ of Γ_{Λ} formed by all modules of Γ_{Λ} except the simple modules S_{1}, S_{4}, S_{8} and S_{10} is the unique multisection of Γ_{Λ}. Moreover, we have $\Delta_{l}^{\prime}=\Delta \backslash\left\{I_{8}\right.$, $\left.I_{7}, S_{9}, I_{9}\right\}, \quad \Delta_{r}^{\prime}=\Delta \backslash\left\{P_{2}, S_{2}, P_{3}, P_{4}\right\}$, and hence $\Delta_{c}=\left\{S_{3}, P_{5}, P_{4} / S_{2}, I_{3}, S_{5}, P_{6}, S_{6}, P_{7}, I_{6}\right.$, $\left.P_{7} / S_{6}, S_{7}\right\}$. Then $\Delta_{l}^{\prime \prime}=\left\{I_{1}, I_{2}, P_{5}, I_{3}, I_{5}, I_{6}, P_{7} / S_{6}, S_{7}\right\}$, and $\Delta_{r}^{\prime \prime}=\left\{S_{3}, P_{4} / S_{2}, P_{5}, P_{6}, P_{7}\right.$, $\left.I_{6}, P_{9}, P_{10}\right\}$. Therefore, Δ_{l} is a disjoint union of the subquivers $P_{2} \rightarrow S_{2} \rightarrow P_{3} \rightarrow P_{4}$ and S_{8}, and Δ_{r} is a disjoint union of the subquivers S_{4} and $I_{8} \rightarrow I_{7} \rightarrow S_{9} \rightarrow I_{9}$. Finally, observe that S_{4} and S_{8} do not belong to Δ, and hence Δ_{l} and Δ_{r} are not subquivers of Δ.

The Example 2.9 below shows that we may have $\Delta_{l}^{\prime}=\Delta_{r}^{\prime}=\Delta=\Gamma_{\Lambda}$, and hence Δ_{l} and Δ_{r} empty. In fact, it is the case for all connected nonsimple selfinjective algebras of finite representation type.

The following property of multisections will be essential for our further considerations.

Lemma 2.2. Let Δ be a multisection in a component \mathscr{C} of Γ_{A} and \mathcal{O} a τ_{A}-orbit in \mathscr{C} such that $\Delta \cap \mathcal{O}=\left\{\tau_{A}^{m-1} X, \ldots, X\right\}$ for some $m \geq 2$. Then there exist in Δ paths $I \rightarrow \cdots \rightarrow \tau_{A}^{m-1} X$ and $X \rightarrow \cdots \rightarrow P$ with I injective and P projective.

Proof. Observe first that if there is in \mathscr{C} a path $I \rightarrow \cdots \rightarrow \tau_{A}^{m-1} X$ with I injective then it lies entirely in Δ, because Δ contains a module from the τ_{A}-orbit of I and is convex in \mathscr{C}. Similarly, if \mathscr{C} admits a path $X \rightarrow \cdots \rightarrow P$ with P projective then it lies entirely in Δ.

Suppose $\tau_{A}^{m-1} X$ is not a successor of an injective module in \mathscr{C}. Let Ω be the family of all modules in Δ which are predecessors of $\tau_{A}^{m-1} X$ in \mathscr{C} (equivalently, in Δ). Then it follows from our assumption that Ω consists of noninjective modules. Denote by Σ the full valued subquiver of \mathscr{C} given by all modules from $\Delta \backslash \Omega$ and $\tau_{\Lambda}^{-} \Omega$. Clearly, Σ is a full connected valued subquiver of \mathscr{C} satisfying the conditions (1)-(4) of a multisection. Moreover, every module of $\tau_{\Lambda}^{-} \Omega$ is a predecessor of $\tau_{A}^{m-2} X$ (because the paths from modules in Ω to $\tau_{A}^{m-1} X$ consist of noninjective modules) and hence belongs to Δ, again by the convexity of Δ in \mathscr{C}. Therefore, Σ is a convex valued subquiver of Δ such that $\mathcal{O} \cap \Sigma=\left\{\tau_{A}^{m-2} X, \ldots, X\right\}$, which contradicts the minimality of Δ. This shows that $\tau_{A}^{m-1} X$ is a successor of an injective module in \mathscr{C}. Similarly, we prove that X is a predecessor of a projective module in \mathscr{C}.

As a consequence we obtain the following characterization of sections.
Corollary 2.3. Let Δ be a multisection of a component \mathscr{C} of Γ_{Λ}. The following statements are equivalent:
(i) Δ is a section of \mathscr{C}.
(ii) $\Delta=\Delta_{l}$.
(iii) $\Delta=\Delta_{r}$.

Proof. Assume that Δ is a section of \mathscr{C}. We claim that $\Delta_{r}^{\prime}=\varnothing=\Delta_{l}^{\prime}$, and consequently $\Delta_{l}=\Delta=\Delta_{r}$. Indeed, suppose Z is a module in Δ_{r}^{\prime}. Then there exists a path $I \rightarrow \cdots \rightarrow \tau_{A} X \rightarrow Y \rightarrow X \rightarrow \cdots \rightarrow Z$ in \mathscr{C} with I injective. Since Δ is a section, I and Z belong to Δ, then $\left\{\tau_{A} X, X\right\}$ is contained in Δ, by the convexity of Δ in \mathscr{C}. This contradicts the fact that Δ intersects each τ_{Λ}-orbit in \mathscr{C} exactly once. Therefore, $\Delta_{r}^{\prime}=\varnothing$. Similarly, we prove that $\Delta_{l}^{\prime}=\varnothing$.

Conversely, assume that $\Delta_{l}=\Delta$ (respectively, $\Delta_{r}=\Delta$) holds. In order to prove that Δ is a section of \mathscr{C}, it is enough to show that $|\Delta \cap \mathcal{O}|=1$ for every τ_{A}-orbit \mathcal{O} in \mathscr{C}. Suppose \mathcal{O} is a τ_{Λ}-orbit in \mathscr{C} such that $\Delta \cap \mathcal{O}=\left\{\tau_{A}^{m-1} X, \ldots, X\right\}$ for some $m \geq 2$. It follows from Lemma 2.2 that there exist in \mathscr{C} paths $I \rightarrow \cdots \rightarrow \tau_{A}^{m-1} X$ and $X \rightarrow \cdots \rightarrow P$ with I injective and P projective. Hence we obtain a path in \mathscr{C} of the form

$$
I \rightarrow \cdots \rightarrow \tau_{A}^{m-1} X \rightarrow Y_{m-1} \rightarrow \tau_{A}^{m-2} X \rightarrow \cdots \rightarrow \tau_{\Lambda} X \rightarrow Y_{1} \rightarrow X \rightarrow \cdots \rightarrow P
$$

This implies $\left\{\tau_{A}^{m-2} X, \ldots, X\right\} \subseteq \Delta_{r}^{\prime}$ and $\left\{\tau_{A}^{m-1} X, \ldots, \tau_{\Lambda} X\right\} \subseteq \Delta_{l}^{\prime}$. But then $\tau_{A}^{m-2} X \in \Delta \backslash \Delta_{l}$ and $\tau_{\Lambda} X \in \Delta \backslash \Delta_{r}$, a contradiction.

The following proposition describes basic properties of multisections.
Proposition 2.4. Let \mathscr{C} be a component of Γ_{A} with a multisection Δ. Then we have the following statements.
(i) Every cycle in \mathscr{C} lies in Δ_{c}.
(ii) Δ_{c} is finite.
(iii) Every indecomposable module M in \mathscr{C} is in Δ_{c} or is a predecessor of Δ_{l} or a successor of Δ_{r} in \mathscr{C}.

