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Meromorphic functions sharing three values
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Abstract. In this paper, we prove a result on uniqueness of meromorphic functions

sharing three values counting multiplicity. As applications of this, many known results

can be improved. Examples are provided to show that the results in this paper are best

possible.

1. Introduction and main results.

In this paper, by meromorphic function we shall always mean a meromorphic func-

tion in the complex plane. We adopt the standard notations in the Nevanlinna theory

of meromorphic functions as explained in [1]. For any nonconstant meromorphic func-

tion f ðzÞ, we denote by Sðr; f Þ any quantity satisfying Sðr; f Þ ¼ oðTðr; f ÞÞ for r ! y

except possibly a set of r of finite linear measure. Let k be a positive integer, we denote

by NkÞðr; f Þ the counting function of poles of f with multiplicity a k. We further

define (see [2])

Nð2ðr; f Þ ¼ Nðr; f Þ �N1Þðr; f Þ;

Nð2ðr; f Þ ¼ Nðr; f Þ �N1Þðr; f Þ;

Nð3ðr; f Þ ¼ Nðr; f Þ �N2Þðr; f Þ:

Let f and g be two nonconstant meromorphic functions and let a be a finite com-

plex number. If f and g have the same a-points with the same multiplicities, we say

that f and g share the value a CM (counting multiplicity) (see [2]). If 1=f and 1=g

share the value 0 CM, we say that f and g share y CM.

M. Ozawa [3], H. Ueda [4], G. Brosch [5], H. Yi [6], [7], [8], S. Ye [9], P. Li [10], Q.

Zhang [11] and other authors (see [2]) dealt with the problem of uniqueness of mero-

morphic functions that share three distinct values. In 1995, H. Yi proved the following

result, which is an improvement of some theorems given by H. Ueda [4], H. Yi [6] and

S. Ye [9].

Theorem A (see [8, Theorem 4]). Let f and g be two distinct nonconstant mero-

morphic functions sharing 0; 1 and y CM, and let a ð00; 1Þ be a finite complex number.

If

N r;
1

f � a

� �

0Tðr; f Þ þ Sðr; f Þ; ð1:1Þ
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then a is a Picard value of f , f is a fractional linear transformation of g and one of the

following three cases will hold:

(i) y is a Picard value of f , 1� a and y are Picard values of g, and ð f � aÞ �

ðgþ a� 1Þ1 að1� aÞ;

(ii) 0 is a Picard value of f , a=ða� 1Þ and 0 are Picard values of g, and f þ

ða� 1Þg1 a;

(iii) 1 is a Picard value of f , 1=a and 1 are Picard values of g, and f 1 ag.

In this paper, we improve the above theorem and obtain the following result.

Theorem 1.1. Let f and g be two distinct nonconstant meromorphic functions shar-

ing 0; 1 and y CM. If there exists a finite complex number a ð00; 1Þ such that a is not

a Picard value of f , and

N1Þ r;
1

f � a

� �

0Tðr; f Þ þ Sðr; f Þ; ð1:2Þ

then

N1Þ r;
1

f � a

� �

¼
k � 2

k
Tðr; f Þ þ Sðr; f Þ; ð1:3Þ

and one of the following cases will hold:

(i) f ¼
eðkþ1Þg � 1

e sg � 1
, g ¼

e�ðkþ1Þg � 1

e�sg � 1
, with

ða� 1Þkþ1�s

akþ1
¼

ssðk þ 1� sÞkþ1�s

ðk þ 1Þkþ1
and

a0
k þ 1

s
;

(ii) f ¼
esg � 1

eðkþ1Þg � 1
, g ¼

e�sg � 1

e�ðkþ1Þg � 1
, with asð1� aÞkþ1�s ¼

ssðk þ 1� sÞkþ1�s

ðk þ 1Þkþ1
and

a0
s

k þ 1
;

(iii) f ¼
esg � 1

e�ðkþ1�sÞg � 1
, g ¼

e�sg � 1

eðkþ1�sÞg � 1
, with

ð�aÞs

ð1� aÞkþ1
¼

ssðk þ 1� sÞkþ1�s

ðk þ 1Þkþ1
and

a0�
s

k þ 1� s
;

(iv) f ¼
ekg � 1

le sg � 1
, g ¼

e�kg � 1

ð1=lÞe�sg � 1
, with lk

0 0; 1 and
ða� 1Þk�s

lkak
¼

ssðk � sÞk�s

kk
;

(v) f ¼
esg�1

lekg�1
, g ¼

e�sg�1

ð1=lÞe�kg�1
, with ls

00; 1 and lsasð1� aÞk�s ¼
ssðk� sÞk�s

k k
;

(vi) f ¼
e sg�1

le�ðk�sÞg�1
, g¼

e�sg�1

ð1=lÞeðk�sÞg�1
, with ls

00; 1 and
ð�laÞs

ð1� aÞk
¼

ssðk� sÞk�s

k k
;

where g is a nonconstant entire function, s and k ðb2Þ are positive integers such that s

and k þ 1 are mutually prime and 1a sa k in (i), (ii) and (iii), s and k are mutually

prime and 1a sa k � 1 in (iv), (v) and (vi).

From Theorem 1.1, we immediately obtain the following corollary:

Corollary 1.1. Let f and g be two nonconstant meromorphic functions sharing

0; 1 and y CM, and let a ð00; 1Þ be a finite complex number such that a is not a

Picard value of f , and N1Þðr; 1=ð f � aÞÞ0Tðr; f Þ þ Sðr; f Þ. If for any positive integer

k ðb2Þ,
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N1Þ r;
1

f � a

� �

0
k � 2

k
Tðr; f Þ þ Sðr; f Þ;

then f 1 g.

