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Abstract. We obtain the exact value of Voiculescu’s invariant k�
y
ðtÞ, which is an

obstruction of the existence of quasicentral approximate units relative to the Macaev ideal

in perturbation theory, for a tuple t of operators in the following two classes: (1)

creation operators associated with a subshift, which are used to define Matsumoto al-

gebras, (2) unitaries in the left regular representation of a finitely generated group.

1. Introduction.

In the remarkable serial works [Voi1], [Voi2], [Voi3] and [DV] on perturbation of

Hilbert space operators, Voiculescu investigated a numerical invariant kFðtÞ for a family

t of bounded linear operators on a separable Hilbert space, where kFðtÞ is the obstruc-

tion of the existence of quasicentral approximate units relative to the normed ideal S
ð0Þ
F

corresponding to a symmetric norming function F, (see definitions in Section 2). The

invariant kFðtÞ is considered to be a kind of dimension of t with respect to the normed

ideal S
ð0Þ
F

(see [Voi1] and [DV]).

In the present paper, we study the invariant kFðtÞ for the Macaev ideal, which is

denoted by k�
y
ðtÞ. It is known that k�

y
ðtÞ possesses several remarkable properties: for

instance, k�
y
ðtÞ is always finite and kFðtÞ ¼ 0 if S

ð0Þ
F

is strictly larger than the Macaev

ideal. In [Voi3], Voiculescu investigated the invariant k�
y
ðtÞ for several examples. He

proved that k�
y
ðtÞ ¼ logN for an N-tuple t of isometries in extensions of the Cuntz

algebra ON . Here, logN can be interpreted as the value of the topological entropy of

the N-full shift. Inspired by this result, we show that k�
y
ðtÞ ¼ htopðX Þ for a general

subshift X with a certain condition, where htopðX Þ is the topological entropy of X and

t is the family of creation operators on the Fock space associated with the subshift

X , which is used to define the Matsumoto algebra associated with X (e.g. see [Mat ]).

In particular, we show that k�
y
ðtÞ ¼ htopðX Þ holds for every almost sofic shift X (cf.

[Pet ]).

Let G be a countable finitely generated group and S its generating set. We also

study k�
y
ððlaÞa ASÞ, where l is the left regular representation of G. For the related

topic, see [Voi5], in which a relation between k�
y
ððlaÞa ASÞ and the entropy of random

walks on groups is discussed. By using a method introduced in [Oka], we can com-

pute the exact value of k�
y
ððlaÞa ASÞ for certain amalgamated free product groups.

Voiculescu proved that logNa k�
y
ððlaÞa ASÞa logð2N � 1Þ holds for the free group FN

with the canonical generating set S ([Voi3, Proposition 3.7. (a)]). As a particular case

of our results, we show that k�
y
ððlaÞa ASÞ ¼ logð2N � 1Þ actually holds.
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2. Preliminary.

Let H be a separable infinite dimensional Hilbert space. By BðHÞ;KðHÞ;FðHÞ

and FðHÞþ1 , we denote the bounded linear operators, the compact operators, the finite

rank operators and the finite rank positive contractions on H, respectively.

We begin by recalling some facts concerning normed ideal in [GK]. Let c0 be the

set of real valued sequences x ¼ ðxjÞj AN with limj!y xj ¼ 0, and c0;0 the subspace of c0
consisting of the sequences with finite support. A function F on c0;0 is said to be a

symmetric norming function if F satisfies:

(1) F is a norm on c0;0;

(2) Fðð1; 0; 0; . . .ÞÞ ¼ 1;

(3) FððxjÞj AN Þ ¼ Fððjxpð jÞjÞj AN Þ for any bijection p : N ! N .

