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Abstract. The Ruelle invariants for non-singular flows of a 3-dimensional manifold

and di¤eomorphisms of the disc are described by invariant fiber measures, which are

families of probability measures on the fibers of the projectivized bundle invariant under

the holonomies among almost all fibers. The dynamical properties of invariant fiber

measures are also given, which show the benefit of this description.

1. Introduction.

Let M be a 3-dimensional Riemannian manifold, and X a non-singular C1 vector

field of M. Denote by ct the flow generated by X . Let NX be the quotient bundle of

the tangent bundle TM by the line bundle determined by X . For any t, the di¤erential

Dct of ct induces a flow on NX , denoted by Nct, which represents the infinitesimal

behavior of ct and was studied in various points of view ([5], [6]). Taking account of

the variation of the angles along the orbits of Nct, we define the projectivized bundle

PX by 6
z AM

ðNXz � 0=v@ kvÞ ðv A NXz � 0; k A R� 0Þ, where NXz is the fiber of NX

at z. Then Nct also induces a flow, say jt, on PX . The bundle PX has a natural

PSOð2Þ-structure induced from the Riemannian metric of M and the time t map jt
restricted to each fiber of PX is a projective transformation.

In order to estimate the twist along the orbits, we use the Ruelle invariant defined

as follows: We assume that PX is a trivial bundle, and is parametrized as M � P
1. We

define the projection from M � R to PX ¼ M � P
1 by ðz; xÞ 7! ðz; ½x�Þ, where P

1 is

parametrized as R=Z and x 7! ½x� is the natural projection from R to P
1. Then there

is a flow ~jjt of M � R which is a lift of jt ([6]). Let pi denote the projection to the

i-th factor of M � P
1 and M � R ði ¼ 1; 2Þ. We define tðz; tÞ : R ! R by tðz; tÞðxÞ ¼

p2 ~jjtðz; xÞ. For an invariant measure m of ct, the Ruelle invariant RmðctÞ is defined by

ð1=2Þ
Ð
M
ðlimt!y tðz; tÞðxÞ=tÞ dm.

In order to examine the Ruelle invariant, we use a family of probability measures

on the fibers invariant under the holonomies among almost all fibers, which is called an

‘invariant fiber measure’ (The precise definition is given in §2). This was constructed in

[8], [9] and [10] by using Markov-Kakutani theorem for measure valued functions. In

this paper, we will construct an invariant fiber measure from an invariant measure of jt
by using the disintegration.

In §3 and §4, we will characterize the invariant fiber measure by using Poincaré
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recurrence theorem and Furstenberg’s theorem, which show that the supports on almost

all fibers consist of one point or two points or the whole fiber (Theorem 4). This shows

the geometric aspects of invariant fiber measures, and it motivates the description of the

Ruelle invariant by it.

Let n be a probability measure on PX ¼ M � P
1 invariant under jt such that

ðp1Þ�n ¼ m. Denote by ~nn the lift of n on M � R. Then the Ruelle invariant is de-

scribed as follows:

Theorem 1. Let Wþ¼fðz; xÞ A M � R; 0e x< p2 ~jj1ðc�1ðzÞ; 0Þ; p2 ~jj1ðc�1ðzÞ; 0Þ>0g

and W�¼fðz; xÞ A M � R; 0>xf p2 ~jj1ðc�1ðzÞ; 0Þ; p2 ~jj1ðc�1ðzÞ; 0Þ<0g. Then the Ruelle

invariant RmðctÞ is equal to ð1=2Þ~nnðWþÞ � ð1=2Þ~nnðW�Þ.

Here the Ruelle invariant is given by n instead of the invariant fiber measure as a

result, which can be understood as a benefit of the construction of the invariant fiber

measure from n.

The same argument as above is available for di¤eomorphisms of the 2-dimensional

disc D2. Let G denote the set of di¤eomorphisms of D2 which are the identity near

the boundary and preserve the canonical measure m. Denote by PD2 the projec-

tivized bundle of the tangent bundle of D2, which is parametrized as D2 � P
1. Let

p1 : PD
2 ! D2 denote the projection to the first factor. For the induced di¤eomor-

phism Pf of the di¤erential Df on PD2, the equation similar to Theorem 1 holds

(Theorem 5), and furthermore we obtain the following results.

Theorem 2. Let f and g be elements of G. If there is a probability measure n of

PD2 invariant under both Pf and Pg satisfying ðp1Þ�n ¼ m, then Rmðg � f Þ ¼ Rmð f Þþ

RmðgÞ.

Corollary 1. Let G be an amenable subgroup of G. Then Rm : G ! R is a

homomorphism.

The authors wish to thank Masahiko Kanai for his various helpful suggestions for

their attempts to apply Zimmer’s theory to dynamical systems and also Shigenori Mat-

sumoto for his remark on the disintegration and the application of the invariant fiber

measure for di¤eomorphisms of the disc.

2. Definition of invariant fiber measures.

Let M be a compact metric space and p : N ! M a P
1-bundle over M. Let ct

and jt be topological flows of M and N respectively such that p � jt ¼ ct � p. In this

section and also in §3, the holonomies among the fibers along jt is not assumed to be

projective.

Let n be a jt-invariant measure on N, and let m ¼ p�n, i.e. mðEÞ ¼ nðp�1ðEÞÞ if

p�1ðEÞ is a n-measurable set. Then m is invariant under ct (m is not always ergodic in

this section).