2. Some lemmas.

Lemma 2.1. Let f be a nonconstant meromorphic function, and let a1 and a2 be two

distinct values in the extended complex plane, and a3 be a meromorphic function satisfying

Tðr; a3Þ ¼ Sðr; f Þ and a3 D aj for j ¼ 1; 2. If

N r;
1

f � a1

� �

þN r;
1

f � a2

� �

¼ Sðr; f Þ; ð2:1Þ

then

N1Þ r;
1

f � a3

� �

¼ Tðr; f Þ þ Sðr; f Þ: ð2:2Þ

Proof. Using (2.1), by the second fundamental theorem for small functions we

have

Tðr; f ÞaN r;
1

f � a3

� �

þ Sðr; f Þ: ð2:3Þ

Thus,

N r;
1

f � a3

� �

¼ Tðr; f Þ þ Sðr; f Þ: ð2:4Þ

Obviously,

N r;
1

f � a3

� �

þ
1

2
Nð2 r;

1

f � a3

� �

aN r;
1

f � a3

� �

aTðr; f Þ þ Sðr; f Þ: ð2:5Þ

From (2.4) and (2.5) we obtain

Nð2 r;
1

f � a3

� �

¼ Sðr; f Þ: ð2:6Þ

Again from (2.4) and (2.6) we get (2.2). r

Lemma 2.2. Let f and g be two distinct nonconstant meromorphic functions sharing

0; 1 and y CM. If f is a fractional linear transformation of g, then for any finite

complex number a ð00; 1Þ, either a is a Picard value of f , or

N1Þ r;
1

f � a

� �

¼ Tðr; f Þ þ Sðr; f Þ:

Proof. By assumption, there is a fractional linear transformation w ¼ LðuÞ such

that f ¼ LðgÞ. Assume that a is not a Picard value of f . By virtue of Lemma 2.1, it

su‰ces to show that f have two distinct Picard values. Assume that f has at most one

Picard values. Then, two of the values 0; 1 and y are not Picard values of f , and the
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rest b of them is a Picard value, because the values among 0; 1;y which are not Picard

values of f are fixed points of LðuÞ and LðuÞ ðDuÞ has at most two fixed points. Set

c :¼ LðbÞ. Obviously, c0 b and c is a Picard value of f , because b is a Picard value

of g too. This is a contradiction. This completes the proof of Lemma 2.2. r

Lemma 2.3 (see [2, Lemma 4.5] or [13, Lemma 5]). Let f and g be two distinct

nonconstant meromorphic functions sharing 0; 1 and y CM, and let a ð00; 1Þ be a finite

complex constant. Then

Nð3 r;
1

f � a

� �

þNð3 r;
1

g� a

� �

¼ Sðr; f Þ:

Let f and g be two distinct nonconstant meromorphic functions sharing 0; 1 and y

CM. We use N0ðrÞ to denote the counting function of the zeros of f � g that are not

zeros of f , f � 1 and 1=f (see [8] or [11]).

The following lemma is essentially due to Q. Zhang.

Lemma 2.4 (see [11, Proof of Theorem 1 and Theorem 2]). Let f and g be two

distinct nonconstant meromorphic functions sharing 0; 1 and y CM, and let N0ðrÞ0

Sðr; f Þ. If f is a fractional linear transformation of g, then

N0ðrÞ ¼ Tðr; f Þ þ Sðr; f Þ:

If f is not any fractional linear transformation of g, then

N0ðrÞa
1

2
Tðr; f Þ þ Sðr; f Þ;

and f and g assume one of the following relations:

(i) f 1
eðkþ1Þg � 1

e sg � 1
, g1

e�ðkþ1Þg � 1

e�sg � 1
;

(ii) f 1
esg � 1

eðkþ1Þg � 1
, g1

e�sg � 1

e�ðkþ1Þg � 1
;

(iii) f 1
esg � 1

e�ðkþ1�sÞg � 1
, g1

e�sg � 1

eðkþ1�sÞg � 1
;

where g is a nonconstant entire function, s and k ðb2Þ are positive integers such that s

and k þ 1 are mutually prime and 1a sa k.

Remark. Let f be a nonconstant meromorphic function. By the definition of

Sðr; f Þ, there is a set E of r of finite linear measure such that

Sðr; f Þ ¼ oðTðr; f ÞÞ ðr ! y; r B EÞ: ð2:7Þ

In [11], Q. Zhang first proved the conclusion of Lemma 2.4. Using the conclusion

of Lemma 2.4, Q. Zhang proved the following theorems:

Theorem 1 in [11]. Let f and g be two distinct nonconstant meromorphic func-

tions sharing 0; 1 and y CM. If

lim
r!y
r BE

N0ðrÞ

Tðr; f Þ
>

1

2
;
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where E is a set of r of finite linear measure with (2.7), then f is a fractional linear

transformation of g.

Theorem 2 in [11]. Let f and g be two distinct nonconstant meromorphic func-

tions sharing 0; 1 and y CM. If

0 < lim
r!y
r BE

N0ðrÞ

Tðr; f Þ
a

1

2
;

where E is a set of r of finite linear measure with (2.7), then f is not any fractional

linear transformation of g, and f and g assume one of the three relations in Lemma 2.4.

Lemma 2.5 (see [14]). Let s ð> 0Þ and t are mutually prime integers, and let c be a

finite complex number such that cs ¼ 1, then there exists one and only one common zero of

o
s � 1 and o

t � c.

Lemma 2.6 (see [15]). Let f be a nonconstant meromorphic function, and let

F ¼
X

p

k¼0

ak f
k

�

X

q

j¼0

bj f
j

be an irreducible rational function in f with constant coe‰cients fakg and fbjg, where

ap 0 0 and bq 0 0. Then

Tðr;FÞ ¼ dTðr; f Þ þ Sðr; f Þ;

where d ¼ maxfp; qg.

Lemma 2.7 (see [16]). Let

PðoÞ ¼ o
n þ aom þ b; ð2:8Þ

where m and n are positive integers such that n > m, a and b are finite nonzero complex

numbers.

(i) The algebraic equation PðoÞ ¼ 0 has no roots with multiplicityb 3;

(ii) If

bn�m

an
0

ð�1Þnmmðn�mÞn�m

nn
; ð2:9Þ

the algebraic equation PðoÞ ¼ 0 has n distinct simple roots, no multiple roots;

(iii) If n and m are mutually prime and

bn�m

an
¼

ð�1Þnmmðn�mÞn�m

nn
; ð2:10Þ

the algebraic equation PðoÞ ¼ 0 has n� 1 distinct roots, where n� 2 roots are simple, one

is double.

