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Abstract. We obtain the exact value of Voiculescu’s invariant k__(7), which is an
obstruction of the existence of quasicentral approximate units relative to the Macaev ideal
in perturbation theory, for a tuple 7 of operators in the following two classes: (1)
creation operators associated with a subshift, which are used to define Matsumoto al-
gebras, (2) unitaries in the left regular representation of a finitely generated group.

1. Introduction.

In the remarkable serial works [Voil], [Voi2], [Voi3] and [DV] on perturbation of
Hilbert space operators, Voiculescu investigated a numerical invariant k¢ (7) for a family
7 of bounded linear operators on a separable Hilbert space, where kg(7) is the obstruc-
tion of the existence of quasicentral approximate units relative to the normed ideal Gg))
corresponding to a symmetric norming function @, (see definitions in Section 2). The
invariant k¢ (7) is considered to be a kind of dimension of 7 with respect to the normed
ideal @YY (see [Voil] and [DV])).

In the present paper, we study the invariant k¢(7) for the Macaev ideal, which is
denoted by k_ (7). It is known that k_ (7) possesses several remarkable properties: for
instance, k_ (7) is always finite and kg (7) =0 if 62(,)) is strictly larger than the Macaev
ideal. In [Voi3], Voiculescu investigated the invariant &k (z) for several examples. He
proved that k_ () =logN for an N-tuple 7 of isometries in extensions of the Cuntz
algebra On. Here, log/N can be interpreted as the value of the topological entropy of
the N-full shift. Inspired by this result, we show that k_ (7) = hp(X) for a general
subshift X" with a certain condition, where /,,(X) is the topological entropy of X and
7 is the family of creation operators on the Fock space associated with the subshift
X, which is used to define the Matsumoto algebra associated with X (e.g. see [Mat]).
In particular, we show that k_ (7) = hip(X) holds for every almost sofic shift X (cf.
[Pet)).

Let I" be a countable finitely generated group and § its generating set. We also
study k_ ((44),.5), Where A is the left regular representation of I'. For the related
topic, see [Voi5], in which a relation between k_ ((44),.s) and the entropy of random
walks on groups is discussed. By using a method introduced in [Okaj], we can com-
pute the exact value of k_ ((4,),.s) for certain amalgamated free product groups.
Voiculescu proved that log N < k. ((44),.5) < log(2N — 1) holds for the free group Fy
with the canonical generating set S ([Voi3, Proposition 3.7. (a)]). As a particular case
of our results, we show that k_ ((44),.5) =10g(2N — 1) actually holds.
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2. Preliminary.

Let H be a separable infinite dimensional Hilbert space. By B(H),K(H),F(H)
and F(H )f, we denote the bounded linear operators, the compact operators, the finite
rank operators and the finite rank positive contractions on H, respectively.

We begin by recalling some facts concerning normed ideal in [GK]. Let ¢ be the
set of real valued sequences & = (fj)j ey With lim; ., &; = 0, and ¢ ¢ the subspace of cg
consisting of the sequences with finite support. A function @ on ¢y is said to be a
symmetric norming function if @ satisfies:

(1) @ is a norm on ¢ ;

(2) @((1,0,0,...)) =1;

(3) D((&))jen) = P(([Sx(l)jen) for any bijection =: N — N.

For &= (fj)jezv € ¢p, we define

(&) = lim @(&" () €[0, 0],
where ¢*(n) = (&/,...,¢,,0,0,...) €coo and & > & > --- is the decreasing rearrange-
ment of the absolute value ([S;|);,.y. If 7€ K(H) and @ is a symmetric norming
function, then let us denote

1Tl = ((5(T));en);

where (s5;(7));c is the singular numbers of 7. We define two symmetrically normed
ideals

So ={TeKH)||T|y < o},

and 651?) by the closure of F(H) with respect to the norm || -||,. Note that 651?) does
not coincide with Sg in general. If © is a symmetrically normed ideal, 1.e. S is a ideal
of B(H) and a Banach space with respect to the norm || -||s satisfying:

(1) |XTY|s < |X|-|T]s- | Y]l for T e and X, ¥ e B(H),

(2) Tl =|IT) if T is of rank one,
where || - || is the operator norm in B(H), then there exists a unique symmetric norming
function @ such that ||T||; = ||T||, for T € F(H) and G(Q?) c S c CSy.

