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Abstract. We study universal holomorphic functions on a Stein manifold M with

projective compactification. Let fjng be a sequence of holomorphic automorphisms of

M. We prove that if fj�1
n g is A run-away, then the set of all universal functions with

respect to fjng in AðK Þ for all compact subsets K with a certain property is the

intersection of countable number of open dense subsets in the space of all holomorphic

functions on M. We also note that there is a close connection between the direction of

run-awayness and a family of compact sets for which there exists a universal function.

1. Introduction.

The study of universal functions is initiated by the following theorem due to

Birkho¤ [6].

Theorem 1.1. There exists an entire function f ðzÞ with the property that for any

entire function gðzÞ there exists a sequence fang such that

lim
n!y

f ðzþ anÞ ¼ gðzÞ

uniformly on compact sets.

This function f ðzÞ is a universal function for the Euclidean translations TaðzÞ ¼ zþ a.

In 1941, Seidel and Walsh [26] obtained an analogous theorem for the unit disk in

which the Euclidean translations are replaced by the non-Euclidean translations TaðzÞ ¼

ðzþ aÞ=ð1þ azÞ. In 1976, Luh [21] proved the following theorem.

Theorem 1.2. Let fang be a sequence in C with limit y. Then there is an entire

function f ðzÞ such that for every compact set K with connected complement in C and for

every function gðzÞ holomorphic in the interior of K and continuous on K, there exists a

subsequence fankg such that f f ðzþ ank Þg converges to gðzÞ uniformly on K.

In 1988 the second author [28] obtained an analogous theorem on C
�, and pointed out

its generalization for noncompact Riemann surfaces.

The above two types of theorems are generalized for noncompact Riemann surfaces

by Montes-Rodrı́guez [24]. There are many other contributions for this subject and

related problems ([9], [12], [14], [16], [19], [22], [27] etc.). Große-Erdmann [15] is a good

survey article not only for the analytic setting but also for the general aspect.
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On the contrary, there are only few papers concerning universal functions in several

variables. The former type (Birkho¤-Seidel-Walsh type) theorem holds in C
n, the unit

ball and the polydisk (Abe [1], Abe and Zappa [3], Chee [8] and Godefroy and Shapiro

[13]). These are all results for this type of theorem which are known till now.

Let D be a domain in C
n. We denote by OðDÞ the set of all holomorphic func-

tions on D. For a compact set K HD we define

K̂KD :¼ z A D; j f ðzÞje max
K

j f j for all f A OðDÞ

� �

:

We say that a compact set KHD is OðDÞ-convex if K ¼ K̂KD. A domain DHC
n is

said to be Stein if for any compact set K , K̂KD is compact. Let AutðDÞ be the group of

holomorphic automorphisms of D.

Definition 1.3. Let fjng be a sequence in AutðDÞ. A function f A OðDÞ is called

universal with respect to fjng in OðDÞ if f f � jng is dense in OðDÞ, where the topology

of OðDÞ is given by the compact-open topology.

A sequence fjng in AutðDÞ is said to be run-away if for any compact set KHD

there exists n0 A N such that K V jn0
ðK Þ ¼ q. León-Saavedra [20] showed that the

run-awayness is necessary for the existence of universal functions. This is an analogy to

the one-dimensional case ([5], [24]).

The authors extended the result on C
� to complex general linear groups ([3]). The

first author obtained an analogous result also in complex special linear groups ([2]).

The purpose of this paper is to consider the latter type (Luh type) theorem for Stein

manifolds with projective compactification (see Section 3 for the definition), and to

improve the previous results.

We shall begin with giving some remarks for the case of noncompact Riemann

surfaces in order to clarify our point of view.

