J. Math. Soc. Japan
Vol. 56, No. 3, 2004

The initial value problem for the 1-D semilinear Schrodinger equation

in Besov spaces

By Tosinobu MuraMATU and Shifu TAaokA

(Received May 7, 2002)
(Revised Mar. 11, 2003)

Abstract. We define a class of Besov type spaces which is a generalization of
that defined by Kenig-Ponce-Vega ([4], [5]) in their study on KdV equation and non-
linear Schrodinger equation. Using these spaces, we prove the following results: the 1-

dimendional semilinear Schrddinger equation with the nonlinear term cju® + c;ii® has a
unique local-in-time solution for the initial data € B, 31/ 4, and that with cuzz has a unique

local-in-time solution for the initial data € B, 11/ “# " Note that B, 11/ 4‘#(R) > B, 1/ 4(R) )
H*(R) for any s> —1/4. '

1. Introduction and definition of Besov-type norms.

Kenig, Ponce and Vega ([5]) reported an excellent result which states that there
exists a unique local-in-time solution to the semilinear Schrédinger equation

(1.1) O = id2u+ N(u,it), x,t€R,

with the initial value u(x,0) = uo(x) € H*(R), s > —3/4, where N(u,ii) = u? or N(u,ii)
=#?. The main tool in [5] is the bilinear estimate

(12) levfy + e2fally., . < ClAllx, Nl .
where the space X, is defined by the norm (introduced by Bourgain [3])
(1.3) £ 1Ly, = 1L+ 1D (1 + |2 = EDFE D gy,

and f denotes the Fourier transform of f. They proved that holds for any
s> —3/4 and some b > 1/2, and fails for any s < —3/4 and any b € R. Nakanishi-
Takaoka-Tsutsumi showed that fails also when s = —3/4.

From these results we see that the Sobolev version of the Fourier restriction norm
does not work in the critical case s = —3/4, and experience suggests us some kind of its

Besov version would work. But we could not prove the estimate with X, re-

placed by B§_13/_4 5;/ 2 (see the definition below). The fact that » should be 1/2 is also

indicated by the calculations in [5]. In estimating the norm of fy there appear terms

analogous to the sum
o0

(1.4) S G+ 12906

J=0

where f;(f) = (pj(\é\)f(é) and {p;},_o,  1s a set of C*-functions satisfying
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1) {Zfio 9;(z) = 1, supp gy = {z;|z| < 2}, supp g, = {z;1 < |z < 4},
0i(z) = 9, (275F12) for k > 1,9,(z) = 9;(—2) > 0,

namely, the sequence which gives the Littlewood-Payley decomposition. The quantity

is equivalent with the norm of f in B) | with p(z) = z*log(2 + z) (a special case of

Besov spaces with ‘function’ parameter which is a good generalization of the usual ones,

see [7]). Thus, we are forced to use Besov type spaces of ‘function’ order differentia-

bility. Namely,

DeriniTION 1. For a weight p on R., beR, 1 < p <o, 1 <¢g< o0 and a real-
valued C*-function P(¢) the space B;”qb},(Rd“) is the space of tempered distributions f
such that the norm

(1.6) A1, = P2 i 5, syl
is finite. The space is written by B( b) (R when p(z) = z°. Here, N := NU{0},
(1.7) fr.p(&7) =coj(lfl)wk(f—P(f))f(f,f),

and {¢;}; o . is a sequence of C*-functions satisfying (1.5).
We omit the subscript P when P = 0.
By q(Rd) is the space of tempered distributions f such that the norm

(1.8) 1/ g, = PG Loy Hl o )

is finite, where £;(&) == ¢;(&)f(¢). (BS, (R?) = B} (R") with p(z) = z*.)