Proof. (i) The conclusion is obvious, we now omit it.

(ii) Let

PðoÞ ¼ o
n þ aom þ b; ð2:11Þ
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then

P 0ðoÞ ¼ non�1 þ amom�1
: ð2:12Þ

If o0 is a double root of PðoÞ ¼ 0, then if and only if

PðoÞ ¼ P 0ðoÞ ¼ 0:

Combining (2.11) and (2.12) we can easily get

om
0 ¼ �

nb

aðn�mÞ
; on

0 ¼
bm

n�m
: ð2:13Þ

Since ðom
0 Þ

n ¼ ðon
0 Þ

m, from (2.13) we have

�
nb

aðn�mÞ

� �n

¼
bm

n�m

� �m

; ð2:14Þ

which can be rewritten as

bn�m

an
¼

ð�1Þnmmðn�mÞn�m

nn
; ð2:15Þ

accordingly, if PðoÞ ¼ 0 has n distinct simple roots, then PðoÞ ¼ 0 has no any multiple

root, if and only if (2.9) holds.

(iii) Let o0 be a double root of PðoÞ ¼ 0, using proceeding as in (ii), we can get

(2.13) and (2.14). On the other hand, since n and m are mutually prime, there exist one

and only one pair of integers s and t such that

ns�mt ¼ 1 ð0 < s < m; 0 < t < nÞ: ð2:16Þ

From (2.13) and (2.16) we can easily have

o0 ¼ ons�mt
0 ¼

bm

n�m

� �s

� �
nb

aðn�mÞ

� ��t

;

which implies that PðoÞ ¼ 0 has one and only one double root. r

Lemma 2.8 (see [8, Lemma 1]). Let f and g be two distinct nonconstant meromor-

phic functions sharing 0; 1 and y CM, then there exist two entire functions a and b such

that

f 1
ea � 1

eb � 1
; g1

e�a � 1

e�b � 1
; ð2:17Þ

where eb D 1, ea D 1 and eb�a D 1, and

Tðr; gÞ þ Tðr; eaÞ þ Tðr; ebÞ ¼ OðTðr; f ÞÞ ðr B EÞ; ð2:18Þ

where E is a set of r of finite linear measure.

Lemma 2.9 (see [8, Lemma 3]). Let a be a nonconstant entire function, then

Tðr; a 0Þ ¼ Sðr; eaÞ: ð2:19Þ
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Lemma 2.10 (see [11, Lemma 6]). Let f1 and f2 be two nonconstant meromorphic

functions satisfying

Nðr; fjÞ þN r;
1

fj

� �

¼ SðrÞ ð j ¼ 1; 2Þ:

Then either

N0ðr; 1; f1; f2Þ ¼ SðrÞ

or there exist two integers p and q ðjpj þ jqj > 0Þ such that

f
p
1 � f q

2 1 1;

where N0ðr; 1; f1; f2Þ denotes the reduced counting function of the common 1-points of f1
and f2, and TðrÞ ¼ Tðr; f1Þ þ Tðr; f2Þ, SðrÞ ¼ oðTðrÞÞ ðr ! y; r B EÞ, E is a set of r of

finite linear measure.

Lemma 2.11 (see [8, Lemma 4]). Let f and g be two nonconstant meromorphic

functions sharing 0; 1 and y CM. If f D g, then

Nð2ðr; f Þ þNð2 r;
1

f

� �

þNð2 r;
1

f � 1

� �

¼ Sðr; f Þ:

3. Proof of Theorem 1.1.

If f is a fractional linear transformation of g, by Lemma 2.2 we have that either

a is a Picard value of f , or N1Þðr; 1=ð f � aÞÞ ¼ Tðr; f Þ þ Sðr; f Þ; which contradicts the

assumption of Theorem 1.1. Thus, f is not a fractional linear transformation of g. By

Theorem A we have

N r;
1

f � a

� �

¼ Tðr; f Þ þ Sðr; f Þ: ð3:1Þ

From (1.2) and (3.1) we obtain

Nð2 r;
1

f � a

� �

0Sðr; f Þ: ð3:2Þ

By Lemma 2.3,

Nð3 r;
1

f � a

� �

¼ Sðr; f Þ: ð3:3Þ

Combining (3.2) and (3.3) we get

Nð2 r;
1

f � a

� �

0Sðr; f Þ: ð3:4Þ

We discuss the following two cases.

Case 1. Suppose that

N0ðrÞ0Sðr; f Þ:
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By Lemma 2.4 we know that f and g assume one of the three relations in Lemma 2.4.

We discuss the following three subcases.

Subcase 1.1. Suppose that f and g assume the form (i) in Lemma 2.4. Thus,

f ¼
eðkþ1Þg � 1

e sg � 1
; g ¼

e�ðkþ1Þg � 1

e�sg � 1
; ð3:5Þ

which assume the form (i) in Theorem 1.1. By Lemma 2.5, we know that there exists

one and only one common zero of okþ1 � 1 and o
s � 1. By Lemma 2.6, we have from

(3.5)

Tðr; f Þ ¼ kTðr; egÞ þ Sðr; f Þ: ð3:6Þ

From (3.5) we have

f � a ¼
eðkþ1Þg � aesg þ ða� 1Þ

esg � 1
: ð3:7Þ

Let

PðoÞ ¼ o
kþ1 � aos þ ða� 1Þ; ð3:8Þ

QðoÞ ¼
o

kþ1 � ao s þ ða� 1Þ

os � 1
: ð3:9Þ

If a ¼ ðk þ 1Þ=s, from (3.8) we know that o ¼ 1 is a double root of PðoÞ ¼ 0. Again

by Lemma 2.7, the equation PðoÞ ¼ 0 has k � 1 distinct simple roots. From (3.9) we

know that QðoÞ ¼ 0 has k distinct simple roots. From (3.6) and (3.7),

N1Þ r;
1

f � a

� �

¼ kTðr; egÞ þ Sðr; f Þ ¼ Tðr; f Þ þ Sðr; f Þ;

which contradicts (1.2). Thus, a0 ðk þ 1Þ=s and o ¼ 1 is a simple root of PðoÞ ¼ 0.