2. Noncompact Riemann surfaces.

We first summarize the results of Montes-Rodrı́guez [24]. Although he proved the

results for run-away sequences of self-mappings, we state them for run-away sequences

of automorphisms for the simplicity of statements. Let R be a noncompact Riemann

surface. We denote by OðRÞ the space of holomorphic functions on R. If K is a

compact subset of R, AðK Þ denotes the set of all functions which are holomorphic in

the interior K� of K and continuous on K . KðRÞ is the set of all compact subsets

whose complements in R have no connected, relatively compact component. We denote

by K1ðRÞ the set of all compact subsets whose complements are connected. Let AutðRÞ

be the group of holomorphic automorphisms of R. A sequence fjng in AutðRÞ is

called a run-away sequence if for every compact subset K there exists n0 A N such that

K V jn0
ðK Þ ¼ q. A function f A OðRÞ is said to be universal with respect to fjng in

OðRÞ if the orbit f f � jng is dense in OðRÞ. We similarly say that f is universal with

respect to fjng in AðK Þ for a compact subset K if f f � jng is dense in AðK Þ. We note

that fjng is run-away if and only if fj�1
n g is run-away. Every noncompact Riemann

surface R has the Freudenthal compactificatin R̂R ¼ RUFðRÞ, where FðRÞ is the space
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of (Freudenthal) ends. This compactification is also known as Stoilow’s compactifi-

cation (see [4] and [25]). We refer to [24], [7] or to [10], [11] for the precise definition

and its properties. For an open set ÛU H R̂R, we put U :¼ ÛU VR. We denote by K
0ðRÞ

the set of all compact subsets K satisfying the following conditions (i), (ii) and (iii):

(i) K is a compact bordered surface.

(ii) Each connected component of RnK is not relatively compact and is either

planar or of infinte genus.

(iii) The closure of each connected component of RnK intersected with K is a

topological circle.

Then K
0ðRÞHKðRÞ. We define K

0
1 ðRÞ :¼ K1ðRÞVK

0ðRÞ.

The main result of Montes-Rodrı́guez is the following theorem.

Theorem 2.1 (Theorem 3.1 in [24]). Let R be a noncompact Riemann surface, and

let fjngHAutðRÞ be a sequence. Then the following statements hold.

(a) If FðRÞ is not a two-point set and fjng is run-away, then the set of all functions

in OðRÞ which are universal with respect to fjng in OðRÞ is the intersection of

countable number of open dense subsets in OðRÞ.

(b) If fjng is run-away, then the set of all functions in OðRÞ which are universal

with respect to fjng in AðK Þ for all K A K1ðRÞ is the intersection of countable

number of open dense subsets in OðRÞ.

Since OðRÞ is a Baire space, the sets of universal functions in the above theorem are

dense in OðRÞ. The following lemma is important in its proof.

Lemma 2.2 (Lemma 2.15 in [24]). Let R be a noncompact Riemann surface with an

infinite space FðRÞ of ends. If fjngHAutðRÞ is run-away, then there exist a nonisolated

end e and a run-away subsequence fjnkg such that for any compact subset KHR and for

any neighbourhood ÛU H R̂R of e there exists k0 A N such that jnk
ðK ÞHU for kf k0.

An end e and a run-away subsequence fjnkg in the above lemma play an essential role

in the proof of the part (a) in Theorem 2.1. This shows that the direction of run-

awayness is important. Then we give the following definition.

Definition 2.3. Let e A FðRÞ. A sequence fjngHAutðRÞ is e run-away if for

any compact subset KHR and for any neighbourhood ÛU H R̂R of e there exists n0 A N

such that jn0
ðK ÞHU .

Proposition 2.4. Let R be a noncompact Riemann surface. Every run-away se-

quence fjngHAutðRÞ has an e run-away subsequence fjnkg, where e is an end.

Proof. If FðRÞ is an infinite space, this is Lemma 2.2. R has no run-away

sequence when FðRÞ is a finite space with at least 3 elements (Theorem 2.16 in [24]).

Then it su‰ces to consider the case that FðRÞ is a one- or two-point set.

