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Abstract. We study universal holomorphic functions on a Stein manifold M with
projective compactification. Let {¢,} be a sequence of holomorphic automorphisms of
M. We prove that if {p,'} is 4 run-away, then the set of all universal functions with
respect to {¢,} in o/(K) for all compact subsets K with a certain property is the
intersection of countable number of open dense subsets in the space of all holomorphic
functions on M. We also note that there is a close connection between the direction of
run-awayness and a family of compact sets for which there exists a universal function.

1. Introduction.

The study of universal functions is initiated by the following theorem due to
Birkhoff [6].

THEOREM 1.1. There exists an entire function f(z) with the property that for any
entire function ¢(z) there exists a sequence {a,} such that

lim /(= + a,) = g(2)

n— oo
uniformly on compact sets.

This function f(z) is a universal function for the Euclidean translations 7,(z) = z + a.
In 1941, Seidel and Walsh obtained an analogous theorem for the unit disk in
which the Euclidean translations are replaced by the non-Euclidean translations 7,,(z) =
(z+a)/(1 +&z). In 1976, Luh proved the following theorem.

THEOREM 1.2. Let {a,} be a sequence in C with limit co. Then there is an entire
function f(z) such that for every compact set K with connected complement in C and for
every function g(z) holomorphic in the interior of K and continuous on K, there exists a
subsequence {ay } such that {f(z+a,, )} converges to g(z) uniformly on K.

In 1988 the second author obtained an analogous theorem on C*, and pointed out
its generalization for noncompact Riemann surfaces.

The above two types of theorems are generalized for noncompact Riemann surfaces
by Montes-Rodriguez [24]. There are many other contributions for this subject and

related problems ([9], [12], [14], [16], [19], [22], etc.). GroBe-Erdmann is a good

survey article not only for the analytic setting but also for the general aspect.
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On the contrary, there are only few papers concerning universal functions in several
variables. The former type (Birkhoff-Seidel-Walsh type) theorem holds in C”, the unit
ball and the polydisk (Abe [I], Abe and Zappa [3], Chee [8] and Godefroy and Shapiro
[13]). These are all results for this type of theorem which are known till now.

Let D be a domain in C". We denote by (D) the set of all holomorphic func-
tions on D. For a compact set K = D we define

Kp = {zeD; lf(2)] = ml?x|f| for all fe(O(D)}.

We say that a compact set K = D is (/(D)-convex if K = Kp. A domain D = C" is
said to be Stein if for any compact set K, Kp is compact. Let Aut(D) be the group of
holomorphic automorphisms of D.

DEeriNITION 1.3, Let {¢,} be a sequence in Aut(D). A function f € O(D) is called
universal with respect to {¢,} in O(D) if {f o ¢,} is dense in ()(D), where the topology
of O(D) is given by the compact-open topology.

A sequence {¢,} in Aut(D) is said to be run-away if for any compact set K < D
there exists no € N such that KNy, (K)= . Leon-Saavedra showed that the
run-awayness is necessary for the existence of universal functions. This is an analogy to
the one-dimensional case ([5], [24]).

The authors extended the result on C* to complex general linear groups ([3]). The
first author obtained an analogous result also in complex special linear groups ([2]).
The purpose of this paper is to consider the latter type (Luh type) theorem for Stein
manifolds with projective compactification (see Section 3 for the definition), and to
improve the previous results.

We shall begin with giving some remarks for the case of noncompact Riemann
surfaces in order to clarify our point of view.