For x ¼ ðxjÞj AN A c0, we define

FðxÞ ¼ lim
n!y

Fðx�ðnÞÞ A ½0;y�;

where x�ðnÞ ¼ ðx�
1 ; . . . ; x

�
n ; 0; 0; . . .Þ A c0;0 and x�

1 b x�
2b � � � is the decreasing rearrange-

ment of the absolute value ðjxjjÞj AN . If T A KðHÞ and F is a symmetric norming

function, then let us denote

kTkF ¼ FððsjðTÞÞj ANÞ;

where ðsjðTÞÞj AN is the singular numbers of T . We define two symmetrically normed

ideals

SF ¼ fT A KðHÞ j kTkF < yg;

and S
ð0Þ
F by the closure of FðHÞ with respect to the norm k � kF. Note that S

ð0Þ
F does

not coincide with SF in general. If S is a symmetrically normed ideal, i.e. S is a ideal

of BðHÞ and a Banach space with respect to the norm k � k
S

satisfying:

(1) kXTYk
S
a kXk � kTk

S
� kYk for T A S and X ;Y A BðHÞ,

(2) kTk
S
¼ kTk if T is of rank one,

where k � k is the operator norm in BðHÞ, then there exists a unique symmetric norming

function F such that kTk
S
¼ kTkF for T A FðHÞ and S

ð0Þ
F JSJSF.

We introduce some symmetrically normed ideals. For 1 < pay, the symmetri-

cally normed ideal C
�
p ðHÞ is given by the symmetric norming function

F�
p ðxÞ ¼

Xy

j¼1

x�
j

j1�1=p
:

We define C
�
p ðHÞ ¼ S

ð0Þ
F�
p
. We remark that it coincides with SF�

p
. For 1a p < y, the

symmetrically normed ideal C
þ
p ðHÞ is given by the symmetric norming function
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Fþ
p ðxÞ ¼ sup

n AN

Pn
j¼1 x

�
jPn

j¼1 j1=p
:

We define C
þ
p ðHÞ ¼ SFþ

p
. However S

ð0Þ

Fþ
p
is strictly smaller than C

þ
p ðHÞ. For 1a p <

q < ray, we have

CpðHÞYC
�
q ðHÞYCqðHÞYC

þ
q ðHÞYCrðHÞ;

where CpðHÞ is the Schatten p class.

For a given symmetric norming function F, which is not equivalent to the l 1-norm,

there is a symmetric norming function F� such that SF � is the dual of S
ð0Þ
F , where the

dual pairing is given by the bilinear form ðT ;SÞ 7! TrðTSÞ. If 1=pþ 1=q ¼ 1, then

CpðHÞ� FCqðHÞ and C
�
p ðHÞ� FC

þ
q ðHÞ. In particular, C

�
y
ðHÞ and C

þ
1 ðHÞ are called

the Macaev ideal and the dual Macaev ideal, respectively.

Let S
ð0Þ
F be a symmetrically normed ideal with a symmetric norming function F.

If t ¼ ðT1; . . . ;TNÞ is an N-tuple of bounded linear operators, then the number kFðtÞ is

defined by

kFðtÞ ¼ lim inf
u AFðHÞþ1

max

1aaaN
k½u;Ta�kF;

where the inferior limit is taken with respect to the natural order on FðHÞþ1 and

½A;B� ¼ AB� BA. Throughout this paper, we denote k � kF�
p

by k � k�p and kF�
p

by

k�p . A relation between the invariant kF and the existence of quasicentral approximate

units relative to the symmetrically normed ideal S
ð0Þ
F is discussed in [Voi1]. A quasi-

central approximate unit for t ¼ ðT1; . . . ;TNÞ relative to S
ð0Þ
F is a sequence fung

y

n¼1 J

FðHÞþ1 such that un % I and limn!yk½un;Ta�kF ¼ 0 for 1a aaN. Note that for an

N-tuple t ¼ ðT1; . . . ;TNÞ, there exists a quasicentral approximate unit for t relative to

S
ð0Þ
F if and only if kFðtÞ ¼ 0 (e.g. see [Voi2, Lemma 1.1]).

We use the following propositions to prove our theorem.

Proposition 2.1 ([Voi1, Proposition 1.1]). Let t ¼ ðT1; . . . ;TNÞ A BðHÞN and S
ð0Þ
F

be a symmetrically normed ideal with a symmetric norming function F. If we take a

sequence fung
y

n¼1 JFðHÞþ1 with w-limn!y un ¼ I , then

kFðtÞa lim inf
n!y

max
1aaaN

k½un;Ta�kF:

Proposition 2.2 ([Voi3, Proposition 2.1]). Let t ¼ ðT1; . . . ;TNÞ A BðHÞN and

Xa A C
þ
1 ðHÞ for a ¼ 1; . . . ;N. If

XN

a¼1

½Xa;Ta� A C1ðHÞ þ BðHÞþ;

then we have

Tr
XN

a¼1

½Xa;Ta�

 !�����

�����a k�
y
ðtÞ
XN

a¼1

kXak
þ
1
e;

where kXak
þ
1
e ¼ infY AFðHÞkXa � YkFþ

1
.
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The following proposition was shown in the proof of [GK, Theorem 14.1].