If

ða� 1Þkþ1�s

akþ1
0

ssðk þ 1� sÞkþ1�s

ðk þ 1Þkþ1
;

by Lemma 2.7, we know that QðoÞ ¼ 0 has k distinct simple roots, which is also a

contradiction. Thus,

ða� 1Þkþ1�s

akþ1
¼

ssðk þ 1� sÞkþ1�s

ðk þ 1Þkþ1
:

By Lemma 2.7, we know that QðoÞ ¼ 0 has k � 2 distinct simple roots and one double

root. From (3.6), (3.7) and (3.9) we obtain

Nð2 r;
1

f � a

� �

¼
2

k
Tðr; f Þ þ Sðr; f Þ: ð3:10Þ

Combining (3.1) and (3.10) we get (1.3).
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Subcase 1.2. Suppose that f and g assume the form (ii) in Lemma 2.4. Thus,

f ¼
e sg � 1

eðkþ1Þg � 1
; g ¼

e�sg � 1

e�ðkþ1Þg � 1
; ð3:11Þ

which assume the form (ii) in Theorem 1.1. By Lemma 2.6, we have from (3.11)

Tðr; f Þ ¼ kTðr; egÞ þ Sðr; f Þ: ð3:12Þ

From (3.11) we have

f � a ¼ �
aðeðkþ1Þg � ð1=aÞesg � ða� 1Þ=aÞ

eðkþ1Þg � 1
: ð3:13Þ

In the same manner as Subcase 1.1, we have a0 s=ðk þ 1Þ and a sð1� aÞkþ1�s ¼

s sðk þ 1� sÞkþ1�s=ðk þ 1Þkþ1, and can obtain (1.3).

Subcase 1.3. Suppose that f and g assume the form (iii) in Lemma 2.4. Thus,

f ¼
esg � 1

e�ðkþ1�sÞg � 1
; g ¼

e�sg � 1

eðkþ1�sÞg � 1
; ð3:14Þ

which assume the form (iii) in Theorem 1.1. From (3.14) we have

f � a ¼
eðkþ1Þg þ ða� 1Þeðkþ1�sÞg � a

1� eðkþ1�sÞg
: ð3:15Þ

In the same manner as Subcase 1.1, we have a0�s=ðk þ 1� sÞ and ð�aÞs=ð1� aÞkþ1 ¼

s sðk þ 1� sÞkþ1�s=ðk þ 1Þkþ1, and can obtain (1.3).

Case 2. Suppose that

N0ðrÞ ¼ Sðr; f Þ: ð3:16Þ

Noting f and g share 0; 1 and y CM, by Lemma 2.8 we have (2.17) and (2.18). From

(2.17) we have

Tðr; f ÞaTðr; eaÞ þ Tðr; ebÞ þOð1Þ: ð3:17Þ

From (2.18) and Lemma 2.9 we have

Tðr; a 0Þ þ Tðr; b 0Þ ¼ Sðr; f Þ: ð3:18Þ

Again from (2.17) we get

f � a ¼
ea � aeb þ ða� 1Þ

eb � 1
: ð3:19Þ

Assume that Tðr; ebÞ ¼ Sðr; f Þ. Noting 0 and y are Picard values of ea, by Lemma

2.1 we have from (2.17) and (3.18)

N1Þ r;
1

f � a

� �

¼ Tðr; f Þ þ Sðr; f Þ;
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which is a contradiction. Thus, Tðr; ebÞ0Sðr; f Þ. Similarly, we have Tðr; eaÞ0

Sðr; f Þ and Tðr; ea�bÞ0Sðr; f Þ. Particularly, none of ea; eb and ea�b are constants.

From (2.17) we obtain

f � g ¼
ðea � 1Þð1� eb�aÞ

eb � 1
: ð3:20Þ

We use N �
0 ðrÞ to denote the counting function of the common zeros of ea � 1 and

eb � 1. From (3.20), the following formula is obviously

N0ðrÞ ¼ N �
0 ðrÞ þ Sðr; f Þ:

From this and (3.16),

N �
0 ðrÞ ¼ Sðr; f Þ: ð3:21Þ

Let z0 be a multiple zero of f � a, but not a zero of a 0
; b 0 and b 0 � a 0. From

(3.19) we obtain

eaðz0Þ � aebðz0Þ þ a� 1 ¼ 0 ð3:22Þ

and

a 0ðz0Þe
aðz0Þ � ab 0ðz0Þe

bðz0Þ ¼ 0: ð3:23Þ

From (3.22) and (3.23) we have

eaðz0Þ ¼
ð1� aÞb 0ðz0Þ

b 0ðz0Þ � a 0ðz0Þ
; ebðz0Þ ¼

ð1� aÞa 0ðz0Þ

aðb 0ðz0Þ � a 0ðz0ÞÞ
: ð3:24Þ

Let

f1 ¼
ðb 0 � a 0Þea

ð1� aÞb 0 ; f2 ¼
aðb 0 � a 0Þeb

ð1� aÞa 0
: ð3:25Þ

Set

TðrÞ ¼ Tðr; f1Þ þ Tðr; f2Þ; SðrÞ ¼ oðTðrÞÞ ðr ! y; r B EÞ; ð3:26Þ

E is a set of r of finite linear measure. From (3.17), (3.18), (3.25) and (3.26) we get

Sðr; f Þ ¼ SðrÞ: ð3:27Þ

From (2.19), (3.18), (3.25) and (3.27) we have

Nðr; fjÞ þN r;
1

fj

� �

¼ SðrÞ ð j ¼ 1; 2Þ: ð3:28Þ

From (3.24) and (3.25), we have f1ðz0Þ ¼ 1, f2ðz0Þ ¼ 1. Thus,

Nð2 r;
1

f � a

� �

aN0ðr; 1; f1; f2Þ þ Sðr; f Þ; ð3:29Þ

where N0ðr; 1; f1; f2Þ denotes the reduced counting function of the common 1-points of

f1 and f2. From (3.4), (3.27) and (3.29) we obtain
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N0ðr; 1; f1; f2Þ0SðrÞ: ð3:30Þ