We introduce some symmetrically normed ideals. For 1 < p < oo, the symmetri-
cally normed ideal 4, (H) is given by the symmetric norming function

& &
P, (&) = Zjlfl/p'

J=1

We define %, (H) = 65122. We remark that it coincides with S¢-. For 1 < p < o0, the
4
symmetrically normed ideal (6; (H) is given by the symmetric norming function
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2. f
D (&) = sup=i— 75 /-

We define 4, (H) = gy However 6(;:2 is strictly smaller than " (H). For 1 <p <
g <r< oo, we have !

6 (H) <%, (H) ¢ %H) <% (H) <% (H),

where %,(H) is the Schatten p class.

For a given symmetric norming function @, which is not equivalent to the /!-norm,
there is a symmetric norming function @* such that Sg+ 1s the dual of G(Q?), where the
dual pairing is given by the bilinear form (7,S)+— Tr(7S). If 1/p+1/g=1, then
%,(H)" ~%,(H) and %, (H)" ~%,(H). In particular, 4, (H) and %, (H) are called
the Macaev ideal and the dual Macaev ideal, respectively.

Let (Bg,)) be a symmetrically normed ideal with a symmetric norming function @.
If t=(T),...,Ty) is an N-tuple of bounded linear operators, then the number kg(7) is
defined by

keo(7) = liminf max ||[u, T4)|lp,

ue F(H) l<a<N
where the inferior limit is taken with respect to the natural order on F(H)| and
[4,B] = AB — BA. Throughout this paper, we denote |||, by |[-[|, and ke by
k,. A relation between the invariant ko and the existence of quasicentral approximate
units relative to the symmetrically normed ideal G( ) is discussed in [Voil]. A quasi-
central approximate unit for r = (77,..., Ty) relative to 6( is a sequence {u,},—, =
F(H){ such that w, /' I and lim, . ||[us, Tu]|lg =0 for 1 <a < N. Note that for an
N-tuple 7 = (Ty,...,Ty), there exists a quasicentral approximate unit for 7 relative to
6512) if and only if ke(7) =0 (e.g. see [Voi2, Lemma 1.1]).
We use the following propositions to prove our theorem.

PrOPOSITION 2.1 ([Voil, Proposition 1.1)). Let = (Ty,...,Ty) e B(H)" and S{
be a symmetrically normed ideal with a symmetric norming function ®@. If we take a
sequence {u,}" | < F(H)1 with w-lim,_,, u, = I, then

ke (1) < liminf max ||[un, Tl o
n—oo l<a

PropPOSITION 2.2 ([Voi3, Proposition 2.1]). Letr 7= (Ti,...,Ty) e B(H)" and
X, €% (H) fora=1,....N. If

ZN:[Xa, T.Je 6 (H)+B(H),,

a=1

then we have

Z X}

a=1

{7 |

where || X,/ = inf'y ¢ p(a)l| Xa — Y||q>1+-
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The following proposition was shown in the proof of [GK, Theorem 14.1].

PrROPOSITION 2.3. For T € 6, (H), we have

< Lsi(T
77 = timsup S0
n—o0 Zj:l 1/

3. Subshifts and Macaev norm.

Let .« be a finite set with the discrete topology, which we call the alphabet, and .«/%
the two-sided infinite product space [[Z _ .7 endowed with the product topology. The
shift map o on /% is given by (o(x)), = x;11 for ie Z. The pair (/% 0) is called
the full shift. 1In particular, if the cardinality of the alphabet .o/ is N, then we call it the
N-full shift.