Proof. (i) Let $X=X_{1} \rightarrow X_{2} \rightarrow \cdots \rightarrow X_{m} \rightarrow X_{m+1}=X$ be an oriented cycle in \mathscr{C}. We note first that the cycle $X=X_{1} \rightarrow \cdots \rightarrow X_{m}=X$ is not sectional (see [1, (VII.2.6)]). Then for any natural numbers r, s such that the modules $\tau_{\Lambda}^{r} X_{i}$ and $\tau_{\Lambda}^{-s} X_{i}$ are nonzero for all $i \in\{1,2, \ldots, m\}$, all modules $\tau_{1}^{t} X_{i}, i \in\{1,2, \ldots, m\},-s \leq t \leq r$, lie on one oriented cycle in \mathscr{C}. Suppose first that the modules X_{1}, \ldots, X_{m} are stable, and let Γ be a stable component of Γ_{A} containing these modules. Then it follows from Zhang's theorem [26] (see also $[\mathbf{1 4},(2.7)]$) that Γ consists of τ_{Λ}-periodic modules, and consequently is either a stable tube $\boldsymbol{Z} \boldsymbol{A}_{\infty} /\left(\tau^{r}\right), r \geq 1$, or of the form $\boldsymbol{Z} \Omega / G$ for a Dynkin quiver Ω and an admissible group G of automorphisms of $\boldsymbol{Z} \Omega$ (see [8] or [1, (VII.4.1)]). Since the multisection Δ intersects each τ_{A}-orbit in \mathscr{C} and is convex in \mathscr{C}, we conclude that Γ is contained in Δ. Moreover, since Δ is almost directed, we obtain that Γ is a finite quiver of the form $Z \Omega / G$. Further, $\Gamma \neq \mathscr{C}$, because otherwise \mathscr{C} is the AuslanderReiten quiver of a connected part of Λ and is stable. Therefore, there is an indecomposable module Z in Γ which is a direct predecessor of a projective module or a direct successor of an injective module in \mathscr{C}. It is well known that any left stable (respectively, right stable) component of Γ_{A} containing a τ_{A}-periodic module is in fact stable. Hence, \mathscr{C} contains a finite nonperiodic τ_{A}-orbit connected in \mathscr{C} to a (periodic) τ_{A}-orbit of Γ. Then for any indecomposable module Y in Γ there are nonsectional paths $I \rightarrow \cdots \rightarrow Y$ and $Y \rightarrow \cdots \rightarrow P$ with I injective and P projective, and hence Y belongs to Δ_{c}. Consequently, Γ is contained in Δ_{c}. In particular, the modules X_{1}, \ldots, X_{m} lie in Δ_{c}. Assume now that one of the modules X_{1}, \ldots, X_{m} is not stable. We claim that there exist $i, j \in\{1, \ldots, m\}$ and nonnegative integers p and q such that $\tau_{\Lambda}^{p} X_{i}$ is projective, $\tau_{\Lambda}^{-q} X_{j}$ is injective, and all modules $\tau_{A}^{s} X_{k},-q \leq s \leq p, 1 \leq k \leq m$, are nonzero. Without loss of generality, we may assume that one of the modules X_{1}, \ldots, X_{m} is not right stable. Let q be the minimal natural number such that $\tau_{A}^{-q} X_{j}$ is injective for some $j \in\{1, \ldots, m\}$. Suppose the modules X_{1}, \ldots, X_{m} are left stable and let \mathscr{D} be the left stable component of Γ_{A} containing these modules. Since X_{j} is not stable, \mathscr{D} is not stable and so does not contain a τ_{Λ}-periodic module. Then it follows from [15, (2.3)] that there exists an infinite sectional path

$$
\cdots \rightarrow \tau_{A}^{2 r} Y_{1} \rightarrow \tau_{A}^{r} Y_{s} \rightarrow \cdots \rightarrow \tau_{A}^{r} Y_{1} \rightarrow Y_{s} \rightarrow \cdots \rightarrow Y_{1}
$$

with $r>s$ such that Y_{1}, \ldots, Y_{s} is a complete set of representatives of the τ_{A}-orbits in \mathscr{D}, the module Y_{s} injective, and the modules Y_{s} and $\tau_{A}^{m} Y_{1}, \ldots, \tau_{A}^{m} Y_{s}, m \geq r$, lie on common oriented cycles in \mathscr{D}. Since Δ contains a module from the τ_{Λ}-orbit of Y_{S},
the convexity of Δ implies that all modules $\tau_{A}^{m} Y_{j}, m \geq r, 1 \leq j \leq s$, belong to Δ. But then Δ contains infinitely many modules lying on oriented cycles in \mathscr{C}, a contradiction. Therefore, one of the modules X_{1}, \ldots, X_{m} is not left stable, and so there exists a minimal natural number p such that $\tau_{A}^{p} X_{i}$ is projective for some $i \in\{1, \ldots, m\}$. Since all modules $\tau_{A}^{t} X_{i}, i \in\{1,2, \ldots, m\},-q \leq t \leq p$, lie on a common oriented cycle, and this cycle is not sectional, we conclude that for any module $X_{k}, k \in\{1,2, \ldots, m\}$, there exist nonsectional paths $\tau_{A}^{-q} X_{j} \rightarrow \cdots \rightarrow X_{k}$ and $X_{k} \rightarrow \cdots \rightarrow \tau_{A}^{p} X_{i}$ with $\tau_{\Lambda}^{-q} X_{j}$ injective and $\tau_{A}^{p} X_{i}$ projective. Therefore, all modules $X=X_{1}, X_{2}, \ldots, X_{m}$ lie in Δ_{c}.
(ii) Since by (i) every cycle in \mathscr{C} lies in $\Delta_{c} \subseteq \Delta$ and Δ is almost directed we conclude that \mathscr{C} is also almost directed. Suppose that Δ_{c} is infinite. Clearly then Δ and \mathscr{C} are also infinite. Invoking now the conditions (3) and (4) for a multisection, we conclude that the stable part \mathscr{C}_{s} of \mathscr{C} contains a connected component Γ of the form $\boldsymbol{Z} \Sigma$, for a directed connected full valued subquiver Σ of Δ containing infinitely many modules from Δ_{c}. Observe also that \mathscr{C} can be obtained from the connected components of \mathscr{C}_{s} by gluing along the nonstable τ_{Λ}-orbit of \mathscr{C}. Then the section Σ of Δ contains at most finitely many modules which are simultaneously the targets of paths in \mathscr{C} with injective sources and the sources of paths in \mathscr{C} with projective targets. Therefore, Σ contains at most finitely many modules from Δ_{c}, a contradiction. This shows that Δ_{c} is finite.
(iii) Let M be an indecomposable module in \mathscr{C} and \mathcal{O} the τ_{Λ}-orbit of M. Since Δ is a multisection in \mathscr{C}, we have $m=|\Delta \cap \mathcal{O}| \geq 1$. Let $\Delta \cap \mathcal{O}=\left\{\tau_{A}^{m-1} X, \ldots, X\right\}$. Assume first that $m \geq 2$. Then it follows from Lemma 2.2 that there are paths $I \rightarrow \cdots \rightarrow \tau_{A}^{m-1} X$ and $X \rightarrow \cdots \rightarrow P$ with I injective and P projective. Hence $\left\{\tau_{A}^{m-2} X, \ldots, X\right\} \subseteq \Delta_{r}^{\prime}, \quad\left\{\tau_{A}^{m-1} X, \ldots, \tau_{A} X\right\} \subseteq \Delta_{l}^{\prime}$, and $\left\{\tau_{A}^{m-2} X, \ldots, \tau_{A} X\right\} \subseteq \Delta_{c}$. Observe that $\tau_{\Lambda}^{m} X \notin \Delta_{r}^{\prime}$ and $\tau_{\Lambda}^{-} X \notin \Delta_{l}^{\prime}$, because $\tau_{\Lambda}^{m} X$ and $\tau_{\Lambda}^{-} X$ do not belong to Δ. Moreover, if $\tau_{A}^{m-1} X \notin \Delta_{r}^{\prime}$ (respectively, $X \notin \Delta_{l}^{\prime}$) then $\tau_{A}^{m-1} X \in \Delta_{l}$ (respectively, $X \in \Delta_{r}$). Further, if $\tau_{A}^{m-1} X \in \Delta_{r}^{\prime}$ then $\tau_{A}^{m-1} X \in \Delta_{c}$, and $\tau_{A}^{m} X \in \Delta_{l}$ provided $\tau_{A}^{m-1} X$ is nonprojective. Similarly, if $X \in \Delta_{l}^{\prime}$ then $X \in \Delta_{c}$, and $\tau_{\Lambda}^{-} X \in \Delta_{r}$ provided X is noninjective.