The proposition is trivial for the case FðRÞ ¼ feg. Let FðRÞ ¼ fe1; e2g. There

exists a sequence fKng of connected compact subsets of R such that

(i) Kn H ðKnþ1Þ
� and R ¼ 6Kn,

(ii) RnKn ¼ Un UVn (disjoint union),

(iii) fUng and fVng determine e1 and e2 respectively
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(see p. 670 in [24]). Since fjng is run-away, there exists kðnÞ A N for any n such that

jkðnÞðKnÞVKn ¼ q, then jkðnÞðKnÞHUn or jkðnÞðKnÞHVn. If there are infinitely many

n with jkðnÞðKnÞHUn, then we can take an e1 run-away subsequence. r

For the proof of the part (b) in Theorem 2.1, another lemma (Lemma 2.11 in [24])

is needed. If we use the term ‘‘e run-away’’, then its proof becomes easier.

Lemma 2.5 (cf. Lemma 2.11 in [24]). Let R be a noncompact Riemann surface.

Suppose that fjngHAutðRÞ is e run-away, where e A FðRÞ. Then, for any K1 A K1ðRÞ

and for any K A KðRÞ there exists n0 A N such that K V jn0
ðK1Þ ¼ q and K U jn0

ðK1Þ A

KðRÞ.

Proof. Take a neighbourhood ÛU of e such that U ¼ ÛU VR is connected and

K VU ¼ q. There exists K 0
1 A K

0
1 ðRÞ with K1 H ðK 0

1Þ
� (Lemma 2.10 in [24]). By the

assumption there exists n0 A N such that jn0
ðK 0

1ÞHU . Since ðK 0
1Þ

�nK1 is connected,

ðjn0ðK
0
1Þnjn0ðK1ÞÞ

� ¼ jn0
ððK 0

1Þ
�nK1Þ is also connected. Hence Unjn0ðK1Þ is connected.

This means K U jn0
ðK1Þ A KðRÞ. r

Along the argument in [24], we can show that if fjng is an e run-away sequence,

the part (b) in Theorem 2.1 holds for the set K2ðR; eÞ of compact subsets K A KðRÞ

with the following property: there exists a neighbourhood ÛU of e such that ðRnUÞnK is

connected and U VK ¼ q.

It is obvious that K1ðRÞHK2ðR; eÞHKðRÞ for any e A FðRÞ. But, K1ðRÞ0

K2ðR; eÞ in general. We see also in the multi-dimensional case that there is a relation

between the direction of run-awayness and a family of compact subsets for which an

analogous statement to the part (b) in Theorem 2.1 holds (see Section 7).

3. Stein manifolds with projective compactification.

Let X be a connected projective algebraic variety, and let Y be an analytic sub-

variety of X . We call the paire ðX ;YÞ a projective compactification of a complex

manifold M if XnY is biholomorphic to M. We may assume by the resolution of

singularities that X is smooth.

Let M be a Stein manifold which has a projective compactification ðX ;YÞ. For

example, a‰ne algebraic Stein manifolds are such ones. It is known that Stein groups

are a‰ne algebraic (Matsushima [23]). Let AutðMÞ be the group of holomorphic auto-

morphisms of M. We denote by OðMÞ the set of all holomorphic functions on M.

For every analytic subset AHY , we define

OAðMÞ :¼ f f A OðMÞ; f has a holomorphic extension to Ag:

Definition 3.1. Let AHY be an analytic subset. A sequence fjngHAutðMÞ is

called A run-away if for any compact set KHM and for any neighbourhood U of A in

X there exists n0 A N such that jn0
ðK ÞHU .

Lemma 3.2. Suppose that an analytic subset AHY has the decomposition A ¼

6m

i¼1
Ai into the union of connected components. If fjngHAutðMÞ is A run-away, then

there exist i ð1e iemÞ and a subsequence fjnkg such that fjnkg is Ai run-away.
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Proof. We can take a sequence fKig of compact subsets such that

(i) Ki is connected,

(ii) Ki HKiþ1 and M ¼ 6y

i¼1
Ki.

Each component Aj has a countable basis fU j
i g

y
i¼1 of neighbourhoods such that U

j
i is

connected and U 1
i ; . . . ;U

m
i are mutually disjoint for any i. Since fjng is A run-away,

there exists ni A N for any i such that jni
ðKiÞH6m

j¼1
U

j
i . By the connectedness of Ki,

there exists j depending on i such that jniðKiÞHU
j
i . For some j0 ð1e j0 emÞ, there

exist infinitely many i with jni
ðKiÞHU

j0
i . Then we can take a subsequence fjnkg which

is Aj0 run-away. r

By the above lemma, it is su‰cient to consider the case that an analytic subset

AHY is connected.