Let X be a shift invariant closed subset of .«7Z. The topological dynamical system
(X,0y) is called a subshift of /%, where oy is the restriction of the shift map 0. We
sometimes denote the subshift (X,oy) by X for short. A word over .o/ is a finite
sequence w = (ay,...,a,) with ¢; € /. For x € o/% and a word w = (ay, ..., a,), we say
that w occurs in x if there is an index i such that x; =ay,...,x;,-1 = a,. The empty
word occurs in every x € .«/Z by convention. Let % be a collection of words over
</%. We define the subshift X to be the subset of sequences in /% in which no word
in # occurs. It is well-known that any subshift X of .«#Z is given by Xz for some
collection # of forbidden words over .«7?. Note that for # = (¢, the subshift X is
the full shift .«/%.

Let X be a subshift of ../Z4. We denote by #,(X) the set of all words with length
n that occur in X and we set

Let ¢ : Wpini1(X) — o be a map, which we call a block map. The extension of ¢
from X to /% is defined by (x;);., — (3:);.,> Where

Vi = (p((xifmyxiferl, cee 7xi+n))-

We also denote this extension by ¢ and call it a sliding block code. Let X,Y be two
subshifts and ¢ : X — Y a sliding block code. If ¢ is one-to-one, then ¢ is called an
embedding of X into Y and we denote X < Y. If ¢ has an inverse, i.e. a sliding block
code ¥ : Y — X such that y op =idy and g oy =idy, then two subshifts X and Y are
topologically conjugate.

The topological entropy of a subshift X is defined by

1
lim ~ log| #; ()|,

n—oo n

hiop(X)

where |#,(X)| is the cardinality of #,(X). The reader is referred to for an
introduction to symbolic dynamics.
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For a given subshift X, we next construct the creation operators on the Fock space
associated with X (cf. [Mat]). Let {&,},.., be an orthonormal basis of N-dimensional
Hilbert space C", where N is the cardinality of /. For w = (ai,...,a,) € #;(X), we
denote &, =&, ®---®&,. We define the Fock space #y for a subshift X by

Fx

Cé @ @ span{¢, |we #,(X)},

neN

where &, is the vacuum vector. The creation operator 7, on Fy for a € .o/ is given by

TaéO = éau

T, — {5a®£w if awe 7' (X),

1o otherwise.

Note that 7, is a partial isometry such that

Py + Z T,TF =1,
ae.of

where P, is the rank one projection onto C¢&,. We denote by P, the projection onto
the subspace spanned by &, for all we #,(X). For w=(a,...,a,) € #,(X), we set
T, =T, - T,. The following proposition is essentially proved in [Voi3].

ProrosiTiON 3.1. If 1= (T,),..;, then we have
k(1) < hiop(X).
Proor. We first assume that the topological entropy of X is non-zero. Let us

denote /& = hip(X). By definition, for a given ¢ > 1, there exists K € IV such that for
any n > K, we have

1
. log|#,(X)| < ¢h.

Thus
’%(X” <en£h7

for all n > K. We set

One can show that

Since
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n K—1
rp = rank([X,, T,]) < ZWV] )| < 195 (X)] +Ze]bh
J=1 j=1
for n > K, we obtain
ol
k7 (7) < limsup maxH[Xn,T]H limsupL]_1 i < ¢h.
n— oo Nn— 0 n

In the case of 4 =0, for any ¢ > 0, we have
Ha(X)| < &
for sufficiently large n. By the same argument, we can get

k_ (7) < limsup max H[Xn, T, <e,

n—o0

for arbitrary ¢ > 0. ]

Next we obtain the lower bound of k. (7) by using [Proposition 2.2 Before it, we

prepare some notations. For any me Z and w = (ay,...,a,) € #,(X), let us denote
mW] ={(Xi);cz € X |Xm =a1,..., Xmin—1 = an}.

