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Abstract. Optimal energy decay estimates will be derived for weak solutions to the

Cauchy problem in R
N ðN ¼ 1; 2; 3Þ of dissipative wave equations, which have lower

power nonlinearities jujp�1
u satisfying 1þ 2=N < paN=½N � 2�þ.

1. Introduction.

In this paper we are concerned with the following Cauchy problem in R
N :

uttðt; xÞ � Duðt; xÞ þ utðt; xÞ ¼ juðt; xÞjp�1
uðt; xÞ; ðt; xÞ A ð0;yÞ � R

N ; ð1:1Þ

uð0; xÞ ¼ u0ðxÞ; utð0; xÞ ¼ u1ðxÞ; x A R
N : ð1:2Þ

First let us introduce some notations used throughout this paper. The total energy

EuðtÞ to the equation (1.1) is defined as follows:

EuðtÞ ¼
1

2
kutðt; �Þk

2 þ
1

2
k‘uðt; �Þk2;

where in these cases, k � kq and k � kH 1 denote the usual LqðRNÞ-norm and H 1ðRNÞ-

norm, respectively. Furthermore we use k � k for k � k2.

For the Cauchy problem (1.1)–(1.2) in R
N ðNb 1Þ with the usual nonlinearity:

1þ
4

N
a p <

N þ 2

N � 2
; ð1:3Þ

for the small initial data without L1 � L1 assumption Nakao-Ono [13] has already

derived the global existence of small weak solutions uðt; xÞ and the decay estimates:

kuðt; �Þk2aC; EuðtÞaCð1þ tÞ�1: ð1:4Þ

Their argument is based on the so called (modified) potential well method combined

with the energy method whose idea originally comes from Payne-Sattinger [15] and

Sattinger [17].

On the other hand, in Kawashima-Nakao-Ono [5] (see also Matsumura [7]) they

dealt with the Cauchy problem (1.1)–(1.2) in R
N ðNb 1Þ with juðt; xÞjp�1

uðt; xÞ replaced
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by �juðt; xÞjp�1
uðt; xÞ, and obtained the L p � Lq estimates of global weak solutions in

the framework of ‘‘higher’’ power (1.3):

kuðt; �Þk2aCð1þ tÞ�Nð1=r�1=2Þ; EuðtÞaCð1þ tÞ�1�Nð1=r�1=2Þ ð1:5Þ

for a rather stronger assumption of the initial data:

ðu0; u1Þ A ðH 1ðRNÞVL rðRNÞÞ � ðL2ðRNÞVLrðRNÞÞ

for r A ½1; 2�. Their argument depends on the monotonicity of the nonlinearity. But,

it is easy to see that the same result can be also derived for the non-monotone case

of nonlinearity by combining the (modified) potential well method with the L p � Lq

estimates for the linear equation of (1.1)–(1.2) with juðt; xÞjp�1
uðt; xÞ replaced by f ðt; xÞ.

In any case the condition (1.3) plays an essential role in deriving the various decay

or bounded estimates of solutions. For the other type of decay property for the linear

and nonlinear problems, we refer the reader to Ikehata [3], Ikehata-Matsuyama [4],

Mochizuki-Nakazawa [9], Saeki-Ikehata [16], Shibata [19], Zuazua [22] and the refer-

ences therein.

On the other hand, quite recently in [21] Todorova-Yordanov have already found

the critical exponent 1þ 2=N ðNb 1Þ to the Cauchy problem (1.1)–(1.2) under rather

stronger assumptions on the initial data such as compactness of the support.

The purpose of this paper is to relax the condition (1.3) to the lower power of

nonlinearity:

1þ
2

N
< pa 1þ

4

N
;

and to derive the optimal decay estimates like (1.5) for small global solutions to the

Cauchy problem (1.1)–(1.2) without compactness of the support of the initial data.

Since we consider the small solutions, it seems di‰cult to relax below the condition (1.3)

of the power because the nonlinearity is hard to vanish as t ! þy. In particular, in

Li-Zhou [6] the small data blowup results to the Cauchy problem (1.1)–(1.2), which has

the power 1 < pa 1þ 2=N ðN ¼ 1; 2Þ have been already discussed. So our study will

become a kind of interpolation of the power p between ð1; 1þ 2=N� and ð1þ 4=N;

N=ðN � 2Þ� in the case when (at least) N ¼ 1; 2.