BIS . },(Rd“) is a generalization of the space of the Fourier restriction norm Xj,
since X = (Rz), and by making use of this norm we can prove that

Hufb+waf?HBplﬂ < Clf g2 Ngllgo 1

2,1,-¢ 2,1,-¢2 21g

(Theorem 2.3), which leads to, with the help of the usual successive approximation
method, the existence of solutions to with the initial condition u(0,x) =ug €

A
BY [(R) in the case N(u,it) = cju®+ coii>. But, since the 0-th approximation solution

225

e”&zuo (e"’a2 denotes the Schrodinger group) belongs to the space Bés’lb)_g,2 for any b if
up € B3 |(R) and the estimate -
Hﬁ@+QMMpm<CWﬂmwHm\w-Wﬂmm!Mmhj
2,1, f 2,1, — 2,1, —
holds for any b > 1/2, by solvmg the equation with respect to v :=u — et up we can

1/2)
construct solutions u = e ug + v, ve B(" /2

» for any initial data ug € B3 |(R).
In improving Kenig-Ponce-Vega’s results for the case where the nonlinearity N (u, i)
= uiu there arises another difficulty which force us to use the slightly complicated space

Bé“"ll/f 2’2# which is defined as follows:

DEerFINITION 2. For s,hbe R, 1 < g < oo and a real-valued C*-function P(&) the
space Béf’q}j)j)#(Rd“) is the completion of %(R?"!) with the norm
(1.9) W f g = {2 1Ak, p (e, D 2o Hl gy + 27 W e, p (6, Dl 2o Hl ooy

where fi p(&,7) = po(I€])(1 + [loglé] ) (= P(E)f (&, 7).
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We omit the subscript P when P = 0.
The space B;:Z(Rd) is the completion of .#(R?) with the norm

(1.10) HMHng(Rd) = ”ugHLZ(Rd) + H{ZV“u]HLQ(Rd)}”/q(N)

where (&) = g, (1Z])(1 + [log|é] |)*a(&), @(&) = ¢;(|E)a().

To prove the uniqueness, according to Bekiranov-Ogawa-Ponce [2] pp. 380—382, we
must use the ‘localized’ norm: that is,

DerFiNITION 3. For a function space X (R’”l) and an open set 2 in R the space
X (Q) is the set of all distributions f which have an extension f € X (R“*!), and its norm
is defined by

(L.11) 1/ o) = nf LI f 1|y ety /= fla-

This paper is arranged as follows: The definition of the Besov type spaces which
we use is given in §1. Main Theorem together with key estimates is stated in §2. §3 is
concerned with the definition of bilinear operators with kernel K and the properties of
their norm. In §4 we give the estimates of norm of special bilinear operators which are
essential tools in our proof of Part (I) in §5 and that of Part (II) in §6.
Proof of is given in §7 and that of is given in §8. Main
Theorem is proved in the last section. Proof of [Theorem 2.1 and [Theorem 2.2] is given
in Appendix.

ACKNOWLEDGMENT. The authers thank Yoshio Tsutsumi, because the method of
their proof of the uniqueness mentioned above is due to his advice.

2. Main results.

Basic properties of Besov type spaces defined in §1 are stated as follows:

THEOREM 2.1. Assume that there exists a real number v > 1 such that
10:P(E)] < e(1+ E)" ™ holds for any o with some ¢y,

and p(z) < cz? for some o and ¢ > 0. Then, B’E{)(’]f’l)r,(Rd x R) and B;p’qf’;’#(Rd X R) are

Banach spaces, and & (R") is dense in these spaces if p and q are finite.

The fact that the initial value makes sense in our spaces is a consequence of the
following

THeOREM 2.2 (Imbedding theorem). Bg” ’l}l/gz)(Rd“) (or B(z‘f’llv/ﬁ)’#(Rd“)) is continu-
ously imbedded in the space of Bﬁl(Rd)-valued (or B‘;‘;?(Rd)-valued ) bounded continuous
functions in t € R.

Our bilinear estimates which correspond to are stated as follows:

THEOREM 2.3. Let P(&) = +&2,
(I) Let p(t) =log(2 + 1)t* and assume that —3/4 < s < 0. Then,

(21) ||leg + C2fg_||3§‘ﬂiipl/2)(R2) < C||f||B(z{)‘1‘]5)2)(R2)||g||B(25,‘|],/1§)(R2)
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holds for any f,geszlllé2 (R?), and
2.2)  lenfg+ szgl\me gy = C{lI/]

holds for any f,geB2 ) P(Rz) if b>1/2.
(I1) Let p(z) = 10g(2+z) S, s=—1/4. Then,

(2'3) Hfg_HB(/’w*l/z)(RZ) < C“fHB(Pﬂ‘/Z)(RZ)Hm

2,1, P

5D @&l 5012 g2 T If ||ng11{/;>(1¢2)||9| Bg%(f),m}

g
holds for any f,ge szllf/)z)(Rz), and

(24) ||fg||B;'~lj;)/2)~#(R2) < C“fHB(S‘rl/z%#(RZ)||g||B§fﬂl{/If)ﬂ#(R2)

2,1,P

holds for any f, geB;I]g) (R*). Here C is a constant independent of f and g.