We sometimes denote the cylinder set o[w] by [w] for short. Let u be a shift invariant
probability measure on X. The following holds:

(1) Pgesilal) =1

(2) ,u([m, s 7an]> = Zaoe.y/ ,Lt([ao, ags ... 7an]);

(3) ﬂ([alv e 7an]) = Zanﬂedﬂ([al? s 7an7an+1])'
For any partition f = (By,...,B,) of X, we define a function on X by

— > logu(B)z,

Bep

where yp is the characteristic function of B. Let f,,...,f; be partitions of X. The
partition \/lil B; is defined by

k
{ﬂBl BiEﬁi,l Slgk}
i=1
The value
— Y u(B)log u(B)
Bep

is called the entropy of the partition f. We define

n—oon

hy(B,ox) = lim — H(\/a >

The entropy of (X,ox,u) is defined by
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hy(ox) = sup{h,(f,ox) | H.(f) < oo}.

Note that /,(ox) < hiop(X) in general. A shift invariant probability measure u is said

to be a maximal measure if hyp(X) = hy(ox). The reader is referred to for
details.

THEOREM 3.2. Let v = (T,),.., be the creation operators for a subshift X. If there
exists a shift invariant probability measure p on X such that for any ¢ >0 we have

3 ,u({xeX (\/o—}’ﬂ) h,(ox) >e}> < oo,

where f is the generating partition {[a|},.., of X, then

h(ox) <k, (7).

In particular, if we can take a maximal measure u with the above condition, then we have

(1) = hiop(X).

Proor. Let u be a shift invariant probability measure on X. For a e .o/, we set

Xo=> Y wlaw)TuPT,,.

n=0we#,(X)
Then
D TXa=) > > wlaw)TuRT,,
ae.df n=0ae.o/ we#,(X)
=D Z W)W T,
n>1weW,(
and

ZXaTa:Z Z (Z/I([ClW]))TwPOT:

aesf n=0we#,(X) \aeo/
*
=3 u( W) TP T
n=0we W, (X

Hence we have

> X, T = P

ae.df

We assume that /,(oy) # 0 and denote it by 4 for short. To apply [Proposition 2.2 we
need an estimate of || X,||. Fix ¢>0 and ae.o/. We set

D, = {W c %(X) ‘ e—(n-i—l)(h—i—a) < ﬂ([aw]) < e—(n+l)(/1—s)}’

and
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én = Z u([aw]).

we Wnu(X)\Dy
If u satisfies the assumption, then we have

Zen < 0. (%)

n>0

Note that s;(X,) = s5;(X,T,) for all je N. Thus we have ||Xa||ft = ||XaTa||f. We put

;Y: = Z Z w(law)) TP T,

n>0weD,

We remark that for each je N, there are ne N, we #,(X) such that s;(X,7T,) =
u([aw]). By (%), we obtain

= T " si( X, T,
1Xalli = | XaTully = limsup—Z’_lnj( . )
n—oo E;‘:l 1/j

e e}

—_— . 0 €k —_—

< X1 + limsup Z=0 % 7= Xally
n—oo j=1

Hence it suffices to give an estimate of H;Y;Hf Let d, = > |D;l, where |Dj| is the
cardinality of D;. One can easily check that

d, —~
Y+ s X,
| X} < lim supw

dn r )
n— o Zj:l 1/j
Note that if sj(;YVa) = u([aw]) for some w e D,, then we have

o~ () (h+e) < 5/'(;‘;;> _ ﬂ([aW]) < o~ (mH1)(h—e)

—

Assume that there are m > n such that s;(X,) = u(jaw]) for some we D,, and j <d,.
Then it holds that

e~ (mtD(h=e) 5 o=(nt1)(hte) (%)
Indeed, if e~ ("t10i=¢) < o=(1+1)(h+e) * then

5(Xa) = (faw]) < VI < o040 < pyfau]),

for all ue Dy (1 <k <n). However, by our assumption, we have u([av]) < s;(X,) =
u(jaw]) for some ve D; and 1 </ <mn. This is a contradiction.
Hence, by (xx), we have

h+e
1 < 1 .
m+1<(n+ )h_8
Let ke N with
n+ DI ki1 <y

h—e h—e¢



Entropy of subshifts and the Macaev norm 185

Since

St 5(Xa) _ o Xvep, llan)

ZJ?’:nll/j - logd,

S ul[a])
< “ogd,

<n+l h+e (ld)
= logd, h—e\W)

we obtain

—~ . n+1 h+e¢
X, <1 : .
Xl < tim sup o ()

n—ow 1O

Moreover, because

ula) =Y wlawl) + ) wllaw]) < |Dyle” VO 4o,

weD, weWy(X)\Dy
we have
(u([a]) — en)e" D=9 < |D,|.

