
J. Math. Soc. Japan
Vol. 56, No. 1, 2004

Julia sets of two permutable entire functions

By Liangwen Liao and Chung-Chun Yang

(Received Apr. 10, 2002)

(Revised Aug. 9, 2002)

Abstract. In this paper first we prove that if f and g are two permutable tran-

scendental entire functions satisfying f ¼ f1ðhÞ and g ¼ g1ðhÞ, for some transcendental

entire function h, rational function f1 and a function g1, which is analytic in the

range of h, then FðgÞHFð f Þ. Then as an application of this result, we show that if

f ðzÞ ¼ pðzÞeqðzÞ þ c, where c is a constant, p a nonzero polynomial and q a nonconstant

polynomial, or f ðzÞ ¼
Ð z

pðzÞeqðzÞ dz, where p; q are nonconstant polynomials, such that

f ðgÞ ¼ gð f Þ for a nonconstant entire function g, then Jð f Þ ¼ JðgÞ.

1. Introduction.

Let f be a non-constant entire function, and denote by f n the n-th iterate of f .

The Fatou Fð f Þ set of f is the set of z A C (the whole complex plane) where the family

f f ng is normal in a neighborhood of z. Denote by Jð f Þ the complement of Fð f Þ,

which is called the Julia set of f . An obvious property of a Julia set for an entire

or rational function f is that Jð f Þ ¼ Jð f nÞ. If a meromorphic function F can be

expressed as F ¼ f � g, where f and g are meromorphic functions, then f and g are

called left and right factors of F , respectively. An entire or meromorphic function F

is called prime (pseudo-prime) if whenever F ¼ f � g for some meromorphic functions

f and g, then either f or g is linear ( f rational or g polynomial). An entire or

meromorphic function F is called left-prime if and only if whenever F ¼ f � g with g

being transcendental then f must be linear. Moreover, we will say that a factorization

is in entire sense if only entire factors are to be considered in the compositions. For

more of the details, developments and related results of the factorization theory, we refer

the reader to [10] or [8].

Theorem A (Baker [1]). Let g be a nonlinear entire function permutable with f ðzÞ ¼

aebz þ c, ðab0 0; a; b; c A CÞ, then g ¼ f n for some n A N . Hence Jð f Þ ¼ JðgÞ.

Theorem B (Baker [2]). If f and g are transcendental entire functions and if y is

neither a limit function of any subsequence of f f ng in a component of Fð f Þ, nor of any

subsequence of fgng in a component of FðgÞ, then Jð f Þ ¼ JðgÞ.

Theorem C (Bergweiler-Hinkkanen [7]). Let f and g be two permutable transcen-

dental entire functions. If both f and g have no wandering domains, then Jð f Þ ¼ JðgÞ.

Recently Ng [14] obtained some results, by imposing conditions on only one of the

two permutable functions.

Theorem D ([14]). Let q be a nonconstant entire function and p be a polynomial

2000 Mathematics Subject Classification. Primary 58F23, 30D35.

Key Words and Phrases. Julia set, Fatou set, permutable entire functions, prime, pseudo-prime.



with at least two distinct zeros. Suppose that f ðzÞ ¼ pðzÞeqðzÞ is prime in entire sense.

Then any nonlinear entire function g which permutes with f is of the form gðzÞ ¼

af nðzÞ þ b, where a is a k-th root of unity and b A C , and hence Jð f Þ ¼ JðgÞ.

Theorem E ([12]). Let f ðzÞ ¼ pðzÞeaðzÞ þ a, where pðzÞ is a nonconstant polynomial

and not of the form ½ p1ðzÞ�
n, where p1ðzÞ a polynomial and nb 2, a A C and aðzÞ a

nonconstant entire function such that when pðzÞ is linear ¼ Aðz� aÞ then 1þ ðz� aÞa 0ðzÞ

has at least one but finitely many zeros. Furthermore, assume that f ðzÞ is pseudo-prime

in entire sense. Let g be a nonlinear entire function permutable with f , then gðzÞ ¼

a1 f
nðzÞ þ b1, where a1 is a k-th root of unity and b1 A C , and hence Jð f Þ ¼ JðgÞ.