Let CðNÞ be the set of continuous functions of N endowed with the uniform

convergence topology. Denote by MðNÞ the set of Radon probability measures of N,

endowed with the weak* topology (i.e. sn ! s ðsn; s A MðNÞÞ if hsn; f i ! hs; f i for
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f A CðNÞ). Then MðNÞ is a compact metrizable space. A map l : M ! MðNÞ is

called scalarwise measurable if the function z 7! hlðzÞ; f i ¼
Ð
N
f dlðzÞ is m-measurable

for all f A CðNÞ. A map l : M ! MðNÞ is called measurable if, for any e > 0, there

is a compact subset K of M such that mðM � KÞ < e and ljK is continuous. Note

that the measurability of l implies the scalarwise measurability of l. Conversely, l is

measurable if it is scalarwise measurable by Lemma 3 of Chapter 6, §3, N01 in [1]. Let

Nz denote the fiber p�1ðzÞ for z A M. By disintegration (Chapter 6, §3, Theorem 1 of

[1]), there is a scalarwise measurable map l : M ! MðNÞ satisfying that supp lðzÞHNz

for all z A M and that n ¼
Ð
dm

Ð
dlðzÞ and such a scalarwise measurable map is unique

m-a.e.z.

For any homeomorphism h of N and s A MðNÞ, we define h�s by hh�s; f i ¼

hs; f � hi for f A CðNÞ. In other words, h�sðEÞ ¼ sðh�1ðEÞÞ for any measurable set

E of N. Then the map ðh; sÞ 7! h�s is continuous with respect to the uniform con-

vergence topology and the weak* topology.

Lemma 1. For a scalarwise measurable map l : M ! MðNÞ satisfying that

supp lðzÞHNz for all z A M and that n ¼
Ð
dm

Ð
dlðzÞ, the equation ðjtÞ�lðzÞ ¼ lðctðzÞÞ

m-a.e.z holds for any t A R.

Proof. Let ht : M ! MðNÞ ðt A RÞ denote the map defined by htðzÞ ¼ ðj�1
t Þ�

lðctðzÞÞ. For any e > 0, there is a compact set K such that mðM � KÞ < e and l jctðKÞ

is continuous. Then ht is continuous on K . Therefore ht is measurable, and hence

scalarwise measurable.

For any measurable set W of N,
ð
M

dm

ð
W

dhtðzÞ ¼

ð
M

dm

ð
jtðWÞ

dlðctðzÞÞ

¼

ð
M

dððctÞ�mÞ

ð
jtðWÞ

dlðzÞ

¼

ð
M

dm

ð
jtðWÞ

dlðzÞ

¼ nðjtðWÞÞ ¼ nðWÞ:

Therefore, htðzÞ coincides with lðzÞ m-a.e.z for any t A R by the uniqueness of such a

scalarwise measurable map. That is, ðj�1
t Þ�lðctðzÞÞ ¼ lðzÞ m-a.e.z for any t A R. r

A set E of M is called conull if E is measurable and mðEÞ ¼ 1. By the above

consideration, ðj�1
t Þ�lðctðzÞÞ ¼ lðzÞ on a conull set for any t A R. However this conull

set may vary with respect to t. The following lemma shows the existence of conull sets

on which ðj�1
t Þ�lðctðzÞÞ ¼ lðzÞ holds for any t A R after a slight modification of l, which

is proved in the same way as Appendix B.5 of [10].

Lemma 2. For any scalarwise measurable map l1 : M ! MðNÞ satisfying that

supp l1ðzÞHNz for all z A M and that n ¼
Ð
dm

Ð
dl1ðzÞ, there are an invariant conull set

B of M and a scalarwise measurable map l2 : M ! MðNÞ such that l2ðzÞ ¼ l1ðzÞ m-a.e.z

and l2ðctðzÞÞ ¼ ðjtÞ�l2ðzÞ for any t A R and any z A B. In particular, n ¼
Ð
dm

Ð
dl2ðzÞ.
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Proof. Let s1 denote the ordinary measure
Ð
dt of R. Denote by B the set

fz A M; t 7! ðj�1
t Þ�l1ðctðzÞÞ is essentially constant with respect to s1g.

Here we claim that ðz; tÞ 7! ðj�1
t Þ�l1ðctðzÞÞ is measurable with respect to m� s1.

Let n be a positive integer. For any e > 0, there is a compact set K such that

mðM � KÞ < e=ð2nÞ and l1jK is continuous. Let Kn denote the compact set fðz; tÞ A

M � R;�ne te n;ctðzÞ A Kg. Then ðz; tÞ 7! ðj�1
t Þ�l1ðctðzÞÞ is continuous on Kn. On

the other hand, we have ðm� s1ÞðM � ½�n; n� � KnÞ ¼ 2n�
Ð n

�n
ds1

Ð
c�tðKÞ dm < e.

Thus ðz; tÞ 7! ðj�1
t Þ�l1ðctðzÞÞ is measurable with respect to m� s1, and hence is sca-

larwise measurable.

Let E denote the set fðz; tÞ A M � R; ðj�1
t Þ�l1ðctðzÞÞ0 l1ðzÞg. For a countable

dense set f fngn¼1;2;... of CðNÞ, the set E coincides with the set 6
n¼1;2;...fðz; tÞ A M � R;

hðj�1
t Þ�l1ðctðzÞÞ; fni0hl1ðzÞ; fnig. Since ðz; tÞ 7! hðj�1

t Þ�l1ðctðzÞÞ; fni and ðz; tÞ 7!

hl1ðzÞ; fni are measurable as above, we obtain that E is a measurable set with re-

spect to m� s1. Let Ez ¼ ft A R; ðz; tÞ A Eg ðz A MÞ and Et ¼ fz A M; ðz; tÞ A Eg ðt A RÞ.

Then mðEtÞ ¼ 0 by Lemma 1. Using Fubini’s theorem, we have
Ð
M
s1ðEzÞ dm ¼

ðm� s1ÞðEÞ ¼
Ð
R
mðEtÞ ds1 ¼ 0. Hence s1ðEzÞ ¼ 0 m-a.e.z. Let E be a conull set of M

such that s1ðEzÞ ¼ 0 for z A E. Then E is contained in B. This implies that B is a

conull set.