Note that ¢, — 0 (n — o0) by (). Therefore

.3 . 1 &
IXall} < limsup——.2°

nooo 10g|Dy| h— g,u([a])

< limsup ntl hte )
< ISP g ulal) —en) + (n ¥ Db —2) h—e
- (:_*:)M[a])

Since ¢ is arbitrary, we have

PATEE))

By [Proposition 2.2}, the proof is complete. ]

We now give some examples of subshifts with a maximal measure satisfying the

condition in [Theorem 3.2

COROLLARY 3.3. Let A be a 0-1 N x N matrix. We denote by X, the Markov
shift associated with A, i.e.

2y ={(a);cz € S% | A(ai, ais1) = 1},
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where S ={1,...,N} is an alphabet. If v = (T,),.s is the creation operators for the
Markov shift X4, then we have

koo () = hiop(Za)-

Proor. It suffices to show that the unique maximal measure of X, satisfies the
condition in [Theorem 3.2l For simplicity, we may assume that A4 is irreducible with the
Perron value o. Note that the topological entropy /p(24) is equal to loga. If / and r
are the left and right Perron vectors with Zivz  lata =1, then the unique maximal
measure u is given by

lao ran

ulag, ar, ... an]) = =27,

where (aop, ai,...,a,) € Wpr1(Z4) (e.g. see [Kit]). For any ¢ > 0, there exists K € N such
that for any n > K, we have

log l,rpo
n+1

Y

for all 1 <a,b < N. Therefore for any we #,,1(24), we have
1
n+1

log u([w]) — loga| < &.

for all n > K, i.e. the maximal measure u satisfies the condition in [Theorem 3.2 []

More generally, there is a class of subshifts, which is called almost sofic (see [Pet]).
A subshift X is said to be almost sofic if for any ¢ > 0, there is an SFT X < X such
that hop(X) — & < hiop(2), wWhere a shift of finite type or SFT is a subshift that can be
described by a finite set of forbidden words, i.e. a subshift having the form Xz for some
finite set # of words.

CorOLLARY 3.4. If t=(T,),.., is the creation operators for an SFT X, then we
have

ko (7) = hiop(2).

Proor. We recall that every SFT X is topologically conjugate to a Markov shift
24 associated with a 0-1 matrix 4. Now we give a short proof of this result. Let 2 be
an SFT that can be described by a finite set % of forbidden words. We may assume
that all words in # have length N+ 1. We set JZ/Z[N] = #y(2) and the block map
@:Wy(E) — %Z[N], wi— w. We define the N-th higher block code By : 2 — (LQZZ[N])Z by

By (%)) = (g oy Xion) € A,

for x = (x;),.y €2. Note that f is the sliding block code with respect to ¢. The
subshift f,(2) is given by a Markov shift, i.e. there is a 0-1 matrix 4 with S (2) = X,.

Let x4 be the maximal measure of X4. The maximal measure of X is given by
v=uofy. We recall that u is the Markov measure given by the left and right eigen-
vectors /,r and the eigenvalue o. For we #,(X) with n > N, we have
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v([w]) = ulloOwi ng)s - - @Win—n+1,1)])

o larb

- gn—N’
where a = p(w1 n)), b= 0Wy_n+1,,) and wy = (Wi,...,w;) for k <I. Hence one
can show that the maximal measure v of X satisfies the condition in by the
same argument as in the proof of [Corollary 3.3. O

CoOROLLARY 3.5. Let X be an almost sofic shift. If v =(T,),.., is the creation
operators for X, then we have

ko (7) = hiop(X).