Noting (3.28) and (3.30) and using Lemma 2.10, we know that there exist two integers

p and q ðjpj þ jqj > 0Þ such that

f
p
1 � f q

2 1 1: ð3:31Þ

Noting Tðr; eaÞ0Sðr; f Þ and Tðr; ebÞ0Sðr; f Þ, from (3.25) and (3.31) we have p0 0

and q0 0. From (3.25) and (3.31), we obtain

epaþqb
1

ð1� aÞb 0

b 0 � a 0

� �p
ð1� aÞa 0

aðb 0 � a 0Þ

� �q

; ð3:32Þ

by logarithmic di¤erentiation, we can get

pa 0 þ qb 0 ¼
qþ pa 0=b 0

ða 0=b 0Þð1� a 0=b 0Þ

a 0

b 0

� �0

: ð3:33Þ

If a 0=b 0 D�q=p, from (3.33) we have

a 0
1

ða 0=b 0Þ 0

1� ða 0=b 0Þ
:

By integration, we obtain

ea 1�
a 0

b 0

� �

1 c1; ð3:34Þ

where c1 is a nonzero constant. From (3.34) we get

b 0
1

a 0ea

ea � c1
:

Again by integration, we have

eb 1 c2ðe
a � c1Þ; ð3:35Þ

where c2 is also a nonzero constant. From (3.35) we know that c1 is a Picard value of

ea, which is impossible. Thus,

a 0

b 0 1�
q

p
ð3:36Þ

and hence

pa 0 þ qb 0
1 0:

By integration, we obtain

paþ qb1 c0; ð3:37Þ

where c0 is a finite constant. Noting ea�b is not a constant, from (3.37) we know that

p0�q. Without loss of generality, from (3.36) we may assume that p and q are two

integers such that p and q are mutually prime and q > 0. Let g ¼ a=q. From this,

(2.17) and (3.37) we have
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f ¼
eqg � 1

le�pg � 1
; g ¼

e�qg � 1

ð1=lÞepg � 1
; ð3:38Þ

where l ¼ ec0=q is a nonzero constant. Obviously, if and only if lq ¼ 1, oq � 1 ¼ 0 and

lo�p � 1 ¼ 0 have a common root. Noting N �
0 ðrÞ ¼ Sðr; f Þ, from (3.38) we get

lq
0 0; 1: ð3:39Þ

Noting q > 0 and p0�q, we discuss the following three subcases.

Subcase 2.1. Suppose that q > �p > 0. Setting k ¼ q and s ¼ �p, from (3.38) we

get

f ¼
ekg � 1

lesg � 1
; g ¼

e�kg � 1

ð1=lÞe�sg � 1
; ð3:40Þ

which assume the form (iv) in Theorem 1.1. From (3.39) we have

lk
0 0; 1: ð3:41Þ

By Lemma 2.6, we have from (3.40)

Tðr; f Þ ¼ kTðr; egÞ þ Sðr; f Þ: ð3:42Þ

From (3.40) we have

f � a ¼
ekg � alesg þ ða� 1Þ

lesg � 1
: ð3:43Þ

Let

RðoÞ ¼
ok � alo s þ ða� 1Þ

los � 1
: ð3:44Þ

If

ða� 1Þk�s

lkak
0

ssðk � sÞk�s

k k
;

by Lemma 2.7, we know that RðoÞ ¼ 0 has k distinct simple roots, which is a con-

tradiction. Thus,

ða� 1Þk�s

lkak
¼

ssðk � sÞk�s

k k
: ð3:45Þ

By Lemma 2.7, we know that QðoÞ ¼ 0 has k � 2 distinct simple roots and one double

root. From (3.42), (3.43) and (3.44) we obtain

Nð2 r;
1

f � a

� �

¼
2

k
Tðr; f Þ þ Sðr; f Þ: ð3:46Þ

Combining (3.1) and (3.46) we get (1.3).

Subcase 2.2. Suppose that �p > q > 0. Setting k ¼ �p and s ¼ q, from (3.38) we

get
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f ¼
esg � 1

lekg � 1
; g ¼

e�sg � 1

ð1=lÞe�kg � 1
; ð3:47Þ

which assume the form (v) in Theorem 1.1. From (3.39) we have

ls
0 0; 1: ð3:48Þ

By Lemma 2.6, we have from (3.47)

Tðr; f Þ ¼ kTðr; egÞ þ Sðr; f Þ: ð3:49Þ

From (3.47) we have

f � a ¼
�alðekg � ð1=ðalÞÞe sg þ ð1� aÞ=ðalÞÞ

lekg � 1
: ð3:50Þ

In the same manner as Subcase 2.1, we have

lsasð1� aÞk�s ¼
ssðk � sÞk�s

kk
; ð3:51Þ

and can obtain (1.3).

Subcase 2.3. Suppose that p > 0. Setting k ¼ pþ q and s ¼ q, from (3.38) we

get

f ¼
esg � 1

le�ðk�sÞg � 1
; g ¼

e�sg � 1

ð1=lÞeðk�sÞg � 1
; ð3:52Þ

which assume the form (vi) in Theorem 1.1. From (3.39) we have

ls
0 0; 1: ð3:53Þ

From (3.52) we have

f � a ¼
ekg � ð1� aÞeðk�sÞg � al

l� eðk�sÞg
: ð3:54Þ

In the same manner as Subcase 2.1, we have

ð�laÞs

ð1� aÞk
¼

s sðk � sÞk�s

kk
; ð3:55Þ

and can obtain (1.3).

Theorem 1.1 is thus completely proved.

