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Abstract. A rigged Hilbert space formalism is introduced to study Fock space oper-

ators. The symbols of continuous operators on a rigged Fock space are characterized in

terms of Bargmann-Segal spaces and complex Gaussian integrals. In particular, charac-

terizations of bounded operators and of operators of Hilbert-Schmidt class on the middle

Fock space are obtained. As an application we establish an operator version of chaotic

expansion (Wiener-Itô expansion) and describe a relation to the Fock expansion in terms

of the Wick exponential of the number operator. As another application we discuss regu-

larity property of a solution to a normal-ordered white noise di¤erential equation gener-

alizing a quantum stochastic di¤erential equation.

1. Introduction.

A rigged Hilbert space approach [3], [13], widely accepted in various fields of math-

ematics and mathematical physics, is a powerful tool also in the study of operators on a

(Boson) Fock space, e.g., [4], [5], [15], [24], [25], [39], [40]. In particular, a nuclear

rigging (or also called a Gelfand triple) of a special type:

WHGðHC ÞHW
�

has been studied under the name of white noise theory or Hida calculus [17], [19], [26],

[27], and much attention has been attracted also to the white noise operators LðW;W
�Þ

in connection with quantum stochastic calculus and infinite dimensional harmonic anal-

ysis, see e.g., [34].

An important contribution of white noise theory is found in a series of charac-

terization theorems of the S-transform:

SFðxÞ ¼ 5F; fx6; F A W
�
;

and of the operator symbol:

X̂Xðx; hÞ ¼ 5Xfx; fh6; X A LðW;W
�Þ;

where fx is an exponential vector (or also called a coherent vector) and is defined by

fx ¼ 1;
x

1!
;

xn2

2!
; . . . ;

xnn

n!
; . . .

 !

:
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In fact, many variants of characterization theorems for the S-transforms and for the

operator symbols have been obtained with a common feature: they are characterized as

entire holomorphic functions on an infinite dimensional vector space having certain

growth rates, see e.g., [1] and references cited therein for the S-transform; [10], [33] for

the operator symbol; and [22] for a unification. However, since these characterizations

depend heavily on the nuclearity of W, elements in the Fock space GðHC Þ itself or

bounded operators on GðHC Þ have not been characterized in terms of growth rates.

A similar characterization for operator symbols is obtained in [40], where another type

of rigged Fock space is constructed from entire vectors but is still a nuclear rigging.

Meanwhile, the complex Gaussian analysis has received some new understanding in

connection with coherent state representations [37], [38] and the Bargmann-Segal space

[29], [43], see also [14] for a historical survey and recent topics on loop spaces. In

connection with the characterization theorems, a relation between the S-transform and

the Segal-Bargmann transform was first pointed out in [23] and has been studied to some

extent, see also [28]. Among others, the work of Grothaus, Kondratiev and Streit [16]

should be drawn considerable attention: the S-transform of di¤erent classes of vec-

tors are characterized by means of the Bargmann-Segal space and the complex Gaussian

integrals. Their discussion is based on a more general rigging. Given a certain self-

adjoint operator K acting in a Hilbert space HC , we first construct a rigged Hilbert

space:

Dy ¼ proj lim
p!y

Dp H � � �HDp H � � �

HD0 ¼ HC H � � �HD�p H � � �H ind lim
p!y

D�p ¼ D
�
y
: ð1:1Þ

Then, taking the Boson Fock space over the above Hilbert spaces, we obtain a rigged

Fock space:

Gy ¼ proj lim
p!y

Gp H � � �HGp ¼ GðDpÞH � � �

HG0 ¼ GðHC ÞH � � �HG�p ¼ GðD�pÞH � � �H ind lim
p!y

G�p ¼ G
�
y
: ð1:2Þ

These riggings are not necessarily nuclear so that their result [16] contains a charac-

terization for the S-transform of GðHC Þ. Interesting examples of a non-nuclear rigging

have been also discussed in [21], [31], [42].

It is therefore very natural to extend the idea of Grothaus, Kondratiev and Streit

[16] and to characterize the symbols of several di¤erent classes of operators in the Fock

space. We first note that the symbol Y ¼ X̂X of X A LðGp;GqÞ is uniquely extended to

an entire function on Dp �D�q, where p; q A R. Thus, the question is to find additional

condition for an entire function Y : Dp �D�q ! C to be the symbol of an operator. In

fact, we describe such condition in terms of the complex Gaussian space ðN�
C
; nÞ and the

Bargmann-Segal space E2ðnÞ. The main theorem (Theorem 5.2) claims that such an

entire function Y is the symbol of some operator X A LðGp;GqÞ if and only if there

exists a constant Cb 0 such that

X

k

i¼1

aiYðxi;K
q�Þ

�

�

�

�

�

�

�

�

�

�

E 2ðnÞ

aC
X

k

i¼1

aifxi

�

�

�

�

�

�

�

�

�

�

p

ð1:3Þ
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for any kb 1 and any choice of xi A Dp and ai A C , i ¼ 1; . . . ; k. Usefulness of our

main theorem is illustrated with two applications, where condition (1.3) is verified

with no di‰culty. Moreover, the symbol of an operator of Hilbert-Schmidt class

X A L2ðGp;GqÞ is also characterized in this line (Theorem 6.2).

As a first application of our main theorem we prove that each operator X A

LðGp;GqÞ admits an (operator version of ) chaotic expansion or Wiener-Itô expansion:

X ¼
Xy

l;m¼0

Il;mðKl;mÞ; ð1:4Þ

where Il;mðKl;mÞ is determined by

Il;mðKl;mÞbðx; hÞ ¼ hKl;mx
nm

; hnli:

On the other hand, as is well known [34], the Fock expansion of X is given by

X ¼
Xy

l;m¼0

X l;mðLl;mÞ; ð1:5Þ

where X l;mðLl;mÞ is determined by

X l;mðLl;mÞbðx; hÞ ¼ hLl;mx
nm

; hnliehx;hi:

It is noteworthy that the above two expansions (1.4) and (1.5) are related through the

Wick (normal-ordered) exponential of the number operator N in such a way that

Il;mðKl;mÞ ¼ wexpð�NÞ � X l;mðKl;mÞ:

Moreover, with this formula the chaotic expansion (1.4) becomes

X ¼
Xy

l;m;n¼0

ð�1Þn

n!
Xnþl;nþmðI

nn nKl;mÞ; X A LðGp;GqÞ: ð1:6Þ

The precise statements are given in Theorem 8.3 and its corollaries. The expansion

(1.6) is a generalization of Attal [2], where only operators of Hilbert-Schmidt class are

discussed as a quantum analogue of a multiple Wiener-Itô integral, see also [30].

The second application of our main theorem (Theorem 5.2) is found in a study of

quantum stochastic di¤erential equations. Along with our approach it is more natural

to consider a normal-ordered white noise di¤erential equation:

dX

dt
¼ Lt � X; Xð0Þ ¼ I ; ð1:7Þ

where Lt is a given quantum stochastic process and � stands for the Wick product (or

normal-ordered product). The solution Xt should be found in a space of white noise

operators. If

Lt ¼ L1at þ L2a
�
t þ L3a

�
t at þ L4I ;

where at and a�
t are the annihilation and creation operators at a time point t, equation

(1.7) becomes equivalent to a quantum stochastic di¤erential equation:

dX ¼ ðL1 dAt þ L2 dA
�
t þ L3 dLt þ L4ÞX; Xð0Þ ¼ I ;
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for generalities see e.g., [32], [41]. A normal-ordered white noise di¤erential equation

(1.7), allowing to include more singular quantum noises such as higher powers of quan-

tum white noises, is thus regarded as a natural generalization of a quantum stochastic

di¤erential equation. In a series of papers [8], [9], [35], [36] we proved several unique

existence results, and in the recent paper [10] we sharpened the characterization theo-

rem for operator symbols and found a weighted Fock space in which the solution acts.

Now our characterization theorem (Theorem 5.2) o¤ers a new method of examining

regularity properties of a solution. For a particular coe‰cient Lt we verify condition

(1.3) and see that the solution lies in LðGy;G�qÞ for some qb 0. In other words, the

solution is grasped as (unbounded) operators acting in the Boson Fock space G�q, which

is di¤erent from the original GðHCÞ ¼ G0 unless q ¼ 0. This result (Theorem 9.4) is

also interesting for being free from the nuclearity of W that is required in the former

works.