ProoOF. Let ¢ > 0. Since X is almost sofic, there is an SFT X = X such that
hiop(X) —& < hiop(2). Let ¢p: 2 — X be an embedding. Note that the subshift ¢(X)
is also an SFT. Thus we may identify ¢(2) with 2. Let x4 be the unique maximal
measure of 2. For ae.o/, we set

Xa - Z Zﬂ([aw])TWPOT;W

n>0 w

where w runs over all elements in #,(2) with aw e #°(X). We have shown that the
maximal measure u of X satisfies the condition of [Theorem 3.2 in the proof of [Corollary]
3.4. Hence by the same argument as in the proof of [Theorem 3.2, we have

hop(E) < K (2).
Thus for arbitrary ¢ > 0, the following holds:
htop(X) — &< htop(z) < ko_c(T)

It therefore follows from [Proposition 3.1 that hwp(X) = k. (7) if X is an almost sofic
shift. ]

For > 1, the f-transformation 7 on the interval [0,1] is defined by the mul-
tiplication with # (mod1), i.e. Tg(x) = fx — [fx], where [¢] is the integer part of 7. Let
NeNwithN-1<p<Nand o/ ={0,1,...,N —1}. The f-expansion of x € [0,1] is
a sequence d(x,f) = {di(x,p)},.n of o/ determined by

di(x, ) = [T (x)].
We set

Z:ﬂ: sup (di(xng))ieN7
xel0,1)

where the above supremum is taken in the lexicographical order, and we define the shift
invariant closed subset Zﬁ'* of the full one-sided shift .«z" by

EE:{xEMN|ai(x)SCﬂ,i:O,l,...},

where < is the lexicographical order on .z = {0,1,...,N — I}N. The p-shift 2y is the
natural extension given by
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Zp={(xi)icz € A7 (xi)iny € T k€ Z}.

It is known that /,(25) = logp, (see [Hof]).
The following result might be known among specialists. However, we give a proof
here as we can not find it in the literature.

ProposSITION 3.6. For > 1, the B-shift Xy is an almost sofic shift.

ProorF. In [Par], it is shown that X is an SFT if and only if d(1,p) is finite, i.e.
there is K € N such that di(1,) =0 for all k > K. Thus we may assume that d(1,f) is
not finite. Let {3 = (¢;);.n. For me N, there is f(n) < B such that

él 52 én
1 = — e .
B gy B
In [Par, Theorem 5], it is proved that
Tim f(n) = f.

Hence we may assume that N — 1 < ff(n) < f for sufficiently large n. Since the maxi-
mal element (g, has the form

(ébéZr'W(én - 1)751762""7(6}1 - 1)7617"')7

we have (g, < {, where < is the lexicographical order. Therefore we obtain

+
2 ()

It follows that X, is the shift invariant closed subset of X with topological entropy
log B(n). Since d(1,f(n)) is finite, the subshift X4, is an SFT. It therefore follows
from [Par, Theorem 5| that X3 is an almost sofic. ]

Hence it holds that k (t) = hp(Zp) for every f-shift by [Corollary 3.3

COROLLARY 3.7. Let Xy be the p-shift for p>1. If 1= (T,),.., is the creation
operators for Xg, then we have

Koo () = huop(Zp) = log .

cxzfc{0,1,....N-1}".

4. Groups and Macaev norm.

We discuss a relation between groups and the Macaev norm. Let I” be a countable
finitely generated group, S a symmetric set of generators of 7. We denote by |- | the
word length and by #, (I, S) the set of elements in I with length n, with respect to the
system of generators S. The logarithmic volume of a group I" in a given system of gen-
erators S is the number

. log|w,(I', S
vg = lim log|#,(I, S)| M,
n— oo n
(cf. [Ver]). The following proposition can be proved in the same way as in the free
group case [Voi3, Proposition 3.7. (a)].
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PrOPOSITION 4.1. Let I' be a finitely generated group with a finite generating set
S and J the left regular representation of I'. If we set is = (Aq) then

aes»
k; (/15) < vg.