4. On two results of P. Li.

In 1998, P. Li proved the following result:

Theorem B (see [10, Theorem 1]). Let f and g be two distinct nonconstant mero-

morphic functions sharing 0; 1 and y CM. Suppose additionally that f is not a frac-

tional linear transformation of g and that there exists a finite complex number a ð00; 1Þ

such that

Meromorphic functions sharing three values 159



Tðr; f Þa cNð2 r;
1

f � a

� �

þ Sðr; f Þ; ð4:1Þ

here c ð> 0Þ is a constant, then there exist a nonconstant entire function g, a nonzero

constant l and two integers t ð> 0Þ, s which are mutually prime, such that

f ¼
e tg � 1

le�sg � 1
; g ¼

e�tg � 1

ð1=lÞesg � 1
; ð4:2Þ

ð1� aÞsþt

a t
¼ l t ð1� yÞsþt

y t ; ð4:3Þ

with y ¼ �t=s0 1; a.

From Theorem 1.1, we can obtain the following result, which is an improvement

and supplement of Theorem B.

Theorem 4.1. Let f and g be two distinct nonconstant meromorphic functions shar-

ing 0; 1 and y CM. If there exists a finite complex number a ð00; 1Þ such that

Nð2 r;
1

f � a

� �

0Sðr; f Þ; ð4:4Þ

then the conclusions of Theorem 1.1 hold, and

Nð2 r;
1

f � a

� �

¼
1

k
Tðr; f Þ þ Sðr; f Þ: ð4:5Þ

Proof. From (4.4) we know that a is not a Picard value of f , and N1Þðr;

1=ð f � aÞÞ0Tðr; f Þ þ Sðr; f Þ. By Theorem 1.1, we immediately obtain the conclusion

of Theorem 4.1. r

In 1998, P. Li proved the following result:

Theorem C (see [10, Theorem 2]). Let f and g be two distinct nonconstant mero-

morphic functions sharing 0; 1 and y CM. Suppose additionally that f is not a frac-

tional linear transformation of g and that there exists a finite complex number a ð00; 1Þ

such that

N1Þ r;
1

f � a

� �

¼ Sðr; f Þ; ð4:6Þ

then f and g assume one of the following forms:

(i) f ¼
e3g � 1

eg � 1
, g ¼

e�3g � 1

e�g � 1
, with a ¼

3

4
;

(ii) f ¼
e3g � 1

le2g � 1
, g ¼

e�3g � 1

ð1=lÞe�2g � 1
, with a ¼ �3 and l3 ¼ 1;

(iii) f ¼
eg � 1

e3g � 1
, g ¼

e�g � 1

e�3g � 1
, with a ¼

4

3
;

(iv) f ¼
e2g � 1

le3g � 1
, g ¼

e�2g � 1

ð1=lÞe�3g � 1
, with a ¼ �

1

3
and l2 ¼ 1;
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(v) f ¼
e2g � 1

e�g � 1
, g ¼

e�2g � 1

eg � 1
, with a ¼

1

4
;

(vi) f ¼
eg � 1

e�2g � 1
, g ¼

e�g � 1

e2g � 1
, with a ¼ 4;

(vii) f ¼
e2g � 1

leg � 1
, g ¼

e�2g � 1

ð1=lÞe�g � 1
, with l2 0 1 and a2l2 ¼ 4ða� 1Þ;

(viii) f ¼
eg � 1

le2g � 1
, g ¼

e�g � 1

ð1=lÞe�2g � 1
, with l0 1 and 4að1� aÞl ¼ 1;

(ix) f ¼
eg � 1

le�g � 1
, g ¼

e�g � 1

ð1=lÞeg � 1
, with l0

1� a

2
and ð1� aÞ2 þ 4al ¼ 0;

where g is a nonconstant entire function.

From Theorem 1.1, we can obtain the following result.

Theorem 4.2. Let f and g be two distinct nonconstant meromorphic functions shar-

ing 0; 1 and y CM. If there exists a finite complex number a ð00; 1Þ such that a is not

a Picard value of f , and

N1Þ r;
1

f � a

� �

a uTðr; f Þ þ Sðr; f Þ; ð4:7Þ

where u < 1=3, then

N1Þ r;
1

f � a

� �

¼ 0; ð4:8Þ

and f and g assume one of the following forms:

(i) f ¼
e3g � 1

eg � 1
, g ¼

e�3g � 1

e�g � 1
, with a ¼

3

4
;

(ii) f ¼
e3g � 1

e2g � 1
, g ¼

e�3g � 1

e�2g � 1
, with a ¼ �3;

(iii) f ¼
eg � 1

e3g � 1
, g ¼

e�g � 1

e�3g � 1
, with a ¼

4

3
;

(iv) f ¼
e2g � 1

e3g � 1
, g ¼

e�2g � 1

e�3g � 1
, with a ¼ �

1

3
;

(v) f ¼
e2g � 1

e�g � 1
, g ¼

e�2g � 1

eg � 1
, with a ¼

1

4
;

(vi) f ¼
eg � 1

e�2g � 1
, g ¼

e�g � 1

e2g � 1
, with a ¼ 4;

(vii) f ¼
e2g � 1

leg � 1
, g ¼

e�2g � 1

ð1=lÞe�g � 1
, with l2 0 1 and a2l2 ¼ 4ða� 1Þ;

(viii) f ¼
eg � 1

le2g � 1
, g ¼

e�g � 1

ð1=lÞe�2g � 1
, with l0 1 and 4að1� aÞl ¼ 1;

(ix) f ¼
eg � 1

le�g � 1
, g ¼

e�g � 1

ð1=lÞeg � 1
, with l0 1 and ð1� aÞ2 þ 4al ¼ 0;

where g is a nonconstant entire function.
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Proof. By Theorem 1.1 and (4.7), we know that the conclusions of Theorem

1.1 hold, where k ¼ 2. From this, we immediately obtain the conclusion of Theorem

4.2. r

Remark. Obviously, Theorem 4.2 is an improvement of Theorem C. It is easy to

show that (ix) in Theorem C and (ix) in Theorem 4.2 are equivalent to each other. We

next prove that (iv) in Theorem C and (iv) in Theorem 4.2 are equivalent to each

other. In fact, in (iv) of Theorem C, l2 ¼ 1. From this we obtain l ¼ 1 or l ¼ �1.

When l ¼ 1, from (iv) in Theorem C we obtain (iv) in Theorem 4.2. When l ¼ �1,

using gþ pi in place of g in (iv) of Theorem C, we obtain (iv) in Theorem 4.2.