Theorem F ([12]). Let f ðzÞ ¼ pðzÞeqðzÞ þ a, where p; q are two nonconstant poly-

nomials, pðzÞ is not of the form p1ðzÞ
n, p1ðzÞ a polynomial, nb 2, and a A C . If a

nonlinear entire function g is permutable with f , then gðzÞ ¼ a1 f
nðzÞ þ b1, where a1 is a

k-th root of unity and b1 A C , and hence Jð f Þ ¼ JðgÞ.

In this paper, we shall derive several results which are complementary to Theorem

D, Theorem E and Theorem F, and obtain a similar result for functions of the form

f ðzÞ ¼
Ð z

pðzÞeqðzÞ dz.

2. Lemmas.

Lemma 1. Let f and g be two entire functions. If gðFð f ÞÞHF ð f Þ, then

F ð f ÞHF ðgÞ.

Proof. Let z0 A F ð f Þ. Then there exists a neighbourhood U of z0 such that

U HFð f Þ. By the assumption of the lemma, we have gnðUÞHFð f Þ. Therefore gnðzÞ

will not take any value of Jð f Þ in U and hence fgngyn¼1 is normal in U . Thus

z0 A F ðgÞ, the conclusion follows. r

Lemma 2 ([2]). Let f and g be two permutable transcendental entire functions. If

a A F ð f Þ and there is a subsequence f nk , with nk ! y, which has a finite limit in the

component of Fð f Þ that contains a, then gðaÞ A Fð f Þ.

Lemma 3 ([7]). Let f and g be two permutable transcendental entire functions. If f

does not have any wandering domains, then F ð f ÞHFðgÞ.

Lemma 4 ([3]). Let f be a transcendental entire function such that singð f �1Þ, the set

of singularities of f �1, is a finite set. Then Fð f Þ does not have any wandering domain.

Definition and notation. Let FðzÞ be a nonconstant entire function. An entire

function gðzÞ is called as a generalized right factor of F (denote by gaF ) if there exists

a function f , which is analytic on the range of g, such that F ¼ f � g. Moreover if

ha f and ha g, then h is called a common generalized right factor of f and g.

By essentially adopting the arguments used by Eremenko-Rubel ([9], Theorem 1.1)

in their investigations of the existence of possible common generalized right factors of

two transcendental entire functions, Ng [14] obtained the following two results.

Lemma 5 ([14], p. 133). Let f and g be two entire functions and z1; . . . ; zk be kb 2

distinct complex numbers such that
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f ðz1Þ ¼ f ðz2Þ ¼ � � � ¼ f ðzkÞ ¼ A;

gðz1Þ ¼ gðz2Þ ¼ � � � ¼ gðzkÞ ¼ B:

�

Suppose that there exist nonconstant functions f1 and g1 such that f1 � f ¼ g1 � g on

6k

i¼1
U i, where U i is some open neighborhood containing zi. If f1 is analytic in a neigh-

borhood of A and the order of f1 at A is K < k, then there exists an entire function h

(which only depends on f and g and is independent of k and zi) with ha f , ha g.

Moreover, among the zis, there exist at least m ¼ ½ðk � 1Þ=K � þ 1 distinct points

zn1; . . . ; znm such that hðzn1Þ ¼ � � � ¼ hðznmÞ.

Lemma 6 ([14], p. 133). Let f and g be two entire functions and fzkgk AN be an

infinite sequence of distinct complex numbers such that f ðzkÞ ¼ A and gðzkÞ ¼ B for all

k A N . Suppose that there exist nonconstant functions f1 and g1 such that f1 � f 1 g1 � g

on 6y

i¼1
U i, where U i is some open neighborhood containing zi. If f1 is analytic in a

neighborhood of A, then there exists a transcendental entire function h with ha f , ha g.

Lemma 7 (Ng [14]). Let h; k be two transcendental entire functions. Suppose that h

has infinitely many zeros. Then for each n A N , there exists a zero an of h such that

kðzÞ ¼ an has at least n distinct roots which are not zeros of h.

Lemma 8. Let f ; g be two permutable transcendental entire functions. If there exist

a nonconstant polynomial p and an entire function k such that pðgðzÞÞ ¼ kð f ðzÞÞ, then

f ðF ðgÞÞHFðgÞ, and hence FðgÞHFð f Þ.