Definition 3.3. For a compact subset KHM we define

K̂KM :¼ x A M; j f ðxÞje max
K

j f j for all f A OðMÞ

� �

;

K̂KA :¼ x A M UA; j f ðxÞje max
K

j f j for all f A OAðMÞ

� �

:

K̂KM (resp. K̂KA) is called the OðMÞ (resp. OAðMÞ)-hull of K . When K̂KM ¼ K , K is called

OðMÞ-convex.

In general, K̂KM H K̂KA for OAðMÞHOðMÞ. In the case M ¼ C , we write K̂K ¼ K̂KC .

Definition 3.4. Let AHY be a connected analytic subset. KðM;AÞ is the set of

all compact sets KHM such that K̂KM ¼ K and K̂KA VA ¼ q.

4. Basic properties of OAðMÞ.

Let M be a Stein manifold with projective compactification ðX ;YÞ, and let A be a

connected analytic subset of Y .

The set OðMÞ of all holomorphic functions on M is a topological space with

the compact-open topology. This topology coincides with the topology of OðMÞ as a

Fréchet space. Then OðMÞ is a complete metric space. On the other hand, we may

assume that M is a closed complex submanifold of C
N for some N by the embedding

theorem of Bishop-Narasimhan. Since the set of all polynomials on C
N is dense in

OðC NÞ, OðC NÞ is separable. By the extension theorem (for example, see Theorem 7.4.8

in [17]), every holomorphic function on M is the restriction to M of a function in

OðC NÞ. Then OðMÞ is also separable. A metric space is separable if and only if it

satisfies the second axiom of countability. Therefore OðMÞ has a countable open basis

fUi; i A Ng. Let UA; i :¼ Ui VOAðMÞ. Then fUA; i; i A Ng is a countable open basis of

OAðMÞ for OAðMÞ is a metric subspace of OðMÞ. Therefore OAðMÞ satisfies the second

axiom of countability. Hence it is separable.

Any f A OAðMÞ is constant on A. Therefore we mean without confusion that f ðAÞ

is the constant value of f on A.
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Lemma 4.1. Let AHY be a connected analytic subset. If a sequence f fkgH

OAðMÞ converges to f A OAðMÞ, then

lim
k!y

fkðAÞ ¼ f ðAÞ:

Proof. Take a point x0 A A. Then fkðx0Þ ¼ fkðAÞ and f ðx0Þ ¼ f ðAÞ. There

exists a one-dimensional complex submanifold L in a neighbourhood of x0 such that

LHX and LVY ¼ fx0g. Let z be a coordinate on L around x0 with z ¼ 0 at x0.

We can take R > 0 such that f0 < jzj < RgHM. We obtain by Cauchy’s integral

formula

fkðx0Þ ¼
1

2pi

ð

jzj¼r

fkðzÞ

z
dz;

f ðx0Þ ¼
1

2pi

ð

jzj¼r

f ðzÞ

z
dz;

where 0 < r < R. Since f fkg converges to f uniformly on jzj ¼ r, we obtain

lim
k!y

fkðx0Þ ¼ f ðx0Þ: r

Lemma 4.2. For any compact subset K of M the following two conditions are

equivalent:

(i) There exists f A OAðMÞ such that maxK j f j < j f ðAÞj.

(ii) There exists f A OAðMÞ such that f ðAÞ B dfðKÞfðKÞ.

Proof. Assume (i) holds. Let R :¼ maxK j f j. Then dfðKÞfðKÞH fjzj < Rg. Hence

we have f ðAÞ B dfðKÞfðKÞ.