Proposition 2.3. For T A C
þ
1 ðHÞ, we have

kTkþ1
e ¼ lim sup

n!y

Pn
j¼1 sjðTÞ

Pn
j¼1 1=j

:

3. Subshifts and Macaev norm.

Let A be a finite set with the discrete topology, which we call the alphabet, and A
Z

the two-sided infinite product space
Qy

i¼�y A endowed with the product topology. The

shift map s on A
Z is given by ðsðxÞÞi ¼ xiþ1 for i A Z. The pair ðAZ ; sÞ is called

the full shift. In particular, if the cardinality of the alphabet A is N, then we call it the

N-full shift.

Let X be a shift invariant closed subset of AZ . The topological dynamical system

ðX ; sX Þ is called a subshift of AZ , where sX is the restriction of the shift map s. We

sometimes denote the subshift ðX ; sX Þ by X for short. A word over A is a finite

sequence w ¼ ða1; . . . ; anÞ with ai A A. For x A A
Z and a word w ¼ ða1; . . . ; anÞ, we say

that w occurs in x if there is an index i such that xi ¼ a1; . . . ; xiþn�1 ¼ an. The empty

word occurs in every x A A
Z by convention. Let F be a collection of words over

A
Z . We define the subshift XF to be the subset of sequences in A

Z in which no word

in F occurs. It is well-known that any subshift X of A
Z is given by XF for some

collection F of forbidden words over A
Z . Note that for F ¼ q, the subshift XF is

the full shift A
Z .

Let X be a subshift of AZ . We denote by WnðX Þ the set of all words with length

n that occur in X and we set

WðXÞ ¼ 6
y

n¼0

WnðXÞ:

Let j : Wmþnþ1ðX Þ ! A be a map, which we call a block map. The extension of j

from X to A
Z is defined by ðxiÞi AZ 7! ðyiÞi AZ , where

yi ¼ jððxi�m; xi�mþ1; . . . ; xiþnÞÞ:

We also denote this extension by j and call it a sliding block code. Let X ;Y be two

subshifts and j : X ! Y a sliding block code. If j is one-to-one, then j is called an

embedding of X into Y and we denote XJY . If j has an inverse, i.e. a sliding block

code c : Y ! X such that c � j ¼ idX and j � c ¼ idY , then two subshifts X and Y are

topologically conjugate.

The topological entropy of a subshift X is defined by

htopðX Þ ¼ lim
n!y

1

n
logjWnðX Þj;

where jWnðXÞj is the cardinality of WnðXÞ. The reader is referred to [LM] for an

introduction to symbolic dynamics.
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For a given subshift X , we next construct the creation operators on the Fock space

associated with X (cf. [Mat ]). Let fxaga AA be an orthonormal basis of N-dimensional

Hilbert space C
N , where N is the cardinality of A. For w ¼ ða1; . . . ; anÞ A WnðXÞ, we

denote xw ¼ xa1 n � � �n xan . We define the Fock space FX for a subshift X by

FX ¼ Cx0 l 0
n AN

spanfxw jw A WnðXÞg;

where x0 is the vacuum vector. The creation operator Ta on FX for a A A is given by

Tax0 ¼ xa;

Taxw ¼
xa n xw if aw A WðXÞ;

0 otherwise.

�

Note that Ta is a partial isometry such that

P0 þ
X

a AA

TaT
�
a ¼ 1;

where P0 is the rank one projection onto Cx0. We denote by Pn the projection onto

the subspace spanned by xw for all w A WnðXÞ. For w ¼ ða1; . . . ; anÞ A WnðX Þ, we set

Tw ¼ Ta1 � � �Tan . The following proposition is essentially proved in [Voi3].