We define a map l2 : M ! MðNÞ such that l2ðzÞ is the essential constant of

ðj�1
t Þ�l1ðctðzÞÞ with respect to s1 if z A B. Since E is contained in B, we have

l2ðzÞ ¼ l1ðzÞ m-a.e.z. For any f A CðNÞ and z A B, we have hl2ðzÞ; f i ¼
Ð
R
hðj�1

t Þ�
l1ðctðzÞÞ; f i ds2, where s2 is a probability measure on R with the same null sets with

those of s1. Hence l2 is scalarwise measurable by Fubini’s theorem.

For any s A R and z A B,

s1ðft; ðj
�1
t Þ�l1ðctcsðzÞÞ0 ðjsÞ�l2ðzÞgÞ

¼ s1ðft; ðjsÞ�ðj
�1
sþtÞ�l1ðcsþtðzÞÞ0 ðjsÞ�l2ðzÞgÞ

¼ s1ðfu� s; ðj�1
u Þ�l1ðcuðzÞÞ0 l2ðzÞgÞ

¼ s1ðfu; ðj
�1
u Þ�l1ðcuðzÞÞ0 l2ðzÞgÞ ¼ 0:

Thus we have csðzÞ A B and l2ðcsðzÞÞ ¼ ðjsÞ�l2ðzÞ. r

Definition. A scalarwise measurable map l : M !MðNÞ such that supp lðzÞHNz

for all z A M is called an invariant fiber measure for a probability measure m of M if

there is an invariant conull set B of M with respect to m such that lðctðzÞÞ ¼ ðjtÞ�lðzÞ

for any z A B and t A R, where the set B is called a basic set. By the above con-

sideration, we obtain the following key lemma needed later.

Fundamental lemma. Let ct and jt be topological flows of M and N respectively

satisfying p � jt ¼ ct � p. For a probability measure n on N invariant under jt, there

are a scalarwise measurable map l : M ! MðNÞ and an invariant conull set B of M

satisfying

(1) supp lðzÞHNz,
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(2) n ¼
Ð
dm

Ð
dlðzÞ ðm ¼ p�nÞ and

(3) lðctðzÞÞ ¼ ðjtÞ�lðzÞ for any z A B and t A R,

which is called an invariant fiber measure derived from n.

Remark. Let m be a probability measure on M invariant under ct. Denote by

MmðNÞ the set of probability measures n on N satisfying p�n ¼ m. Then MmðNÞ is a

closed subset of the set of probability measures, and hence is compact. By Markov-

Kakutani theorem, there is a probability measure n on N invariant under jt satisfying

p�n ¼ m.

Remark. The existence of a scalarwise measurable map l : M ! MðNÞ satisfying

supp lðzÞHNz and lðctðzÞÞ ¼ ðjtÞ�lðzÞ m-a.e.z for any t A R was already given for an

ergodic measure m in the case of product bundles in Theorem 2.1 of [8], where the

existence was more generally shown for amenable actions instead of R-actions.

3. Recurrency.

In §3 and §4, we give properties of the invariant fiber measure, which show that it

is useful to study the dynamical properties of jt and ct. Though many parts of these

sections are more or less known in the fields of ergodic theory of amenable group

actions, the authors have not found them in the literature. In order to explain the

benefit of the description of the Ruelle invariant by the invariant fiber measure, we give

a self-contained explanation in these sections.

Let M be a compact metric space and p : N ! M a P
1-bundle over M. Let ct be

a topological flow of M, and let jt be a topological flow of N satisfying p � jt ¼ ct � p.

Let m be an ergodic probability measure on M invariant under ct, i.e. a ct-invariant

measurable set has a full or null measure. Under these conditions, we will give a rela-

tion among almost all lðzÞ (Lemma 4). The essential part of its proof is given in

Lemma 3, which is proved by using the method of Poincaré recurrence theorem.

Definition. Let S be a subset of M. For z A M, we define the subset oSðzÞ by

7
sb0

fctðzÞ; tb sgVS. Then, for any y A oSðzÞ, there exists a sequence ftngn¼1;2;...

such that limn!y tn ¼ y, ctn
ðzÞ A S and y ¼ limn!y ctn

ðzÞ.

Lemma 3. Let l be an invariant fiber measure with a basic set B, then there is a

closed set F with mðF Þ > 0 such that

(1) l is continuous on F VB, and

(2) oF ðzÞ ¼ F m-a.e.z in F.

Proof. Since l is measurable, there is a compact set F0 such that mðF0Þ > 0 and

ljF0
is continuous. Let F ¼ suppðmjF0Þ. In other words, z A F0 is an element of F if

and only if mðF0 VUÞ > 0 for any open set U of M satisfying z A U . Then F is a closed

subset of M and mðF0 � F Þ ¼ 0. In particular, F has a positive measure.

Denote by fVmgm¼1;2;... the subfamily of the countable base fUng of M satisfy-

ing F VVm 0q. Then mðF VVmÞ > 0. Let Em ðm ¼ 1; 2; . . .Þ denote 7
te0

6
set

cs

ðF VVmÞ. Then we have mð6
set

csðF VVmÞÞ ¼ mðc�t 6set
csðF VVmÞÞ ¼ mð6

se0
cs

ðF VVmÞÞf mðF VVmÞ. Hence mðEmÞf mðF VVmÞ > 0 because 6
set

csðF VVmÞ de-

creases as t ! �y. On the other hand, Em is invariant under ct. Since we assume

Invariant fiber measures 21



that ct is ergodic, we obtain mðEmÞ ¼ 1, and hence mðF � EmÞ ¼ 0. Therefore, we have

mðF �7y

m¼1
EmÞ ¼ mð6y

m¼1
ðF � EmÞÞ ¼ 0, and mðF V7y

m¼1
EmÞ ¼ mðF Þ.