2. Noncompact Riemann surfaces.

We first summarize the results of Montes-Rodriguez [24]. Although he proved the
results for run-away sequences of self-mappings, we state them for run-away sequences
of automorphisms for the simplicity of statements. Let R be a noncompact Riemann
surface. We denote by ()(R) the space of holomorphic functions on R. If K is a
compact subset of R, .o/(K) denotes the set of all functions which are holomorphic in
the interior K° of K and continuous on K. ' (R) is the set of all compact subsets
whose complements in R have no connected, relatively compact component. We denote
by #1(R) the set of all compact subsets whose complements are connected. Let Aut(R)
be the group of holomorphic automorphisms of R. A sequence {¢,} in Aut(R) is
called a run-away sequence if for every compact subset K there exists ny € /N such that
KNg, (K)=. A function f € O(R) is said to be universal with respect to {¢,} in
O(R) if the orbit {f o¢,} is dense in ((R). We similarly say that f is universal with
respect to {¢,} in .o/(K) for a compact subset K if {f o ¢,} is dense in .«/(K). We note
that {g,} is run-away if and only if {¢p, !} is run-away. Every noncompact Riemann
surface R has the Freudenthal compactificatin R = RU.Z (R), where % (R) is the space
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of (Freudenthal) ends. This compactification is also known as Stoilow’s compactifi-
cation (see [4] and [25]). We refer to [24], [7] or to [10], for the precise definition
and its properties. For an open set U = R, we put U := UNR. We denote by #"'(R)
the set of all compact subsets K satisfying the following conditions (i), (ii) and (iii):
(i) K is a compact bordered surface.
(i) Each connected component of R\K is not relatively compact and is either
planar or of infinte genus.
(i) The closure of each connected component of R\K intersected with K is a
topological circle.
Then #'(R) = #(R). We define #{(R) := #1(R)NA"'(R).
The main result of Montes-Rodriguez is the following theorem.

THEOREM 2.1 (Theorem 3.1 in [24]). Let R be a noncompact Riemann surface, and

let {p,} < Aut(R) be a sequence. Then the following statements hold.

(a) If Z(R) is not a two-point set and {¢,} is run-away, then the set of all functions
in O(R) which are universal with respect to {¢,} in O(R) is the intersection of
countable number of open dense subsets in O(R).

(b) If {g,} is run-away, then the set of all functions in O(R) which are universal
with respect to {¢,} in o/ (K) for all K € #1(R) is the intersection of countable
number of open dense subsets in O(R).

Since ()(R) is a Baire space, the sets of universal functions in the above theorem are
dense in ((R). The following lemma is important in its proof.

LEmMMA 2.2 (Lemma 2.15 in [24]). Let R be a noncompact Riemann surface with an
infinite space F (R) of ends. If {¢,} < Aut(R) is run-away, then there exist a nonisolated
end e and a run-away subfequence {9, } such that for any compact subset K = R and for
any neighbourhood U = R of e there exists ko e N such that ¢, (K) < U for k = k.

An end e and a run-away subsequence {g,, } in the above lemma play an essential role
in the proof of the part (a) in [Theorem 2.1. This shows that the direction of run-
awayness is important. Then we give the following definition.

DErFINITION 2.3. Let ee #(R). A sequence {¢,} = Aut(R) is e run-away if for
any compact subset K = R and for any neighbourhood U = R of e there exists ng € N
such that ¢, (K) < U.

PropPOSITION 2.4. Let R be a noncompact Riemann surface. Every run-away se-
quence {p,} = Aut(R) has an e run-away subsequence {gp, }, where e is an end.

Proor. If #(R) is an infinite space, this is Lemma 2.2l R has no run-away
sequence when Z (R) is a finite space with at least 3 elements (Theorem 2.16 in [24]).
Then it suffices to consider the case that % (R) is a one- or two-point set.

The proposition is trivial for the case # (R) = {e}. Let #(R)={ej,ez}. There
exists a sequence {K,} of connected compact subsets of R such that

(i) K, < (Kut1)® and R =] K,,
(i) R\K, = U,UV, (disjoint union),
(iii) {U,} and {V,} determine e; and e, respectively
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(see p. 670 in [24]). Since {¢,} is run-away, there exists k(n) € N for any n such that
Pi(n) (Kn) N Ky = &, then gy, (Ky) = Uy or gy, (Ky) =V, If there are infinitely many
n with ¢,y (K,) = Uy, then we can take an e; run-away subsequence. ]

For the proof of the part (b) in [Theorem 2.1, another lemma (Lemma 2.11 in [24])
is needed. If we use the term ‘“‘e run-away”, then its proof becomes easier.