Assume now $m=1$ and $X \notin \Delta_{c}=\Delta_{l}^{\prime} \cap \Delta_{r}^{\prime}$. Observe that if $X \notin \Delta_{l}^{\prime}$ and $X \notin \Delta_{r}^{\prime}$ then $X \in \Delta_{l} \cap \Delta_{r}$. Suppose $X \in \Delta_{l}^{\prime}$ and $X \notin \Delta_{r}^{\prime}$. Since $\tau_{\Lambda}^{-} X \notin \Delta$, we have $X \in \Delta_{l}$, and $\tau_{\Lambda}^{-} X \in \Delta_{r}$, provided X is noninjective (and $X \in \Delta_{r}$ otherwise). Similarly, if $X \in \Delta_{r}^{\prime}$ and $X \notin \Delta_{l}^{\prime}$, then $X \in \Delta_{r}$, and $\tau_{A} X \in \Delta_{l}$ provided X is nonprojective (and $X \in \Delta_{l}$ otherwise). Summing up, we conclude that the module M lies in Δ_{c} or is a predecessor of a module from Δ_{l} or a successor of a module from Δ_{r}.

Theorem 2.5. Let \mathscr{C} be a component of Γ_{A}. Then \mathscr{C} is almost directed if and only if \mathscr{C} admits a multisection Δ.

Proof. The sufficiency part follows from Proposition 2.4. We shall prove the necessity part. Assume that \mathscr{C} is almost directed. In order to prove that \mathscr{C} admits a multisection it is enough to show that there exists a full connected valued subquiver Σ of \mathscr{C} satisfying the conditions (1)-(4). Indeed, then any minimal full convex valued subquiver Δ of Σ satisfying the conditions (1)-(4) is a multisection in \mathscr{C}. If \mathscr{C} is finite we may take $\Sigma=\mathscr{C}$. Therefore, assume that \mathscr{C} is infinite.

Since \mathscr{C} is infinite, then the left stable part \mathscr{C}_{l} of \mathscr{C} or the right stable part \mathscr{C}_{r} of \mathscr{C} is infinite. Assume \mathscr{C}_{l} is infinite and let \mathscr{D} be an infinite component of \mathscr{C}_{l}. We claim
that \mathscr{D} is directed. Suppose to the contrary that \mathscr{D} contains an oriented cycle. If \mathscr{D} is stable, then applying [26] we conclude that \mathscr{D} is a stable tube and consequently contains infinitely many modules lying on oriented cycles in \mathscr{D}, a contradiction because \mathscr{C} is almost directed. Thus assume (without loss of generality) that \mathscr{D} contains an injective module. Then it follows from [15, (2.3)] that there exists an infinite sectional path

$$
\cdots \rightarrow \tau_{A}^{2 t} X_{1} \rightarrow \tau_{A}^{t} X_{s} \rightarrow \cdots \rightarrow \tau_{A}^{t} X_{1} \rightarrow X_{s} \rightarrow \cdots \rightarrow X_{1}
$$

with $t>s$ such that $X_{1}, X_{2}, \ldots, X_{s}$ is a complete set of representatives of the τ_{A}-orbits in \mathscr{D}, and all modules $\tau_{A}^{m} X_{1}, \ldots, \tau_{A}^{m} X_{s}, m \geq t$, lie on oriented cycles in \mathscr{D}. But then again there are infinitely many modules in \mathscr{D}, and hence in \mathscr{C}, lying on oriented cycles. Therefore, \mathscr{D} is directed. Applying now [15, (3.4)] we obtain that there exists a connected valued quiver Ω without oriented cycles such that \mathscr{D} is isomorphic to a full translation subquiver of $\boldsymbol{Z} \Omega$ which is closed under predecessors. In particular, \mathscr{D} admits a section isomorphic to Ω. Similarly, we prove that if \mathscr{E} is an infinite component of \mathscr{C}_{r} then \mathscr{E} is directed and admits a section Θ.

Let $\mathscr{D}_{1}, \ldots, \mathscr{D}_{p}$ be the family of all infinite components of \mathscr{C}_{l} and $\mathscr{E}_{1}, \ldots, \mathscr{E}_{q}$ the family of all infinite components of \mathscr{C}_{r}. It follows from our discussion above that $\mathscr{D}_{1}, \ldots, \mathscr{D}_{p}, \mathscr{E}_{1}, \ldots, \mathscr{E}_{q}$ are directed translation quivers and admit respectively sections $\Omega_{1}, \ldots, \Omega_{p}, \Theta_{1}, \ldots, \Theta_{q}$. Further, let $\mathcal{O}_{1}, \ldots, \mathcal{O}_{m}$ be all finite τ_{A}-orbits in \mathscr{C}. Choose a finite family \mathscr{X} of modules in \mathscr{C} intersecting each of the quivers $\Omega_{1}, \ldots, \Omega_{p}, \Theta_{1}, \ldots, \Theta_{q}$, $\mathcal{O}_{1}, \ldots, \mathcal{O}_{m}$ exactly once. Since \mathscr{C} is a connected quiver, for any modules X and X^{\prime} from \mathscr{X}, there is in \mathscr{C} a finite walk $X=X_{1}-X_{2}-\cdots-X_{t-1}-X_{t}=X^{\prime}$ connecting X and X^{\prime}. Hence there exists a finite full valued subquiver \mathscr{Y} in \mathscr{C} such that $\mathscr{X} \subseteq \mathscr{Y}$ and any two modules Y and Y^{\prime} in \mathscr{Y} can be connected by a walk consisting entirely of modules from \mathscr{Y}. Observe that \mathscr{C} can be obtained from the directed translation quivers $\mathscr{D}_{1}, \ldots, \mathscr{D}_{p}$ and $\mathscr{E}_{1}, \ldots, \mathscr{E}_{q}$ by gluing along (finitely many) finite τ_{Λ}-orbits. Moreover, \mathscr{C} is locally finite, that is, any module in \mathscr{C} is a source or target of at most finitely many arrows. Therefore, each of the directed quivers $\Omega_{1}, \ldots, \Omega_{p}$ (respectively, $\Theta_{1}, \ldots, \Theta_{q}$) contains at most finitely many modules which are sources or targets of paths in \mathscr{C} with targets or sources in \mathscr{Y}. Let Σ be the convex hull of the full valued subquivers $\Omega_{1}, \ldots, \Omega_{p}, \Theta_{1}, \ldots, \Theta_{q}, \mathcal{O}_{1}, \ldots, \mathcal{O}_{m}$, and \mathscr{Y} in \mathscr{C}. Then Σ satisfies the required conditions (1)-(4). This finishes the proof.

As a consequence we obtain the following.
Corollary 2.6. Let \mathscr{C} be a component of Γ_{Λ}. Then \mathscr{C} is directed if and only if \mathscr{C} admits a directed multisection Δ.

Recall that a family \mathscr{X} of modules in $\bmod \Lambda$ is called faithful if the intersection of the (right) annihilators $\operatorname{ann}_{\Lambda}(X)=\{a \in \Lambda ; X a=0\}$ of all modules X in \mathscr{X} is zero. It is well known (see $[\mathbf{1 9},(2.4)]$) that \mathscr{X} is faithful if and only if there exist a monomorphism $\Lambda_{\Lambda} \rightarrow M$ and an epimorphism $N \rightarrow D(\Lambda)_{A}$ for some finite direct sums M and N of modules from \mathscr{X}. We have the following fact.

Lemma 2.7. Let \mathscr{C} be a component of Γ_{A} with a multisection Δ. Then \mathscr{C} is faithful if and only if Δ is faithful.

Proof. It is a straightforward extension of arguments applied in the proof of [20, Lemma 3], invoking the property (2.4)(iii) of a multisection.

Our next aim is to introduce a numerical invariant $w(\Delta)$ of a multisection Δ in a component \mathscr{C} of Γ_{Λ}, called the width of Δ. Let p be a path in Δ. We write the path p as an ordered sequence of modules associated with the vertices. A subpath $\left(M, Z^{(1)}, \tau_{\Lambda}^{-1} M, Z^{(2)}, \tau_{\Lambda}^{-2} M, \ldots, Z^{(n)}, \tau_{\Lambda}^{-n} M\right)$ is called a hook path of length n (if $n \geq 1$), and it is a maximal hook path if it is not contained in any hook path of larger length. Associated with the path p is the following sequence of maximal hook paths (if there are any hook paths). Start with a maximal hook path $\left(M, Z^{(1)}, \tau_{\Lambda}^{-1} M, Z^{(2)}, \tau_{\Lambda}^{-2} M, \ldots, Z^{(n)}\right.$, $\left.\tau_{\Lambda}^{-n} M\right)$, where M is the first module on p which is the start of a hook subpath of p. Then take the maximal hook subpath of p with the start at the first possible successor of $\tau_{\Lambda}^{-n} M$ on p, etc. Denote by $i(p)$ the sum of the length of these hook subpaths of p. In particular we have $i(p)=0$ if and only if p is sectional. We define the width $w(\Delta)$ of Δ to be the maximum of $i(p)+1$ for all paths p in Δ. Observe that if Δ is a section [15] (respectively, double section [18]) in \mathscr{C} then $w(\Delta)=1$ (respectively, $w(\Delta)=2$). Observe also that Δ is directed if and only if $w(\Delta)<\infty$. We say that a multisection Δ in \mathscr{C} is an n-section if $n=w(\Delta)$.