Finally we will show that oF ðzÞ ¼ F on F V7y

m¼1
Em. Let z be an element of

F V7y

m¼1
Em. Suppose that F � oF ðzÞ is not empty. Let w be a point of F � oF ðzÞ.

Since oF ðzÞ is a closed set, we can choose an open set Vk from fVmg such that w A Vk

and Vk VoF ðzÞ ¼ q. Then F VVk HF VVk HF � oF ðzÞ. By the choice of Ek, there

is a sequence ftngn¼1;2;... such that limn!y tn ¼ �y and z A ctn
ðF VVkÞ. By taking a

subsequence of ftng, we can assume that fc�tn
ðzÞg converges to some point of F VVk,

which is also contained in oF ðzÞ by the definition of oF ðzÞ. However, this contradicts

the choice of Vk. Thus oF ðzÞ ¼ F for z A F V7y

m¼1
Em. r

Lemma 4. Let l be an invariant fiber measure with a basic set B. Then there

exists an invariant conull set E of M contained in B such that, for any z and w of E,

there is a sequence ftngn¼1;2;... of R satisfying limn!y tn ¼ þy, limn!y ctn
ðzÞ ¼ w and

limn!y lðctn
ðzÞÞ ¼ lðwÞ.

Proof. Let F be the closed set obtained in Lemma 3, and E0 a closed subset of F

such that mðE0Þ > 0 and oF ðzÞ ¼ F for any z A E0. Let E ¼ ð6
s AR

csðE0ÞÞVB. Since

6
s AR

csðE0Þ is invariant under ct, the set E is also a conull set.

Let z and w be points of E. Then there are s0 and s1 of R such that cs0
ðzÞ A E0

and cs1
ðwÞ A F . Hence there is a sequence fungn¼1;2;... such that limn!y un ¼ þy,

limn!y cun
ðcs0

ðzÞÞ ¼ cs1
ðwÞ and cun

ðcs0
ðzÞÞ A F . In particular, limn!y cunþs0�s1

ðzÞ ¼ w.

Let tn ¼ un þ s0 � s1. Then limn!y tn ¼ þy and limn!y ctn
ðzÞ ¼ w. Since l is

continuous on F , we have limn!y lðcunþs0
ðzÞÞ ¼ lðcs1

ðwÞÞ. Hence limn!yðjs1Þ�
lðctn

ðzÞÞ ¼ ðjs1Þ�lðwÞ, and thus, limn!y lðctn
ðzÞÞ ¼ lðwÞ. r

By the above lemmas, we obtain the following theorem.

Theorem 3. Let M be a compact metric space and p : N ! M a P
1-bundle over

M. Let ct and jt be flows of M and N respectively such that p � jt ¼ ct � p. Let n be a

probability measure on N invariant under jt. Denote by m the probability measure p�n on

M. If m is ergodic, then there are a scalarwise measurable map l : M ! MðNÞ and an

invariant measurable set E of M with mðEÞ ¼ 1 such that

(1) For any z A M, supp lðzÞ is contained in Nz,

(2) n ¼
Ð
dm

Ð
dlðzÞ,

(3) ðjtÞ�lðzÞ ¼ lðctðzÞÞ for any z A E and t A R, and

(4) For any points z and w of E, there is a sequence ftngn¼1;2;... of R satisfying that

limn!y tn ¼ y, limn!y ctn
ðzÞ ¼ w, and limn!y lðctn

ðzÞÞ ¼ lðwÞ.

4. Extension of supports.

In this section, we will assume that our P
1-bundle p : N ! M has a PSOð2Þ-

structure and that each jt induces projective transformations among the fibers as

follows.

Let fðUi; xiÞgi¼1;2;...; r be a PSOð2Þ-structure of a P
1-bundle p : N ! M. Namely,

fUig is an open cover of M, and xi : p
�1ðUiÞ ! Ui � P

1 is a homeomorphism such

that p ¼ pr � xi, where pr : Ui � P
1 ! Ui is the projection to the first factor, and that
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xj � x
�1
i : ðUi VUjÞ � P

1 ! ðUi VUjÞ � P
1 is of the form xj � x

�1
i ðz; xÞ ¼ ðz; gjiðzÞxÞ where

gji : Ui VUj ! PSOð2Þ.

Let z A Ui and w A Uj. We say that a transformation g : Nz ! Nw is projective if

ðxjjNwÞ � g � ðxijNzÞ
�1

: P
1 ! P

1 is an element of PSLð2;RÞ. We readily see that this

definition is well-defined.

For A A PSLð2;RÞ, let kAk ¼ supkvk¼1; v AR2kAvk. Then, for a projective transfor-

mation g : Nz ! Nw we can define the norm of g by kgk ¼ kðxjjNwÞ � g � ðxijNzÞ
�1k,

which is also independent of the choice of ðUi; xiÞ and ðUj; xjÞ.

We assume throughout that jtjNz is projective for all z A M and t A R. For an

invariant fiber measure l, we abbreviate lðzÞ jNz as lðzÞ.

By using Furstenberg’s theorem, we obtain the following.

Lemma 5. Let l be an invariant fiber measure and let E be an invariant conull set

contained in a basic set satisfying the condition (4) of Theorem 3. Then one of the

following properties holds.

(1) supp lðzÞ consists of one point for any z A E.

(2) supp lðzÞ consists of two points for any z A E.

(3) For any points z and w of E, there is a projective transformation g : Nz ! Nw

satisfying g�lðzÞ ¼ lðwÞ.

Proof. By assumption, for any points z and w of E, there is a sequence ftngn¼1;2;...

of R satisfying limn!y tn ¼ y, limn!y ctn
ðzÞ ¼ w and limn!y lðctn

ðzÞÞ ¼ lðwÞ.