Our idea is to combine the L p � Lq estimates in Kawashima-Nakao-Ono [5] and

Matsumura [7] with the method in Ikehata [2] which has recently relaxed below the

condition (1.3) to

1þ
6

N þ 2
< pa

N

½N � 2�þ
;

for the case when N ¼ 2; 3 concerning the exterior mixed problem of (1.1), where

½a�þ ¼ maxfa; 0g. We do not rely on the potential well method as in [13] so that even

in the ‘‘monotone’’ nonlinearity case we must restrict the size of the initial data su‰-

ciently small.

Before introducing our results we shall impose the following assumptions:
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1þ
2

N
< p < þy; ðN ¼ 1; 2Þ; ð1:6Þ

2 < pa
N

N � 2
; ðN ¼ 3Þ: ð1:7Þ

Note that in the case when N ¼ 3 we see

1þ
2

N
<

3

2
þ

1

N
< 2 < 1þ

6

N þ 2
< 1þ

4

N
<

N

N � 2
: ð1:8Þ

Our main result reads as follows.

Theorem 1.1. Suppose that (1.6) in the case when N ¼ 1; 2 and (1.7) in the case

when N ¼ 3 are satisfied. Then there exists a real number e0 > 0 such that if the initial

data ðu0; u1Þ A ðH 1ðRNÞVL1ðRNÞÞ � ðL2ðRNÞVL1ðRNÞÞ further satisfies

I0;u 1 ku0k1 þ ku0kH 1 þ ku1k1 þ ku1ka e0;

the problem (1.1)–(1.2) admits a global solution u A Cð½0;yÞ;H 1ðRNÞÞVC1ð½0;yÞ;

L2ðRNÞÞ satisfying the decay property:

kuðt; �Þk2aCI 20;uð1þ tÞ�N=2;

EuðtÞaCI 20;uð1þ tÞ�1�N=2

with some generous constant C > 0.

Remark 1.1. For the solutions to the problem (1.1)–(1.2) with (at least) small

initial data, our result is much sharper than that in [5, Theorem 1] and thus, these results

imply that the exponent 1þ 4=N is just the technical value and we can conjecture that

for all Nb 1, 1þ 2=N < p < ðN þ 2Þ=½N � 2�þ is the region for which the small data

global existence property occurs. The exponent 1þ 2=N is the so called Fujita expo-

nent in the semilinear heat equation case (see Li-Zhou [6]). In a sense we can say that

the result in Theorem 1.1 implies the so called di¤usion structure of the equation (1.1)

(see Han-Milani [1], Nishihara [14]). Furthermore, in the case when N ¼ 1; 2 Theorem

1.1 completely includes the result in [21]. Finally we can also deal with the other type

of nonlinearities Gjujp, �jujp�1
u and so on.

By the way, in the occasion of the proof of Theorem 1.1 we shall proceed our

argument based on the following well-known result. (cf. Strauss [20] and Nakao-Ono

[13]):

Proposition 1.1. Suppose 1 < paN=½N � 2�þ with Nb 1. For each ðu0; u1Þ A

H 1ðRNÞ � L2ðRNÞ, there exists a maximal existence time Tm > 0 such that the prob-

lem (1.1)–(1.2) has a unique solution u A Cð½0;TmÞ;H
1ðRNÞÞVC1ð½0;TmÞ;L

2ðRNÞÞ. If

Tm < þy, then

lim
t"Tm

½kuðt; �Þk þ k‘uðt; �Þk þ kutðt; �Þk� ¼ þy:
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2. Proof of Theorem 1.1.

In this section let us prove Theorem 1.1. For this aim we first prepare the fol-

lowing lemma, that is the Gagliardo-Nirenberg inequality.