LemMMA 2.5 (cf. Lemma 2.11 in [24]). Let R be a noncompact Riemann surface.
Suppose that {p,} = Aut(R) is e run-away, where e € # (R). Then, for any K| € #1(R)
and for any K € A '(R) there exists no € N such that KNg, (Ki) = & and KU, (K1) €
A (R).

ProOF. Take a neighbourhood U of e such that U = UNR is connected and
KNU = . There exists K{ € #{(R) with K; = (K{)° (Lemma 2.10 in [24]). By the
assumption there exists no € N such that ¢, (K{) c U. Since (K[)°\K; is connected,
(@, (KD\@,, (K1))* = 0, ((K{)°\K1) is also connected. Hence U\g, (Ki) is connected.
This means KU g, (K1) € #(R). O

Along the argument in [24], we can show that if {¢,} is an e run-away sequence,
the part (b) in [Theorem 2.1 holds for the set #3(R,e) of compact subsets K € #'(R)
with the following property: there exists a neighbourhood U of e such that (R\U)\K is
connected and UNK = .

It is obvious that #j(R) < #5(R,e) = A (R) for any ee #(R). But, #i(R) #
A>(R,e) in general. We see also in the multi-dimensional case that there is a relation
between the direction of run-awayness and a family of compact subsets for which an
analogous statement to the part (b) in holds (see Section 7).

3. Stein manifolds with projective compactification.

Let X be a connected projective algebraic variety, and let Y be an analytic sub-
variety of X. We call the paire (X,Y) a projective compactification of a complex
manifold M if X\Y is biholomorphic to M. We may assume by the resolution of
singularities that X is smooth.

Let M be a Stein manifold which has a projective compactification (X, Y). For
example, affine algebraic Stein manifolds are such ones. It is known that Stein groups
are affine algebraic (Matsushima [23]). Let Aut(M) be the group of holomorphic auto-
morphisms of M. We denote by /(M) the set of all holomorphic functions on M.
For every analytic subset 4 < Y, we define

O4(M) :={f e O(M); f has a holomorphic extension to A}.

DEerFINITION 3.1. Let A < Y be an analytic subset. A sequence {¢,} < Aut(M) is
called A run-away if for any compact set K = M and for any neighbourhood U of 4 in
X there exists no € N such that ¢, (K) < U.

Lemma 3.2. Suppose that an analytic subset A < Y has the decomposition A =
Ul";l A; into the union of connected components. If {p,} = Aut(M) is A run-away, then
there exist i (1 <i<m) and a subsequence {9, } such that {p, } is A; run-away.
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Proor. We can take a sequence {K;} of compact subsets such that

(i) K; is connected,

(i) K< Ky and M =), K. | |
Each component 4; has a countable basis {U/}, of neighbourhoods such that U/ is
connected and U}!,..., U™ are mutually disjoint for any i. Since {p,} is 4 run-away,
there exists n; € N for any i such that ¢, (K;) U/’il U,:i . By the connectedness of Kj,
there exists j depending on i such that ¢, (K;) = U/. For some j (1 < jo <m), there
exist infinitely many 7 with ¢, (K;) U/, Then we can take a subsequence {9,,} which
iIs Aj, run-away. O

By the above lemma, it is sufficient to consider the case that an analytic subset
A < Y is connected.

DeriNITION 3.3. For a compact subset K « M we define
Ky = {xeM; lf(x)] = mI?x|f| for all fe(ﬁ(M)},
Ky = {xeMUA;|f(x)| < m12<1x|f| for all fe(QA(M)}.

Ky (resp. K) is called the O(M) (resp. O4(M))-hull of K. When K); = K, K is called
(O(M)-convex.