Conversely we assume that there exists f A OAðMÞ with f ðAÞ B dfðKÞfðKÞ. Then there

exists g A OðCÞ such that

jgð f ðAÞÞj > max
cf ðKÞ

jgj:

Letting h :¼ g � f A OAðMÞ, we obtain

max
K

jhj < jhðAÞj: r

Corollary 4.3. Let K be an OðMÞ-convex compact subset of M, and let A be a

connected analytic subset of Y. Then K A KðM;AÞ if and only if there exists f A OAðMÞ

such that f ðAÞ B dfðKÞfðKÞ.

Proof. We note that for an OðMÞ-convex compact subset K of M, K A KðM;AÞ

if and only if there exists f A OAðMÞ with

max
K

j f j < j f ðAÞj:

Then the assertion follows from Lemma 4.2. r
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5. Lemmas.

Let M be a Stein manifold with projective compactification ðX ;Y Þ, and let AHY

be a connected analytic subset. Take a Cy strictly plurisubharmonic exhaustion func-

tion j on M. For any r > 0 we define

Mr :¼ fx A M; jðxÞe rg:

Then Mr is an OðMÞ-convex compact set (Theorem 5.2.10 in [17]). We denote by

KðCÞ the set of all compact subsets LHC with connected complement in C . It is

Runge’s result (cf. Theorem 1.3.1 in [17]) that any compact set in KðCÞ is OðCÞ-convex.

Lemma 5.1 (Lemma 1 in [3]). There exists a sequence L ¼ fLlg in KðCÞ such that

for any L A KðCÞ and any neighbourhood U of L there exists Ll in L with LHLl HU .

Lemma 5.2. There exists a sequence K ¼ fKkg in KðM;AÞ such that for any

K A KðM;AÞ there exists Kk with K HKk.

Proof. Let fcag be a strictly increasing sequence of positive numbers such that

ca ! y ða ! yÞ. Since OAðMÞ is separable, there exists a dense countable subset

f fig
y
i¼1 HOAðMÞ. Let L ¼ fLlg be a sequence in KðCÞ in Lemma 5.1.

For any f A OAðMÞ, we denote by fLlj
ð f Þg the subsequence of fLlg consisting of

Ll with f ðAÞ B Ll. We define

K a

lj
ð f Þ :¼ f �1ðLlj

ð f ÞÞVMca :

Then K a

lj
ð f Þ is an OðMÞ-convex compact set, and satisfies

f ðAÞ B ð f ðK a

lj
ð f ÞÞÞ̂ HLlj

ð f Þ:

By Corollary 4.3 we obtain K a

lj
ð f Þ A KðM;AÞ.

We set a countable subset

K :¼ fK a

lj
ð fiÞ; i; j; a A Ng

in KðM;AÞ. We show that K has the desired property.

For any K A KðM;AÞ, there exists f A OAðMÞ such that f ðAÞ B dð fðKÞÞð fðKÞÞ (Corollary

4.3). dð fðKÞÞð fðKÞÞ has two relatively compact simply connected neighbourhoods U1 and U2

such that U1 HU2 and f ðAÞ B U2. By Lemma 4.1 we can take fi such that

fiðK ÞHU1 and fiðAÞ B U2:

Since dðU1ÞðU1Þ ¼ U1 HU2, there exists Llj
such that U1 HLlj

HU2 by Lemma 5.1. It is

obvious that dð fiðKÞÞð fiðKÞÞHU1. Then we have K a

lj
ð fiÞIK for a su‰ciently large a. r

6. Main theorem.

Let M be a Stein manifold with projective compactification ðX ;Y Þ, and let AHY

be a connected analytic subset. For a compact subset KHM, we denote by AðK Þ

the set of all functions which are holomorphic in a neighbourhood of K . We define

k f kK :¼ maxx AK j f ðxÞj for any f A OðMÞ and any compact subset K .

Let fjng be a sequence in AutðMÞ. A function f A OðMÞ is universal with respect
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to fjng in AðK Þ for all K A KðM;AÞ if every function in AðK Þ is approximated uni-

formly on K by f f � jng for all K A KðM;AÞ.