This paper is organized as follows: In Section 2 we review the basic construction

of riggings of Fock space after [3], [13]. In Section 3 we mention the definitions of an

exponential vector, S-transform and operator symbol. In Section 4 we introduce the

Bargmann-Segal space after [16] and recall relationship between the S-transform and the

duality transform (or Segal-Bargmann map). In Section 5 we prove characterization of

a continuous operator in LðGp;GqÞ, p; q A R, in terms of the operator symbol and the

Bargmann-Segal space. In Section 6 we investigate characterization of an operator of

Hilbert-Schmidt class L2ðGp;GqÞ, p; q A R. In Section 7 an operator-version of chaotic

expansion (Wiener-Itô expansion) is established with detailed argument of convergence.

In Section 8 we mention relationship between the chaotic expansion and the Fock expan-

sion. In Section 9 we study a normal-ordered white noise di¤erential equation as an

application of our main result.

Acknowledgements. The second named author would like to express his grat-

itude to Professor D. M. Chung for his kind invitation to Sogang University in February

2001, where most part of this work was completed. The authors thank the referee for

several comments that improved this paper.

2. Construction of riggings of Fock space.

Let H be a real separable Hilbert space with norm j � j0 and inner product h� ; �i.

The complexification is denoted by HC ¼ Hþ iH whose norm is denoted by the same

symbol. According to our convention, the inner product h� ; �i is extended to a C-

bilinear form so that jxj20 ¼ hx; xi for x A HC . Throughtout, to avoid confusion we do

not use a specific symbol for the hermitian inner product of a complex Hilbert space.

The Fock space over HC , denoted by GðHC Þ, is by definition the space of all sequences

f ¼ ð fnÞ
y
n¼0 where fn is a member of the n-fold symmetric tensor power H

n̂nn
C

and

kfk20 ¼
Xy

n¼0

n!j fnj
2
0 < y:

We denote by 5� ; �6 the canonical C-bilinear form on GðHC Þ defined through h� ; �i.
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By means of the standard method (see e.g., [3], [13]) we shall construct riggings

of HC and of GðHCÞ. Let K be a selfadjoint operator in HC with domain DomðKÞ

satisfying

(K1) inf SpecðKÞb 1.

For each pb 0 the dense subspace DomðK pÞHHC becomes a Hilbert space equipped

with the norm

jxjp ¼ jK pxj0; x A DomðK pÞ:

This Hilbert space is denoted by Dp ¼ DpðKÞ. From inf SpecðKÞb 1 we see that

jxjpa jxjq for 0a pa q, and hence Dq HDp HD0 ¼ HC . We then define a countable

Hilbert space by

Dy ¼ DyðKÞ ¼ proj lim
p!y

DpðKÞ ¼ 7
pb0

DpðKÞ: ð2:1Þ

In other words, DyðKÞ is the space of Cy-vectors for K topologized in a natural way.

For pb 0 let D�p be the completion of HC with respect to the norm jxj�p ¼

jK�pxj0. Then, we have HC ¼ D0 HD�p HD�q for 0a pa q, and set

D�y ¼ D�yðKÞ ¼ ind lim
p!y

D�pðKÞ ¼ 6
pb0

D�pðKÞ: ð2:2Þ

By the Riesz theorem the dual space of HC is identified with itself. More precisely, for

f A H
�
C

there exists a unique hf A HC such that f ðxÞ ¼ hhf ; xi for x A HC , and the map

f 7! hf gives rise to an isometric isomorphism from H
�
C

onto HC . By extending this

isomorphism we identify the dual space of Dp with D�p. The canonical C-bilinear form

on D�p �Dp is denoted by h� ; �i for the compatibility. Moreover, it is known that the

strong dual space of Dy, denoted by D
�
y, is identified with D�y together with their

topologies. Thus we come to a rigged Hilbert space:

Dy ¼ proj lim
p!y

DpðKÞHDpðKÞHHC HD�pðKÞH ind lim
p!y

D�p ¼ D
�
y: ð2:3Þ

We also note that for any p; q A R the operator K p�q is naturally considered as an

isometry from DpðKÞ onto DqðKÞ.

We next construct a chain of Fock spaces over the rigged Hilbert space (2.3). For

simplicity we set

Gp ¼ GðDpÞ ¼ GðDpðKÞÞ; p A R:

By definition, Gp is the space of sequences f ¼ ð fnÞ where fn A D
n̂nn
p (n-fold symmetric

tensor power of the Hilbert space Dp) such that

kfk2p ¼
Xy

n¼0

n!j fnj
2
p ¼

Xy

n¼0

n!jðKnnÞp fnj
2
0 < y: ð2:4Þ

Then Gp becomes a Hilbert space with the norm defined in (2.4). Viewing an obvious

inclusion relation: Gq HGp HG0 ¼ GðHCÞHG�p HG�q for 0a pa q, we set

Gy ¼ proj lim
p!y

Gp ¼ 7
pb0

Gp; G�y ¼ ind lim
p!y

G�p ¼ 6
pb0

G�p: ð2:5Þ
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Clearly, Gy becomes a countable Hilbert space equipped with the Hilbertian norms

defined in (2.4), and G
�
y, the strong dual space of Gy, is identified with G�y. Thus we

come to a rigged Fock space:

GyHGðHC ÞHG
�
y: ð2:6Þ

We use the same symbol 5� ; �6 for the canonical C-bilinear form on G
�
y � Gy. Then,

5F; f6 ¼
X

y

n¼0

n!hFn; fni; F ¼ ðFnÞ A G
�
y; f ¼ ð fnÞ A Gy;

and the Schwartz inequality leads to:

j5F; f6ja kFk�pkfkp:

We note that the norm of G0 ¼ GðHC Þ is given by kfk20 ¼ 5f; f6.

Proposition 2.1. The countable Hilbert space Dy defined in (2.1) is nuclear if and

only if K�r is of Hilbert-Schmidt class for some rb 0. Only in that case Gy defined in

(2.5) is a nuclear space.

Remark 2.2. If the selfadjoint operator K satisfies the conditions: (i) inf SpecðKÞ

> 1; and (ii) K�r is of Hilbert-Schmidt class for some rb 0, then the rigged Fock space

(2.6) is called the Hida-Kubo-Takenaka space and provides the most prototype in the

white noise distribution theory, see [26]. In this paper we do not assume these condi-

tions, therefore, nuclearity of Gy is not assumed.

3. Exponential vectors, S-transform and operator symbol.

In general, a (formal) vector of the form:

fx ¼ 1; x;
xn2

2!
; . . . ;

xnn

n!
; . . .

 !

is called an exponential vector or a coherent vector. From an obvious identity:

kfxk
2
p ¼

X

y

n¼0

1

n!
jxj2np ¼ ejxj

2
p ; p A R;

we obtain the following

Lemma 3.1. Let p A R. An exponential vector fx belongs to Gp if and only if x

belongs to Dp. In particular, fx belongs to GðHC Þ if and only if x belongs to HC .

Moreover, fx belongs to Gy (resp. G
�
y) if and only if x belongs to Dy (resp. D

�
y).

Moreover, by a standard argument we have

Lemma 3.2. The exponential vectors ffx; x A Dyg span a dense subspace of Gy,

hence of Gp for all p A R and of G
�
y.

Thus each F A G
�
y is uniquely specified by its values for the exponential vectors.

We set
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SFðxÞ ¼ 5F; fx6; x A Dy; ð3:1Þ

which is called the S-transform of F [26]. For F ¼ ðFnÞ A G
�
y we have

SFðxÞ ¼
X

y

n¼0

n! Fn;
xnn

n!

� �

¼
X

y

n¼0

hFn; x
nni; x A Dy: ð3:2Þ

Similarly, a continuous linear operator X A LðGy;G
�
yÞ is uniquely specified by its matrix

elements with respect to the exponential vectors. We set

X̂Xðx; hÞ ¼ 5Xfx; fh6; x; h A Dy: ð3:3Þ

This C-valued function X̂X defined on Dy �Dy is called the symbol of X [33]. The

symbol is related to the S-transform in an obvious manner:

X̂Xðx; hÞ ¼ SðXfxÞðhÞ ¼ SðX �fhÞðxÞ; x; h A Dy:

Now we note the following result, which is immediate from Lemma 3.1 and basic

properties of entire functions on a Hilbert space.

Proposition 3.3. Let p; q A R.

(1) The S-transform of F A Gp is uniquely extended to an entire function on D�p.

(2) The symbol of X A LðGp;GqÞ is uniquely extended to an entire function on

Dp �D�q.

4. Bargmann-Segal space.

We shall introduce the Bargmann-Segal space after Grothaus, Kondratiev and Streit

[16]. In addition to (K1) we assume that the selfadjoint operator K satisfies:

(K2) K is a real operator, i.e., KðDomðKÞVHÞHH;

(K3) there is a real nuclear space N which is densely and continuously imbedded

in DyVH and is kept invariant under K .