Lemma 2.1. Let 1a r < qa 2N=½N � 2�þ, 2a q and Nb 1. Then the inequality

kvkqaK0k‘vk
ykvk1�y

r ; v A H 1ðRNÞ

holds with some constant K0 > 0 and

y ¼
1

r
�
1

q

� �

1

r
�
1

2
þ

1

N

� ��1

provided that 0 < ya 1.

Now we shall consider the linear wave equation:

vttðt; xÞ � Dvðt; xÞ þ vtðt; xÞ ¼ 0; ðt; xÞ A ð0;yÞ � R
N ; ð2:1Þ

vð0; xÞ ¼ v0ðxÞ; vtð0; xÞ ¼ v1ðxÞ; x A R
N : ð2:2Þ

For this linear problem, in [5] and [7] the so called L p � Lq estimates of solutions have

been already derived. Thus by using these L p � Lq estimates and the so called Duhamel

principle we shall handle the semilinear problem (1.1)–(1.2).

Set

I1; v ¼ kv0k þ kv0k1 þ kv1k þ kv1k1:

Proposition 2.1 ([5, Proposition 3.2]). Let Nb 1. Then for each ðv0; v1Þ A

ðH 1ðRNÞVL1ðRNÞÞ � ðL2ðRNÞVL1ðRNÞÞ, the solution v of (2.1)–(2.2) satisfies

kvðt; �Þk2aCI 21; vð1þ tÞ�N=2:

Proposition 2.2 ([7, Lemma 2]). Let Nb 1. Then for each ðv0; v1Þ A Cy

0 ðRNÞ �

Cy

0 ðRNÞ, the solution v of (2.1)–(2.2) satisfies

EvðtÞaCI 20; vð1þ tÞ�1�ðN=2Þ:

So, based on these Propositions 2.1 and 2.2 we can derive the following total energy

decay estimates to the weak solution of the linear problem (2.1)–(2.2).

Proposition 2.3. Let Nb 1. Then for each ðv0; v1Þ A ðH 1ðRNÞVL1ðRNÞÞ �

ðL2ðRNÞVL1ðRNÞÞ, the weak solution v A Cð½0;þyÞ;H 1ðRNÞÞVC1ð½0;þyÞ;L2ðRNÞÞ

to the problem (2.1)–(2.2) has the decay estimates:

kvðt; �Þk2aCI 21; vð1þ tÞ�N=2;

EvðtÞaCI 20; vð1þ tÞ�1�ðN=2Þ:

Proof. Since v0 A H 1ðRNÞVL1ðRNÞ and v1 A L2ðRNÞVL1ðRNÞ can be approxi-

mated by smooth functions ffngHCy

0 ðRNÞ and fcngHCy

0 ðRNÞ satisfying
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kfn � v0kH 1 þ kfn � v0k1 ! 0 ðn ! þyÞ;

kcn � v1k þ kcn � v1k1 ! 0 ðn ! þyÞ;

the desired statement is rather standard. r

Under these preparations we can prove Theorem 1.1. The proof will be done

along the same way as in [2].

Proof of Theorem 1.1. First define a semigroup SðtÞ : H 1ðRNÞ � L2ðRNÞ !

H 1ðRNÞ � L2ðRNÞ by

SðtÞ :
u0

u1

� �

7!
vðt; �Þ

vtðt; �Þ

� �

;

where vðt; �Þ A Cð½0;þyÞ;H 1ðRNÞÞVC1ð½0;þyÞ;L2ðRNÞÞ is a unique solution to the

‘‘linear’’ problem (2.1)–(2.2).

The following well-known inequalities are useful in order to derive some decay rate

(see Segal [18]).

Lemma 2.2. If b > 1 and ha b, then there exists a constant Cb;h > 0 depending only

on b and h such that

ð t

0

ð1þ t� sÞ�hð1þ sÞ�b
dsaCb;hð1þ tÞ�h

for all tb 0.

In the following paragraph we set I0;u ¼ I0 for simplicity. Now we shall derive the

decay property of a nonlinear problem (1.1)–(1.2). By a standard semigroup theory,

the nonlinear problem (1.1)–(1.2) is rewritten as the integral equation:

UðtÞ ¼ SðtÞU0 þ

ð t

0

Sðt� sÞFðsÞ ds; ð2:3Þ

where UðtÞ ¼
uðt; �Þ

utðt; �Þ

� �

, U0 ¼
u0

u1

� �

, FðsÞ ¼
0

f ðuðs; �ÞÞ

� �

with f ðuÞðxÞ ¼ juðxÞjp�1
uðxÞ.