Theorem 6.1. Assume KðM;AÞ0q. Let fjngHAutðMÞ. If fj�1
n g is A run-

away, then the set of all functions in OðMÞ which are universal with respect to fjng in

AðK Þ for all K A KðM;AÞ is the intersection of countable number of open dense subsets

in OðMÞ.

Proof. Let Tn : OðMÞ ! OðMÞ be a composition operator defined by Tnð f Þ :¼

f � jn. Obviously, Tn is continuous. For any compact set KHM, for any f A OðMÞ

and for any e > 0, we set

Gð f ; e;K Þ :¼ fg A OðMÞ; there exists n A N with kTnðgÞ � f kK < eg;

Oð f ; e;K Þ :¼ fh A OðMÞ; kh� f kK < eg:

The family fOð f ; e;K Þg is an open basis in the topology of OðMÞ. Since

Gð f ; e;K Þ ¼ 6
y

n¼1

T�1
n ðOð f ; e;K ÞÞ

and Tn is continuous, Gð f ; e;K Þ is an open set in OðMÞ.

Let f fig be a dense countable subset of OðMÞ. We take a strictly decreasing

sequence fejg of positive numbers with lim ej ¼ 0. Let K ¼ fKkgHKðM;AÞ be a

sequence in Lemma 5.2. We denote by G the set of all universal functions with respect

to fjng in AðK Þ for all K A KðM;AÞ. Then we can write

G ¼ 7
y

i¼1

7
y

j¼1

7
y

k¼1

Gð fi; ej;KkÞ:

Therefore it su‰ces to prove that Gð f ; e;K Þ is dense in OðMÞ for any f A OðMÞ,

any e > 0 and any K A KðM;AÞ. To do this, we show that for any h A OðMÞ, any

e
0 > 0 and any compact subset K 0 HM,

Gð f ; e;K ÞVOðh; e 0;K 0Þ0q:

Since K A KðM;AÞ, there exists g A OAðMÞ such that gðAÞ B dgðKÞgðKÞ by Corollary 4.3.

Let B be a closed ball with center at gðAÞ such that

BV dgðKÞgðKÞ ¼ q:

Then g�1ðBÞ is a neighbourhood of A in X . We can take r > 0 such that K 0 HMr.

Since fj�1
n g is A run-away, there exists n0 A N such that

j
�1
n0
ðMrÞH g�1ðBÞ:

We define a holomorphic function ~gg on M by ~ggðxÞ :¼ ðg � j�1
n0
ÞðxÞ. Then we have

~ggðjn0ðK ÞÞ ¼ gðK Þ;

~ggðMrÞ ¼ gðj�1
n0
ðMrÞÞH gðg�1ðBÞÞHB:

Y. Abe and P. Zappa38



Hence

ð~ggðjn0ðK ÞÞÞ^V ð~ggðMrÞÞ̂ ¼ q:

It follows from the Separation Lemma (Kallin [18], see [3] for Stein manifolds) that

ðjn0ðK ÞUMrÞM̂ ¼ ðjn0ðK ÞÞM̂ U dðMrÞðMrÞM

¼ jn0ðK ÞUMr:

Let

h1ðxÞ :¼
hðxÞ if x A Mr;

f ðj�1
n0
ðxÞÞ if x A jn0ðK Þ:

(

Then h1 A Aðjn0
ðK ÞUMrÞ. By a Mergelyan type theorem in several variables (see

Corollary 5.2.9 in [17]), there exists c A OðMÞ which approximates h1 on jn0
ðK ÞUMr,

i.e.

kh� ckMr
< e 0;

k f � j�1
n0

� ckjn0 ðK Þ < e:

As k f � j�1
n0

� ckjn0 ðK Þ ¼ k f � Tn0ðcÞkK , we obtain the conclusion. r

Remark. In the situation of Theorem 6.1, the set of all universal functions with

respect to fjng in AðK Þ for all K A KðM;AÞ is dense in OðMÞ, for OðMÞ is a Baire

space.

Next we consider a general analytic subset AHY . Let A ¼ 6m

i¼1
Ai be the decom-

position into the union of connected components. For each component Ai we take

KðM;AiÞ. Let

KðM;AÞ :¼ 6
m

i¼1

KðM;AiÞ:

Then we obtain the following corollary.