Similarly, we can prove that (ii) in Theorem C and (ii) in Theorem 4.2 are equivalent to

each other.

Example 4.1. Let f ðzÞ ¼ e3z þ e2z þ ez þ 1, gðzÞ ¼ e�3z þ e�2z þ e�z þ 1 and a ¼
ð20þ 4

ffiffiffi

2
p

iÞ=27. Then it is easily verified that f and g share 0; 1 and y CM, and

N1Þ r;
1

f � a

� �

¼ 1

3
Tðr; f Þ þ Sðr; f Þ:

Moreover, f and g do not assume one of the forms in Theorem 4.2. This illustrates

that the assumption u < 1=3 in Theorem 4.2 is best possible.

5. Some result of entire functions.

In 1995, H. Yi proved the following result.

Theorem D (see [8, Theorem 1]). Let f and g be two distinct nonconstant mero-

morphic functions sharing 0; 1 and y CM, and let a ð00; 1Þ be a finite complex number.

If

N r;
1

f � a

� �

0Tðr; f Þ þ Sðr; f Þ ð5:1Þ

and

Nðr; f Þ0Tðr; f Þ þ Sðr; f Þ; ð5:2Þ

then a and 1� a are Picard values of f and g respectively, and also y is so, and

ð f � aÞðgþ a� 1Þ1 að1� aÞ: ð5:3Þ

From Theorem 1.1, we immediately obtain the following result.

Theorem 5.1. If, in addition to the assumptions of Theorem 1.1,

Nðr; f Þ ¼ Sðr; f Þ; ð5:4Þ

then

N1Þ r;
1

f � a

� �

¼ k � 2

k
Tðr; f Þ þ Sðr; f Þ; ð5:5Þ

and one of the following two cases will hold:

X.-M. Li and H.-X. Yi162



(i) f ¼ ekg þ eðk�1Þg þ � � � þ 1, g ¼ e�kg þ e�ðk�1Þg þ � � � þ 1, with ða� 1Þk=akþ1 ¼

k k=ðk þ 1Þkþ1
and a0 k þ 1;

(ii) f ¼ �ekg � eðk�1Þg � � � � � eg, g ¼ �e�kg � e�ðk�1Þg � � � � � e�g, with ð�aÞk=

ð1� aÞkþ1 ¼ kk=ðk þ 1Þkþ1
and a0�k;

where g is a nonconstant entire function, k ðb2Þ is a positive integer.

From Theorem 4.1 we immediately obtain the following result.

Theorem 5.2. If, in addition to the assumptions of Theorem 4.1,

Nðr; f Þ ¼ Sðr; f Þ; ð5:6Þ

then the conclusions of Theorem 5.1 hold.

From Theorem 4.2 we immediately obtain the following result.

Theorem 5.3. If, in addition to the assumptions of Theorem 4.2,

Nðr; f Þa vTðr; f Þ þ Sðr; f Þ; ð5:7Þ

where v < 1=2, then

N1Þ r;
1

f � a

� �

¼ 0; Nðr; f Þ ¼ 0; ð5:8Þ

and one of the following two cases will hold:

(i) f ¼ e2g þ eg þ 1, g ¼ e�2g þ e�g þ 1, with a ¼ 3=4;

(ii) f ¼ �e2g � eg, g ¼ �e�2g � e�g, with a ¼ 1=4;

where g is a nonconstant entire function.

Example 5.1. Let f ðzÞ ¼ ðe3z � 1Þ=ðe2z � 1Þ, gðzÞ ¼ ðe�3z � 1Þ=ðe�2z � 1Þ and

a ¼ �3. Then it is easily verified that f and g share 0; 1 and y CM,

N1Þðr; 1=ð f � aÞÞ ¼ 0 and

Nðr; f Þ ¼
1

2
Tðr; f Þ þ Sðr; f Þ:

Moreover, f and g do not assume one of the forms in Theorem 5.3. This illustrates

that the assumption v < 1=2 in Theorem 5.3 is best possible.

Theorem 5.4. Let f and g be two distinct nonconstant meromorphic functions shar-

ing 0; 1 and y CM. If there exists a finite complex number a ð00; 1Þ such that

N1Þ r;
1

f � a

� �

a uTðr; f Þ þ Sðr; f Þ; ð5:9Þ

Nðr; f Þa vTðr; f Þ þ Sðr; f Þ; ð5:10Þ

and

N1Þ r;
1

g� a

� �

0Tðr; gÞ þ Sðr; gÞ; ð5:11Þ

where u < 1=3 and v < 1=2, then

Meromorphic functions sharing three values 163



N1Þ r;
1

f � a

� �

¼ 0; ð5:12Þ

and one of the following three cases will hold:

(i) f �
1

2

� �

g�
1

2

� �

1
1

4
, with a ¼

1

2
;

(ii) f ¼ e2g þ eg þ 1, g ¼ e�2g þ e�g þ 1, with a ¼
3

4
;

(iii) f ¼ �e2g � eg, g ¼ �e�2g � e�g, with a ¼
1

4
;

where g is a nonconstant entire function.

Proof. We discuss the following two cases.

Case 1. Suppose that a is a Picard value of f . By Theorem A, we know that f

and g assume one of the three relations in Theorem A. We discuss the following three

subcases.

Subcase 1.1. Suppose that f and g assume the relation (i) in Theorem A. From

this we obtain,

ð f � aÞðgþ a� 1Þ1 að1� aÞ; ð5:13Þ

and 1� a and y are Picard values of g. If a0 1� a, by Lemma 2.2 we have

N1Þ r;
1

g� a

� �

¼ Tðr; gÞ þ Sðr; gÞ;

which contradicts (5.11). Thus a ¼ 1� a, and hence a ¼ 1=2. From this we obtain the

form (i) in Theorem 5.4.

Subcase 1.2. Suppose that f and g assume the relations (ii) in Theorem A. From

this we obtain, 0 and a are Picard values of f . By Lemma 2.2 we have

N1Þðr; f Þ ¼ Tðr; f Þ þ Sðr; f Þ;

which contradicts (5.10).