Thus we have

NHDyHHHD
�
yHN

�; ð4:1Þ

where the bilinear form on N
� �N is denoted by h� ; �i again. Let m1=2 be the

Gaussian measure on N
� whose characteristic function is given by

exp �
1

4
hx; xi

� �

¼

ð

N
�
e ihx;xim1=2ðdxÞ; x A N:

Define a probability measure n on N
�
C

¼ N
� þ iN� in such a way that

nðdzÞ ¼ m1=2ðdxÞ � m1=2ðdyÞ; z ¼ xþ iy; x; y A N
�:

Following Hida [18] the probability space ðN�
C
; nÞ is called the (standard) complex

Gaussian space associated with (4.1).

The Bargmann-Segal space, denoted by E2ðnÞ, is by definition the space of entire

functions g : HC ! C such that

kgk2E 2ðnÞ 1 sup
P AP

ð

N
�

C

jgðPzÞj2nðdzÞ < y; ð4:2Þ
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where P is the set of all finite rank projections on H with ranges contained in N.

Note that P A P is naturally extended to a continuous operator from N
�
C

into HC (in

fact into NC ), which is denoted by the same symbol. The Bargmann-Segal space E2ðnÞ

is a Hilbert space with norm k � kE 2ðnÞ, see also [28]. For f ¼ ð fnÞ
y
n¼0 A GðHC Þ define

JfðxÞ ¼
Xy
n¼0

hxnn
; fni; x A HC ; ð4:3Þ

where the right hand side converges uniformly on each bounded subset of HC . Hence

Jf becomes an entire function on HC . Moreover, it is known (e.g., [14], [16], [28]) that

J becomes a unitary isomorphism from GðHCÞ onto E2ðnÞ. Here we check only that

J is isometric. By definition

JfðPzÞ ¼
Xy
n¼0

hðPzÞnn
; fni ¼

Xy
n¼0

hznn
;Pnn fni; z A N

�
C
:

Then, using the orthogonal relation [18, Chapter 6], we easily obtain

ð
N

�
C

jJfðPzÞj2nðdzÞ ¼
Xy
n¼0

n!jPnn fnj
2
0 ¼ kGðPÞfk20; ð4:4Þ

from which we see that J : GðHCÞ ! E2ðnÞ is isometric; in fact,

kJfk2E 2ðnÞ ¼ sup
p AP

kGðPÞfk20 ¼ kfk20; f A GðHCÞ:

Here we record a useful formula which follows from (4.4) and a simple identity

5f; fPz6 ¼ JfðPzÞ for f A GðHC Þ and z A N
�
C
.

Lemma 4.1. For f A GðHC Þ and P A P it holds that

ð
N

�
C

j5f; fPz6j
2
nðdzÞ ¼ kGðPÞfk20:

Moreover,

sup
P AP

ð
N

�
C

j5f; fPz6j
2
nðdzÞ ¼ kfk20:

The map J defined in (4.3) is called the duality transform and is related with the

S-transform (3.1) in an obvious manner:

Jfj
Dy

¼ Sf; f A GðHC Þ;

which follows from (3.2) and (4.3).

Theorem 4.2 ([16]). Let p A R. Then a C-valued function g on Dy is the S-

transform of some F A Gp if and only if g can be extended to a continuous function on D�p

and g � K p A E2ðnÞ.
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Proof. Suppose we are given a C-valued continuous function g on D�p such that

g � K p A E2ðnÞ. In fact, g is entire on D�p since K p is an isometry from HC onto D�p.

By the duality transform there exists ð fnÞ A GðHCÞ such that

g � K pðxÞ ¼
X

y

n¼0

hxnn
; fni; x A HC :

Then, changing variables, we have

gðxÞ ¼
X

y

n¼0

hðK�pÞnn
fn; x

nni; x A D�p:

Define F ¼ ððK�pÞnn
fnÞ. Then by definition F A Gp and SFðxÞ ¼ gðxÞ for x A Dy, see

(3.2). Namely, gj
Dy

is the S-transform of F A Gp. The converse assertion is readily

clear. r

During the above proof we have already established the following

Proposition 4.3. Let p A R and F A Gp. Then SF admits a continuous extension

to D�p and SF � K p A E2ðnÞ. Moreover,

kFkp ¼ kSF � K pkE 2ðnÞ:

5. Characterization of bounded operators.

The symbols of continuous (equivalently, bounded) operators from Gp into Gq are

characterized by means of the Bargmann-Segal space.

Lemma 5.1. Let X A LðGp;GqÞ and put Y ¼ X̂X. Then, for any kb 1 and any

choice of xi A Dp and ai A C , i ¼ 1; 2; . . . ; k, it holds that

X

k

i¼1

aiYðxi;K
q�Þ

�

�

�

�

�

�

�

�

�

�

E 2ðnÞ

¼
X

k

i¼1

aiXfxi

�

�

�

�

�

�

�

�

�

�

q

: ð5:1Þ

Proof. We first observe

X

k

i¼1

aiYðxi;K
q�Þ

�

�

�

�

�

�

�

�

�

�

2

E 2ðnÞ

¼ sup
P AP

ð

N
�

C

X

k

i¼1

aiYðxi;K
qPzÞ

�

�

�

�

�

�

�

�

�

�

2

nðdzÞ

¼ sup
P AP

ð

N
�

C

X

k

i¼1

ai5Xfxi ; fK qPz6

�

�

�

�

�

�

�

�

�

�

2

nðdzÞ; ð5:2Þ

which follws from the definitions (3.3) and (4.2). For simplicity we put c ¼
Pk

i¼1 aifxi .

Then (5.2) becomes

sup
P AP

ð

N
�

C

j5Xc; fK qPz6j
2
nðdzÞ ¼ sup

P AP

ð

N
�

C

j5GðK qÞXc; fPz6j
2
nðdzÞ

¼ kGðK qÞXck20 ¼ kXck2q; ð5:3Þ

where Lemma 4.1 is used. Then (5.1) follows from (5.2) and (5.3). r
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Theorem 5.2. Let p; q A R. A C-valued function Y on Dy �Dy is the symbol of

some X A LðGp;GqÞ if and only if

(i) Y can be extended to an entire function on Dp �D�q;

(ii) there exists a constant Cb 0 such that

X

k

i¼1

aiYðxi;K
q�Þ

�

�

�

�

�

�

�

�

�

�

E 2ðnÞ

aC
X

k

i¼1

aifxi

�

�

�

�

�

�

�

�

�

�

p

ð5:4Þ

for any kb 1 and any choice of xi A Dp and ai A C , i ¼ 1; . . . ; k.

In that case kXkOPaC.

Proof. Suppose that Y ¼ X̂X with X A LðGp;GqÞ. As was mentioned in Propo-

sition 3.3, condition (i) is obviously satisfied since Yðx; hÞ ¼ 5Xfx; fh6 is well-defined for

x A Dp and h A D�q. As for (ii), we take Cb 0 such that kXfkqaCkfkp. This choice

is possible by assumption of X A LðGp;GqÞ. Then (5.4) follows by Lemma 5.1.

We next prove the converse. Given x A Dp we define a function Fx : D�q ! C by

FxðhÞ ¼ Yðx; hÞ; h A D�q:

Then by condition (i) the function Fx is entire on D�q. Moreover, Fx � K
q
A E2ðnÞ; in

fact, by (ii) we have

kFx � K
qkE 2ðnÞ ¼ kYðx;K q�ÞkE 2ðnÞaCkfxkp < y:

Then by Theorem 4.2, there exists a unique Fx A Gq such that Fx ¼ SFx, i.e.,

SFxðhÞ ¼ FxðhÞ ¼ Yðx; hÞ: ð5:5Þ

Since the exponential vectors are linearly independent, a linear operator X is uniquely

specified by

Xfx ¼ Fx; x A Dp: ð5:6Þ

Then we see from (5.5) that Y ¼ X̂X. Hence, to our goal, we need to show that X

is extended to a continuous operator in LðGp;GqÞ. Let kb 1 and take xi A Dp and

ai A C , i ¼ 1; 2; . . . ; k. By Lemma 4.1 we have

X
X

k

i¼1

aifxi

 !�

�

�

�

�

�

�

�

�

�

2

q

¼ GðK qÞ
X

k

i¼1

aiFxi

 !�

�

�

�

�

�

�

�

�

�

2

0

¼ sup
P AP

ð

N
�

C

**

GðK qÞ
X

k

i¼1

aiFxi

 !