Corollary 6.2. Assume KðM;AÞ0q. Let fjngHAutðMÞ. If fj�1
n g is Ai

run-away for any component Ai, then the set of all functions in OðMÞ which are universal

with respect to fjng in AðK Þ for all K A KðM;AÞ is the intersection of countable number

of open dense subsets in OðMÞ.

7. Examples.

Example 1. Let G ¼ GLðn;CÞ be the complex general linear group of degree n.

It is considered as an open submanifold of the space M ¼ Mðn;CÞ of all square

matrices of degree n with complex coe‰cients. Since MGC
N ðN ¼ n2Þ, we have the

natural inclusion i : M ! P
N ,

Z ¼ ðzijÞ 7! ½1 : z11 : � � � : z1n : � � � : znn�:
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We identify G and M with iðGÞ and iðMÞ respectively. Let ½x0 : x1 : � � � : xN � be the

homogeneous coordinates of P
N . We set

PðxÞ ¼ x0 det

x1 � � � xn

xnþ1 � � � x2n

� � � � � � � � � � � � � � � � � � �

xðn�1Þnþ1 � � � xn2

0
BBB@

1
CCCA:

Letting Y :¼ f½x� A P
N ;PðxÞ ¼ 0g, we obtain a projective compactification ðPN

;Y Þ of G.

Let A0 :¼ f½1 : 0 : � � � : 0�gHY . In [3] we defined the set BðGÞ of compact sets

K HG with K̂KG ¼ K such that there exists f A OðMÞ with f ðA0Þ B dfðKÞfðKÞ. We essentially

proved the following theorem in [3].

Theorem 7.1 (cf. Theorem 4 in [3]). Let fCigHG be a sequence with C�1
i ! A0.

Then there exists f A OðGÞ such that f is universal with respect to fCig in AðK Þ for all

K A BðGÞ.

Since BðGÞHKðG;A0Þ and fC�1
i g is A0 run-away if C�1

i ! A0, the above theorem

is contained in Theorem 6.1.

We see more interesting facts. Let K :¼ flI ; jlj ¼ 1g, where I is the unit matrix of

degree n. By a mapping i : C � ! G, l 7! lI , C � is embedded as a closed submanifold

of G. Let N :¼ iðC �Þ. K is OðNÞ-convex, then OðGÞ-convex. We take a sequence

fcig in C
� with ci ! y, and set Ci :¼ iðciÞ ¼ ciI . Then fC�1

i g is A0 run-away. We

see K B KðG;A0Þ because of the following assertion.

Assertion. There does not exist a universal function with respect to fCig in AðK Þ.

Proof. Assume that there exists a universal function F A OðGÞ with respect to

fCig in AðK Þ. Then, for any c A C there exists a subsequence fCikg such that

F ðCikZÞ ! c uniformly on K . We define f A OðC �Þ by f :¼ F � i. We note that

f ðcjzÞ ¼ FðCjðzIÞÞ for any j and z A C
�, and that zI A K if and only if z A S1 :¼

fjzj ¼ 1g. Then f ðcikzÞ ! c uniformly on S1. Especially, for any c A C there exists a

subsequence fcikg with cik ! y such that f ðcik Þ ! c. Then the point at infinity y is

an essential singularity of f .

Consider a subsequence fcikg with f ðcikzÞ ! 0 uniformly on S1. Let R ¼

maxz AS 1 j f ðci1zÞj. Since f is not a constant function, R > 0. Then there exists ~kk A N

such that j f ðcikzÞj < R for all z A S1 and for all k > ~kk. By the maximum principle

j f ðzÞj < R on fjci1 je jzje jcik jg for all k > ~kk, hence also j f ðzÞj < R on fjci1 je jzjg.

Then y is a removable singularity of f . This is a contradiction. r

On the other hand, we can find an A run-away sequence fDigHG such that

K A KðG;AÞ. This shows there is a relation between the direction of run-awayness and

a family of compact subsets for which there exist universal functions (see Section 2).