Subcase 1.3. Suppose that f and g assume the relations (iii) in Theorem A.

From this we obtain, 1 and a are Picard values of f . By Lemma 2.2 we have

N1Þðr; f Þ ¼ Tðr; f Þ þ Sðr; f Þ;

which contradicts (5.10).

Case 2. Suppose that a is not a Picard value of f . Using Theorem 5.3, we obtain

the forms (ii) and (iii) in Theorem 5.4. r

Remark 5.1. It is clear that the conclusions of Theorem 5.1, Theorem 5.2,

Theorem 5.3 and Theorem 5.4 hold when f and g be two distinct nonconstant entire

functions.

Example 5.2. Let f ðzÞ ¼ 2ðez þ 1Þ, gðzÞ ¼ �ðe�z þ 1Þ and a ¼ 2. Then it is
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easily verified that f and g share 0; 1 and y CM, N1Þðr; 1=ð f � aÞÞ ¼ 0, Nðr; f Þ ¼ 0,

and

N1Þ r;
1

g� a

� �

¼ Tðr; gÞ þ Sðr; gÞ:

Moreover, f and g do not assume one of the forms in Theorem 5.4. This illustrates

that the assumption (5.11) in Theorem 5.4 is best possible.

6. An application of the results in this paper.

Let h be a nonconstant meromorphic function, and let S is a subset of distinct

elements in extended complex plane. Define

EhðSÞ ¼ 6
a AS

fz j hðzÞ � a ¼ 0g;

where each zero of hðzÞ � a ¼ 0 with multiplicity m is repeated m times in EhðSÞ (see

[17]).

In 1982, F. Gross and C. Yang [18] asked whether there exist two sets S1 ¼ fa1; a2g

and S2 ¼ fb1; b2g such that for any two nonconstant entire functions f and g the con-

ditions Ef ðSjÞ ¼ EgðSjÞ ð j ¼ 1; 2Þ imply f 1 g or not. F. Gross and C. Yang (see [18])

studied the question for the case a1 þ a2 ¼ b1 þ b2. In 1990, H. Yi (see [19]) proved the

following Theorem which is an extension and correction of the result of Gross and

Yang.

Theorem E (see [19]). Let S1 ¼ fa1; a2g and S2 ¼ fb1; b2g be two pairs of distinct

elements with a1 þ a2 ¼ b1 þ b2 ¼ c but a1a2 0 b1b2. Suppose that there are two non-

constant entire functions f and g of finite order such that Ef ðSjÞ ¼ EgðSjÞ for j ¼ 1; 2.

Then f and g must satisfy exactly one of the following relations:

(i) f 1 g,

(ii) f þ g1 a1 þ a2,

(iii) ð f � c=2Þðg� c=2Þ1Gðða1 � a2Þ=2Þ
2, where c ¼ a1 þ a2. This occurs only

for ða1 � a2Þ
2 þ ðb1 � b2Þ

2 ¼ 0.

(iv) ð f � ajÞðg� akÞ1 ð�1Þ jþkða1 � a2Þ
2

for j; k ¼ 1; 2. This occurs only for

3ða1 � a2Þ
2 þ ðb1 � b2Þ

2 ¼ 0.

(v) ð f � bjÞðg� bkÞ1 ð�1Þ jþkðb1 � b2Þ
2

for j; k ¼ 1; 2. This occurs only for

ða1 � a2Þ
2 þ 3ðb1 � b2Þ

2 ¼ 0.

In 1998, Y. H. Li and C. T. Zhou [20] and independently P. Li [11] proved the

following theorem, which is an improvement and extension of Theorem E.

Theorem F. Let S1 ¼ fa1; a2g and S2 ¼ fb1; b2g be two pairs of distinct elements

with a1 þ a2 ¼ b1 þ b2 but a1a2 0 b1b2, and let S3 ¼ fyg. Suppose that f and g are two

nonconstant meromorphic functions satisfying Ef ðSjÞ ¼ EgðSjÞ for j ¼ 1; 2; 3. Then the

conclusions of Theorem E hold.

The proofs of Theorem F are long in [11] and [20]. Now we give a simple proof of

Theorem F.
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Let

F ¼
ð f � c=2Þ2 � ðða1 � a2Þ=2Þ

2

ððb1 � b2Þ=2Þ
2 � ðða1 � a2Þ=2Þ

2
; G ¼

ðg� c=2Þ2 � ðða1 � a2Þ=2Þ
2

ððb1 � b2Þ=2Þ
2 � ðða1 � a2Þ=2Þ

2
; ð6:1Þ

where c ¼ a1 þ a2 ¼ b1 þ b2. If F 1G, from (6.1) we have

f 1 g or f þ g1 a1 þ a2; ð6:2Þ

which assume the forms (i) and (ii) in Theorem F. Next, suppose that F DG. From

Ef ðSjÞ ¼ EgðSjÞ ð j ¼ 1; 2; 3Þ we know that F and G share 0; 1 and y CM. From (6.1),

we have N1Þðr;FÞ ¼ 0. Again by Lemma 2.13 we obtain

Nðr;FÞ ¼ Sðr;FÞ: ð6:3Þ

Set

a ¼ �
ðða1 � a2Þ=2Þ

2

ððb1 � b2Þ=2Þ
2 � ðða1 � a2Þ=2Þ

2
: ð6:4Þ

From (6.1) we have

F � a ¼
ð f � c=2Þ2

ððb1 � b2Þ=2Þ
2 � ðða1 � a2Þ=2Þ

2
; G � a ¼

ðg� c=2Þ2

ððb1 � b2Þ=2Þ
2 � ðða1 � a2Þ=2Þ

2
:

ð6:5Þ

From (6.5) we obtain

N1Þ r;
1

F � a

� �

¼ 0; N1Þ r;
1

G � a

� �

¼ 0: ð6:6Þ

Noting (6.3) and (6.6), by Theorem 5.4 we know that one of the three cases in Theorem

5.4 holds. From this we obtain the form (iii), (iv) and (v) in Theorem F.

This completes the proof of Theorem F.
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