If there are two points z and w of E such that kjtn jNzk is not bounded, then

supp lðwÞ consists of one or two points by Furstenberg’s theorem ([2], see also Lemma

3.2.1 of [10], Theorem 4.1 of [9]). (A precise argument goes as follows: Let z A Ui and

w A Uj. We assume without loss of generality that ctn
ðzÞ A Uj for all n. Then apply

Furstenberg’s theorem to the sequence ðxjjNctn
ðzÞÞ � jtn jNz � ðxijNzÞ

�1 in PSLð2;RÞ.)

For any p in E, there is a sequence fsngn¼1;2;... such that limn!y csn
ðwÞ ¼ p and

limn!y lðcsn
ðwÞÞ ¼ lðpÞ by assumption. Then supp lðpÞ also consists of one or two

points. Furthermore, if supp lðwÞ consists of one point, then supp lðpÞ also consists of

one point. Therefore, supp lðzÞ consists of one point for any z A E or supp lðzÞ consists

of two points for any z A E.

On the other hand, if kjtn jNzk is bounded for any z and w in E, then we can take

a subsequence fsngn¼1;2;... of ftng such that jsn jNz converges to some projective trans-

formation g : Nz ! Nw. Then, we have g�lðzÞ ¼ limn!yðjsnÞ�lðzÞ ¼ limn!y lðcsn
ðzÞÞ ¼

lðwÞ. Thus l is of type (3). r

Lemma 6. Let s be a probability measure of P1. If supp s contains at least three

points and supp s0P
1, then the stabilizer StðsÞ ¼ f f A PSLð2;RÞ; f�s ¼ sg is generated

by a unique periodic elliptic element of PSLð2;RÞ.

Proof. If fk f k; f A StðsÞg is not bounded, then supp s consists of one or two

points by Furstenberg’s theorem ([2], see also Lemma 3.2.1 of [10]). Since this con-

tradicts the assumption, the set fk f k; f A StðsÞg is bounded. In particular, all the

elements of StðsÞ are elliptic. Thus they are individually conjugate to rotations.

We claim that StðsÞ is abelian. Let x0 be a point of P
1. We define F : P

1 !
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R=Z by FðxÞ ¼
Ð x

x0
ds ¼ sð½x0; xÞÞ, where ½x0; xÞ denotes the half-open subarc of P

1

from x0 to x in the counterclockwise order. Let f and g be arbitrary elements of

StðsÞ. Then Fð f ðxÞÞ ¼ FðxÞ þFð f ðx0ÞÞ and FðgðxÞÞ ¼ FðxÞ þFðgðx0ÞÞ ([4]). Hence

there are two rotations Rf and Rg satisfying Ff ¼ RfF and Fg ¼ RgF. Since

Fð f �1ðxÞÞ ¼ FðxÞ �Fð f ðx0ÞÞ, we obtain Ffg f �1g�1 ¼ RfRgR
�1
f R�1

g F ¼ F. Here we

assume that there is x1 of supp s such that fg f �1g�1ðx1Þ is di¤erent from x1.

Then fg f �1g�1ðx1Þ and x1 are the endpoints of a component of P
1 � supp s and

mðf fg f �1g�1ðx1ÞgÞ ¼ mðfx1gÞ ¼ 0 because Fð fg f �1g�1ðx1ÞÞ ¼ Fðx1Þ. Now fg f �1g�1 is

an orientation preserving homeomorphism preserving supp s. Hence fg f �1g�1 maps

this component to the adjacent component of P
1 � supp s with the common boundary

fg f �1g�1ðx1Þ. But then fg f �1g�1ðx1Þ is an isolated point in supp s and hence

mðf fg f �1g�1ðx1ÞgÞ must be positive. This is a contradiction. Therefore fg f �1g�1 ¼ id

on supp s. Since an element of PSLð2;RÞ is determined by the image of given three

points, we conclude that StðsÞ is abelian.

Let f be an element of StðsÞ which is not the identity. Let h be an element of

PSLð2;RÞ such that h�1fh is a rotation Rf . Since supp s is not the whole P
1, Rf is a

rational rotation. Suppose that the period of Rf as an action on P
1 is greater than two.

For any element g of StðsÞ, we have Rn
f ðh

�1ghÞ ¼ ðh�1ghÞRn
f for any n A Z because

fg ¼ g f . Let x2 be a point of P
1, and let R denote the rotation satisfying Rðx2Þ ¼

h�1ghðx2Þ. Then h�1ghðRn
f x2Þ ¼ Rn

f ðRx2Þ ¼ RðRn
f x2Þ. Since the orbit of Rf passing

through x2 contains at least three points, h�1gh also coincides with the rotation R.

Since the abelian group fh�1gh; g A StðsÞg is generated by a unique rational rotation,

StðsÞ is generated by a unique periodic element.

In case where all elements of StðsÞ except id have period two, we claim that StðsÞ

consists of id and the other unique element. Let f and g be any elements of StðsÞ with

period two. Suppose that there is a point x3 of P1 such that f ðx3Þ0 gðx3Þ. Let I be a

component of P1 � fx3; gðx3Þg containing f ðx3Þ, and J a component of P1 � fx3; f ðx3Þg

containing gðx3Þ. Since f ðx3Þ is contained in I and is also a boundary of f ðJÞ; f ðJÞ

intersects I . On the other hand, f ðJÞ is a component of P1 � fx3; f ðx3Þg disjoint from

J because f 2 ¼ id. Hence gðx3Þ B f ðJÞ and x3 B f ðJÞ. Therefore, f ðJÞ is contained

in I because I is a component bounded by gðx3Þ and x3. Thus f ðx3Þ ¼ g2f ðx3Þ ¼

g fgðx3Þ A g f ðJÞH gðIÞ. However this contradicts the assumption that f ðx3Þ is con-

tained in I . Thus StðsÞ ¼ fid; f g. r

Corollary 2. Let s1 be a probability measure on P
1 whose support contains at

least three points. Then there is a probability measure s2 with full support such that

f�s2 ¼ s2 for any f of Stðs1Þ.