; fPz

++�

�

�

�

�

�

�

�

�

�

2

nðdzÞ

¼ sup
P AP

ð

N
�

C

**

X

k

i¼1

aiFxi ; fK qPz

++�

�

�

�

�

�

�

�

�

�

2

nðdzÞ

¼ sup
P AP

ð

N
�

C

X

k

i¼1

aiYðxi;K
qPzÞ

�

�

�

�

�

�

�

�

�

�

2

nðdzÞ

¼
X

k

i¼1

aiYðxi;K
q�Þ

�

�

�

�

�

�

�

�

�

�

2

E 2ðnÞ

:
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Consequently, by (5.4) we have

X
X

k

i¼1

aifxi

 !�

�

�

�

�

�

�

�

�

�

q

aC
X

k

i¼1

aifxi

�

�

�

�

�

�

�

�

�

�

p

;

which proves that there exists X A LðGp;GqÞ characterized by (5.6) since the exponential

vectors ffx; x A Dpg span a dense subspace of Gp. r

Theorem 5.3. A C-valued function Y defined on Dy �Dy is the symbol of an

operator X A LðGy;G
�
y
Þ if and only if there exists some p A R such that

(i) Y can be extended to an entire function on Dp �Dp;

(ii) there exists a constant Cb 0 such that

X

k

i¼1

aiYðxi;K
�p�Þ

�

�

�

�

�

�

�

�

�

�

E 2ðnÞ

aC
X

k

i¼1

aifxi

�

�

�

�

�

�

�

�

�

�

p

for any kb 1 and any choice of xi A Dp and ai A C , i ¼ 1; . . . ; k.

Proof. We see from general theory of countable Hilbert spaces that

LðGy;G
�
y
Þ ¼ 6

pb0

LðGp;G�pÞ:

Then the assertion is immediate from Theorem 5.2. r

Theorem 5.4. A C-valued function Y on Dy �Dy is the symbol of a bounded

operator on GðHC Þ if and only if

(i) Y can be extended to an entire function on HC �HC ;

(ii) there exists a constant Cb 0 such that

X

k

i¼1

aiYðxi; �Þ

�

�

�

�

�

�

�

�

�

�

E 2ðnÞ

aC
X

k

i¼1

aifxi

�

�

�

�

�

�

�

�

�

�

0

for any kb 1 and any choice of xi A HC and ai A C , i ¼ 1; . . . ; k.

Proof. Immediate by specializing parameters in Theorem 5.2 as p ¼ q ¼ 0. r

Similarly the spaces LðGy;GqÞ and LðGy;GyÞ are characterized as follows.

Theorem 5.5. A C-valued function Y on Dy �Dy is the symbol of an operator

X A LðGy;GqÞ with q A R if and only if there exists p A R satisfying conditions (i) and (ii)

in Theorem 5.2. In particular, Y is the symbol of an operator X A LðGy;GyÞ if and only

if for any qb 0 there exists p A R satisfying conditions (i) and (ii) in Theorem 5.2.

6. Characterization of operators of Hilbert-Schmidt class.

Denote by L2ðGp;GqÞHLðGp;GqÞ the space of operators of Hilbert-Schmidt class.

The Hilbert-Schmidt norm is denoted by k � k
L2ðGp;GqÞ

or by k � kHS when there is no

danger of confusion.
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Lemma 6.1. Let p A R and let X A LðGp;GðHC ÞÞ. If supP APkGðPÞXkHS < y,

then X belongs to L2ðGp;GðHCÞÞ and

kXkHS ¼ sup
P AP

kGðPÞXkHS: ð6:1Þ

Proof. Let fPmg
y

m¼1 HP be an increasing sequence of orthogonal projections

converging strongly to the identity operator on HC . Obviously, fkGðPmÞXkHSg is an

increasing sequence, and by assumption limm!ykGðPmÞXkHS < y. Let fong be a

complete orthonormal basis of Gp. Then, by the monotone convergence theorem we

have

lim
m!y

kGðPmÞXk
2
HS ¼ lim

m!y

X

y

n¼1

kGðPmÞXonk
2
0 ¼

X

y

n¼1

kXonk
2
0 ¼ kXk2HS: ð6:2Þ

Hence X A L2ðGp;GðHC ÞÞ. Furthermore, since kGðPÞXkHSa kGðPÞkOPkXkHSa

kXkHS, (6.1) follows from (6.2). r

Theorem 6.2. Let p; q A R. A C-valued function Y on Dy �Dy is the symbol of

an operator X A L2ðGp;GqÞ if and only if

(i) Y can be extended to an entire function on Dp �D�q;

(ii) there exists a non-negative, locally bounded function g on Dp satisfying

M 2
1 sup

P AP

ð

N
�

C

gðK�pPzÞ2nðdzÞ < y ð6:3Þ

and

kYðx;K q�ÞkE 2ðnÞa gðxÞ; x A Dp: ð6:4Þ

Proof. Suppose that Y ¼ X̂X for some X A L2ðGp;GqÞ. Then condition (i) is obvi-

ous, see also Theorem 5.2. On the other hand, from Lemma 5.1 we see that

kYðx;K q�ÞkE 2ðnÞ ¼ kXfxkq; x A Dp:

It is su‰cient to show that gðxÞ ¼ kXfxkqb 0 has the desired property. Since X A

LðGp;GqÞ, there exists Cb 0 such that

gðxÞ ¼ kXfxkqaCkfxkp ¼ C exp
1

2
jxj2p

� �

:

Hence g is bounded on every bounded subset of Dp. We thus need only to show (6.3).

Let P A P and we take a complete orthonormal basis of G�q, say fong
y

n¼1. Then,

gðK�pPzÞ2 ¼ kXfK�pPzk
2
q ¼

X

y

n¼1

j5XfK�pPz;on6j
2

¼
X

y

n¼1

j5GðK�pÞX �on; fPz6j
2
; z A N

�
C
:

Integrating over N
�
C

and applying Lemma 4.1, we come to
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sup
P AP

ð
N

�
C

gðK�pPzÞ2nðdzÞ ¼
Xy
n¼1

kGðK�pÞX �onk
2
0 ¼

Xy
n¼1

kX �onk
2
�p ¼ kX �k2HS; ð6:5Þ

which is finite since X �
A L2ðG�q;G�pÞ.

We next prove the converse. By a similar argument as in Theorem 5.2, for each

x A Dp there exists a unique Fx A Gq such that Fx ¼ SFx, i.e.,

5Fx; fh6 ¼ SFxðhÞ ¼ Yðx; hÞ; x A Dp; h A D�q:

Moreover, from Proposition 4.3 and (6.4) we see that

kFxkq ¼ kSFx � K
qkE2ðnÞa gðxÞ; x A Dp:

Now, we fix f A G�q and define a C-valued function Gf on Dp by

GfðxÞ ¼ 5Fx; f6; x A Dp:

We shall show that Gf � K
�p

A E2ðnÞ. In view of

jGf � K
�pðxÞj ¼ j5FK�px; f6j

a kFK�pxkqkfk�q

a gðK�pxÞkfk�q; x A HC ; ð6:6Þ

we see by assumption (6.3) that

sup
P AP

ð
N

�
C

jGf � K
�pðPzÞj2nðdzÞaM 2kfk2�q < y: ð6:7Þ

In order to prove that x 7! Gf � K
�pðxÞ, x A HC , is entire it is su‰cient to verify

that l 7! Gfðlxþ x 0Þ is holomorphic on C for any x; x 0
A Dp since Gf � K

�p is locally

bounded by (6.6), see e.g., [12]. Let V be a space spanned by the exponential vec-

tors ffh; h A D�qg. Then, obviously, l 7! Gfðlxþ x 0Þ is holomorphic for any choice

of f A V , x; x 0
A Dp. For an arbitrary f A G�q choose an approximating sequence

ffkgHV . Since g is bounded on every bounded subset of Dq, we can easily see that

the functions Gfk ðlxþ x 0Þ of l A C converge to Gfðlxþ x 0Þ uniformly on every com-

pact subset of C . Therefore l 7! Gfðlxþ x 0Þ is holomorphic on C , and consequently,

Gf � K
�p

A E2ðnÞ.