Proof. Let a A FðgÞ. Then there exists a neighbourhood U of a such that

U HFðgÞ. By Lemma 2, we only need to consider the case gn ! y in U . Let

M ¼ maxjwj¼1jkðwÞj. Since p is nonconstant polynomial, there exists a positive constant

K such that jpðzÞj > M þ 1 when jzj > K. Since gn ! y in U as n ! y, there exists

n0 such that jgnðzÞj > K for n > n0 and z A U . Thus, jgðzÞj > K for all z A gnðUÞ

ðn > n0Þ. If f ðaÞ is not in F ðgÞ, then, for arbitrarily large n, fgng takes all values in

f ðUÞ, with at most one exception. Thus there exists t ¼ f ðzÞ, with z A U , such that for

some m > n0

1 > jgmðtÞj ¼ jgmð f ðzÞÞj ¼ j f ðgmðzÞÞj:

Thus d ¼ gmðzÞ A gmðUÞ, which implies jgðdÞj > K , and j f ðdÞj < 1. Hence, we have

M þ 1 < jpðgðdÞÞj ¼ jkð f ðdÞÞjaM;

which is a contradiction. Thus we have that f ðaÞ A FðgÞ. Hence f ðF ðgÞÞHF ðgÞ and

F ðgÞHF ð f Þ. r

Lemma 9 (Bergweiler [5]). If f and g are transcendental entire functions, h is a

nonconstant polynomial, then f ðgÞ � h has infinitely many zeros.

3. Main results and their proofs.

Theorem 1. Let f and g be two permutable transcendental entire functions. If

there exist a transcendental entire functions h, a rational function f1 and a function g1
that is analytic in the range of h, such that f ðzÞ ¼ f1ðhðzÞÞ and gðzÞ ¼ g1ðhðzÞÞ, then

F ðgÞHF ð f Þ.
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Proof. By Lemma 1, we only need to prove that f ðFðgÞÞHFðgÞ. Let a A FðgÞ,

then there exists a neighborhood U of a such that U HF ðgÞ. By Lemma 2, we need to

consider only the case that gn ! y in U . By the assumption that f ¼ f1ðhÞ, g ¼ g1ðhÞ,

f1 has at most one pole and g1 has at most one singular point in C . Choose a A C such

that Dða; 1Þ ¼ fw : jw� aja 1g does not contain f1ðyÞ. Denote E the bounded set

f �1
1 ðDða; 1ÞÞ ¼ fz : f1ðzÞ A Dða; 1Þg. Furthermore, g1 has at most one singular point

in C , therefore, a can be so chosen that E does not contain any singular point of

g1. Let M ¼ maxw AE jg1ðwÞj. Since gn ! y in U as n ! y, there exists n0 such that

jgnðzÞj > M þ 1 for n > n0 and z A U . Thus, jgðzÞj > M þ 1 for all z A gnðUÞ ðn > n0Þ.

If f ðaÞ is not in F ðgÞ, then for su‰ciently large n, fgng takes all values in f ðUÞ, with at

most one exception. Thus there exists t ¼ f ðzÞ, with z A U , such that for some m > n0

f ðgmðzÞÞ ¼ gmð f ðzÞÞ ¼ gmðtÞ A Dða; 1Þ:

Thus d ¼ gmðzÞ A gmðUÞ and f ðdÞ A Dða; 1Þ, which implies that hðdÞ A E. Hence

M þ 1 < jgðdÞj ¼ jg1ðhðdÞÞjaM;

which is a contradiction, and hence f ðaÞ A F ðgÞ. It follows that f ðFðgÞÞHFðgÞ and

F ðgÞHF ð f Þ. r

Combining Theorem 1 and a result of Ng ([13], Theorem A), we have

Corollary 1. Let f ðzÞ and gðzÞ be two permutable transcendental entire func-

tions. If there exists a nonconstant polynomial Fðx; yÞ in both x and y such that

Fð f ðzÞ; gðzÞÞ1 0, then Jð f Þ ¼ JðgÞ.

Remark. This result generalizes the results of Baker [2], Poon-Yang [15] and

Wang [18], where Fðx; yÞ is chosen respectively to be x� y� b, x� ay� b and

pðxÞ � qðyÞ.

Corollary 2. Let f and g be two permutable transcendental entire functions with

F ð f ÞHF ðgÞ. Assume further that f is pseudo-prime. If there exists a transcendental

entire functions h such that ha f and ha g, then Jð f Þ ¼ JðgÞ.