The following examples show that for any $n \in N \cup\{\infty\}$ there exists an ARcomponent \mathscr{C} having a multisection Δ with $w(\Delta)=n$.

Example 2.8. Let Λ the bound quiver algebra $K Q / I$, where $K Q$ is the path algebra of the quiver

$$
Q: 1 \rightarrow 2 \rightarrow \cdots \rightarrow n \rightarrow n+1 \rightarrow n+2
$$

over a field K and I the ideal in $K Q$ generated by all paths in Q of length 2 . Then the AR-quiver Γ_{Λ} of Λ is of the form

where S_{i} and $P_{i}, 1 \leq i \leq n+2$, denote the simple and indecomposable projective module at the vertex i, respectively. Then the full subquiver Δ of Γ_{A} formed by all vertices of Γ_{Λ} except S_{n+2} and S_{1} is a multisection with $w(\Delta)=n$. We also note that gl.dim $\Lambda=n+1$.

Example 2.9. Let K be a field and $\Lambda=K[X] /\left(X^{2}\right)$. Then Γ_{A} is of the form

$$
S \rightleftarrows \Lambda
$$

where $S=K[X] /(X)$. Moreover, $\Delta=\Gamma_{\Lambda}$ is a multisection in $\Gamma_{\Lambda}, w(\Delta)=\infty$ and gl.dim $\Lambda=\infty$.

Our next example shows that an almost directed AR-component admits usually many multisections.

Example 2.10. Let Λ be the bound quiver algebra $K Q / I$, where $K Q$ is the path algebra of the quiver

$$
Q: 1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3 \stackrel{\gamma}{\leftarrow} 4 \stackrel{\sigma}{\leftarrow} 5 \stackrel{\delta}{\leftarrow} 6 \stackrel{\varepsilon}{\leftarrow} 7 \xrightarrow{\eta} 8
$$

over a field K and I is the ideal in $K Q$ generated by $\gamma \sigma, \sigma \delta$ and $\delta \varepsilon$. Then Γ_{A} is of the form

where $S_{i}, P_{i}, I_{i}, 1 \leq i \leq 8$, denote the simple, projective, injective module given by the vertex i. Then the following families of modules form all multisections of Γ_{Λ} :

$$
\begin{array}{ll}
\Delta^{(1)}=\mathscr{X} \cup\left\{P_{4}, M, I_{6}\right\}, & \Delta^{(2)}=\mathscr{X} \cup\left\{P_{4}, M, S_{8}\right\}, \\
\Delta^{(3)}=\mathscr{X} \cup\left\{S_{2}, M, I_{6}\right\}, & \Delta^{(4)}=\mathscr{X} \cup\left\{S_{2}, M, S_{8}\right\}, \\
\Delta^{(5)}=\mathscr{X} \cup\left\{S_{2}, I_{2}, I_{6}\right\}, & \Delta^{(6)}=\mathscr{X} \cup\left\{S_{2}, I_{2}, S_{8}\right\}, \\
\Delta^{(7)}=\mathscr{X} \cup\left\{S_{1}, I_{2}, I_{6}\right\}, & \Delta^{(8)}=\mathscr{X} \cup\left\{S_{1}, I_{2}, S_{8}\right\},
\end{array}
$$

where $\mathscr{X}=\left\{I_{3}, S_{4}, P_{5}, S_{5}, P_{6}, S_{6}, P_{7}\right\}$. Observe that, for each $i \in\{1,2, \ldots, 8\}$, we have $w\left(\Delta^{(i)}\right)=3$ and $\Delta_{c}^{(i)}=\left\{S_{5}\right\}$.

The following general fact shows that the width and the core of a multisection of an almost directed component \mathscr{C} are in fact invariants of \mathscr{C}.

Proposition 2.11. Let \mathscr{C} be a component of Γ_{Λ} and Δ, Σ multisections in \mathscr{C}. Then $w(\Delta)=w(\Sigma)$ and $\Delta_{c}=\Sigma_{c}$.

Proof. Observe that every module X lying on a path $I \rightarrow \cdots \rightarrow X \rightarrow \cdots \rightarrow P$ in \mathscr{C} with I injective and P projective lies in $\Delta \cap \Sigma$. Consequently $\Delta_{c}=\Sigma_{c}$. Moreover, it follows from Lemma 2.2 that, if $p=\left(M, Z^{(1)}, \tau_{\Lambda}^{-} M, Z^{(2)}, \tau_{\Lambda}^{-2} M, \ldots, Z^{(n)}, \tau_{\Lambda}^{-n} M\right)$ is a hook path in Δ (respectively, in Σ), then M is a successor of an injective module and $\tau_{\Lambda}^{-n} M$ is a predecessor of a projective module in \mathscr{C}, and hence p is also a hook path in Σ (respectively, in Δ). Then the equality $w(\Delta)=w(\Sigma)$ also easily follows.

3. Generalized double tilted algebras.

We introduce here the class of generalized double tilted algebras, containing the classes of tilted algebras [10], double tilted algebras [18], and all algebras of finite representation type.

A connected artin algebra Λ is said to be a generalized double tilted algebra if the following conditions are satisfied:
(1) Γ_{A} admits a component \mathscr{C} with a faithful multisection Δ.
(2) There exists a tilted factor algebra Λ_{l} of Λ (not necessarily connected) such that Δ_{l} is a disjoint union of sections of connecting components of the connected parts of Λ_{l}, and the category of all predecessors of Λ_{l} in ind Λ coincides with the category of all predecessors of Δ_{l} in ind Λ_{l}.
(3) There exists a tilted factor algebra Λ_{r} of Λ (not necessarily connected) such that Δ_{r} is a disjoint union of sections of connecting components of the connected parts of Λ_{r}, and the category of all successors of Δ_{r} in ind Λ coincides with the category of all successors of Δ_{r} in ind Λ_{r}.

In the above notation, Λ_{l} and Λ_{r} are said to be the left tilted algebra and the right tilted algebra of Λ, respectively. Moreover, \mathscr{C} is said to be a connecting component of 1. If Δ is a section of \mathscr{C} then $\Lambda_{l}=\Lambda=\Lambda_{r}$ and hence Λ is a tilted algebra. Further, if $w(\Delta) \geq 2$, then \mathscr{C} is the unique connecting component of Λ. We say that a connected artin algebra Λ is an n-double tilted algebra if Γ_{Λ} admits a component \mathscr{C} with an n-section Δ satisfying the above conditions (1)-(3). It follows from Proposition 2.11 and properties of tilted algebras that $n=w(\Delta)$ does not depend on the choice of multisection Δ and connecting component \mathscr{C}. Observe that 1 -double tilted algebras and 2double tilted algebras are exactly tilted algebras [10] and double tilted algebras [18], respectively. Finally, we note that every connected artin algebra of finite representation type is a generalized double tilted algebra.

We have the following characterization of generalized double tilted algebras.
Theorem 3.1. Let Λ be a basic connected artin algebra. The following conditions are equivalent:
(i) Λ is generalized double tilted.
(ii) Γ_{A} admits a faithful generalized standard almost directed component.
(iii) Γ_{A} admits a component \mathscr{C} with a faithful multisection Δ such that $\operatorname{Hom}_{\Lambda}\left(X, \tau_{\Lambda} Y\right)=0$ for all modules X from Δ_{r} and Y from Δ_{l}.

Proof. It is a straightforward extension (invoking Theorem 2.5) of arguments applied in the proofs of [20, Theorem 3] and [18, Theorem 7.3]), where similar characterizations of tilted and double tilted algebras have been established.

We obtain the following consequences.
Proposition 3.2. Let Λ be a basic connected artin algebra. Then Λ is n-double tilted, for some $n \geq 2$, if and only if Γ_{A} admits a faithful generalized standard almost directed component with a nonsectional path from an injective module to projective module.