In general, Ky, = K4 for O4(M) = O(M). In the case M = C, we write K = Kc.

DEFINITION 3.4. Let A < Y be a connected analytic subset. # (M, A) is the set of
all compact sets K < M such that K;;, = K and K,NA4 = (.

4. Basic properties of () (M).

Let M be a Stein manifold with projective compactification (X, Y), and let 4 be a
connected analytic subset of Y.

The set (M) of all holomorphic functions on M is a topological space with
the compact-open topology. This topology coincides with the topology of (M) as a
Fréchet space. Then (M) is a complete metric space. On the other hand, we may
assume that M is a closed complex submanifold of CV for some N by the embedding
theorem of Bishop-Narasimhan. Since the set of all polynomials on C¥ is dense in
O(C"), 0(C") is separable. By the extension theorem (for example, see Theorem 7.4.8
in [17]), every holomorphic function on M is the restriction to M of a function in
O(CY). Then O(M) is also separable. A metric space is separable if and only if it
satisfies the second axiom of countability. Therefore (M) has a countable open basis
{Ui;ie N}. Let Uy;:=UNGO(M). Then {Uy;;ie N} is a countable open basis of
O4(M) for O4(M) is a metric subspace of O(M). Therefore ()4(M) satisfies the second
axiom of countability. Hence it is separable.

Any f € O4(M) is constant on 4. Therefore we mean without confusion that f(A4)
is the constant value of f on A.
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LEmMMA 4.1. Let A< Y be a connected analytic subset. If a sequence {fi} <
O4(M) converges to f € U(M), then

lim fi(4) = £(4)

Proor. Take a point xo e 4. Then fi(xo) = fr(A) and f(xo) = f(A4). There
exists a one-dimensional complex submanifold L in a neighbourhood of x; such that
Lc X and LNY ={xp}. Let { be a coordinate on L around x, with { =0 at xy.
We can take R > 0 such that {0 < |{| < R} =« M. We obtain by Cauchy’s integral
formula

1 i ()
i) = 5| B

_ | A
0= g5 ]

where 0 < r < R. Since {f;} converges to f uniformly on |{| =r, we obtain
lim fk(XO) = f(X()). [l
k— o0

Lemma 4.2. For any compact subset K of M the following two conditions are

equivalent:
(i) There exists f e Os(M) such that maxg|f| <|f(A)].
(i) There exists f € Oy(M) such that f(A) ¢ f(K).

PrROOF. Assume (i) holds. Let R:=maxg|f|. Then ff[?) < {|z] < R}. Hence
we have f(4) ¢ f(K). -

Conversely we assume that there exists f € O, (M) with f(A4) ¢ f(K). Then there
exists g € O(C) such that

|9(f(4))] > max|g].
J(K)
Letting h:=go f € O4(M), we obtain
mI?X|h| < |h(A4)]. H

COROLLARY 4.3. Let K be an O(M)-convex compact subset of M, and let A be a
connected analytic subset of Y. Then K € A (M, A) if and only if there exists f € Oq4(M)
such that f(A) ¢ f(K).

Proor. We note that for an ()(M)-convex compact subset K of M, K € # (M, A)
if and only if there exists f € O4(M) with

max|f] < |£(4)]

Then the assertion follows from [Lemma 4.2. ]
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5. Lemmas.

Let M be a Stein manifold with projective compactification (X, Y), and let A = Y
be a connected analytic subset. Take a C* strictly plurisubharmonic exhaustion func-
tion ¢ on M. For any r >0 we define

M, :={xe M;p(x) <r}.

Then M, is an ((M)-convex compact set (Theorem 5.2.10 in [17]). We denote by
A'(C) the set of all compact subsets L — C with connected complement in C. It is
Runge’s result (cf. Theorem 1.3.1 in [17]) that any compact set in #°(C) is O(C)-convex.

LemMaA 5.1 (Lemma 1 in [3]). There exists a sequence ¥ = {L,} in # (C) such that
for any L € #°(C) and any neighbourhood U of L there exists L, in & with L < L, < U.