Proof. By the assumption that ha f and ha g, there exist functions f1 and g1,

which are analytic in the range of h, such that

f ¼ f1ðhÞ; g ¼ g1ðhÞ:

However, since f is pseudo-prime, f1 must be a rational function with at most one pole.

Hence, by Theorem 1, the conclusion follows. r

Corollary 3. Let f be a transcendental entire function such that Fð f Þ has no

wandering domain. Assume further that f is pseudo-prime. Let g be a nonlinear entire

function permutable with f . If there exists a transcendental entire function h such that

ha f and ha g, then Jð f Þ ¼ JðgÞ.

Corollary 4. Let f and g be two permutable transcendental entire functions.

Assume further that both f and g are pseudo-prime. If there exists a transcendental

entire function h such that ha f and ha g, then Jð f Þ ¼ JðgÞ.
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Theorem 2. Let f ðzÞ ¼ pðzÞeqðzÞ þ c, where pðzÞ is a nonzero polynomial and qðzÞ

a nonconstant polynomial. If g is a nonlinear entire function permutable with f , then

Jð f Þ ¼ JðgÞ.

Proof. By Lemmas 3 and 4, we have F ð f ÞHF ðgÞ. Now we prove that

F ðgÞHF ð f Þ. There we have two cases to be dealt with.

Case 1. pðzÞ is a constant. If qðzÞ is linear, then f ðzÞ ¼ eazþb þ c. Thus we are

done by Theorem A. Now we assume that qðzÞ a nonlinear polynomial. Then f ðzÞ ¼

eq1ðzÞ þ c, where q1ðzÞ ¼ qðzÞ þ constant. ð f � cÞ � g ¼ ðg� cÞ � f implies that either

gðzÞ ¼ ekðzÞ þ c or gðzÞ ¼ ðz� cÞnekðzÞ þ c with nb 1. If gðzÞ ¼ ekðzÞ þ c, then

q1ðgðzÞÞ ¼ k1ð f ðzÞÞ, where k1ðzÞ ¼ kðzÞ þ constant is an entire function. Hence, the

conclusion follows from Lemma 8. Now we consider the case that gðzÞ ¼ ðz� cÞn �

ekðzÞ þ c, nb 1. Since deg qb 2, f 0 has at least one zero. If f 0 has a zero0 c, then

f 0ðgÞg 0 ¼ g 0ð f Þ f 0 implies that g 0ð f Þ has infinitely many zeros. If g 0 has only finitely

many zeros, then it follows that there exist a zero B of f 0 and a zero A of g 0 such that

f � A and g� B has infinitely many common zeros. By Lemma 6, it follows that there

exists a transcendental entire function h such that ha f and ha g. Thus the con-

clusion follows from Corollary 2. If g 0 has infinitely many zeros, by Lemma 7, for

arbitrary large N, there exist a zero aN of g 0 and a zero B of f 0 such that f � aN and

g� B has at least N distinct common zeros. It follows from Lemma 5 that there exists

an entire function h such that ha f and ha g. Furthermore, h takes some fixed value

at least ½N=deg q� distinct points. Since N can be arbitrarily large, so is ½N=deg q�, and

hence h must be transcendental. By Corollary 2, the conclusion follows. If f 0 has

only one zero c, then f ðzÞ ¼ eAðz�cÞmþB þ c. Noting gðzÞ ¼ ðz� cÞnekðzÞ þ c with nb 1,

by calculating the multiplicities of the zero point c of f 0ðgÞg 0 and g 0ð f Þ f 0, we conclude

immediately that n ¼ 1. Then g 0ðzÞ ¼ ð1þ ðz� cÞk 0ðzÞÞekðzÞ and all its zero must be

di¤erent from c. Thus, if 1þ ðz� cÞk 0ðzÞ has a zero, then g 0ð f Þ has infinitely many

zeros, so does g 0. Again, according to Lemma 7, this will lead to a contradiction.

Finally we need to show that f and g are not permutable if 1þ ðz� cÞk 0ðzÞ has no zero.