Proposition 3.3. Let Λ be a basic connected artin algebra. Then Λ is n-double tilted, for some $n \geq 3$, if and only if Γ_{Λ} admits a faithful generalized standard component with a multisection Δ such that $\Delta_{c} \neq \varnothing$.

We have also the following results on the structure of the module category of a generalized double tilted algebra of infinite representation type.

Theorem 3.4. Let Λ be a basic connected generalized double tilted algebra of infinite representation type which is not tilted, and let \mathscr{C} be the connecting component of Γ_{A}.

Then there are a hereditary artin algebra ${ }_{\infty} H$ and a tilting ${ }_{\infty} H$-module ${ }_{\infty} T$ without nonzero preinjective direct summands, and a hereditary artin algebra H_{∞} and a tilting H_{∞}-module T_{∞} without nonzero preprojective directed summands such that the following statements hold:
(i) The tilted algebras $\infty=\operatorname{End}_{\infty H}\left(\infty_{\infty} T\right)^{o p}$ and $\Lambda_{\infty}=\operatorname{End}_{H_{\infty}}\left(T_{\infty}\right)^{o p}$ are factor algebras of Λ.
(ii) The torsion-free part $\mathscr{Y}\left({ }_{\infty} T\right)$ of $\bmod _{\infty} \Lambda$ is a full exact subcategory of $\bmod \Lambda$ which is closed under predecessors of indecomposable modules.
(iii) The torsion part $\mathscr{X}\left(T_{\infty}\right)$ of $\bmod \Lambda_{\infty}$ is a full exact subcategory of $\bmod \Lambda$ which is closed under successors of indecomposable modules.
(iv) $\infty_{\infty} \Lambda$ is a factor algebra of 1Λ and ${ }_{\infty} \mathscr{C}=\mathscr{Y}\left({ }_{\infty} T\right) \cap \mathscr{C}$ is the torsion-free part of the family $\mathscr{C}_{\infty} T$ of the connecting components of $\infty \Lambda$ and is also a full translation subquiver of \mathscr{C} which is closed under predecessors in \mathscr{C}.
(v) Λ_{∞} is a factor algebra of Λ_{r} and $\mathscr{C}_{\infty}=\mathscr{X}\left(T_{\infty}\right) \cap \mathscr{C}$ in the torsion part of the family $\mathscr{C}_{T_{\infty}}$ of the connecting components of Λ_{∞} and is also a full translation subquiver of \mathscr{C} which is closed under successors in \mathscr{C}.
(vi) $\mathscr{Y}\left({ }_{\infty} T\right)$ and $\mathscr{X}\left(T_{\infty}\right)$ have no common nonzero modules.
(vii) The family of indecomposable 1 -modules which are neither in $\mathscr{Y}\left({ }_{\infty} T\right)$ nor in $\mathscr{X}\left(T_{\infty}\right)$ is finite and coincides with the family of all indecomposable modules in \mathscr{C} which are neither in ∞_{∞} nor in \mathscr{C}_{∞}.

Proof. It is a direct extension of arguments applied in the proof of [20, Theorem 1], where the structure of the module categories of algebras having faithful generalized standard directed components has been established.

We note that if the left tilted algebra Λ_{l} (respectively, the right tilted algebra Λ_{r}) of Λ has a finite torsion-free part $\mathscr{Y}\left(T_{l}\right)$ (respectively finite torsion part $\mathscr{X}\left(T_{r}\right)$) then ∞ (respectively Λ_{∞}) is zero. The known structure of AR-components of tilted algebras (see [10], [11], [12], [16], [19], [25]) and the above theorem lead to the following description of the AR-quivers of nontilted generalized double tilted algebras of infinite representation type.

Corollary 3.5. Let Λ be a basic connected generalized double tilted algebra of infinite representation type, and assume that Λ is not tilted. Then we have the following.
(i) Every component of Γ_{Λ} different from the connecting component either lies entirely in $\mathscr{Y}\left({ }_{\infty} T\right)$ or lies entirely in $\mathscr{X}\left(T_{\infty}\right)$.
(ii) Every component of Γ_{Λ} contained in $\mathscr{Y}\left(_{\infty} T\right)$ is either preprojective, a stable tube $\boldsymbol{Z} \boldsymbol{A}_{\infty} /\left(\tau^{m}\right)$, for $m \geq 1$, of the form $\boldsymbol{Z} \boldsymbol{A}_{\infty}$, or can be obtained from a stable tube or a component of type $\boldsymbol{Z} \boldsymbol{A}_{\infty}$ by a finite number of ray insertions (in the sense of [19]).
(iii) Every component of Γ_{A} contained in $\mathscr{X}\left(T_{\infty}\right)$ is either preinjective, a stable tube $\boldsymbol{Z} \boldsymbol{A}_{\infty} /\left(\tau^{m}\right)$, for $m \geq 1$, of the form $\boldsymbol{Z} \boldsymbol{A}_{\infty}$, or can be obtained from a stable tube or a component of type $\boldsymbol{Z} \boldsymbol{A}_{\infty}$ by a finite number of coray insertions (in the sense of $[\mathbf{1 9]})$.

We illustrate the above considerations with the following example.
Example 3.6. Let Q be the quiver

$K Q$ the path algebra of Q over a field K, I the ideal in $K Q$ generated by all paths in Q of length 2 , and $\Lambda=K Q / I$. Then Γ_{A} admits a component \mathscr{C} of the form

Observe that the full convex subquiver Δ of \mathscr{C} given by the modules $P_{2}, S_{2}, P_{3}, S_{3}, I_{4}$, $S_{5}, P_{6}, I_{3}, I_{5}, S_{6}, P_{7}, S_{7}, P_{8}, P_{9}, P_{10}, P_{11}$ is the unique multisection in \mathscr{C} and $w(\Delta)=4=$ $i(p)+1$, for p being the path

$$
S_{2} \rightarrow P_{3} \rightarrow S_{3} \rightarrow P_{6} \rightarrow I_{5} \rightarrow S_{6} \rightarrow P_{7} \rightarrow S_{7}
$$

Further, Δ_{l}^{\prime} (respectively, Δ_{r}^{\prime}) is the subquiver of Δ given by the modules P_{2}, S_{2}, P_{3}, $S_{3}, I_{4}, S_{5}, P_{6}, I_{3}, I_{5}, S_{6}$ (respectively, $S_{3}, P_{6}, I_{3}, I_{5}, S_{6}, P_{7}, S_{7}, P_{8}, P_{9}, P_{10}, P_{11}$), and hence $\Delta_{c}=\Delta_{l}^{\prime} \cap \Delta_{r}^{\prime}$ is the subquiver given by $P_{3}, S_{3}, P_{6}, I_{3}, I_{5}, S_{6}$. Moreover, $\Delta_{l}^{\prime \prime}$ (respectively, $\Delta_{r}^{\prime \prime}$) is given by the modules $P_{2}, P_{3}, I_{4}, I_{3}, I_{5}, S_{6}$ (respectively, P_{3}, S_{3}, P_{6}, $\left.I_{3}, P_{7}, P_{8}, P_{9}, P_{10}, P_{11}\right)$. Hence $\Delta_{l}=\left(\Delta \backslash \Delta_{r}^{\prime}\right) \cup \tau_{\Lambda} \Delta_{r}^{\prime \prime}$ is given by the modules P_{2}, S_{2}, I_{4}, S_{5} and $\Delta_{r}=\left(\Delta \backslash \Delta_{l}^{\prime}\right) \cup \tau_{\Lambda}^{-} \Delta_{l}^{\prime \prime}$ is given by the modules $P_{7}, S_{7}, P_{8}, P_{9}, P_{10}, P_{11}$. Therefore, the left tilted algebra Λ_{l} of Λ is the product $H_{1} \times H_{2}$, where H_{1} is the path algebra of the full subquiver of Q given by the vertices 1 and 2 and H_{2} is the path algebra of the full subquiver of Q given by the vertices 4 and 5 , and the right tilted algebra Λ_{r} of Λ is the bound quiver algebra $K \Sigma / J$ with Σ being the full subquiver of Q given by the vertices $6,7,8,9,10,11$ and J the ideal in $K \Sigma$ generated by all paths in Σ of length 2 . Finally, $\infty=H_{2}$ and Λ_{∞} is the path algebra $K \Omega$ of the full subquiver Ω of Q given by the vertices $7,8,9,10,11$. Thus the AR-quiver Γ_{Λ} of Λ consists of a preprojective component, an infinite family of components of type $\boldsymbol{Z} \boldsymbol{A}_{\infty}$, the connecting component \mathscr{C}, a preinjective component and an infinite family of stable tubes (3 of them of the form $\boldsymbol{Z} \boldsymbol{A}_{\infty} /\left(\tau^{2}\right)$ and the remaining ones of the form $\left.\boldsymbol{Z} \boldsymbol{A}_{\infty} /(\tau)\right)$.