As usual, in constructing solutions to with the initial data uy we use the
integral formulation, namely

(2.5) u(x) = W(t)uo(x) + JO W(t—t")Nu,a)(x,t)dt,

where W (1) is defined by {W(¢)f}(x,t) := F. '™ OF f(x,t) (% denotes the Fourier
transform with respect to x), and so the key to prove existence of solutions is the
following:

THEOREM 2.4. Let I = (—a,a), a >0, P(&) = +|¢]*.
(I) Let p(t) =t"log(2+1t), s> —3/4, and define

(2.6) B(f,g) := J; W(t—t){c f(x,t)g(x,t") + e f (x,t)g(x,t')} dt’.

Then
(27) ”B(f7 )HB(/’ 1/2) (RxI) < CHfHB/’ 1/’> (RxI) “g‘
holds for any f e szllf (Rx1I), ge Bgsi’lli/ﬁ) (R x I), and

28) 1B 9l sy < €U,

holds for any f,geBz’LP(RxI) if 1/2 <b<l.
(II) Let s> —1/4. Then

B2 (Rx1)

”’ ) (RXI) ||g||le/ (RxI) +||f|

(s,
2,1,P 2

2 Rx1)||g||B§f'{j>P(Rx1)}

(2.9) ‘ r Wi(t—1t)f(x,t)g(x,t)dt

0

< CllA g 1% oy 19

(5,1/2), # .
) B (RxI)
s, 1/2),# L1, S 1
B (R L 21,P

Here C is a constant independent of a, f and g.

Recall that the definition of the spaces Bg”l_léz) (R x I) and Bg 11/132) (R x I) is given
in Definition 3 combined with Definitions 1, 2. " These estimates are obtained from our
bilinear estimates with the aid of some properties of the Besov type norms stated in
Theorem 7.1.

Our proof of the uniqueness relies on the following



1-D semilinear Schrodinger equation in Besov spaces 857

THEOREM 2.5. Let 1/2<b< 1, I=(—a,a),a>0, f eBg’p’li)p(Rd x I) and assume
that f(x,0) =0. Then |\f|R4X(_575)HngibI)J(RdX(ﬂw)) — 0 as § — +0.

The same fact holds for the space Bgf ’1{73;#.

Thus, we can obtain the following conclusion:
MAIN THEOREM
(1) If N(u,it) = ciu* + cpit* and uy € B2_31/4(R), then there exist T = T(HL‘OHB*/‘*(R))
’ 2,1
> 0 and a unique solution u(x,t) to (1.1) in R x It with u(x,0) = uo(x) of the form

(2.10) u(x, 1) = W(Ouo(x) + v(x,1), veB”Y? (RxIy).

2,1, ¢l
(I1)  If N(u,t) = c3uit and ugy € B;]1/4’#(R), then there exist T = T(HUOHB*I/*#(R)) > 0 and
; 2,1

a unique solution u(x,t) eB;_ll/:’gléz)’#(R x Ir) to (1.1) in R x It with u(x,0) = up(x).
Here It == (-T,T).

3. Norm of integral operators.

The following lemma is a convenient tool in estimating the norm of integral
operators:

Lemma 3.1, Let (Q;,1;), j = 1,2, be o-finite measure spaces, 1 < p < q < oo, X and
Y be Banach spaces and let K(x, y) be a strongly measurable (X, Y )-valued function on
(21 X 2y, 14y X uy). Assume that there exist non-negative measurable functions H\(x, y)
and H>(x,y) such that

(31) HK(x?y)H,%’(X,Y) SHl(X,y)Hz(X,y),

(3.2) ess. sup [|Hi(x, )|l oo, 4 = C1 < 0,
yes

(3.3) ess. sup [|Ha(x, »)l| 1 (0, 1) = C2 < 0.