By Theorem 4.2 there exists a unique Cf A G�p such that Gf ¼ SCf, i.e.,

5Cf; fx6 ¼ SCfðxÞ ¼ GfðxÞ ¼ 5Fx; f6; x A Dp: ð6:8Þ

Moreover, by (6.7) we have

kCfk�p ¼ kGf � K
�pkE 2ðnÞaMkfk�q:

In other words, f 7! Cf is a continuous linear operator from G�q into G�p. Its adjoint

operator is denoted by X A LðGp;GqÞ. Then it follows from (6.8) that Xfx ¼ Fx and

Y ¼ X̂X. We shall verify that X A L2ðGp;GqÞ, or equivalently X �
A L2ðG�q;G�pÞ. Let

fong be a complete orthonormal basis of G�q and P A P. Then,
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Xy
n¼1

ð
N

�
C

j5GðK�pÞX �on; fPz6j
2
nðdzÞ ¼

Xy
n¼1

ð
N

�
C

j5on;XfK�pPz6j
2
nðdzÞ

¼

ð
N

�
C

kXfK�pPzk
2
qnðdzÞ ¼

ð
N

�
C

kFK�pPzk
2
qnðdzÞ

a

ð
N

�
C

gðK�pPzÞ2nðdzÞaM 2
;

and, with the help of Lemma 4.1 we obtain

kGðPÞGðK�pÞX �k2
L2ðG�q;GðHC ÞÞ

¼
Xy
n¼1

kGðPÞGðK�pÞX �onk
2
0aM 2

:

Therefore, by Lemma 6.1, GðK�pÞX � A L2ðG�q;GðHC ÞÞ and hence X � A L2ðG�q;G�pÞ.

r

Proposition 6.3. If X A L2ðGp;GqÞ, we have

kXk2HS ¼ sup
P AP

ð
N

�
C

kXfK�pPzk
2
qnðdzÞ

¼ sup
P AP

sup
Q AP

ð
N

�
C

ð
N

�
C

jX̂XðK�pPz;K qQwÞj2nðdwÞnðdzÞ:

Proof. The first equality is immediate from (6.5). Let fQmgHP be an increas-

ing sequence of orthogonal projections converging strongly to the identity operator on

HC . Then we can easily prove that

ð
N

�
C

kXfK�pPzk
2
qnðdzÞb sup

Q AP

ð
N

�
C

kGðQÞGðK qÞXfK�pPzk
2
0nðdzÞ

b lim
m!y

ð
N

�
C

kGðQmÞGðK
qÞXfK�pPzk

2
0nðdzÞ

¼

ð
N

�
C

kXfK�pPzk
2
qnðdzÞ;

where we used the monotone convergence theorem for the last equality. It follows that

ð
N

�
C

kXfK�pPzk
2
qnðdzÞ ¼ sup

Q AP

ð
N

�
C

kGðQÞGðK qÞXfK�pPzk
2
0nðdzÞ:

Hence in view of Lemma 4.1 the second equality holds. r

7. Chaotic expansion of operators.

Let mb 0 and p A R. Let Sm denote the projection (symmetrizing operator) from

D
nm
p onto D

n̂nm
p . Furthermore, we define an injection Im A LðDn̂nm

p ;GpÞ by

ImFm ¼ ð0; . . . ; 0;Fm; 0; . . .Þ; Fm A D
n̂nm
p ; ð7:1Þ
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where Fm stays at the m-th position. The symbols Sm and Im are used commonly for all

p A R. We denote by I �m the operator in LðGp;D
n̂nm
p Þ defined by

I �mðF0; . . . ;Fm�1;Fm; . . .Þ ¼ m!Fm: ð7:2Þ

Obviously, each F ¼ ðFmÞ A Gp admits an expression:

F ¼
Xy

m¼0

ImFm;

which is referred to as the chaotic expansion or the Wiener-Itô decomposition of F.

In this section we study its operator version.

We start with the following

Proposition 7.1. Let p; q A R. For each Kl;m A LðDn̂nm
p ;D

n̂nl
q Þ there exists a unique

operator Il;mðKl;mÞ A LðGp;GqÞ such that

Il;mðKl;mÞbðx; hÞ ¼ hKl;mx
nm

; hnli; x; h A Dy: ð7:3Þ

In this case, kIl;mðKl;mÞkOPa
ffiffiffiffiffiffiffiffi
l!m!

p
kKl;mkOP.

Proof. For simplicity we denote the right hand side of (7.3) by Yðx; hÞ. Obvi-

ously, Y is naturally extended to an entire function on Dp �D�q. To show condition

(ii) in Theorem 5.2 take xi A Dp, ai A C , i ¼ 1; . . . ; k. By definition we have

Xk

i¼1

aiYðxi;K q�Þ
�����

�����

2

E 2ðnÞ
¼ sup

P AP

ð

N
�

C

Xk

i¼1

aiYðxi;K qPzÞ
�����

�����

2

nðdzÞ: ð7:4Þ

For simplicity we put c ¼ Pk
i¼1 aifxi . Using the identity:

Xk

i¼1

aiYðxi;K qPzÞ
�����

�����

2

¼ j5IlKl;mI
�
mc; fK qPz6j2

¼ j5GðK qÞIlKl;mI
�
mc; fPz6j

2
;

which is verified by direct computation, we see that (7.4) becomes

Xk

i¼1

aiYðxi;K q�Þ
�����

�����

2

E 2ðnÞ
¼ kGðK qÞIlKl;mI

�
mck

2
0 ¼ kIlKl;mI

�
mck

2
q:

In view of (7.1) and (7.2) we have

kIlKl;mI
�
mck

2
q ¼ l!jKl;mI

�
mcj

2
qa l!kKl;mk2OPjI �mcj

2
pa l!m!kKl;mk2OPkck

2
p:

Consequently,

Xk

i¼1

aiYðxi;K q�Þ
�����

�����
E 2ðnÞ
a

ffiffiffiffiffiffiffiffi
l!m!

p
kKl;mkOPkckp:

Then the assertion is immediate by application of Theorem 5.2. r
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Lemma 7.2. If Kl;m A LðDn̂nm
p ;D

n̂nl
q Þ, it holds that

Kl;m ¼
1

l!m!
I �l Il;mðKl;mÞIm:

Proof. It is su‰cient to show that

hKl;mx
nm

; hnli ¼
1

l!m!
hI �l Il;mðKl;mÞImx

nm
; hnli; x; h A Dy;

which is immediate from (7.3). r

For a general Kl;m A LðDnm
p ;D

nl
q Þ we may define Il;mðKl;mÞ by the same formula

(7.3). However, in that case the uniqueness of Kl;m is not guaranteed; in fact, we have

Il;mðKl;mÞ ¼ Il;mðSlKl;mSmÞ.

For each mb 0 define a map by

Pm ¼
1

m!
ImI

�
m : ðF0;F1; . . . ;Fm; . . .Þ 7! ð0; 0; . . . ; 0;Fm; 0; . . .Þ:

Obviously, Pm is an orthogonal projection on Gp for all p A R. Note also that

I �mIm ¼ m!. Given X A LðGp;GqÞ, we define

Kl;m ¼
1

l!m!
I �l XIm; l;mb 0: ð7:5Þ

Then Kl;m A LðDn̂nm
p ;D

n̂nl
q Þ and by symbol calculus we have

Il;mðKl;mÞ ¼ P lXPm: ð7:6Þ

Since
Py

m¼0 Pm ¼ I converges with respect to the strong operator topology of

LðGp;GpÞ, we can deduce the chaotic expansion of X given as in (7.7) below.

Theorem 7.3. For any X A LðGp;GqÞ there exists a unique family of operators

Kl;m A LðDn̂nm
p ;D

n̂nl
q Þ, l;mb 0, such that

X ¼
Xy

l;m¼0

Il;mðKl;mÞ; ð7:7Þ

where the series converges weakly in the sense that

5Xf;c6 ¼
Xy

l;m¼0

5Il;mðKl;mÞf;c6; f A Gp; c A G�q:

Since Dy is not necessarily a nuclear space (it is so if and only if K�p is of Hilbert-

Schmidt class for some p > 0),

D
n̂nm
y ¼ 7

pb0

D
n̂nm
p

is taken as definition. With these notation we have
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Corollary 7.4. Let X A LðGy;G
�
yÞ with the chaotic expansion as in (7.7). Then,

Kl;m A LðDn̂nm
y ; ðDn̂nl

y Þ�Þ. If X belongs to LðGy;GyÞ or to LðGy;GpÞ for some p A R,

then Kl;m belongs to LðDn̂nm
y ;Dn̂nl

y Þ or to LðDn̂nm
y ;Dn̂nl

p Þ, respectively.

We next consider operators of Hilbert-Schmidt class.

Lemma 7.5. Let Kl;m A LðDn̂nm
p ;Dn̂nl

q Þ for some p; q A R. Then Kl;m A

L2ðDn̂nm
p ;Dn̂nl

q Þ if and only if Il;mðKl;mÞ A L2ðGp;GqÞ. In that case kIl;mðKl;mÞkHS ¼
ffiffiffiffiffiffiffiffi

l!m!
p

kKl;mkHS.