Proof. Suppose that supp s1 0P
1. By Lemma 6, there is a periodic elliptic ele-

ment f of PSLð2;RÞ generating Stðs1Þ. We choose an element h from PSLð2;RÞ so

that h�1fh is a rotation Rf . Let s2 denote h�s3, where s3 is the ordinary measure on P
1

invariant under rotations. Then s2 is a measure with full support satisfying g�s2 ¼ s2
for any g of Stðs1Þ. r

Theorem 4. Let M be a compact metric space and p : N ! M a P
1-bundle over M

with structural group PSOð2Þ. Let ct; jt; n; m; l and E be as in Theorem 3. Suppose that
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jtjNz : Nz ! NctðzÞ is a projective transformation for all ðz; tÞ A M � R. Then we have

the following trichotomy:

(a) supp lðzÞ consists of one point for any z A E.

(b) supp lðzÞ consists of two points for any z A E.

(c) There exist a jt-invariant probability measure n 0 on N and a scalarwise mea-

surable map l 0
: M ! MðNÞ such that the properties (1), (2), (3) and (4) in

Theorem 3 hold for n 0 and l 0 instead of for n and l, and supp l 0ðzÞ ¼ Nz for any

z A E.

Proof. The following proof is essentially the same as that of Lemma 5.3 of [9].

Let l be an invariant fiber measure satisfying the conclusion of Theorem 3. If supp lðzÞ

does not satisfy the conditions (a) and (b) of Theorem 4, then, for any z and w in E,

there is a projective transformation g : Nz ! Nw satisfying g�lðzÞ ¼ lðwÞ and further-

more supp lðzÞ contains at least three points for any z A E (Lemma 5).

We construct an invariant measure l 0 such that supp l 0ðzÞ ¼ Nz for any z A E.

Let z0 be a point of E. If supp lðz0Þ ¼ Nz0 , then, by Lemma 5, supp lðzÞ ¼ Nz at any

z A E, and we are done. Thus we assume that supp lðz0Þ is not Nz0 . For each z A E,

choose an element UiðzÞ of the open cover fUig such that z A UiðzÞ, and denote by xz the

map xiðzÞjNz : Nz ! P
1. Let s0 ¼ ðxz0Þ�lðz0Þ. Since H ¼ Stðs0Þ is a finite subgroup of

PSLð2;RÞ, the quotient map y : PSLð2;RÞ ! PSLð2;RÞ=H is a covering projection.

Let O denote the subset fg�s0; g A PSLð2;RÞg of the set of probability measures of P1.

Denote by h the map from PSLð2;RÞ to O defined by hðgÞ ¼ g�s0. Then h is con-

tinuous with respect to the weak* topology. Denote by ĥh the map from PSLð2;RÞ=H

to O induced from h. Then ĥh is bijective. Furthermore ĥh is a homeomorphism, be-

cause, by using Furstenberg’s theorem again, we see that if a sequence fgng in PSLð2;RÞ

is not bounded, ðgnÞ�s0 does not converge in O. By Corollary 2, there is a probability

measure s with full support such that g�s ¼ s for any g in H. By assumption, ðxzÞ�lðzÞ

is contained in O for any z A E. We define a map l 0
: M ! MðNÞ by l 0ðzÞ ¼

ðxzÞ
�1
� g�s ðz A EÞ for an element g of PSLð2;RÞ satisfying yðgÞ ¼ ĥh�1ðxzÞ�lðzÞ. Note

that l 0ðzÞ neither depends on the choice of g nor on the choice of xz.

Now we claim that l 0 is scalarwise measurable. Since m is regular, for any e > 0

there is a compact set contained in E such that mðM � KÞ < e and l is continuous on

K . Let fzng be a sequence in K such that zn converges to some point zy on K as

n ! y. We assume without loss of generality that zn A UiðzyÞ for all n. Since l 0ðzÞ

does not depend on the choice of xz, by changing the choice of iðznÞ if necessary, we

also assume that iðznÞ ¼ iðzyÞ for all n. For brevity we write x for xzy . Then

ĥh�1x�lðznÞ converges to ĥh�1x�lðzyÞ. Since y is a covering map, there is a sequence

fgng in PSLð2;RÞ converging to some g such that yðgnÞ ¼ ĥh�1x�lðznÞ and that yðgÞ ¼

ĥh�1x�lðzyÞ. Thus l 0ðznÞ ¼ x�1
� ðgnÞ�s converges to l 0ðzyÞ ¼ x�1

� g�s. Therefore, l 0 is

measurable, and is also scalarwise measurable.

Next we show that l 0 is invariant. Let z be any point of E and let t A R. Then

there are elements g1 and g2 of PSLð2;RÞ satisfying yðg1Þ ¼ ĥh�1ðxzÞ�lðzÞ and yðg2Þ ¼

ĥh�1ðxctðzÞ
Þ�lðctðzÞÞ. These mean, by definition, that lðzÞ ¼ ðxzÞ

�1
� ðg1Þ�s0 and that

lðctðzÞÞ ¼ ðxctðzÞ
Þ�1
� ðg2Þ�s0. Since ðjtÞ�lðzÞ ¼ lðctðzÞÞ, it follows that ðg2Þ

�1
� ðxctðzÞ

Þ�
ðjtÞ�ðxzÞ

�1
� ðg1Þ�s0 ¼ s0. Hence we see that ðg2Þ

�1 � xctðzÞ
� jt � ðxzÞ

�1 � g1 belongs to
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H. Thus we have ðg2Þ
�1
� ðxctðzÞ

Þ�ðjtÞ�ðxzÞ
�1
� ðg1Þ�s ¼ s, which implies that ðjtÞ�l

0ðzÞ ¼

l 0ðctðzÞÞ. Thus l 0 is an invariant fiber measure.