4. Global dimension.

Let Λ be a generalized double tilted algebra over an algebraically closed field K, \mathscr{C} a connecting component of Γ_{A} and Δ a faithful multisection in \mathscr{C}. In particular, we have
$\operatorname{Hom}_{\Lambda}\left(D(\Lambda), \tau_{A} X\right)=0$ for any predecessor X of Δ_{l} in ind Λ and $\operatorname{Hom}_{\Lambda}\left(\tau_{\Lambda}^{-} Y, \Lambda\right)=0$ for any successor Y of Δ_{r} in ind Λ. Then every predecessor of Δ_{l} in ind Λ has projective dimension at most one, and every successor of Δ_{r} in ind Λ has injective dimension at most one (see $[\mathbf{1 9},(2.4)])$. In particular, for all but finitely many indecomposable 1 modules X we have $\mathrm{pd}_{A} X \leq 1$ or $\operatorname{id}_{A} X \leq 1$. On the other hand, as we have seen in Section 2, there are generalized double tilted algebras of arbitrary global dimension. The aim of this section is to establish a bound for the global dimension of a generalized double tilted algebra in terms of the width of a multisection. We need some notation.

For an indecomposable module N in the multisection Δ, we denote by $i(N)$ the maximum of the numbers $i(p)$, for all paths in Δ ending at N, as defined in Section 2. We note that if Δ is a section then $i(N)=0$ for all modules N in Δ. We have the following easy observation.

Lemma 4.1. Let N be a module in Δ with $i(N)>0$. Then there exists a path p in Δ starting with an injective module and ending at N such that $i(N)=i(p)$.

Proof. Assume $i(N)>0$ and choose a path p^{\prime} in Δ ending at N such that $i\left(p^{\prime}\right)=i(N)$. Let $M, Z^{(1)}, \tau_{\Lambda}^{-1} M, \ldots, Z^{(t)}, \tau_{A}^{-t} M$ be the first maximal hook subpath of p^{\prime}. Then by Lemma 2.2 there is some path in Δ from an injective module to M, and composing it with the path p^{\prime} we obtain the required path p, because $i(p) \geq i\left(p^{\prime}\right)$ and $i\left(p^{\prime}\right)=i(N)$ is maximal.

Theorem 4.2. Let Λ be an n-double tilted algebra. Then gl.dim $\Lambda \leq n+1$.
Proof. Let Δ be an n-section in a connecting component \mathscr{C} of Γ_{Λ}. We may assume that $n=\omega(\Delta)<\infty$, or equivalently (Corollary 2.6) that \mathscr{C} is directed. We first prove that for any indecomposable module N in Δ we have $\operatorname{pd}_{\Lambda} N \leq i(N)+1$. Let N be a module from Δ. Assume first $i(N)=0$. Then any path in Δ ending at N is sectional. Since Δ_{l} is a disjoint union of sections of connecting components of the connected parts of the left tilted algebra Λ_{l} of Λ and the injective Λ_{l}-modules are successors of Λ_{l} in ind Λ_{l}, we infer that every injective predecessor of a module from \mathscr{C} in ind Λ lies in \mathscr{C}. This implies that $\operatorname{Hom}_{\Lambda}\left(D(\Lambda), \tau_{\Lambda} N\right)=0$, and consequently $\operatorname{pd}_{\Lambda} N \leq 1$ (see $[19,(2.4)]$), because otherwise there would be a path in Δ of the form $I \rightarrow \tau_{A} N \rightarrow$ $X \rightarrow N$, contradicting $i(N)=0$. Assume $i(N)>0$. For each indecomposable module X in \mathscr{C}, we fix irreducible morphisms $f_{i}^{X}: X \rightarrow E_{i}^{X}, 1 \leq i \leq m_{X}$, where $E_{1}^{X}, \ldots, E_{m_{X}}^{X}$ are indecomposable modules from \mathscr{C} (not necessarily nonisomorphic) such that

$$
f=\left(f_{1}^{X}, \ldots, f_{m_{X}}^{X}\right)^{t}: X \rightarrow E_{1}^{X} \oplus \cdots \oplus E_{m_{X}}^{X}
$$

is a minimal left almost split morphism in $\bmod \Lambda$. Denote by \mathscr{F} the family of all chosen irreducible morphisms $f_{i}^{X}, X \in \mathscr{C}, 1 \leq i \leq m_{X}$. Consider an exact sequence

$$
0 \rightarrow \Omega N \xrightarrow{u} P_{N} \xrightarrow{v} N \rightarrow 0
$$

where $v: P_{N} \rightarrow N$ is a projective cover of N, and let $P_{N}=P_{1} \oplus \cdots \oplus P_{t}$ for some indecomposable modules P_{i}. Let $v_{j}: P_{j} \rightarrow N, 1 \leq j \leq t$, be the restrictions of v to the summands P_{j}. Since \mathscr{C} is a generalized standard component, we may choose $v: P_{N} \rightarrow N$ such that, if P_{j} belongs to \mathscr{C}, then the morphism v_{j} is a scalar multiplication
(by a nonzero element of $K=\operatorname{End}_{A}(N)$) of a composition of irreducible morphisms from the family \mathscr{F}. Let L be an indecomposable direct summand of ΩN. Assume L belongs to Δ. We claim that then there is a nonsectional path of irreducible morphisms from L to N. Without loss of generality we may assume that $\{1, \ldots, r\}$ is the set of all $j \in\{1, \ldots, t\}$ such that the composition $u_{j}: L \rightarrow P_{j}$ of the restriction of u to L with the canonical projection $P_{N} \rightarrow P_{j}$ is nonzero. Since the connecting component \mathscr{C} of the generalized double tilted algebra Λ is convex in ind Λ (see also Theorem 3.4) the modules P_{1}, \ldots, P_{r} belong to \mathscr{C} and, by our choice of v, the morphisms v_{1}, \ldots, v_{r} are nonzero scalar multiplications of irreducible morphisms on pairwise different paths of irreducible morphisms from \mathscr{F}. Since \mathscr{C} is a generalized standard component, invoking the universal property of left almost split morphisms, we conclude that the morphisms $u_{j}: L \rightarrow P_{j}, 1 \leq j \leq r$, are linear combinations of compositions of irreducible morphisms from \mathscr{F}. Then $v_{1} u_{1}+\cdots+v_{r} u_{r}$ is a linear combination of compositions of irreducible morphisms on pairwise different paths from L to N consisting of irreducible morphisms from \mathscr{F}. Since $v_{1} u_{1}+\cdots+v_{r} u_{r}=0$, applying Proposition 1.1, we conclude that there is a nonsectional path of irreducible morphisms from L to N, and consequently $i(L)<i(N)$. Then by the inductive assumption we have $\operatorname{pd}_{A} L \leq i(L)+1$. If L is not in Δ, then L is a predecessor of Δ_{l} in ind Λ, as a predecessor of the module $N \in \Delta$ in ind Λ, and hence $\operatorname{pd}_{\Lambda} L \leq 1$. Therefore, we obtain $\operatorname{pd}_{\Lambda} N \leq i(N)+1$.

Let X be an arbitrary indecomposable Λ-module, and let Y be an indecomposable direct summand of ΩX. Then Y is a predecessor of an indecomposable projective module in ind Λ. Since the multisection Δ is faithful, every indecomposable projective Λ-module is a predecessor of Δ in ind Λ and hence lies in Δ or is a predecessor of Δ_{l} in ind Λ. Hence Y lies in Δ or is a predecessor of Δ_{l} in ind Λ. In the first case we have $\operatorname{pd}_{\Lambda} X \leq \mathrm{pd}_{\Lambda} Y+1 \leq i(Y)+2 \leq w(\Delta)+1$, and in the second case $\operatorname{pd}_{A} X \leq$ $\operatorname{pd}_{A} Y+1 \leq 2$. In any case we obtain that $\operatorname{gl} \cdot \operatorname{dim} \Lambda \leq w(\Delta)+1=n+1$.