XEQ]

Here 1/p+1/p'=1(p'=wif p=1land p'=11if p= ), and L (X,Y) denotes the
space of bounded linear operators from X into Y. Define the operator T by

(3.4) Tf(x) = j K(x, ) f () dins ().

Then T is a bounded operator from LP(Q2;,uy; X) into LY(Q,u;;Y) and ||T|| < C,Cs.
In particular, |K * f||;, < |K|l. - |||, holds for any K € L'(R?) and f e LP(R?).

For the proof of this lemma see [1, Theorem 6.3, p. 239] or [7, p. 38].

DEFINITION 4. For a measurable function K(x, y) defined on RY x R? the bilinear
operator B(K; f,g) is defined by

(3.5) B(K: f,g)(x) := jK(x, W — ) dy,

and its norm as an operator from L? x L? into L? is denoted by Ny (K).
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LEMMA 3.2. For a measurable function K(x,y) on RYxR? we have
Nyu(K) < C=min{C|, G},  where  Cj =ess.sup,_pa([|K(x,y)|?dx)'?, Gy =
ess. sup, . g ([ K (x, y)|* dy) '/

Proor. Put H;(x,y)=|K(x,y)|, Ha(x,y)=|g(x—y)|, and apply Lemma 3.1.
Then, we have ||B(K; f,9)|l;- < Cil|f||;2lg]l 2, which means Ny (K) < C;. Also, put-
ting H(x, y) = |g(x = y)|, Ha(x,y) = |K(x, y)|, Lemma 3.1 gives that Ny(K) < C5. [

The norm of bilinear operators has the following properties:

LemMa 3.3. Let K(x,y) be a measurable function on R? x R,

(@) Put Ki(x,y) =K(y,x), K(x,y) =K(x,x—y), Ks(x, ) = K(p, y — x), Ka(x, y)
=K(x—y,—y), Ks(x,y) = K(x — y,x). Then we have Ny (K) = Ny(K;) = Ny(K>) =
Nyi(K3) = Npi(Ka) = Npi(Ks).

(b) If M(x,y) is a non-negative measurable function such that |K(x,y)| < M(x, y)
for almost everywhere, then Np(K) < Np(M).

Proor. It follows from Fubini’s theorem that

(BUK: £29):0) 5.0 = | [ KCv 00 096 = )T did = (BK33 5, 7).

where §(x) = g(—x), which implies that [(B(K; £,9),¥),5,1:] < Nu(K0)I /1Ll 1V
holds for any y € L. This means by duality that ||B(K; f,9)|l;> < Nut (KD £l 2 llgll 2,
which implies that Ny/(K) < Ny(K;). Since Ki(y,x) = K(x, y), we also have Ny(K;) <
Np(K). Hence we have Ny(K) = Np(K;). This also gives Np(K>) = Np(K3) because
of the fact that Kj(y,x) = Ks(x, ).

Nyi(K) = Nyi(K>) follows from the identity

B(K: f.9)(x) = jK<x, WS ()g(x— y)dy

= JK(x,x — ) f(x—=y)g(y)dy = B(Kz; g, f)(x).

This implies Np/(K3) = Npi(Ks4) and Np(K;) = Npi(Ks), since Kz(x,x — y) = Ka(x, p),
Kl(X,X - y) = KS(X7 y)
Part (b) follows from the inequality |B(K; f,g)(x)| < B(M;|f],|g])(x). O

4. Special class of bilinear operators.

The three lemmas in this section are concerned with the norm of the special class of
bilinear operators, which give the key estimates to prove [Theorem 2.3.