Proof. Let fokg and fzk 0g be complete orthonormal bases of D
n̂nm
p and D

n̂nl
�q ,

respectively. Then fðm!Þ�1=2
Imokg and fðl!Þ�1=2

Ilzk 0g become complete orthonormal

bases of PmGp and P lG�q, respectively. By definition

kIl;mðKl;mÞk2HS ¼
X

k;k 0

1

l!m!
j5Il;mðKl;mÞImok; Ilzk 06j2:

On the other hand, by Lemma 7.2 we have

kKl;mk2HS ¼
X

k;k 0
jhKl;mok; Ilzk 0ij2 ¼

X

k;k 0

1

ðl!m!Þ2
jhI �l Il;mðKl;mÞImok; Ilzk 0ij2:

Therefore, kIl;mðKl;mÞkHS ¼
ffiffiffiffiffiffiffiffi

l!m!
p

kKl;mkHS < y. r

Theorem 7.6. Let p; q A R. Given X A L2ðGp;GqÞ let

X ¼
X

y

l;m¼0

Il;mðKl;mÞ; ð7:8Þ

be the chaotic expansion. Then Kl;m A L2ðDn̂nm
p ;Dn̂nl

q Þ and the right hand side of (7.8)

converges in L2ðGp;GqÞ.

Proof. Since X is of Hilbert-Schmidt class, so is Il;mðKl;mÞ by (7.6). Then it

follows by Lemma 7.5 that Kl;m A L2ðDn̂nm
p ;Dn̂nl

q Þ. Since fPmg is a resolution of the

identity, in view of (7.6) we have

kXk2HS ¼
X

y

l;m¼0

kP lXPmk2HS ¼
X

y

l;m¼0

kIl;mðKl;mÞk2HS:

This shows that the chaotic expansion (7.8) converges in L2ðGp;GqÞ. r

8. Relation with Fock expansion.

In this section, in stead of (K1) we assume a stronger condition:

(K4) inf SpecðKÞ > 1, i.e., r1 kK�1kOP < 1.

We first modify the definition of an integral kernel operator [34] according to our

present framework. Let p; q A R and suppose we are given Kl;m A LðDn̂nm
p ;Dn̂nl

q Þ. For

f ¼ ð fnÞ define X l;mðKl;mÞf ¼ ðgnÞ by

gn ¼ 0; 0a n < l; glþn ¼
ðnþmÞ!

n!
SlþnðKl;m n InnÞ fnþm; nb 0;
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where Slþm stands for the symmetrizing operator. By virtue of direct norm estimates

similar to [34, Section 4.3] we obtain

kX l;mðKl;mÞfkqa kKl;mkOPr
rðm�1=2Þðl lmmÞ1=2

r�r=2

�re log r

� �ðlþmÞ=2

kfkðp4qÞþr; ð8:1Þ

where p4q ¼ maxfp; qg, r > 0 is arbitrary. Therefore, X l;mðKl;mÞ A LðGðp4qÞþr;GqÞ.

Such an operator X l;mðKl;mÞ is called an integral kernel operator. The symbol is given

by

X l;mðKl;mÞbðx; hÞ ¼ hKl;mx
nm; hnliehx;hi:

For X A LðGy;G
�
yÞ an expression of the form

X ¼
Xy

l;m¼0

X l;mðKl;mÞ

is called the Fock expansion and has been studied in the context of white noise theory

[6], [7], [34], where nuclearity is important. Here we do not go into this direction.

The famous number operator N is uniquely specified by the relation NIm ¼ mIm for

mb 0, or equivalently by the action

N : ðF0;F1;F2; . . . ;Fm; . . .Þ 7! ð0;F1; 2F2; . . . ;mFm; . . .Þ;

and admits a simple form of an integral kernel operator:

N ¼ X1;1ðIÞ; I : identity operator on Dp:

The number operator N is not a bounded operator on any Gp but a continuous operator

from Gpþq into Gp for any p A R and q > 0.

We next consider the Wick exponential of �N. In general, for two integral kernel

operators X l1;m1
ðKÞ and X l2;m2

ðLÞ their Wick product or normal-ordered product is

defined by

X l1;m1
ðKÞ � X l2;m2

ðLÞ ¼ X l1þl2;m1þm2
ðK nLÞ:

With these notation the Wick exponential of �N is introduced:

wexpð�NÞ ¼
Xy

n¼0

1

n!
ð�NÞ�n ¼

Xy

n¼0

ð�1Þn

n!
Xn;nðI

nnÞ: ð8:2Þ

Lemma 8.1. For any p A R and q > 0 with rq=2=ð�q log rÞ < 1 the series (8.2) con-

verges absolutely in LðGpþq;GpÞ. In particular, wexpð�NÞ A LðGy;GyÞ. Moreover,

for all p; q A R, the Wick exponential wexpð�NÞ is extended to an operator in L2ðGp;GqÞ.

Proof. Note first that N�n ¼ Xn;nðI
nnÞ and observe from (8.1) that for any p A R

and q > 0,

kN�nfkpa nnr�q=2 rq=2

�qe log r

� �n

kfkpþq:
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Then, using nn
a enn! we easily check the convergence of (8.2). We next note that

wexpð�NÞbðx; hÞ ¼
Xy

n¼0

ð�1Þn
n!

5Xn;nðInnÞfx; fh6 ¼
Xy

n¼0

ð�1Þn
n!

hxnn; hnniehx;hi ¼ 1:

Since a constant function obviously fulfills the conditions in Theorem 6.2, the last

assertion follows immediately. r

In other words, there exists an operator X A LðG�
y;GyÞ such that

X̂Xðx; hÞ1 1; Xj
Gp

A L2ðGp;GqÞ; p; q A R;

and X admits the Fock expansion as in (8.2) converging in LðGpþq;GpÞ. Remark that

N�n ¼ Xn;nðInnÞ ¼ NðN � 1ÞðN � 2Þ � � � ðN � nþ 1Þ:

Note also that N�n, nb 1, is not a bounded operator on any Gp, p A R.

Proposition 8.2. Let p; q A R and Kl;m A LðDn̂nm
p ;Dn̂nl

q Þ. Then

Il;mðKl;mÞ ¼ wexpð�NÞ � X l;mðKl;mÞ1
Xy

n¼0

ð�1Þn
n!

Xnþl;nþmðInn nKl;mÞ; ð8:3Þ

where the series converges in LðGðp4qÞþr;GqÞ for any r > 0 with ð2rr=2Þ=ð�r log rÞ < 1.

Hence,

X l;mðKl;mÞ ¼ wexpðNÞ � Il;mðKl;mÞ: ð8:4Þ

Proof. As was mentioned at the beginning of this section, X l;mðKl;mÞ A
LðGðp4qÞþr;GqÞ for any r > 0 and Inn nKl;m A LðDnðnþmÞ

p4q ;DnðnþlÞ
q Þ. Then in view of

inequalities nn
a enn! and ðnþmÞ!a 2nþmn!m! we see that for any f A Gðp4qÞþr,

kXnþl;nþmðInn nKl;mÞfkqaCl;mn!
2r r=2

�r log r

� �n

kfkðp4qÞþr;

where

Cl;m ¼
ffiffiffiffiffiffiffiffi
l!m!

p
kKl;mkOPr

rm�r=2 2r�r=2

�r log r

� �ðlþmÞ=2
:

Therefore, for any r > 0 with ð2rr=2Þ=ð�r log rÞ < 1 we have

Xy

n¼0

1

n!
kXnþl;nþmðInn nKl;mÞfkqaCl;mkfkð p4qÞþr

Xy

n¼0

2rr=2

�r log r

� �n

< y;

from which the assertion follows. For (8.4) we need only to note that wexpðNÞ �
wexpð�NÞ ¼ wexpð0Þ ¼ I and I is also the identity for the Wick product. r

Inserting (8.3) into the chaotic expansion (7.7), we obtain

X ¼
Xy

l;m;n¼0

ð�1Þn
n!

Xnþl;nþmðInn nKl;mÞ: ð8:5Þ

As for the convergence, we mention the following
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Theorem 8.3. Let X A LðGp;GqÞ with some p; q A R, and let X ¼
Py

l;m¼0 Il;mðKl;mÞ
be the chaotic expansion. Then the expansion (8.5) converges in LðGðp4qÞþr;Gq�sÞ for

any r > 0 and s > 0 satisfying rr=ð�r log rÞ < 1 and rs=ð�s log rÞ < 1.