Proposition 3.1. If t ¼ ðTaÞa AA, then we have

k�yðtÞa htopðX Þ:

Proof. We first assume that the topological entropy of X is non-zero. Let us

denote h ¼ htopðX Þ. By definition, for a given e > 1, there exists K A N such that for

any nbK , we have

1

n
logjWnðXÞj < eh:

Thus

jWnðXÞj < eneh;

for all nbK . We set

Xn ¼
X

n�1

j¼0

1�
j

n

� �

Pj:

One can show that

k½Xn;Ta�ka
1

n
:

Since
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rn ¼ rankð½Xn;Ta�Þa
X

n

j¼1

jWj ðX Þja
X

K�1

j¼1

jWj ðX Þj þ
X

n

j¼K

e jeh

for nbK , we obtain

k�
y
ðtÞa lim sup

n!y

max
a AA

k½Xn;Ta�k
�
y
a lim sup

n!y

Prn
j¼1 1=j

n
a eh:

In the case of h ¼ 0, for any e > 0, we have

jWnðXÞj < ene

for su‰ciently large n. By the same argument, we can get

k�
y
ðtÞa lim sup

n!y

max
a AA

k½Xn;Ta�k
�
y
a e;

for arbitrary e > 0. r

Next we obtain the lower bound of k�
y
ðtÞ by using Proposition 2.2. Before it, we

prepare some notations. For any m A Z and w ¼ ða1; . . . ; anÞ A WnðXÞ, let us denote

m½w� ¼ fðxiÞi AZ A X j xm ¼ a1; . . . ; xmþn�1 ¼ ang:

We sometimes denote the cylinder set 0½w� by ½w� for short. Let m be a shift invariant

probability measure on X . The following holds:

(1)
P

a AA mð½a�Þ ¼ 1;

(2) mð½a1; . . . ; an�Þ ¼
P

a0 AA
mð½a0; a1; . . . ; an�Þ;

(3) mð½a1; . . . ; an�Þ ¼
P

anþ1 AA
mð½a1; . . . ; an; anþ1�Þ.

For any partition b ¼ ðB1; . . . ;BnÞ of X , we define a function on X by

ImðbÞ ¼ �
X

B A b

log mðBÞwB;

where wB is the characteristic function of B. Let b1; . . . ; bk be partitions of X . The

partition 4k

i¼1
bi is defined by

7
k

i¼1

Bi

�

�

�

�

�

Bi A bi; 1a ia k

( )

:

The value

HmðbÞ ¼ �
X

B A b

mðBÞ log mðBÞ

is called the entropy of the partition b. We define

hmðb; sX Þ ¼ lim
n!y

1

n
Hm 4

n�1

i¼0

s�i
X ðbÞ

 !

:

The entropy of ðX ; sX ; mÞ is defined by
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hmðsX Þ ¼ supfhmðb; sX Þ jHmðbÞ < yg:

Note that hmðsX Þa htopðXÞ in general. A shift invariant probability measure m is said

to be a maximal measure if htopðXÞ ¼ hmðsX Þ. The reader is referred to [DGS] for

details.

Theorem 3.2. Let t ¼ ðTaÞa AA be the creation operators for a subshift X. If there

exists a shift invariant probability measure m on X such that for any e > 0 we have

Xy

n¼0

m x A X :

1

nþ 1
Im 4

n

i¼0

s�i
X b

 !
ðxÞ � hmðsX Þ

�����

�����> e

( ) !
< y;

where b is the generating partition f½a�ga AA of X, then

hmðsX Þa k�
y
ðtÞ:

In particular, if we can take a maximal measure m with the above condition, then we have

k�
y
ðtÞ ¼ htopðXÞ:

Proof. Let m be a shift invariant probability measure on X . For a A A, we set

Xa ¼
X

nb0

X

w AWnðX Þ

mð½aw�ÞTwP0T
�
aw:

Then

X

a AA

TaXa ¼
X

nb0

X

a AA

X

w AWnðXÞ

mð½aw�ÞTawP0T
�
aw

¼
X

nb1

X

w AWnðXÞ

mð½w�ÞTwP0T
�
w ;

and

X

a AA

XaTa ¼
X

nb0

X

w AWnðX Þ

X

a AA

mð½aw�Þ

 !
TwP0T

�
w

¼
X

nb0

X

w AWnðX Þ

mð½w�ÞTwP0T
�
w :

Hence we have

X

a AA

½Xa;Ta� ¼ P0:

We assume that hmðsX Þ0 0 and denote it by h for short. To apply Proposition 2.2, we

need an estimate of kXak
þ
1
e. Fix e > 0 and a A A. We set

Dn ¼ fw A WnðX Þ j e�ðnþ1ÞðhþeÞ
a mð½aw�Þa e�ðnþ1Þðh�eÞg;

and
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en ¼
X

w AWnðXÞnDn

mð½aw�Þ:

If m satisfies the assumption, then we have

X

nb0

en < y: ð?Þ

Note that sjðXaÞ ¼ sjðXaTaÞ for all j A N . Thus we have kXak
þ
1
e ¼ kXaTak

þ
1
e. We put

fXaXa ¼
X

nb0

X

w ADn

mð½aw�ÞTwP0T
�
w :

We remark that for each j A N , there are n A N , w AWnðX Þ such that sjðXaTaÞ ¼

mð½aw�Þ. By ð?Þ, we obtain

kXak
þ
1
e ¼ kXaTak

þ
1
e ¼ lim sup

n!y

Pn
j¼1 sjðXaTaÞPn

j¼1 1=j

a kfXaXak
þ
1
e þ lim sup

n!y

P
y

k¼0 ekPn
j¼1 1=j

¼ kfXaXak
þ
1
e:

Hence it su‰ces to give an estimate of kfXaXak
þ
1
e. Let dn ¼

Pn
j¼0 jDjj, where jDjj is the

cardinality of Dj. One can easily check that

kfXaXak
þ
1
e
a lim sup

n!y

Pdn
j¼1 sjð

fXaXaÞ
Pdn

j¼1 1=j
:

Note that if sjðfXaXaÞ ¼ mð½aw�Þ for some w A Dn, then we have

e�ðnþ1ÞðhþeÞ
a sjðfXaXaÞ ¼ mð½aw�Þa e�ðnþ1Þðh�eÞ:

Assume that there are m > n such that sjðfXaXaÞ ¼ mð½aw�Þ for some w A Dm and ja dn.

Then it holds that

e�ðmþ1Þðh�eÞ
b e�ðnþ1ÞðhþeÞ: ð??Þ

Indeed, if e�ðmþ1Þðh�eÞ < e�ðnþ1ÞðhþeÞ, then

sjðfXaXaÞ ¼ mð½aw�Þa e�ðmþ1Þðh�eÞ < e�ðnþ1ÞðhþeÞ
a mð½au�Þ;

for all u A Dk ð1a ka nÞ. However, by our assumption, we have mð½av�Þa sjðfXaXaÞ ¼

mð½aw�Þ for some v A Dl and 1a la n. This is a contradiction.

Hence, by ð??Þ, we have

mþ 1a ðnþ 1Þ
hþ e

h� e
:

Let k A N with

ðnþ 1Þ
hþ e

h� e
� 1 < k þ 1a ðnþ 1Þ

hþ e

h� e
:
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Since

Pdn
j¼1 sjð

fXaXaÞ
Pdn

j¼1 1=j
a

Pk
i¼0

P
w ADi

mð½aw�Þ

log dn

a

Pk
i¼0 mð½a�Þ

log dn

a
nþ 1

log dn
�
hþ e

h� e
mð½a�Þ;

we obtain

kfXaXak
þ
1
e
a lim sup

n!y

nþ 1

log dn
�
hþ e

h� e
mð½a�Þ:

Moreover, because

mð½a�Þ ¼
X

w ADn

mð½aw�Þ þ
X

w AWnðX ÞnDn

mð½aw�Þa jDnje
�ðnþ1Þðh�eÞ þ en;

we have

ðmð½a�Þ � enÞe
ðnþ1Þðh�eÞ

a jDnj:

Note that en ! 0 ðn ! yÞ by ð?Þ. Therefore

kfXaXak
þ
1
e
a lim sup

n!y

nþ 1

logjDnj
�
hþ e

h� e
mð½a�Þ

a lim sup
n!y

nþ 1

logðmð½a�Þ � enÞ þ ðnþ 1Þðh� eÞ
�
hþ e

h� e
mð½a�Þ

¼
hþ e

ðh� eÞ2
mð½a�Þ:

Since e is arbitrary, we have

kXak
þ
1
e
a

1

h
mð½a�Þ:

By Proposition 2.2, the proof is complete. r

We now give some examples of subshifts with a maximal measure satisfying the

condition in Theorem 3.2.

Corollary 3.3. Let A be a 0-1 N �N matrix. We denote by SA the Markov

shift associated with A, i.e.