When j > 0 y; denotes the defining function of the set [2/-1,2/H]U [-2/+1, —2/1],
and y, denotes that of the interval [-2,2]. For real-valued functions P, Q, R we define

(4.1) HY (&,5,0,0) = 3,0)9,(& = n)ym(z — 0 — PE— 7)),

(4.2) HI2(E 1,n,0) =y (0 — P(n) H 2, (¢,7,1,0),
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(4.3) 5L (& tn.0) = () Hy (& 1., 0),
(4.4) HPOR (& 1n,0) = p,(c — PE)HGE, (&2n.0).
Note first
XN 0.7 Nu(H;5,,),

(4.5) Nbl(ij,/m) = Nbl(H/m,jk) < {Nbl(H/[f;]k)-
Nbl(H;Ef 2,

(4.6) No(H52,) = Nu(H.G00) < S Ny(r2),
Nbl(%[,_jf])-

(4.7) Nu(HP OBy = Ny(HP£9) = Ny(H2P Ry = Ny (1% 12

< Nbl(Hh[?;}ﬁm)-

Here P(¢) = P(~¢). In fact, with the help of the identity H)/2(¢,7,& —y,7—0) =
H}g:;{}(é,r,n,a) and the inequality OSHJ[,S}%(QT,W,J) SHiEQ/]n(f,T,n,a)
gives [4.5), with the help of the inequalities 0 < Hh[f;}gm(f, T,1,0) SI‘IjE’/%(f,T,ﬂ,O'),

Vi

0<H,"8 (n,0,&7) < H 2 1,n,0) it gives [4.6), and with the help of the identity

h, jk,/m "
1111[5}%5,,]1(7770'757T) = fgf;;:;rf](é,r,n,a) and the inequality 0 < I—Ih[i’j%ﬁ(é,r,n,a) <

IJJZ[LQ;}CI,{/]m(fy T,17,0) it gives [(4.7).
We also use the notations j A/ :=min{j,/} and jv/ :=max{j,/}.

LemMa 4.1. Let P,Q and R be real-valued C*-functions. Then

= ) <
49) Np(H52),) < 2tknmmin(hs +4)/2,
(4.10) Nbl(}l/g,%ﬁ) < p{min(a k,m)tmin(h,j, () +4}/2

Proor. First note that [Lemma 3.2 and the inequality

” 1, (Z,7,1,0)|” dndo = J%(n)w(é — ) d’?JVm(T — 60— P(¢—7n))do < 2/

imply the estimate

(4.11) Ny(H),) < 2Untmed)2,

The estimate is a direct consequence of and [4.11), the estimate fol-

lows from (4.6), (4.8) and {4.11), and finally the estimate follows from and
(4.9) O
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LemMMA 4.2. Let P(&) = +&*. Then

(4.12) Nbl([-[jlf)/ib < pknm/2)+evm/4+2)

(4.13) Nyi( Hh[i}gﬁ) < plktm—ht3)/2

(4.14) Nb,(f[ﬂf’/g) < QFI=IVES)2 hen |~ /] > 3,
(4.15) Nbl(Hh[i}cI,ﬂ/m) < 2EAmIE2 e =1 — /] > 3,

Proor. Change variables ¢’ =0 — P(), {=1—0¢" — P(y) — P(( —n). Then we
have

j yul — &' — P(n) — P(¢ — ) di

< dn +j ym( — ' — P(g) — P& — ) dy
In—&/2|=2m/2-1

J’M_é/2<2m/21
< 2m/2 + 2—m/2—1 Jym(é) dC < 2m/2 + 2—m/2+m+1 < 2m/2—|—27

since |d{/dn| =|2¢ —4n|. Hence

“ HE2 (& 2n,0)| dudo < jmo-/) do’ j y(t = 0" — Ply) — P(& — ) dy < 2+n/2)+4

which implies, with the aid of [Cemma 3.2, that sz(ngf Y < 2k/2+m4)+2 - With the

help of this estimate gives [(4.12).
Next consider {4.13). We may assume that s > 0, because [(4.13) with 4 =0 fol-

lows from [4.9). We change variables ¢’ =0 — P(y), {=1—0d + P(&—n)— P(n).
Then

[t e e ovando < [ (o) do [ @mte =o' + P& = n) = Py

< 27}1 Jyk(al) dO”Jm(C) dC < 2k+m7h+4,

since |d{/dn| = |2¢| > 2". Therefore we have [4.13) by [Lemma 3.2.