By Lemma 4, l 0 can be assumed to satisfy the property (4) of Theorem 3. Now

define a probability measure n 0 on N by
Ð

dm
Ð

dl 0ðzÞ. Then n 0 is invariant under jt,

which can be shown in the same way as Lemma 1. r

Remark. The authors were communicated that this theorem can also be shown by

using the barycenter of the measure instead of Furstenberg’s theorem.

5. Ruelle invariant.

In this section, we will calculate the Ruelle invariant by means of invariant fiber

measures.

Let M be a closed orientable 3-manifold, and X a non-singular vector field of M.

Denote by ct the flow generated by X . Let jt denote the flow of the projectivized

bundle PX defined in the introduction. We assume that PX is a trivial bundle, and is

parametrized as M � P
1. We define the projection from M � R to PX ¼ M � P

1 by

ðz; xÞ 7! ðz; ½x�Þ, where P
1 is parametrized as R=Z and x 7! ½x� is the natural projection

from R to P
1. Then there is a flow ~jjt of M � R which is a lift of jt ([6]). Let pi

denote the projection to the i-th factor of M � P
1 and M � R ði ¼ 1; 2Þ. We define

tðz; tÞ : R ! R by tðz; tÞðxÞ ¼ p2 ~jjtðz; xÞ.

Let n be a probability measure of M � P
1 invariant under jt and let m ¼ ðp1Þ�n.

By Ruelle’s theorem, there is a limit of ð1=ð2tÞÞðtðz; tÞðxÞ � xÞ as t ! þy m-a.e.z for any

x A R, denoted by rðzÞ ([7], and also [3]), where rðzÞ is independent of the choice of x

and rðzÞ is measurable with respect to m. Then the Ruelle invariant RmðctÞ is defined

by
Ð

M
rðzÞ dm.

Let ~nn denote the measure on M � R which is the lift of n (i.e. ~nnðEÞ ¼
P

n AZ nðfðz; ½x�Þ; ðz; xÞ A E; ne x < nþ 1gÞ for any measurable set E of M � R). Let l

be an invariant fiber measure derived from n with a basic set B (Fundamental lemma).

Let MðRÞ denote the set of measures on R, where these are not always probability

measures. Denote by ~ll : M ! MðRÞ the lift of l defined by ~llðzÞðEÞ ¼
P

n AZ lðzÞ

ðfðz; ½x�Þ; x A E; ne x < nþ 1gÞ for any measurable set E of R. For s A MðRÞ, we

define
Ð b

a
ds by sð½a; bÞÞ if a < b and by �sð½b; aÞÞ if b < a and furthermore by 0 if

a ¼ b. Then we obtain the following properties:

Proposition 1.

(1)
Ð tðz; tÞðbÞ

tðz; tÞðaÞ
d~llðctðzÞÞ ¼

Ð b

a
d~llðzÞ for a; b; t A R and z A B.

(2) ~nn ¼
Ð

dm
Ð

d~llðzÞ.

Let D : M ! R denote the measurable function defined by DðzÞ ¼
Ð tðc�1ðzÞ; 1Þ

ð0Þ

0 d~llðzÞ.

Lemma 7. For any positive integer n,

tðz;nÞð0Þ �
X

n

i¼1

DðciðzÞÞ

�

�

�

�

�

�

�

�

�

�

e 1

holds for any z A B.
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Proof. Since ~llðzÞð½m;mþ 1ÞÞ is equal to 1 for any m A Z and z A B, we obtain

btðz;nÞð0Þce

ð tðz; nÞð0Þ

0

d~llðcnðzÞÞe btðz;nÞð0Þc þ 1

for any n A Z, where bxc denotes the largest integer smaller than or equal to x.

On the other hand, we have

ð tðz; nÞð0Þ

0

d~llðcnðzÞÞ ¼
Xn

i¼1

ð tðci�1ðzÞ; n�iþ1Þð0Þ

tðci ðzÞ; n�iÞð0Þ

d~llðcnðzÞÞ

¼
Xn

i¼1

ð t�1
ðci ðzÞ; n�iÞ

tðci�1ðzÞ; n�iþ1Þð0Þ

0

d~llðciðzÞÞ

¼
Xn

i¼1

ð tðci�1ðzÞ; 1Þ
ð0Þ

0

d~llðciðzÞÞ

¼
Xn

i¼1

DðciðzÞÞ

for z A B. r

Remark. jDðzÞj is bounded because jDðzÞje jtðc�1ðzÞ;1Þð0Þj þ 1.

Let Wþ ¼ fðz; xÞ A M � R; 0ex< tðc�1ðzÞ;1Þ
ð0Þ; tðc�1ðzÞ;1Þ

ð0Þ> 0g and W� ¼ fðz; xÞ A

M � R; tðc�1ðzÞ;1Þð0Þe x < 0; tðc�1ðzÞ;1Þð0Þ < 0g.

Theorem 1.

RmðctÞ ¼
1

2
~nnðWþÞ �

1

2
~nnðW�Þ

Proof. Let E be a conull set of M on which ð1=ð2tÞÞðtðz; tÞðxÞ � xÞ converges as

t ! þy for any x A R. For any z A BVE, we have rðzÞ ¼ limn!yð1=ð2nÞÞtðz;nÞð0Þ ¼

limn!yð1=ð2nÞÞ
Pn

i¼1 DðciðzÞÞ by Lemma 7.