We proceed our argument based on the way of Nakao [12] (the small data

perturbation method). In order to show the global existence, it su‰ces to obtain the a

priori estimates for EuðtÞ and kuðt; �Þk in the interval of existence ½0;TmÞ (see Proposition

1.1). As a result of Proposition 2.3, first one has

Lemma 2.3. Under the assumptions as in Theorem 1.1, we have

kSðtÞU0kEaCI0ð1þ tÞ�1=2�N=4

on ½0;TmÞ, where we set

k
u

v

� �

kE ¼ kvk þ k‘uk:

Furthermore, if

Decay esitimates for wave equations 369



IðsÞ ¼ k f ðuðs; �ÞÞk þ k f ðuðs; �ÞÞk1 < þy ð2:4Þ

for each s A ½0; t� with t A ½0;TmÞ, then from Proposition 2.3 we have

kSðt� sÞFðsÞkEaCIðsÞð1þ t� sÞ�1=2�N=4: ð2:5Þ

Thus from (2.3) one can estimate UðtÞ as follows:

kUðtÞkEaCI0ð1þ tÞ�1=2�N=4 þ C

ð t

0

ð1þ t� sÞ�1=2�N=4
IðsÞ ds: ð2:6Þ

Take K > 0 so large (if necessary) such as

kU0kE < KI0; ku0k < KI0:

Because of the continuity of functions t 7! kUðtÞkE and t 7! kuðtÞk we assume that there

exists a real number T A ð0;TmÞ such that

kUðtÞkE < KI0ð1þ tÞ�ð1=2þN=4Þ; and kuðtÞk < KI0ð1þ tÞ�N=4 on ½0;TÞ; ð2:7Þ

and

kUðTÞkE ¼ KI0ð1þ TÞ�ð1=2þN=4Þ; or kuðTÞk ¼ KI0ð1þ TÞ�N=4: ð2:8Þ

By Lemma 2.1 and the assumption (1.6) or (1.7) we have

k f ðuðs; �ÞÞk1 ¼ kuðt; �ÞkppaK0kuðs; �Þk
pð1�y1Þk‘uðs; �Þkpy1

with y1 ¼ Nðp� 2Þ=2p A ð0; 1�. Similarly one has

k f ðuðs; �ÞÞkaK0kuðs; �Þk
pð1�y2Þk‘uðs; �Þkpy2

with y2 ¼ Nðp� 1Þ=2p A ð0; 1�. Therefore, as long as (2.7)–(2.8) holds one gets

k f ðuðs; �ÞÞk1aK0fKI0ð1þ sÞ�N=4gpð1�y1ÞfKI0ð1þ sÞ�1=2�N=4gpy1

¼ K0K
pI

p
0 ð1þ sÞ�pðy1=2þN=4Þ;

k f ðuðs; �ÞÞkaK0fKI0ð1þ sÞ�N=4gpð1�y2ÞfKI0ð1þ sÞ�1=2�N=4gpy2

¼ K0K
pI

p
0 ð1þ sÞ�pðy2=2þN=4Þ;

for s A ½0;T �. Here we set

g1 ¼ pN=4þNðp� 2Þ=4; g2 ¼ pN=4þNðp� 1Þ=4:

Summing up these calculations we have the following lemma, which shows the validity

of the condition (2.4).