Proof. From (7.5) we see that

kKl;mkOPa
1
ffiffiffiffiffiffiffiffi

l!m!
p kXkOP; l;mb 0: ð8:6Þ

On the other hand, by a standard way similar to [34, Section 4.3] we see that for any

r; s > 0 and f A Gðp4qÞþr

kX lþn;mþnðInn nKl;mÞfkq�sa kKl;mkOPr
rðmþnÞþsðlþnÞ�ðrþsÞ=2

� ðnþ lÞr�s

�2se log r

� �ðnþlÞ=2 ðnþmÞr�r

�2re log r

� �ðnþmÞ=2
kfkð p4qÞþr:

Therefore, by (8.6) we have

kXnþl;nþmðInn nKl;mÞfkq�s

a kXkOPr
�ðrþsÞ=2n!

rs

�s log r

� �ðnþlÞ=2
rr

�r log r

� �ðmþnÞ=2
kfkðp4qÞþr:

Hence

X

y

l;m;n¼0

1

n!
kXnþl;nþmðInn nKl;mÞfkq�s

a kXkOPkfkðp4qÞþrr
�ðrþsÞ=2

�
X

y

l;m;n¼0

rs

�s log r

� �l=2
r r

�r log r

� �m=2
r s

�s log r

� �

rr

�r log r

� �� �n=2

;

where the last series converges by assumption. Thus, the right hand side of (8.5)

converges in LðGðp4qÞþr;Gq�sÞ for any r; s > 0 satisfying rr=ð�r log rÞ < 1 and

r s=ð�s log rÞ < 1. r

Corollary 8.4. If X belongs to LðGy;GpÞ for some p A R, then the expansion

(8.5) converges in LðGy;Gp�rÞ for any r > 0 satisfying rr=ð�r log rÞ < 1.

Corollary 8.5. If X belongs to LðGy;G
�
yÞ or to LðGy;GyÞ, then the expansion

(8.5) converges in the respective spaces.

An expansion of the form (8.5) is a generalization of the quantum analogue of

multiple Wiener-Itô integrals due to Attal [2], where only operators of Hilbert-Schmidt

class are considered by means of Maassen-Meyer kernel calculus [32]. Moreover, in

quantum stochastic calculus we start with a particular Hilbert space, for example,

HC ¼ L2ðR; dtÞ where R stands for a time axis. Then, operators discussed above admit

more descriptive expressions and comparison with the multiple Wiener-Itô integrals [2] is

more straightforward.
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Take HC ¼ L2ðR; dtÞ and K ¼ A ¼ 1þ t2 � d 2=dt2. Then DyðAÞ ¼ SðRÞ, the

Schwartz space of rapidly decreasing functions. In this case we usually write ðEÞ ¼ Gy.

For each t A R the annihilation operator at is uniquely specified by atfx ¼ xðtÞfx,

x A DyðAÞ, and becomes a continuous operator in LððEÞ; ðEÞÞ. The creation operator

a�
t A LððEÞ�; ðEÞ�Þ is its adjoint. Then an integral kernel operator is expressed in a

formal integral:

X l;mðKl;mÞ ¼

ð
R

lþm

kl;mðs1; . . . ; sl ; t1; . . . ; tmÞa
�
s1
� � � a�

sl
at1 � � � atm ds1 � � � dsldt1 � � � dtm;

where kl;m is the kernel of the operator Kl;m, for more details see e.g., [34]. Similarly,

we may write

Xnþl;nþmðI
nn nKl;mÞ

¼

ð
R

lþm

kl;mðs1; . . . ; sl ; t1; . . . ; tmÞa
�
s1
� � � a�

sl
N�nat1 � � � atm ds1 � � � dsldt1 � � � dtm

and

N�n ¼

ð
R

n

a�
s1
� � � a�

sn
as1 � � � asn ds1 � � � dsn:

On the other hand,

Il;mðKl;mÞ ¼

ð
R

lþm

kl;mðs1; . . . ; sl ; t1; . . . ; tmÞa
�
s1
� � � a�

sl
P0at1 � � � atm ds1 � � � dsldt1 � � � dtm;

where P0 is the vacuum projection. A similar expression appears also in [20].

9. Normal-ordered white noise di¤erential equations.

In this section we take HC ¼ L2ðR; dtÞ, N ¼ SðRÞ and a selfadjoint operator K

satisfying conditions (K2)–(K4). In general, a normal-ordered white noise di¤erential

equation takes a form:

dX

dt
¼ Lt � X; Xð0Þ ¼ I ; ð9:1Þ

where fLtg is a quantum stochastic process defined over a time interval T containing 0,

i.e., Lt is an operator acting in the Boson Fock space GðHCÞ. To give a definite

meaning to (9.1) we need a particular rigged Fock space, for example, a CKS-space [11]

is convenient:

Wa HGðHC ÞHW
�

a ;

where a is a certain weight sequence. A quantum stochastic process is by definition

a continuous map t 7! Lt A LðWa;W
�

a Þ. Moreover, it is known that the Wick pro-

duct introduced in the previous section is extended to a separately continuous bilinear

map from LðWa;W
�

a Þ �LðWa;W
�

a Þ into LðWa;W
�

a Þ. Thus equation (9.1) is given a

definite meaning.
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Since the Wick product is commutative and (9.1) is a simple linear equation, a

formal solution is given by the Wick exponential:

Xt ¼ wexp

ð t

0

Ls ds

� �

¼
X

y

n¼0

1

n!

ð t

0

Ls ds

� ��n

: ð9:2Þ

It is known that there is a unique solution to (9.1) in LðWb;W
�

b Þ with a suitable choice

of another weight sequence b. It occurs generally that Wb HWa and LðWa;W
�

a ÞH

LðWb;W
�

b Þ. Roughly speaking, unique existence of a solution is guaranteed always in

the sense of ‘‘distributions.’’ In fact, we have obtained further detailed properties of a

solution, see [10] and references cited therein. The methods so far employed are, how-

ever, rather limited: by direct norm estimates of (9.2) or by the characterization theorem

for operator symbols in terms of growth rates and its refinements.

We now illustrate how our characterization theorem (Theorem 5.2) gives a third

method of finding a space in which the solution acts as an operator; in other words,

regularity property of a solution (9.2) which makes already sense as a ‘‘distribution.’’

First note that the symbol Yt ¼ X̂Xt of (9.2) is given by

Ytðx; hÞ ¼ ehx;hi expfe�hx;hiM̂Mtðx; hÞg; x; h A Dy; ð9:3Þ

where

Mt ¼

ð t

0

Ls ds; t A T :

Then, applying Theorem 5.5, we obtain the following

Proposition 9.1. A solution Xt to (9.1) lies in LðGy;GqÞ with some q A R, if Yt

defined in (9.3) satisfies the following conditions:

(i) there exists p A R such that Yt can be extended to an entire function on

Dp �D�q;

(ii) there exists a constant Cb 0 such that

X

k

i¼1

aiYtðxi;K
q�Þ

�

�

�

�

�

�

�

�

�

�

E 2ðnÞ

aC
X

k

i¼1

aifxi

�

�

�

�

�

�

�

�

�

�

p

ð9:4Þ

for any kb 1 and any choice of xi A Dp and ai A C , i ¼ 1; . . . ; k.

To discuss a more concrete example we need some preliminaries. For each k A D
�
y

there is pb 0 such that k A D�p and the map K : x 7! hk; xi becomes a continuous

operator from Dp into C , that is, K A LðDp;CÞ. Then, according to the definition in

Section 8 we define an integral kernel operator X0;1ðKÞ, denoted also by X0;1ðkÞ, which

is characterized by

X0;1ðkÞfx ¼ hk; xifx ¼ ðKxÞfx; x A Dp:

This integral kernel operator X0;1ðKÞ ¼ X0;1ðkÞ is called an annihilation operator. Now

consider
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eX0; 1ðkÞf1
X

y

n¼0

1

n!
X0;1ðkÞ

n
f ¼

X

y

n¼0

1

n!
X0;nðK

nnÞf; f A Gy; ð9:5Þ

where Knn is the tensor power of K A LðDp;CÞ. Applying the norm estimate (8.1)

and kKnnkOP ¼ kKkn
OP, we see that (9.5) converges in any norm k � kq and bounded by

kfkðp4qÞþr with arbitrary r > 0. Thus, the map f 7! eX0; 1ðkÞf is a continuous operator

from Gy into itself. In short,

Lemma 9.2. For k A D
�
y the exponential eX0; 1ðkÞ defined in (9.5) belongs to

LðGy;GyÞ.

We next need multiplication operator Mc associated with c ¼ ðgnÞ A GðHC Þ. For

f ¼ ð fnÞ we define Mcf ¼ ðhlÞ by

hl ¼
X

mþn¼l

X

y

k¼0

k!
mþ k

k

� �

nþ k

k

� �

gmþk n̂nk fnþk; ð9:6Þ

where n̂nk is the right contraction, for details see [34]. This Mc is called the multi-

plication operator by c. In fact, employing a Gaussian realization through the Wiener-

Itô-Segal isomorphism, Mc is nothing but a multiplication operator by c which corre-

sponds to a C-valued function on a Gaussian space.

Lemma 9.3. For z A HC and T A LðDy;HCÞ, MfzGðTÞ is extended to a continuous

operator from Gy into GðHCÞ.