For the sake of simplicity, we consider the case n ¼ 2. Let G ¼ GLð2;CÞ,

M ¼ Mð2;CÞ and P
4 be as above. A rational function

f : P4 ! P
1
; ½x0 : � � � : x4� 7! ½x1x4 � x2x3 : x

2
1 �
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is holomorphic on G, but not defined on the set

V :¼ f½x0 : � � � : x4�; x1 ¼ x2 ¼ 0 or x1 ¼ x3 ¼ 0g:

Consider the graph

G :¼ fð½x0 : � � � : x4�; ½x1x4 � x2x3 : x
2
1 �Þ A P

4 � P
1
; ½x0 : � � � : x4� A P

4nVg:

Let X be the closure of G in P
4 � P

1, and let

p1 : X ! P
4; p2 : X ! P

1

be the first and second projections. Let

W :¼ f½x0 : � � � : x4�;PðxÞ ¼ 0g;

where PðxÞ ¼ x0ðx1x4 � x2x3Þ. Then V HW . If we set Y :¼ p�1
1 ðWÞ, ðX ;Y Þ is a

projective compactification of G for p1 is biholomorphic on p�1
1 ðP4nVÞ.

Now we consider a sequence fDig with

Di ¼
1 0

0 1=i

� �

for i A N :

For any Z ¼ ðzijÞ A G we have

lim
i!y

p
�1
1 ðD�1

i ZÞ ¼ lim
i!y

ð½1 : z11 : z12 : iz21 : iz22�; ½i detZ : z211�Þ

¼ ð½0 : 0 : 0 : z21 : z22�; ½1 : 0�Þ:

If we set

A :¼ fð½0 : 0 : 0 : x3 : x4�; ½1 : 0�Þ; ½x3 : x4� A P
1g;

then fD�1
i g is A run-away.

We show that K ¼ flI ; jlj ¼ 1g is contained in KðG;AÞ. Let p2 ¼ ½ f0 : f1�. We

define a function g :¼ ð f1= f0Þ � 1 which is holomorphic on G and extends holomor-

phically to A. Since jgðAÞj ¼ 1 and jgðK Þj ¼ 0, K AKðG;AÞ.

Example 2. Let S ¼ SLðn;CÞ be the complex special linear group of degree n. It

is an algebraic submanifold of M ¼ Mðn;CÞ. We identify C
N with f½x� A P

N
; x0 0 0g,

where N ¼ n2. S has the algebraic extension X in P
N . Let

Y :¼ X V fx0 ¼ 0g

¼ ½0 : x1 : � � � : xN � A P
N
; det

x1 x2 � � � xn

xnþ1 xnþ2 � � � x2n

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

xðn�1Þnþ1 xðn�1Þnþ2 � � � xn2

0

B

B

B

@

1

C

C

C

A

¼ 0

8

>

>

>

<

>

>

>

:

9

>

>

>

=

>

>

>

;

:

Then the pair ðX ;YÞ is a projective compactification of S. In [2], the first author

considered the following subspaces
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Xj :¼ fZ ¼ ðzabÞ A M; zab ¼ 0 for all a; b except a ¼ jg;

Yj :¼ fZ ¼ ðzabÞ A M; zj1 ¼ � � � ¼ zjn ¼ 0g:

Let Xj be the closure of Xj in P
N . We define

Aj :¼ Xj VY :

There is the natural inclusion OðYjÞHOðMÞ. In [2], we defined the set BðSÞ of all

compact sets KHS with K̂KS ¼ K for which there exist f A OðYjÞ for some j ¼ 1; . . . ; n

with f ð0Þ B dfðKÞfðKÞ. Let A :¼ 6m

j¼1
Aj. By Corollary 6.2 we obtain the following exten-

sion of the result in [2] for BðSÞHKðS;AÞ: If fC�1
i gHS is Aj run-away for any j,

then the set of all functions in OðSÞ which are universal with respect to fCig in AðK Þ for

all K A KðS;AÞ is the intersection of countable number of open dense subsets in OðSÞ.
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