LEMMA 5.2. There exists a sequence K = {Ky} in A (M,A) such that for any
Ke A (M,A) there exists K with K < Kj.

Proor. Let {¢,} be a strictly increasing sequence of positive numbers such that
¢y — o0 (¢ — o0). Since O4(M) is separable, there exists a dense countable subset
{fiyE, = 0(M). Let & ={L,} be a sequence in #(C) in Lemma 5.1.

For any f € 04(M), we denote by {L,(f)} the subsequence of {L,} consisting of
L, with f(A4) ¢ L,. We define

KX(f) = (L () N Mo,

Then K7 (f) is an O(M)-convex compact set, and satisfies
J(A) ¢ (f (K7 () = Ly (f)-
By [Corollary 4.3 we obtain K7(f) e A (M, A).

We set a countable subset
A = {K}(f)si, jox e N}

in #'(M,A). We show that " has the desired property. -

For any K e #(M, A), there exists f € O4(M) such that f(4) ¢ (f(K)) (Corollaryj
4.3). (f(K)) has two relatively compact simply connected neighbourhoods U; and U,
such that U < U, and f(4) ¢ U,. By we can take f; such that

filK) = Uy and  fi(4) ¢ Un.

Since (U;) = U; < U, there exists L, such that U = L, = U, by Lemma 5.1. Tt is
obvious that (f;(K)) = U;. Then we have K(fi) = K for a sufficiently large «. [

6. Main theorem.

Let M be a Stein manifold with projective compactification (X, Y), and let 4 c YV
be a connected analytic subset. For a compact subset K = M, we denote by .«/(K)
the set of all functions which are holomorphic in a neighbourhood of K. We define
| f1lx == max,ex|f(x)| for any f e O(M) and any compact subset K.

Let {gp,} be a sequence in Aut(M). A function f € O(M) is universal with respect
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to {¢,} in /(K) for all K e # (M, A) if every function in .o/(K) is approximated uni-
formly on K by {f og,} for all Ke # (M, A).

THEOREM 6.1. Assume A (M,A) # &. Let {p,} = Aut(M). If {p,'} is A run-
away, then the set of all functions in O(M) which are universal with respect to {p,} in
o/ (K) for all K € # (M, A) is the intersection of countable number of open dense subsets
in O(M).

Proor. Let T,: O(M)— O(M) be a composition operator defined by 7,(f) :=
fogp, Obviously, T, is continuous. For any compact set K = M, for any f € O(M)
and for any ¢ > 0, we set

G(f,e,K):={ge O(M); there exists ne N with ||T,(9) — fllx < ¢},
O(f,e,K) :={he OM);|[h— fllx <e}.

The family {O(f,¢, K)} is an open basis in the topology of (¢(M). Since

G e.K) = U 7, (0(f.2.K))

and T, is continuous, G(f,& K) is an open set in (O(M).

Let {f;} be a dense countable subset of ((M). We take a strictly decreasing
sequence {e} of positive numbers with lime; =0. Let # = {Ki} < A (M,A) be a
sequence in [Lemma 5.2 We denote by G the set of all universal functions with respect
to {p,} in o/(K) for all Ke #(M,A). Then we can write

_8
s
—8

Il
—_

G= G(fi, &, Kk)-

k=1

1j

Therefore it suffices to prove that G(f, ¢, K) is dense in (O(M) for any f e O(M),
any ¢ >0 and any K € # (M, A). To do this, we show that for any & e O(M), any
¢’ >0 and any compact subset K' = M,

G(f,e, K)NO(he' K" # &.

Since K € #'(M, A), there exists g e 04(M) such that g(A4) ¢ g(K) by Corollary 4.3.
Let B be a closed ball with center at g(4) such that

BNg(K) = &.