Thirdly, assume that |j — /| > 3 and consider (4.14). By [4.5)] we may assume that
j=¢+3. Since 2771 < ||, |&—n| <27V if p;(n)y,(E —n) # 0, we see that [2& — 4n| >
20| = 2| —n| > 2/ —2/+2 > 2/-1 Therefore |d{/dy| = |2& —4n| = 2/~! when we change
variables { =7 —0a¢" — P(n) — P(¢ — ), which gives that

[[1 i .o ando < [ o' [ 1o nc — o' = Pla) — P& =)
< 2*j+l Jyk(a/) dU,J)’m(C) dC < 2k+m7j+5.

So we have (4.14) by [Lemma 3.2l
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Finally, assume that |z —1— /| >3. It follows from the fact 2! < |¢| < 2"+,
2071 < |E =] < 2771 when y,(&)y,(E —n) # 0 that

26| -4l —n| >2" =2/ =201 for h >/ +4,

2¢8 —4n| > :
[2¢ ’7'—{4|é—n\—z|f|>zf+1—zh+222f for £ = h+2.

Hence |d{/dn| = |26 — 45| = 2DV’ when we change variables { =7 — ¢’ — P(¢ — ) —
P(n). This fact and the same consideration as above give the estimate (4.15). ]

LemMA 4.3. Let P(&) = +&*, and let Q be a real-valued C* function. Then we
have

(4.16) Nyi( Hh[f, %fjﬂ) < plmtm=j+5)/2,

(4.17) Nii( Hh[P] Q Py < 20t mi)a =) 13)/2,

(4.18) Nii( Hh[f,} e Ply < lman/2)men/4)+2,

(4.19) Nii( Hh[,f };f;n:f’}) < pn/Atenm) /242

(4.20) Nbl(%ﬁﬁ]ﬁ) < 2(n+/c—f+5)/27

(4.21) Np(Hip & Fly < 20rtm=VES)2 yphen |j— 1 — /] > 3,
(4.22) No(H0,) < 200m=VESI2 yhen h < jv e -2,
(4.23) Nyi(Hy @01 < 20mm=VES)2 yhen < jv £ — 4,
(4.24) Nop(HP 50 Py < 2mkam=i 92 - ypon b < jv £ — 4.

Proor. Since implies that Nbl(Hh[i’j%f,L) = Nbl(H_,-ECQ,}i’Z;}) < Nbl(lfj%jﬁ),
(4.16) follows from (4.13), and (4.17) follows from (4.16) and [4.7). Also, (4.18) and
(4.19] follow from [4.12) and [4.7). Since we have Ny (Hy i ) = Nu(Hj i) <
Nbl(H/[ﬁ;,;;c]) by [4.7), the estimate (4.13) implies [4.20). Similarly, (4.21) follows from

Nu(H 8T = N (HZ0 1) < Nu(H'F,,) and (4.15).

V\’;Ijllzz;;mh </ —2, (4.15) implies thé’léé‘:ir';nate Nbl(lﬂlf;}f]/m) < 2(ktm=(43)/2 “and it also
gives N;,;(Hh[i}f]m) < 2UFtm=+3)/2 when h < j — 2, since Nb;(Hh[i}f]/m) = Nbl<Hh[,I;anjk>-

Consider next (4.23). When /& </ — 4, the estimate Nbl(Hh[,ij%;;]) < p(ntm=r+3)/2
follows from (4.14) and Nbl(%[i}%;nf}) = Nb;(HJ.E{QjZ’;,L) < Nbl(l-lh[i’;l), and when £ <
j — 4, the estimate Nbl(Hh[i’j%;f) < 20mtm=j+3)/2 follows from (4.15) and Nbl(H,Lf]%/_nf]) —
Nu(HSEM) < Nyy(H5F,). Finally, [@7) and (4.23) imply (4.24). 0

5. Proof of Theorem 2.3 (I).

Since || f |12 = L/ | gom125 Part (I) is reduced to the following:
2 2,1,-P

1L P
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THEOREM 5.1. Let s> —3/4, p(t) =log(2 4+ 0)t*, P(&) = +&*, and let Q be +P.
Then,

(5.1) 179l 1 < llf o2 gl g2
(5.2) 17911517 < e{[1/] B<2»s_-~f>QHg| s+ 1/ Bg-;/gHQ\ B(z‘f‘f’_)Q}

hold. Here we assume that b > 1/2.