Note that 1-double tilted algebras are tilted algebras, where we know that the global dimension is at most $2[\mathbf{1 0]}$. The 2 -double tilted algebras are the strict shod algebras [18] which have global dimension 3. Examples 2.8 and 2.9 show that there are n-double tilted algebras Λ (for any $n \in \boldsymbol{N} \cup\{\infty\}$) with gl. $\operatorname{dim} \Lambda=n+1$. But in general it is not the case.

Example 4.3. Let $\Lambda=K Q / I$, where Q is the quiver

and I is the ideal in the path algebra $K Q$ of Q (over a field K) generated by all paths of length 2 . Then Λ is an ∞-double tilted algebra with $\operatorname{gl} \cdot \operatorname{dim} \Lambda=4$ and Γ_{Λ} admits a connecting component of the form

Moreover, both tilted algebras Λ_{l} and Λ_{r} are of infinite representation type.
Example 4.4. Let $\Lambda=K Q / I$, where Q is the quiver

$$
1 \underset{\beta}{\stackrel{\alpha}{\leftarrow}} 2 \stackrel{\nu}{\leftarrow} 3 \stackrel{\sigma}{\leftarrow} 4 \stackrel{\xi}{\leftarrow} 5 \stackrel{\eta}{\leftarrow} 6 \underset{v}{\omega} 7
$$

and I the ideal in the path algebra $K Q$ of Q (over a field K) generated by the paths $\alpha \gamma, \beta \gamma, \sigma \xi, \eta \omega$ and $\eta \nu$. Then Λ is a 4-double tilted algebra, gl.dim $\Lambda=2$, and Γ_{Λ} admits a connecting component of the form

5. Standard almost directed components.

The aim of this section is to prove a homological characterization of faithful generalized standard almost directed components.

Let Λ be an artin algebra. Following [9], we define two subcategories \mathscr{L}_{A} and \mathscr{R}_{A} of ind Λ as follows. The category \mathscr{L}_{Λ} is formed by all modules X in ind Λ such that for every predecessor Y of X in ind Λ we have $\operatorname{pd}_{A} Y \leq 1$. Dually, \mathscr{R}_{A} is formed by all modules X in ind Λ such that for every successor Y of X in ind Λ we have $\operatorname{id}_{A} Y \leq 1$. It is known [2, (2.1)] that ind $\Lambda=\mathscr{L}_{\Lambda} \cup \mathscr{R}_{\Lambda}$ if and only if for every indecomposable Λ module X we have $\operatorname{pd}_{\Lambda} X \leq 1$ or $\operatorname{id}_{A} X \leq 1$ (Λ is a shod algebra). Moreover, if Λ is basic connected, then Λ is shod if and only if Λ is tilted, double tilted or quasitilted of canonical type (see [10], [18], [6], [7]). In general, for a generalized double tilted algebra Λ we have ind $\Lambda \backslash\left(\mathscr{L}_{\Lambda} \cup \mathscr{R}_{\Lambda}\right)$ finite but not necessarily empty, as the examples presented in the previous sections show. In fact it has been proved in [24] that $\mathscr{L}_{A} \cup \mathscr{R}_{A}$ is cofinite in ind Λ if and only if Λ is quasitilted or generalized double tilted.

Let Λ be an artin algebra and \mathscr{C} a component of Γ_{A}. We define two full translation subquivers $\mathscr{L}_{\mathscr{C}}$ and $\mathscr{R}_{\mathscr{C}}$ in \mathscr{C} as follows. The quiver $\mathscr{L}_{\mathscr{C}}$ is formed by all modules X in \mathscr{C} such that for any path $Y=Y_{1} \rightarrow Y_{2} \rightarrow \cdots \rightarrow Y_{t}=X$ in ind Λ with $Y_{1}, Y_{2}, \ldots, Y_{t}$ from \mathscr{C} we have $\operatorname{pd}_{A} Y \leq 1$. Dually, $\mathscr{R}_{\mathscr{C}}$ is formed by all modules X in \mathscr{C} such that for every path $X=Z_{1} \rightarrow Z_{2} \rightarrow \cdots \rightarrow Z_{m}=Z$ in ind Λ with $Z_{1}, Z_{2}, \ldots, Z_{m}$ from \mathscr{C} we have $\operatorname{id}_{A} Z \leq 1$. Observe that $\mathscr{L}_{\mathscr{C}}$ is closed under predecessors in \mathscr{C} and $\mathscr{R}_{\mathscr{C}}$ is closed under successors in \mathscr{C}. Moreover, if Δ is a multisection of \mathscr{C}, then $\Delta_{c} \subseteq \mathscr{C} \backslash\left(\mathscr{L}_{\mathscr{G}} \cup \mathscr{R}_{\mathscr{C}}\right)$.

Theorem 5.1. Let Λ be a basic connected artin algebra, \mathscr{C} a faithful component of Γ_{A} with a multisection Δ, and assume that \mathscr{C} contains both a projective module and an injective module. Then \mathscr{C} is generalized standard if and only if there is a decomposition $\mathscr{C}=\mathscr{L}_{\mathscr{C}} \cup \Delta_{c} \cup \mathscr{R}_{\mathscr{C}}$.

Proof. Assume \mathscr{C} is generalized standard. Then, by Theorem 3.1, Λ is a generalized double tilted algebra. Moreover, by Proposition 2.4, every indecomposable module in \mathscr{C} belongs to Δ_{c}, or is a predecessor of Δ_{l} or a successor of Δ_{r} in \mathscr{C}. Since Λ is generalized double tilted, all predecessors of Δ_{l} in ind Λ belong to \mathscr{L}_{A} and all successors of Δ_{r} in ind Λ belong to \mathscr{R}_{A}. Further, we have $\mathscr{L}_{\Lambda} \cap \mathscr{C} \subseteq \mathscr{L}_{\mathscr{C}}$ and $\mathscr{R}_{A} \cap$ $\mathscr{C} \subseteq \mathscr{R}_{\mathscr{C}}$. Therefore, the required decomposition $\mathscr{C}=\mathscr{L}_{\mathscr{C}} \cup \Delta_{c} \cup \mathscr{R}_{\mathscr{C}}$ holds.

Assume now that $\mathscr{C}=\mathscr{L}_{\mathscr{C}} \cup \Delta_{c} \cup \mathscr{R}_{\mathscr{G}}$. Since \mathscr{C} is a faithful component of Γ_{A}, applying Lemma 2.7 we infer the multisection Δ is faithful. Hence, in order to prove that \mathscr{C} is generalized standard, it is enough to show that $\operatorname{Hom}_{A}\left(X, \tau_{A} Y\right)=0$ for all modules X from Δ_{r} and Y from Δ_{l} (see Theorem 3.1). Suppose there exist $X \in \Delta_{r}$ and $Y \in A_{l}$ such that $\operatorname{Hom}_{A}\left(X, \tau_{A} Y\right) \neq 0$. Let \mathscr{D} be the full translation subquiver of \mathscr{C} formed by all predecessors of Δ_{l} in \mathscr{C} and \mathscr{E} the full translation subquiver of \mathscr{C} formed by all successors of Δ_{r} in \mathscr{C}. Since, by Proposition 2.4, all oriented cycles of \mathscr{C} are entirely contained in Δ_{c}, the translation quivers \mathscr{D} and \mathscr{E} are directed. In particular, there is no path in \mathscr{C} from X to $\tau_{A} Y$. Since $\operatorname{Hom}_{A}\left(X, \tau_{A} Y\right) \neq 0$ then there exists an infinite path

$$
X=X_{0} \rightarrow X_{1} \rightarrow \cdots \rightarrow X_{i} \rightarrow X_{i+1} \rightarrow \cdots
$$

in \mathscr{C} such that $\operatorname{Hom}_{A}\left(X_{i}, \tau_{A} Y\right) \neq 0$ for all $i \geq 0$. We claim that there are $i \geq 0$ and a path in \mathscr{C} of the form

$$
I \rightarrow \tau_{A} Z \rightarrow V \rightarrow Z \rightarrow \cdots \rightarrow X_{i}
$$

with I injective. It follows from our assumption on \mathscr{C} that \mathscr{C} contains at least one injective module. Further, since Δ intersects any τ_{A}-orbit of \mathscr{C}, every indecomposable injective module from \mathscr{C} lies in Δ or in \mathscr{E}. Moreover, every indecomposable projective module from \mathscr{C} lies in Δ or in \mathscr{D}. Invoking now the fact that \mathscr{E} is directed we conclude that all but finitely many modules $X_{i}, i \geq 0$, belong to one connected component Γ of the right stable part \mathscr{E}_{r} of \mathscr{E}. Moreover, the connected components of \mathscr{E}_{r} are glued in \mathscr{C} along the τ_{A}-orbits of injective modules, and by assumption \mathscr{C} contains at least one injective module. Hence there is a path in \mathscr{C} of the form

$$
I \rightarrow \tau_{A} Z \rightarrow V \rightarrow Z \rightarrow \cdots \rightarrow U
$$

with I injective and U in Γ. If Γ has only finitely many orbits then clearly there is in Γ a path $U \rightarrow \cdots \rightarrow X_{i}$, for some $i \geq 0$, and consequently a required path

$$
I \rightarrow \tau_{A} Z \rightarrow V \rightarrow Z \rightarrow \cdots \rightarrow X_{i}
$$