Then g~ !(B) is a neighbourhood of 4 in X. We can take r > 0 such that K’ = M,.
Since {p,'} is 4 run-away, there exists no € N such that

O (M) = g7'(B).
We define a holomorphic function § on M by g(x) := (9o ¢,')(x). Then we have
9(9n,(K)) = g(K),

§(M,) = g(p,'(M,)) = g(g7'(B)) < B.
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Hence
(9(0u, (K))) N (g(M})) = &.
It follows from the Separation Lemma (Kallin [18], see [3] for Stein manifolds) that

—

(0o (K)U M )is = (0, (K))ir U (M) 5
Let

h(x) if xe M,
hl(x) = {f((p;()l(x)) if xe (ﬂno(K)‘

Then h; € (9, (K)UM,). By a Mergelyan type theorem in several variables (see
Corollary 5.2.9 in [17]), there exists € (M) which approximates /; on ¢, (K)UM,,
1e.

1A=z, <é,
1f o gy — W]

0, (K) < &

As Ifop, =¥, &)= IIf = Tu()llx, we obtain the conclusion. O
no

REMARK. In the situation of [Theorem 6.1, the set of all universal functions with
respect to {¢,} in o/(K) for all Ke # (M, A) is dense in O(M), for O(M) is a Baire
space.

Next we consider a general analytic subset 4 < Y. Let 4 = Ul’il A; be the decom-

position into the union of connected components. For each component A4; we take
H (M, A;). Let

H(M,A) =) # (M, A4).

s

Il
—_

Then we obtain the following corollary.

COROLLARY 6.2. Assume #'(M,A) # . Let {p,} = Aut(M). If {9, '} is A;
run-away for any component A;, then the set of all functions in O(M) which are universal
with respect to {¢,} in o/ (K) for all K € A (M, A) is the intersection of countable number
of open dense subsets in O(M).

7. Examples.

ExampLE 1. Let G = GL(n,C) be the complex general linear group of degree n.
It is considered as an open submanifold of the space M = M(n,C) of all square
matrices of degree n with complex coefficients. Since M =~ CV (N = n?), we have the
natural inclusion 7: M — PV,

Z=(zz)—[lizii - iZin -t Zun).
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We identify G and M with 1(G) and (M) respectively. Let [xo:x;:---:xy| be the
homogeneous coordinates of PV. We set

X1 Xn
n+1 X2n

P(x) = xp det
X(n—1)n+1 Xp2

Letting Y := {[x] e P"; P(x) = 0}, we obtain a projective compactification (P",Y) of G.

Let Ag:={[1:0:---:0]} c Y. In we defined the set B(G) of compact sets
K < G with K; = K such that there exists f € O(M) with f(Ao) ¢ f/(I?) We essentially
proved the following theorem in [3].

THEOREM 7.1 (cf. Theorem 4 in [3]). Let {Ci} = G be a sequence with C;' — A,.
Then there exists f € O(G) such that f is universal with respect to {C;} in o/ (K) for all
K € B(G).

Since B(G) = #° (G, Ay) and {C; '} is Ay run-away if C;'! — Ay, the above theorem
is contained in [Theorem 6.1.

We see more interesting facts. Let K := {Al;|4| = 1}, where [ is the unit matrix of
degree n. By a mapping i : C* — G, A +— Al, C* is embedded as a closed submanifold
of G. Let N:=i(C"). K is O(N)-convex, then ()(G)-convex. We take a sequence
{¢;} in C* with ¢; — o0, and set C;:=i(¢;) = ¢iI. Then {C7 '} is 4y run-away. We
see K ¢ #(G,Ay) because of the following assertion.

ASSERTION.  There does not exist a universal function with respect to {C;} in o/ (K).

PROOF. Assume that there exists a universal function F € (¢(G) with respect to
{C;} in &/(K). Then, for any ce C there exists a subsequence {C;} such that
F(C;.Z) — ¢ uniformly on K. We define feO(C*) by f:=Foi. We note that
f(¢jz) = F(C;(zI)) for any j and ze C*, and that zI € K if and only if ze S':=
{|¢f =1}. Then f(c;z) — ¢ uniformly on S'. Especially, for any ¢ € C there exists a
subsequence {c; } with ¢;, — oo such that f(c;) — ¢. Then the point at infinity oo is
an essential singularity of f.