Let Mþ ¼ fz; 0 < tðc�1ðzÞ;1Þð0Þg and M� ¼ fz; tðc�1ðzÞ;1Þð0Þ < 0g. Since ð1=ð2nÞÞPn
i¼1 DðciðzÞÞ is bounded and m is invariant under ct, we obtain

RmðctÞ ¼

ð
M

rðzÞ dm ¼ lim
n!y

1

2n

Xn

i¼1

ð
M

DðciðzÞÞ dm

¼
1

2

ð
M

DðzÞ dm ¼
1

2

ð
M

dm

ð tðc�1ðzÞ; 1Þ
ð0Þ

0

d~llðzÞ

¼
1

2

ð
Mþ

dm

ð tðc�1ðzÞ; 1Þ
ð0Þ

0

d~llðzÞ þ
1

2

ð
M�

dm

ð tðc�1ðzÞ; 1Þ
ð0Þ

0

d~llðzÞ

¼
1

2

ð
M

dm

ð
fy; ðz;yÞAWþg

d~llðzÞ �
1

2

ð
M

dm

ð
fy; ðz;yÞAW�g

d~llðzÞ

¼
1

2
~nnðWþÞ �

1

2
~nnðW�Þ: r
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Remark. In the proof of Theorem 1, we used the fact that ð1=ð2nÞÞ
Pn

i¼1

Ð
M

DðciðzÞÞ dm is constant to ð1=2Þ
Ð
M
DðzÞ dm. Thus we have

1

2n

ð

M

tðz;nÞð0Þ dm� RmðctÞ

����
����e

1

2n

ð

M

tðz;nÞð0Þ dm�
1

2

ð

M

DðzÞ dm

����
����

e
1

2n

ð

M

tðz;nÞð0Þ dm�
1

2n

Xn

i¼1

ð

M

DðciðzÞÞ dm

�����

�����

e
1

2n

by Lemma 7. This implies that the Ruelle invariant depends continuously on m with

respect to the weak* topology and on ct with respect to C1 topology, which was already

shown in [7] without using the invariant fiber measure. On the other hand, Gambaudo-

Ghys showed that the Ruelle invariant does not depend continuously on ct with respect

to C 0 topology ([3]).

Remark. If ct is ergodic, rðzÞ ¼ limn!þyð1=nÞ
Pn

i¼1 DðciðzÞÞ is constant m-a.e.z.

Therefore limt!þy tðz; tÞðxÞ ¼ þy m-a.e.z if RmðctÞ is positive. On the other hand,

limt!�yð1=ð2tÞÞðtðz; tÞðxÞ � xÞ exists m-a.e.z and
Ð
M
ðlimt!�yð1=ð2tÞÞðtðz; tÞðxÞ � xÞÞ dm is

equal to RmðctÞ (See [7]. This can also be shown by using the invariant fiber measure).

Thus we have limt!�y tðz; tÞðxÞ ¼ �y m-a.e.z if RmðctÞ is positive. Therefore, there

is an invariant conull set E of M such that limt!þy tðz; tÞðxÞ ¼ þy ðz A EÞ and

limt!�y tðz; tÞðxÞ ¼ �y ðz A EÞ if RmðctÞ > 0. Such an orbit of ~jjt is called proper and

is considered in [6].

Let D2 denote the closed disc fðz1; z2Þ A R
2; z21 þ z22 e 1g. Denote by m the canon-

ical measure dz15dz2. Let G denote the set of di¤eomorphisms of D2 preserving m

which are the identity near the boundary. Denote by PD2 the projectivized bundle of

the tangent bundle of D2, which is parametrized as D2 � P
1. For an element f of G,

the di¤erential Df induces a di¤eomorphism of PD2, denoted by Pf , and it has a lift ePfPf
on the infinite cyclic cover D2 � R corresponding to the isotopy from the identity to

f . Then the Ruelle invariant Rmð f Þ is defined by ð1=2Þ
Ð
D2ðlimn!y p2 ePfPf nðz; xÞ=nÞ dm

ðn A Z; z A D2; x A RÞ, where pi is the projection to the i-th factor ði ¼ 1; 2Þ.

Let n be a probability measure of D2 � P
1 invariant under Pf satisfying ðp1Þ�n ¼ m.

By the same way as Theorem 1, we can prove the following.

Theorem 5. Let Wþ ¼ fðz; xÞ A D2 � R; 0e x < p2 ePfPf ð f �1ðzÞ; 0Þ; p2 ePfPf ð f �1ðzÞ; 0Þ

> 0g and W� ¼ fðz; xÞ A D2 � R; p2 ePfPf ð f �1ðzÞ; 0Þe x < 0; p2 ePfPf ð f �1ðzÞ; 0Þ < 0g. Then

Rmð f Þ ¼ ð1=2Þ~nnðWþÞ � ð1=2Þ~nnðW�Þ for the lift ~nn of n.

Theorem 2. Let f and g be elements of G. If there is a probability measure n of

PD2 invariant under both Pf and Pg satisfying ðp1Þ�n ¼ m, then Rmðg � f Þ ¼ Rmð f Þþ

RmðgÞ.

Proof. This theorem is proved by the following equations:
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Rmðg � f Þ ¼
1

2

ð

M

dm

ð p2Pg�ff ððg�f Þ�1ðzÞ;0Þ

0

d~llðzÞ

¼
1

2

ð

M

dm

ð p2PgePfeððg�f Þ�1ðzÞ;0Þ

p2Pgeðg�1ðzÞ;0Þ

d~llðzÞ þ
1

2

ð

M

dm

ð p2Pgeðg�1ðzÞ;0Þ

0

d~llðzÞ

¼
1

2

ð

M

dm

ð p2Pfeð f �1g�1ðzÞ;0Þ

0

d~llðg�1ðzÞÞ þ RmðgÞ

¼ Rmð f Þ þ RmðgÞ r

Let G be an amenable subgroup of G. By using the definition of the amenable

subgroup, we can construct a probability measure n of D2 � P
1 invariant under G

satisfying ðp1Þ�n ¼ m. Thus we conclude Corollary 1 in the introduction.
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