SA ¼ fðaiÞi AZ A SZ jAðai; aiþ1Þ ¼ 1g;
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where S ¼ f1; . . . ;Ng is an alphabet. If t ¼ ðTaÞa AS is the creation operators for the

Markov shift SA, then we have

k�
y
ðtÞ ¼ htopðSAÞ:

Proof. It su‰ces to show that the unique maximal measure of SA satisfies the

condition in Theorem 3.2. For simplicity, we may assume that A is irreducible with the

Perron value a. Note that the topological entropy htopðSAÞ is equal to log a. If l and r

are the left and right Perron vectors with
PN

a¼1 lara ¼ 1, then the unique maximal

measure m is given by

mð½a0; a1; . . . ; an�Þ ¼
la0ran
an

;

where ða0; a1; . . . ; anÞ A Wnþ1ðSAÞ (e.g. see [Kit ]). For any e > 0, there exists K A N such

that for any nbK , we have

log larba

nþ 1

�

�

�

�

�

�

�

�

< e;

for all 1a a; baN. Therefore for any w A Wnþ1ðSAÞ, we have

�
1

nþ 1
log mð½w�Þ � log a

�

�

�

�

�

�

�

�

< e;

for all nbK , i.e. the maximal measure m satisfies the condition in Theorem 3.2. r

More generally, there is a class of subshifts, which is called almost sofic (see [Pet ]).

A subshift X is said to be almost sofic if for any e > 0, there is an SFT SJX such

that htopðXÞ � e < htopðSÞ, where a shift of finite type or SFT is a subshift that can be

described by a finite set of forbidden words, i.e. a subshift having the form XF for some

finite set F of words.

Corollary 3.4. If t ¼ ðTaÞa AA is the creation operators for an SFT S, then we

have

k�
y
ðtÞ ¼ htopðSÞ:

Proof. We recall that every SFT S is topologically conjugate to a Markov shift

SA associated with a 0-1 matrix A. Now we give a short proof of this result. Let S be

an SFT that can be described by a finite set F of forbidden words. We may assume

that all words in F have length N þ 1. We set A
½N �
S ¼ WNðSÞ and the block map

j : WNðSÞ ! A
½N �
S , w 7! w. We define the N-th higher block code bN : S ! ðA

½N �
S ÞZ by

ðbNðxÞÞi ¼ ðxi; . . . ; xiþN�1Þ A A
½N �
S ;

for x ¼ ðxiÞi AN A S. Note that bN is the sliding block code with respect to j. The

subshift bNðSÞ is given by a Markov shift, i.e. there is a 0-1 matrix A with bNðSÞ ¼ SA.

Let m be the maximal measure of SA. The maximal measure of S is given by

n ¼ m � bN . We recall that m is the Markov measure given by the left and right eigen-

vectors l; r and the eigenvalue a. For w A WnðSÞ with nbN, we have
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nð½w�Þ ¼ mð½jðw½1;N�Þ; . . . ; jðw½n�Nþ1;n�Þ�Þ

¼
larb

an�N
;

where a ¼ jðw½1;N�Þ, b ¼ jðw½n�Nþ1;n�Þ and w½k; l � ¼ ðwk; . . . ;wlÞ for ka l. Hence one

can show that the maximal measure n of S satisfies the condition in Theorem 3.2 by the

same argument as in the proof of Corollary 3.3. r

Corollary 3.5. Let X be an almost sofic shift. If t ¼ ðTaÞa AA is the creation

operators for X, then we have

k�
y
ðtÞ ¼ htopðXÞ:

Proof. Let e > 0. Since X is almost sofic, there is an SFT SJX such that

htopðXÞ � e < htopðSÞ. Let j : S ! X be an embedding. Note that the subshift jðSÞ

is also an SFT. Thus we may identify jðSÞ with S. Let m be the unique maximal

measure of S. For a A A, we set

Xa ¼
X

nb0

X

w

mð½aw�ÞTwP0T
�
aw;

where w runs over all elements in WnðSÞ with aw A WðSÞ. We have shown that the

maximal measure m of S satisfies the condition of Theorem 3.2 in the proof of Corollary

3.4. Hence by the same argument as in the proof of Theorem 3.2, we have

htopðSÞa k�
y
ðtÞ:

Thus for arbitrary e > 0, the following holds:

htopðX Þ � e < htopðSÞa k�
y
ðtÞ:

It therefore follows from Proposition 3.1 that htopðXÞ ¼ k�
y
ðtÞ if X is an almost sofic

shift. r

For b > 1, the b-transformation Tb on the interval ½0; 1� is defined by the mul-

tiplication with b ðmod1Þ, i.e. TbðxÞ ¼ bx� ½bx�, where ½t� is the integer part of t. Let

N A N with N � 1 < baN and A ¼ f0; 1; . . . ;N � 1g. The b-expansion of x A ½0; 1� is

a sequence dðx; bÞ ¼ fdiðx; bÞgi AN of A determined by

diðx; bÞ ¼ ½bT i�1
b ðxÞ�:

We set

zb ¼ sup
x A ½0;1Þ

ðdiðx; bÞÞi AN ;

where the above supremum is taken in the lexicographical order, and we define the shift

invariant closed subset Sþ
b of the full one-sided shift A

N by

Sþ
b ¼ fx A A

N j s iðxÞa zb; i ¼ 0; 1; . . .g;

wherea is the lexicographical order on A
N ¼ f0; 1; . . . ;N � 1gN . The b-shift Sb is the

natural extension given by
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Sb ¼ fðxiÞi AZ A A
Z j ðxiÞibk A Sþ

b ; k A Zg:

It is known that htopðSbÞ ¼ log b, (see [Hof ]).

The following result might be known among specialists. However, we give a proof

here as we can not find it in the literature.

Proposition 3.6. For b > 1, the b-shift Sb is an almost sofic shift.

Proof. In [Par], it is shown that Sb is an SFT if and only if dð1; bÞ is finite, i.e.

there is K A N such that dkð1; bÞ ¼ 0 for all kbK . Thus we may assume that dð1; bÞ is

not finite. Let zb ¼ ðxiÞi AN . For n A N , there is bðnÞ < b such that

1 ¼
x1

bðnÞ
þ

x2

bðnÞ2
þ � � � þ

xn

bðnÞn
:

In [Par, Theorem 5], it is proved that

lim
n!y

bðnÞ ¼ b:

Hence we may assume that N � 1a bðnÞ < b for su‰ciently large n. Since the maxi-

mal element zbðnÞ has the form

ðx1; x2; . . . ; ðxn � 1Þ; x1; x2; . . . ; ðxn � 1Þ; x1; . . .Þ;

we have zbðnÞ < z, where < is the lexicographical order. Therefore we obtain

Sþ
bðnÞJSþ

b J f0; 1; . . . ;N � 1gN :

It follows that SbðnÞ is the shift invariant closed subset of Sb with topological entropy

log bðnÞ. Since dð1; bðnÞÞ is finite, the subshift SbðnÞ is an SFT. It therefore follows

from [Par, Theorem 5] that Sb is an almost sofic. r

Hence it holds that k�
y
ðtÞ ¼ htopðSbÞ for every b-shift by Corollary 3.5.

Corollary 3.7. Let Sb be the b-shift for b > 1. If t ¼ ðTaÞa AA is the creation

operators for Sb, then we have

k�
y
ðtÞ ¼ htopðSbÞ ¼ log b:

4. Groups and Macaev norm.

We discuss a relation between groups and the Macaev norm. Let G be a countable

finitely generated group, S a symmetric set of generators of G . We denote by j � jS the

word length and by WnðG ;SÞ the set of elements in G with length n, with respect to the

system of generators S. The logarithmic volume of a group G in a given system of gen-

erators S is the number

vS ¼ lim
n!y

logjWnðG ;SÞj

n
;

(cf. [Ver]). The following proposition can be proved in the same way as in the free

group case [Voi3, Proposition 3.7. (a)].
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Proposition 4.1. Let G be a finitely generated group with a finite generating set

S and l the left regular representation of G . If we set lS ¼ ðlaÞa AS, then

k�yðlSÞa vS:

Proof. Let us denote by Pn the projection onto the subspace spanfdg A l2ðGÞ j

jgjS ¼ ng. If we set

Xn ¼
X

n�1

j¼0

1�
j

n

� �

Pj;

then we have

kXnla � laXnk ¼ kl�
aXnla � Xnka

1

n
:

for a A S. Hence

k�yðlSÞa lim sup
n!y

max
a AS

k½Xn; la�k
�
ya lim

n!y

log
Pn

j¼0 jWnðG;SÞj

n
¼ vS: r

Now we compute the exact value of k�yðlSÞ for certain amalgamated free product

groups.