Consider a subsequence {c;} with f(c;z) — 0 uniformly on S!. Let R=
max..gi|f(c;,z)]. Since f is not a constant function, R > 0. Then there exists keN
such that [f(c,z)| < R for all ze S' and for all k> k. By the maximum principle
1f(z)] < R on {|c;| £ |z| £ ¢ |} for all k >k, hence also [f(z)| < R on {|e;| < |z]}.
Then oo is a removable singularity of f. This is a contradiction. ]

On the other hand, we can find an 4 run-away sequence {D;} = G such that
K e #(G,A). This shows there is a relation between the direction of run-awayness and
a family of compact subsets for which there exist universal functions (see Section 2).

For the sake of simplicity, we consider the case n=2. Let G = GL(2,C),
M = M(2,C) and P* be as above. A rational function

f:P*— P! [X():---:X4]l—>[X1X4—)C2X3:x12]
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is holomorphic on G, but not defined on the set
Vi={[xo: - :x4];x1 =x =0 or x; =x3 =0}.
Consider the graph
T={([xo: - xq], [x1x3 — x2x3 : x7]) € P x PYy[xg -+ 1 xq] € PN\ V).

Let X be the closure of I' in P* x P!, and let

T :X—>P4, 7[2:X—>P1
be the first and second projections. Let

W= {lxo: - : xq]; P(x) = 0},

where P(x) = xo(x1x4 — xpx3). Then V < W. 1If we set Y := nfl(W), (X,Y) is a
projective compactification of G for 7y is biholomorphic on z;!(P*\ V).
Now we consider a sequence {D;} with

1 0
Dl-:<0 1/i> for ie N.

For any Z = (z;) € G we have

lim ﬂl_l(Dl_lZ) = hm([l 1Z11 212 fiZo) iZzz], [idetZ : lel])
i—00 i—00

=([0:0:0: 2z :z2],[1:0]).
If we set
A:={([0:0:0:x3:x4],[1:0]);[x3:x4] € P},

then {D;!} is 4 run-away.

We show that K = {A/;|A| = 1} is contained in % (G,A4). Let my=[fy: fi]. We
define a function g := (fi/fo) —1 which is holomorphic on G and extends holomor-
phically to A. Since |g(4)] =1 and |g(K)| =0, K e A (G, A).

ExampPLE 2. Let S = SL(n, C) be the complex special linear group of degree n. It
is an algebraic submanifold of M = M(n, C). We identify C" with {[x] € P";x, # 0},

where N =n?. S has the algebraic extension X in PV. Let

YZIXﬂ{X():O}

X1 X2 Xn
Xn+1 Xnt2 T X

= [0:x;:--:xy] e PV;det =0
Xn—Dn+1  Xn—Dn2 7 Xp2

Then the pair (X,Y) is a projective compactification of S. In [2], the first author
considered the following subspaces



42

Y. ABE and P. ZAprpra

>

ji=AZ = (24p) € Mizyp = 0 for all o, f except o= J},
=A{Z

\%

= (z4p) e M5zjy = -+ = zj, = 0}.

Let X; be the closure of X; in PV. We define

There is the natural inclusion O(Y;) = O(M). In [2], we defined the set B(S) of all
compact sets K = S with Ks = K for which there exist f € O(Y;) for some j=1,...,n
with f(0) ¢ f(K). Let 4:= U;il A;. By we obtain the following exten-
sion of the result in for B(S) = #°(S,A): If {C7'} =S is A; run-away for any j,
then the set of all functions in O(S) which are universal with respect to {C;} in o/(K) for
all K € A (S,A) is the intersection of countable number of open dense subsets in O(S).

[21]
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