Set 1þ ðz� cÞk 0ðzÞ ¼ ebðzÞ, where bðzÞ is non-constant entire function. If f and g are

permutable, then we have

Aðz� cÞmemkðzÞ ¼ Aðz� cÞm þ k1ðe
Aðz�cÞmþB þ cÞ; ð1Þ

where k1ðzÞ ¼ kðzÞ þ d, d is a constant. Noting that 1þ ðz� cÞk 0ðzÞ has no zero, we

have that kðzÞ must be a transcendental entire function, so does k1ðzÞ. But by Lemma

9, this is impossible.

Case 2. pðzÞ is a nonconstant polynomial. We discuss two subcases. If pðzÞ has

at least two distinct zeros, then pðgðzÞÞ has infinitely many zeros. It follows from

pðgðzÞÞeqðgðzÞÞ ¼ ðg� cÞ � f ðzÞ that ðg� cÞ � f ðzÞ has infinitely many zeros. Thus there

exist a zero A of pðzÞ and a zero B of g� c such that f ðzÞ � B and gðzÞ � A have

infinitely many common zeros. Again by Lemma 6, there exists a transcendental

entire function h such that ha f and ha g. If pðzÞ has only one zero, then f ðzÞ ¼

ðz� bÞneqðzÞ þ c and ðg� bÞneqðgÞ ¼ ðg� cÞ � f . Now if g� c has at least two distinct

zeros, by applying the same arguments as above, we conclude that there exists a
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transcendental entire function h such that ha f and ha g. If g� c has only one zero,

say a, then gðzÞ ¼ ðz� aÞmekðzÞ þ c, where kðzÞ is a nonconstant entire function. Thus,

f � g ¼ g � f implies that ðg� bÞneqðgÞ ¼ ð f � aÞmekð f Þ. If b0 c, then gðzÞ � b has

infinitely many zeros which are also the zeros of f ðzÞ � a. Hence there exists a tran-

scendental entire function h such that ha f and ha g, by Lemma 6. If c0 a, we will

arrive at the same conclusion. If a ¼ b ¼ c, then

f ðzÞ ¼ ðz� cÞneqðzÞ þ c; ð2Þ

gðzÞ ¼ ðz� cÞmekðzÞ þ c; ð3Þ

where nb 1, mb 1 and qðzÞ is a nonconstant polynomial. Thus f 0 has at least one

and only finitely many zeros, which are di¤erent from c (a Picard exceptional value of

g). Thus, f 0ðgÞg 0 ¼ g 0ð f Þ f 0 implies that g 0ð f Þ has infinitely many zeros. If g 0 has

only finitely many zeros, it is easy to derive that there exists a transcendental entire

function h such that ha f and ha g. If g 0 has infinitely many zeros, by lemma 7, for

any Nb nþ 2, there exists a zero aN of g 0 such that f ðzÞ ¼ aN and gðzÞ ¼ A has at

least N common roots z1; z2; . . . ; zN , where A is a zero of f 0. Thus, by lemma 5, there

exists an entire function h (which depends on f and g only) with ha f , ha g. More-

over, among z1; z2; . . . ; zN , there exist at least m ¼ ½N=ðnþ 1Þ� distinct points at which

h takes the same value. Since N as well as m can be arbitrarily large, h must be trans-

cendental. Hence, again by Corollary 2, the conclusion follows. This also completes

the proof of the theorem. r

Theorem 3. Let f ðzÞ ¼
Ð z

pðzÞeqðzÞ dz, where pðzÞ and qðzÞ are nonconstant poly-

nomials. If g is a nonlinear entire function permutable with f , then Jð f Þ ¼ JðgÞ.

Proof. By Lemma 4, we conclude that f has no wandering domain. It follows

from Lemma 3, that F ð f ÞHF ðgÞ. Now we prove that F ðgÞHFð f Þ. It is obviously

that f ðzÞ is pseudo-prime. Thus by Lemma 1, we only need to prove that there exists a

transcendental entire function h such that ha f and ha g. We need to discuss two

cases.