Proposition 4.2. Let A be a finite group, G1; . . . ;GM nontrivial finite groups

containing A as a subgroup and H1; . . . ;HN the product group of the infinite cyclic group

Z and the finite group A, ðN þM > 1Þ. Let G be the amalgamated free product group

of G1; . . . ;GM , H1; . . . ;HN with amalgamation over A. Set S ¼ G1 U � � �UGM U ðS1 � AÞ

U � � �U ðSN � AÞnfeg, where Sj is the canonical generating set fxj; x
�1
j g of the infinite

cyclic group Z and e is the group unit. Let l be the left regular representation of G and

lS ¼ ðlaÞa AS. Then we have

k�yðlSÞ ¼ vS:

In particular, for the free group FN ðNb 2Þ, we have

k�yðlSÞ ¼ logð2N � 1Þ:

Proof. By Proposition 4.1, it su‰ces to show that vSa k�yðlSÞ. Let Wi be the

set of the representatives of Gi=A with e A Wi for i ¼ 1; . . . ;M. We identify xj with

ðxj; eÞ A Hj for j ¼ 1; . . . ;N, and set WMþj ¼ fxj; x
�1
j ; eg. Let

~SS ¼ 6
MþN

i¼1

Winfeg:

We define the 0-1 matrix A with index ~SS by

Aða; bÞ ¼
1 if jabjS ¼ 2;

0 otherwise.

�
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One can easily check that the above matrix A is irreducible and the topological entropy

htopðSAÞ of the Markov shift SA coincides with the logarithmic volume vS of G with

respect to the generating set S.

We denote by G0 the subset of G consisting of the group unit e and elements

a1 � � � an A G ; ðn A NÞ of the form

ak A Wiknfeg for k ¼ 1; . . . ; n;

ik 0 ikþ1 if 1a ikaM;

ak ¼ akþ1 if M þ 1a ikaM þN; ik ¼ ikþ1:

8

>

<

>

:

Note that the subspace l 2ðG0Þ can be identified with the Fock space FA of the Markov

shift SA by the following correspondence:

de $ x0;

da1���an $ xa1 n � � �n xan :

Let us denote by Pn the projection onto the subspace

spanfdg A l2ðGÞ j jgjS ¼ ng:

For a A S, we define the partial isometry Ta A Bðl2ðGÞÞ by

Ta ¼
X

nb0

Pnþ1laPn:

Under the identification with FA, the partial isometry Tajl 2ðG0Þ
for a A ~SS is the creation

operator on FA, (cf. [Oka]). We also identify G0 and WðSAÞ. For w ¼ a1 � � � an A G0,

we set Tw ¼ Ta1 � � �Tan . Let m be the maximal measure of SA. For a A ~SS, we put

Xa ¼
X

nb0

X

w

mð½aw�ÞTwP0T
�
aw;

where w runs over all w A G0 with jwjS ¼ n and jawjS ¼ jwjS þ 1. For a A Sn ~SS, we set

Xa ¼ 0. It can be easily checked that ½la;Xa� ¼ ½Ta;Xa� for a A ~SS. Therefore by the

same proof as in the subshift case, we obtain

vS ¼ htopðSAÞ ¼ k�yðlSÞ: r

Remark 4.3. Let G be a finitely generated group with a finite generating set S.

In [Voi5], Voiculescu proved that if the entropy hðG ; mÞ of a random walk m on G with

support S is non-zero, then k�yððlaÞa ASÞ is non-zero. However the above proposition

suggests that the volume vS of G is more related to the invariant k�yððlaÞa ASÞ rather than

the entropy hðG ; mÞ. It is an interesting problem to ask whether vS being non-zero

implies k�yððlaÞa ASÞ being non-zero. We also remark here that there is a relation

between vS and hðG ; mÞ: If hðG ; mÞ0 0, then vS 0 0, (see [Ver, Theorem 1]). If the

above mentioned problem was solved a‰rmatively, then it would follow from Prop-

osition 4.1 that k�yððlaÞa ASÞ0 0 if and only if vS 0 0, i.e. G has exponential growth.
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