Assume Γ has infinitely many orbits. Since Γ is directed then there are $j \geq 0, m \geq 0$ and an infinite path in Γ of the form

$$
U \rightarrow \cdots \rightarrow \tau_{\Lambda}^{-m} X_{j} \rightarrow \tau_{\Lambda}^{-m} X_{j+1} \rightarrow \tau_{\Lambda}^{-m} X_{j+2} \rightarrow \cdots
$$

Applying now [5, Lemma 1.5] (see also [22, Lemma 4]) we infer that there are $i \geq j$ and a path in ind Λ of the form $\tau_{\Lambda}^{-m} X_{i} \rightarrow \cdots \rightarrow X_{i}$, consisting of modules from Γ, and we obtain a required path

$$
I \rightarrow \tau_{\Lambda} Z \rightarrow V \rightarrow Z \rightarrow \cdots \rightarrow U \rightarrow \cdots \rightarrow \tau_{\Lambda}^{-m} X_{i} \rightarrow \cdots \rightarrow X_{i} .
$$

Since $\operatorname{Hom}_{A}\left(X_{i}, \tau_{A} Y\right) \neq 0$ and there is no path in \mathscr{C} from X_{i} to $\tau_{A} Y$, there exists an infinite path

$$
\cdots \rightarrow Y_{t+1} \rightarrow Y_{t} \rightarrow \cdots \rightarrow Y_{1} \rightarrow Y_{0}=\tau_{A} Y
$$

in \mathscr{C} such that $\operatorname{Hom}_{\Lambda}\left(X_{i}, Y_{t}\right) \neq 0$ for all $t \geq 0$. Invoking our assumption that \mathscr{C} contains at least one projective module and applying dual arguments to those above, we conclude that there are $t \geq 0$ and a path in ind Λ of the form

$$
Y_{t} \rightarrow \cdots \rightarrow N \rightarrow W \rightarrow \tau_{\Lambda}^{-} N \rightarrow P
$$

with P projective and consisting of modules from \mathscr{C}. Observe that $\mathrm{pd}_{A} Z \geq 2$ and $\operatorname{id}_{\Lambda} N \geq 2$, because $\operatorname{Hom}_{\Lambda}\left(I, \tau_{\Lambda} Z\right) \neq 0$ and $\operatorname{Hom}_{\Lambda}\left(\tau_{\Lambda}^{-} N, P\right) \neq 0$ (see [19, (2.4)]). Therefore, X_{i} and Y_{t} belong to $\mathscr{C} \backslash\left(\mathscr{L}_{\mathscr{C}} \cup \Delta_{c} \cup \mathscr{R}_{\mathscr{C}}\right)$, which contradicts the assumption. This finishes the proof.

Acknowledgements. The research described in this paper was made during the visit of both authors in the Centre for Advanced Study of the Norwegian Academy of Science and Letters in Oslo (August/September 2001) and supported by the project Noncommutative Phenomena in Mathematics and Theoretical Physics. The authors thank the Centre for the warm hospitality.

References

[1] M. Auslander, I. Reiten and S. O. Smalø, Representation theory of artin algebras, Cambridge Stud. Adv. Math., 36, Cambridge Univ. Press, 1995.
[2] F. U. Coelho and M. A. Lanzilotta, Algebras with small homological dimension, Manuscripta Math., 1000 (1999), 1-11.
[3] F. U. Coelho and M. A. Lanzilotta, On non-semiregular components containing paths from injective to projective modules, Comm. Algebra, 30 (2002), 4837-4849.
[4] F. U. Coelho and M. A. Lanzilotta, Weakly shod algebras, J. Algebra, 265 (2003), 379-403.
[5] F. U. Coelho and A. Skowroński, On Auslander-Reiten components for quasitilted algebras, Fund. Math., 149 (1996), 67-82.
[6] D. Happel, A characterization of hereditary categories with tilting object, Invent. Math., 144 (2001), 381-398.
[7] D. Happel and I. Reiten, Hereditary categories with tilting object over arbitrary base fields, J. Algebra, 256 (2002), 414-432.
[8] D. Happel, U. Preiser and C. M. Ringel, Vinberg's characterization of Dynkin diagrams using subadditive functions with applications to D Tr-periodic modules, In: Representation Theory II, Lecture Notes in Math., 832, Springer, Berlin, 1980, 280-294.
[9] D. Happel, I. Reiten and S. O. Smalø, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc., 575 (1996).
[10] D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc., 274 (1982), 399-443.
[11] O. Kerner, Tilting wild algebras, J. London Math. Soc., 39 (1988), 29-47.
[12] O. Kerner, Stable components of tilted algebras, J. Algebra, 162 (1991), 37-57.
[13] M. Kleiner, A. Skowroński and D. Zacharia, On endomorphism algebras with small homological dimensions, J. Math. Soc. Japan, 54 (2002), 621-648.
[14] S. Liu, Degrees of irreducible maps and the shapes of Auslander-Reiten quivers, J. London Math. Soc., 45 (1992), 32-54.
[15] S. Liu, Semi-stable components of an Auslander-Reiten quiver, J. London Math. Soc., 47 (1993), 405-416.
[16] S. Liu, The connected components of an Auslander-Reiten quiver of a tilted algebra, J. Algebra, 161 (1993), 505-523.
[17] S. Liu, Tilted algebras and generalized standard Auslander-Reiten components, Arch. Math. (Basel), 61 (1993), 12-19.
[18] I. Reiten and A. Skowroński, Characterizations of algebras with small homological dimensions, Adv. Math., 179 (2003), 122-154.
[19] C. M. Ringel, Tame algebras and integral quadratic forms, Lecture Notes in Math., 1099, Springer, Berlin, 1984.
[20] A. Skowroński, Generalized standard Auslander-Reiten components without oriented cycles, Osaka J. Math., 30 (1993), 515-527.
[21] A. Skowroński, Generalized standard Auslander-Reiten components, J. Math. Soc. Japan, 46 (1994), 517-543.
[22] A. Skowroński, Regular Auslander-Reiten components containing directing modules, Proc. Amer. Math. Soc., 120 (1994), 19-26.
[23] A. Skowroński, Directing modules and double tilted algebras, Bull. Polish Acad. Sci. Math., 50 (2002), 77-87.
[24] A. Skowroński, On artin algebras with almost all indecomposable modules of projective or injective dimension at most one, Cent. Eur. J. Math., 1 (2003), 108-122 (electronic).
[25] H. Strauss, On the perpendicular category of a partial tilting module, J. Algebra, 144 (1991), 43-66.
[26] Y. Zhang, The structure of stable components, Canad. J. Math., 43 (1991), 652-672.

Idun Reiten

Department of Mathematical Sciences Norwegian University of Science and Technology
N-7491 Trondheim
Norway
E-mail: idunr@math.ntnu.no

Andrzej Skowroński

Faculty of Mathematics and Computer Science
Nicholas Copernicus University
Chopina 12/18, 87-100 Toruń
Poland
E-mail: skowron@mat.uni.torun.pl

[^0]: 2000 Mathematics Subject Classification. Primary 16G70, 18G20; Secondary 16G10.
 Key Words and Phrases. Tilted algebra, AR-quiver, artin algebra.
 Partially Supported by Polish Scientific KBN Grant 5 P03A 00821 and Foundation for Polish Science.