Lemma 2.4. As long as (2.7)–(2.8) hold on ½0;T � we have

k f ðuðt; �ÞÞk1aK0K
pI

p
0 ð1þ tÞ�g1 ;

k f ðuðt; �ÞÞkaK0K
pI

p
0 ð1þ tÞ�g2 :
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By applying Lemmas 2.3 and 2.4 to (2.3) we see that

kUðtÞkEaCI0ð1þ tÞ�1=2�N=4 þ C

ð t

0

ð1þ t� sÞ�1=2�N=4
K0K

pI
p
0 fð1þ sÞ�g1 þ ð1þ sÞ�g2g ds

aCI0ð1þ tÞ�1=2�N=4 þ CK0K
pI

p
0

ð t

0

ð1þ t� sÞ�1=2�N=4ð1þ sÞ�g1 ds:

Note that g1 > 1 because of the assumptions (1.6) or (1.7) and g1 < g2. Thus from

Lemma 2.2 and again (1.6) or (1.7) it follows that

kUðtÞkEaCI0ð1þ tÞ�1=2�N=4 þ CK0K
pI

p
0 ð1þ tÞ�1=2�N=4

with some constant C > 0 independent of K and I0 (see also (1.8)). Setting

Q0ðI0;KÞ ¼ C þ CK0K
pI

p�1
0 ;

we get the following lemma.

Lemma 2.5. As long as (2.7)–(2.8) hold on ½0;T � we get

kUðtÞkEa I0Q0ðI0;KÞð1þ tÞ�1=2�N=4:

Next let us derive the L2-estimates for the local solution uðt; xÞ to the problem

(1.1)–(1.2). Indeed, we have from (2.3) and Proposition 2.3 that

kuðt; �ÞkaCI0ð1þ tÞ�N=4 þ C

ð t

0

ð1þ t� sÞ�N=4
IðsÞ ds:

Therefore, it follows from Lemma 2.4 and the similar argument to Lemma 2.5 that

kuðt; �ÞkaCI0ð1þ tÞ�N=4 þ C

ð t

0

ð1þ t� sÞ�N=4
K0K

pI
p
0 ½ð1þ sÞ�g1 þ ð1þ sÞ�g2 � ds

aCI0ð1þ tÞ�N=4 þ CK0K
pI

p
0

ð t

0

ð1þ t� sÞ�N=4ð1þ sÞ�g1 ds

with some constant C > 0 independent of K and I0, where g1 > 1 because of (1.6) or

(1.7). This together with Lemma 2.2 implies

kuðt; �ÞkaCI0ð1þ tÞ�N=4 þ CK0K
pI

p
0 ð1þ tÞ�N=4:

Thus we have

Lemma 2.6. As long as (2.7)–(2.8) hold on ½0;T � it follows that

kuðt; �Þka I0Q0ðI0;KÞð1þ tÞ�N=4:

Take K > C further so large and take I0 so small such as

CK0K
pI

p�1
0 < K � C: ð2:9Þ

For such K > 0 and I0 we have

Q0ðI0;KÞ < K :
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Therefore, by combining this with Lemmas 2.5 and 2.6 we see that

kUðtÞkE < KI0ð1þ tÞ�1=2�N=4; ð2:10Þ

kuðt; �Þk < KI0ð1þ tÞ�N=4 ð2:11Þ

on ½0;T �, which yields a contradiction to (2.8). Thus the a priori estimates (2.10) and

(2.11) hold on ½0;TmÞ under the assumption (2.9). Because of Proposition 1.1 the local

solution uðt; �Þ exists globally in time and these estimates hold in fact for all tb 0.

Taking e0 ¼ ððK � CÞ=CK0K
pÞ1=ðp�1Þ, the proof of Theorem 1.1 is now finished. r
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(1968), 459–497.

[19] Y. Shibata, On the global existence of classical solutions of second order fully nonlinear hyperbolic

equations with first order dissipation in the exterior domain, Tsukuba J. Math., 7 (1983), 1–68.

R. Ikehata, Y. Miyaoka and T. Nakatake372



[20] W. A. Strauss, Nonlinear wave equations, CBMS Reg. Conf. Ser. Math., 73, Amer. Math. Soc.,

Providence, RI, 1989.

[21] G. Todorova and B. Yordanov, Critical exponent for a nonlinear wave equation with damping, J.

Di¤erential Equations, 174 (2001), 464–489.

[22] E. Zuazua, Exponential decay for the semilinear wave equation with locally distributed damping,

Comm. Partial Di¤erential Equations, 15 (1990), 205–235.

Ryo Ikehata Yasuaki Miyaoka

Department of Mathematics Jyôsei Junior Highschool
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