Case 1. pðzÞ has two distinct zeros. Then f 0ðgðzÞÞ has infinitely many zeros. It

follows from f 0ðgÞg 0 ¼ g 0ð f Þ f 0 that g 0ð f Þ has infinitely many zeros and g 0 has at least

one zero. If g 0 has only finitely many zeros, then there exist a zero A of g 0 and a zero

B of f 0 such that f ðzÞ � A and gðzÞ � B have infinitely many zeros. It follows from

Lemma 6 that there exists a transcendental entire function h such that ha f and

ha g. If g 0 has infinitely many zeros, it follows from f 0ðgÞg 0 ¼ g 0ð f Þ f 0 and Lemma 7

that for each n A N , there exist a zero an of g 0 and a zero B of f 0 such that f ðzÞ � an
and gðzÞ � B has at least n distinct common zeros. It follows from Lemma 5 that there

exists an entire function h such that ha f and ha g. Furthermore, h takes some fixed

value at least ½n=deg ðpþ 1Þ� distinct points. Since n can be arbitrarily large, so is

½n=deg ðpþ 1Þ�, and hence h must be transcendental.

Case 2. pðzÞ has only one zero, thus pðzÞ ¼ Aðz� cÞn, ðnb 1Þ. If gðzÞ � c has

infinitely many zeros, it follows from AðgðzÞ � cÞneqðgðzÞÞg 0ðzÞ ¼ Ag 0ð f ðzÞÞðz� cÞneqðzÞ

that g 0 has at least one zero. If g 0 has only one zero, say a, then f ðzÞ � a and gðzÞ � c
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has infinitely many common zeros. It follows that there exists a transcendental entire

function h such that ha f and ha g. If g 0 has at least two distinct zeros, it follows

from AðgðzÞ � cÞneqðgðzÞÞg 0ðzÞ ¼ Ag 0ð f ðzÞÞðz� cÞneqðzÞ that g 0 has infinitely many zeros.

Thus by Lemmas 7 and 5, we have that there exists a transcendental entire function h

such that ha f and ha g. If gðzÞ � c has only finite many zeros, then we discuss the

following three subcases.

Subcase 1. g 0 has at least two distinct zeros. It follows from AðgðzÞ � cÞneqðgðzÞÞ �

g 0ðzÞ ¼ Ag 0ð f ðzÞÞðz� cÞneqðzÞ that there exists a zero a of g 0 such that f ðzÞ � a and

gðzÞ � c has infinitely many common zeros. Then by Lemma 6 again, there exists a

transcendental entire function h such that ha f and ha g.

Subcase 2. g 0 has only one zero, say b, then g 0ðzÞ ¼ ðz� bÞmeaðzÞ. It follows that

b is a Picard exceptional value. Thus f ðzÞ ¼ bþ p2ðzÞe
q2ðzÞ, where p2ðzÞ and q2ðzÞ are

polynomials. It follows from Theorem 2 that Jð f Þ ¼ JðgÞ.

Subcase 3. g 0 has no zero, then g 0ðzÞ ¼ eaðzÞ, where aðzÞ is an entire function.

It follows from ðgðzÞ � cÞneqðgðzÞÞeaðzÞ ¼ eað f ðzÞÞðz� cÞneqðzÞ that gðzÞ � c ¼ ðz� cÞebðzÞ,

where bðzÞ is a nonconstant entire function. Thus

ð f � cÞ � g ¼ ðg� cÞ � f ¼ ð f � cÞebð f Þ:

It follows from this and Lemma 7 that f ðzÞ � c has only finitely many zeros. Thus

f ðzÞ ¼ cþ p2ðzÞe
q2ðzÞ, where p2ðzÞ and q2ðzÞ are polynomials. Again by Theorem 2, we

have that Jð f Þ ¼ JðgÞ. r

Conjecture. Theorem 3 remains to be valid when p is a constant.

Theorem 4. Let f ðzÞ ¼
Ð z

eqðzÞ dz, where qðzÞ is a nonconstant polynomial. If g is

a nonlinear entire function and not the form
Ð z

eaðzÞ dz, where a is a nonconstant entire

function, then f and g are not permutable.

Proof. Assume that f and g are permutable. Then it follows from eqðgðzÞÞg 0ðzÞ ¼

g 0ð f ðzÞÞeqðzÞ that g 0 has at most one zero. By assumption of Theorem, g 0 has one zero,

hence g 0ðzÞ ¼ ðz� cÞneaðzÞ. It follows from this and eqðgðzÞÞg 0ðzÞ ¼ g 0ð f ðzÞÞeqðzÞ that

f ðzÞ � c ¼ ðz� cÞeq1ðzÞ, where q1ðzÞ is a non-constant polynomial. Thus one can con-

clude that 1þ ðz� cÞq 0
1ðzÞ has no zero at all. This is false which also completes the

proof. r
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