Proof. We use similar argument as in the proof of [34, Theorem 3.5.6]. Let

f ¼ ð fnÞ A Gy and set MfzGðTÞf ¼ ðhlÞ. Then, by definition (9.6) we have

hl ¼
X

mþn¼l

X

y

k¼0

k!
mþ k

k

� �

nþ k

k

� �

znðmþkÞ

ðmþ kÞ!
n̂nk ðT

nðnþkÞfnþkÞ

¼
X

mþn¼l

X

y

k¼0

ðnþ kÞ!

m!n!k!
znðmþkÞ

n̂nk ðT
nðnþkÞfnþkÞ: ð9:7Þ

Fix pb 0 satisfying T A LðDp;HCÞ and let jjjT jjj be the operator norm in LðDp;HC Þ.

Choose ab 0 such that maxfjzj0jjjT jjj; jjjT jjjga r�a. (Recall condition (K4).) Then we

have

jznðmþkÞ
n̂nk ðT

nðnþkÞfnþkÞj0a jzjmþk
0 jTnðnþkÞfnþkj0

a jzjmþk
0 jjjT jjjnþkj fnþkjp

a jzjmþk
0 jjjT jjjnþk

raðnþkÞj fnþkjpþa

a jzjm0 j fnþkjpþa;

and hence for any bb 0,

jznðmþkÞ
n̂nk ðT

nðnþkÞfnþkÞj0a jzjm0 r
bðnþkÞj fnþkjpþaþb: ð9:8Þ
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We are now in a position to estimate the norm. Combining (9.7) and (9.8), we obtain

kMfzGðTÞfk20 ¼
X

y

l¼0

l!jhl j20

a

X

y

l¼0

l!
X

mþn¼l

1

m!n!
jzjm0 rbn

X

y

k¼0

ðnþ kÞ!
k!

rbkj fnþkjpþaþb

 !2

: ð9:9Þ

By the Schwartz inequality and an obvious inequality ðnþ kÞ!a 2nþkn!k! for n; kb 0,

we have

X

y

k¼0

ðnþ kÞ!
k!

rbkj fnþkjpþaþba kfkpþaþb

X

y

k¼0

ðnþ kÞ!
k!2

r2bk

 !1=2

a

ffiffiffiffi

n!

p
2n=2er

2bkfkpþaþb:

With this (9.9) becomes

kMfzGðTÞfk20a
X

y

l¼0

l!
X

mþn¼l

1

m!n!
jzjm0 rbn

ffiffiffiffi

n!

p
2n=2er

2bkfkpþaþb

 !2

a e2r
2bkfk2pþaþb

X

y

l¼0

l!
X

mþn¼l

1

m!
ffiffiffiffi

n!
p jzjm0 ð

ffiffiffi

2
p

rbÞn
 !2

: ð9:10Þ

Here we note two obvious inequalities:

1
ffiffiffiffiffiffi

m!
p ðe�1jzj0Þ

m
a ee

�2jz0j2=2;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðmþ nÞ!
m!n!

r

a
ðmþ nÞ!
m!n!

;

where e > 0 and m; nb 0. Then (9.10) becomes

kMfzGðTÞfk20a e2r
2b

ee
�2jz0j2kfk2pþaþb

X

y

l¼0

ðeþ
ffiffiffi

2
p

rbÞ2l :

The last sum becomes finite when bb 0 and e > 0 are chosen in such a way that

eþ
ffiffiffi

2
p

rb < 1, and we obtain the desired estimate. r

Theorem 9.4. Consider a quantum stochastic process

Lt ¼ X0;1ðI1; tÞ þ X1;0ðI2; tÞ þ X1;1ðI3; tÞ ð9:11Þ

defined on a time interval containing 0, where t 7! I1; t A N
�
C
, t 7! I2; t A N

�
C

and t 7! I3; t A

LðNC ;N
�
C
Þ are continuous. Put

Ji; t ¼
ð t

0

Ii; s ds; tb 0; i ¼ 1; 2; 3:

If there exists qb 0 such that J1; t A D
�
y
, J2; t A D�q and J3; t A LðDy;D�qÞ, then the solu-

tion to the equation (9.1) with coe‰cient fLtg given in (9.11) lies in LðGy;G�qÞ.
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Proof. We apply Proposition 9.1 with q being replaced with �q. Put

Mt ¼

ð t

0

Ls ds ¼ X0;1ðJ1; tÞ þ X1;0ðJ2; tÞ þ X1;1ðJ3; tÞ

and consider

Ytðx; hÞ ¼ ehx;hi expfe�hx;hiM̂Mtðx; hÞg

¼ expfhx; hiþ hJ1; t; xiþ hJ2; t; hiþ hJ3; tx; hig

¼ ehJ1; t;xi5fJ2; tþðJ3; tþIÞx; fh6:

Condition (i) in Proposition 9.1 is obviously fulfilled. We shall check condition (ii)

therein. By definition, we have

X

k

i¼1

aiYtðxi;K
�q�Þ

�

�

�

�

�

�

�

�

�

�

2

E 2ðnÞ

¼ sup
P AP

ð

N
�

C

X

k

i¼1

aiYtðxi;K
�qPzÞ

�

�

�

�

�

�

�

�

�

�

2

nðdzÞ

¼
X

k

i¼1

aie
hJ1; t;xiifJ2; tþðJ3; tþIÞxi

�

�

�

�

�

�

�

�

�

�

2

�q

¼
X

k

i¼1

aie
hJ1; t;xiifK�qðJ2; tþðJ3; tþIÞxiÞ

�

�

�

�

�

�

�

�

�

�

2

0

: ð9:12Þ

Using the formula fxþh ¼ e�hx;hifxfh, we see that

fK�qðJ2; tþðJ3; tþIÞÞxi
¼ e�hK�qJ2; t;K

�qðJ3; tþIÞxiifK�qJ2; t
fK�qðJ3; tþIÞxi

:

For simplicity we set

k ¼ J1; t � ðJ3; t þ IÞ�K�2qJ2; t; c ¼ fK�qJ2; t
; f ¼

X

k

i¼1

aifxi :

Then, noting that

eX0; 1ðkÞfx ¼ ehk;xifx; fK�qðJ3; tþIÞx ¼ GðK�qðJ3; t þ IÞÞfx;

we obtain

X

k

i¼1

aie
hJ1; t;xiifK�qðJ2; tþðJ3; tþIÞÞxi

¼ McGðK�qðJ3; t þ IÞÞeX0; 1ðkÞf:

It follows from Lemmas 9.2 and 9.3 that there exist pb 0 and Cb 0 such that

X

k

i¼1

aie
hJ1; t;xiifK�qðJ2; tþðJ3; tþIÞÞxi

�

�

�

�

�

�

�

�

�

�

0

aCkfkp:
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In other words, (9.12) is estimated as follows:

X

k

i¼1

aiYtðxi;K
�q�Þ

�

�

�

�

�

�

�

�

�

�

E 2ðnÞ

aC
X

k

i¼1

aifxi

�

�

�

�

�

�

�

�

�

�

p

:

This is condition (ii) that should be verified. Consequently, the unique solution Xt to

(9.1) given by (9.2) lies in LðGy;G�qÞ. r

Remark 9.5. It is worthwhile to note that nuclearity is not required during the

above argument. If K�r is of Hilbert-Schmidt class for some r > 0, or equivalently, if

DyðKÞ ¼ Dy is nuclear, then LðDy;D�qÞ ffi D�q nD
�
y by the kernel theorem. In this

case, Theorem 9.4 coincides with the statement of [10, Theorem 4.1] with 0a na 1.

Remark 9.6. If we choose

I1; t ¼ f1ðtÞdt; I2; t ¼ f2ðtÞdt; I3; t ¼ f3ðtÞI ;

where fiðtÞ is a continuous function, then the normal-ordered white noise di¤erential

equation (9.1) is equivalent to the quantum stochastic di¤erential equation:

dXt ¼ ð f1ðtÞ dAt þ f2ðtÞ dA
�ðtÞ þ f3ðtÞ dLtÞXt; Xð0Þ ¼ I :

In this sense Theorem 9.4 extends the traditional scheme and gives a method of inves-

tigating solutions to quantum stochastic di¤erential equations. Moreover, in a normal-

ordered white noise di¤erential equation the coe‰cients are not necessarily assumed to

be adapted. For example, let g > 0 and o A R be constants and consider

ItðsÞ ¼
e�ist � e�ðioþgÞt

iðo� sÞ þ g
:

Then, It A N
�
C

for any t A R and an equation involving the integral kernel operator

X0;1ðItÞ, which appears in a study of dissipative quantum systems, stays within our

framework.
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