PrROOF. Let us denote by P, the projection onto the subspace span{d, e [*(I)|
lg|lg =n}. If we set

then we have

1

Xt = 2aXall = 12 X2 = Xl < -

for ae S. Hence

log> " |#a(I, S
k_ (Zs) < limsup mag{”[Xn,}ta]H;O < lim 820 7l S)] = vg. O
ae n—oaoo

n—oo n

Now we compute the exact value of k_ (1s) for certain amalgamated free product
groups.

ProrosITION 4.2. Let A be a finite group, Gy,...,Gy nontrivial finite groups
containing A as a subgroup and H\, ..., Hy the product group of the infinite cyclic group
Z and the finite group A, (N + M > 1). Let I' be the amalgamated free product group
of Gy,...,Gy, Hy, ..., Hy with amalgamation over A. Set S =G U---UGy U (S| x A)
U---U(Sy x A)\{e}, where S; is the canonical generating set {xj,xj’l} of the infinite
cyclic group Z and e is the group unit. Let A be the left regular representation of I' and
is = (Aa) es- Then we have

k;o (}Ls) = vg.
In particular, for the free group Fy (N >2), we have

k_ (4s) =1log(2N —1).

ProoOF. By [Proposition 4.1|, it suffices to show that vg < k_ (4ds). Let ©; be the
set of the representatives of G;/4 with e Q; for i=1,..., M. We identify x; with
(xj,e) e H for j=1,...,N, and set Qu; = {x;,x; ', e}. Let

M+

_ N
S= | @\{e}.

i=1

We define the 0-1 matrix 4 with index S by

1 if |ablg =2;
0 otherwise.

A(a,b) = {
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One can easily check that the above matrix A4 is irreducible and the topological entropy
hiop(2Z4) of the Markov shift X, coincides with the logarithmic volume vg of I” with
respect to the generating set S.

We denote by I, the subset of I' consisting of the group unit e and elements
ay---ap,el’, (neN) of the form

ai € 2, \{e} fork=1,...,n,
I 7 Iyl if 1 <ip <M,
ai = di+1 fMA+1<i <M+N, i =ir.

Note that the subspace /?>(Ip) can be identified with the Fock space % of the Markov
shift 24, by the following correspondence:

66 — 607
5a1---a,, A fal ® e ® fa,,'

Let us denote by P, the projection onto the subspace
span{d, € I*(I") | |g|g = n}.

For a e S, we define the partial isometry T, € B(/*(I")) by

T, = ZPM,L,PH.

n>0

Under the identification with %, the partial isometry 7,|;p,, for a e S is the creation
operator on %, (cf. [Oka]). We also identify Iy and #°(X4). For w=a;---a, € Iy,
we set T, =T, ---T,. Let u be the maximal measure of 2. For ae S, we put

Xa = Z Zﬂ([aw])TWPOT;W

n>0 w

where w runs over all w e Iy with |w|g =n and |aw|g = |w|g+ 1. For ae S\S, we set
X,=0. It can be easily checked that [1,, X,| = [T,, X,] for ae€ S. Therefore by the
same proof as in the subshift case, we obtain

Us = htop<2A> =k, (4s)- O

REMARK 4.3. Let I' be a finitely generated group with a finite generating set S.
In [Voi5], Voiculescu proved that if the entropy A(I, u) of a random walk g on I" with
support S is non-zero, then k_ ((44),.s) is non-zero. However the above proposition
suggests that the volume vg of I” is more related to the invariant k_ ((4,),.g) rather than
the entropy A(I',u). It is an interesting problem to ask whether vg being non-zero
implies k_ ((44),.5) being non-zero. We also remark here that there is a relation
between vs and A(I',u): If h(I,p) # 0, then vsg # 0, (see [Ver, Theorem 1]). If the
above mentioned problem was solved affirmatively, then it would follow from Prop-
osition 4.1 that £k ((44),.s) # 0 if and only if vg # 0, i.e. I" has exponential growth.
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