In this section we put (pgj(f,f) = 0,(&e,(t — P(&)), and write f;kQ(é,r) =
P (6,7)f(¢,7). Then we have f =Y, fi.0. 9=/, grmr, hence

(5.3) fa=">" fr.odrmr

ikt m
To prove the theorem, first note the following facts:

LemMA 5.1.  Assume that P and Q be real-valued C*-functions.

I 9(E) S * Grm (& Dl 2 # 0, then h < jv 7 +2.
Moreover, h > jv{ —2 when |j—¢| >3 and |j—{| <2 when h < jv/—3.

Proor. If H(ph(é)f;k’}, * Gsm 0(&, 7|2 # 0, then there exist ¢ and # such that
ph-1 < |é| < 2h+1’ 2J-1 < |;7| < 2j+1, /=1 < |f—77| < 2/+1

This gives 2/~ < |&] < |y| + | — | < 2/F1 + 2741 < 2/v/+2 ) which implies & < j v/ + 2.
When /< j—3 we have 2! > & > |p| —|&—y| >2/71 =241 > 2772 which

implies # > j—2. In the same way we see that # >/ —2 when j </ — 3.
If h<j—3, j>/, then we have 2/*! > |& —py| > || — |&| > 2/7! — 2"+ > 2772,
which implies that / > j — 2. In the same way we see that j >/ —2ifh</—3,/>].
[

LEMMA 5.2. Let P(&) = +&%, and assume that j >0, /> 0.
@) I o, (&0 Fp * Gom p(ET) |2 # 0, then max{k,m,n} = j+¢ —3.
(0) I Nl (&) fx—p * Grm—p(E D)2 # 0, then max{k,m,n} >2(jv /) -2

PROOF. (a) Assume that [|¢}) (&, 1) fy p* Grm p(&, )| 12 #0, j>0, £>0. Then,
there exist & 7,7,0 such that 277! < ||, 271 < |€— g, |7/| < 2", |o'| < 2 |¢/ —
o' + P(E) — P(y) — P(E—n)| < 2™, where v/ =1 — P(¢), ¢/ =0 — P(y). Noting that
|P(&) = P(n) — P(E—n)| = [27(E —n)|, this implies that 2771 <[2p(& —n)| <[’ —
s —i—P(f) _ P(I’]) _ P(f _ ]7>| + ’T’| + |O'/| < pmtl  ontl 4 Hk+l - 2max{k,m,n}+3’ so that
max{k,m,n} > j+ ¢ — 3.

(b) Assume that H(/)L’j(é, r)f;k77P *Gsm —p(&,T)||p2 #0, jvZ > 0. Then, there exist
&t,m0 such that 2771 <y, 27V < |E—y), |d]<2") |0l < 2K |7 — o'+
P(&) +P(n) + P& —n)| < 2™+, where t/ =17 — P(¢), ' = o+ P(y). From the inequal-
ity |P(&) + P(n) + P(& — )| = 2(& — &+ %) = (3/2) max{n?, (& — n)*} > 3. 220¥)73 g
follows that 3-220UV)=3 < |P(&)+ P(n) + P(E—n)| < |7'| +|o'| + |t/ — o' + P(&) + P(n) +
P(&—n)| < 3-2max{kmnl " g0 that we have max{k,m,n} >2(jv /) —2. ]
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Now we are going to prove [Theorem 3.1. We divide fy into 4 terms:
3
URES SRS DIRD SR DS VR D oy e
' JH=2 j=0.052  j52.7=0  j>0,/0,j+/>2) Fom
The inequality
P,O.R]
(5.5) o (&0 fi 0 * Gom, R(E D 12 < IBHy 2 i 1 e 0l 1m, 2D 12+

Lemma 5.1 and [4.10) give that the ||F0||B</,.71/2> is estimated by

2,1,P

¢y 20(2 222 R fi ol 2 llgim ol < ¢ ||f||B<s FLPOEE

JH =2 h=0
and [5.5), Cemma 3.1, [4.6), and (4.14) imply that ||Fy|[4,.-1 is estimated by
2.1,P
)
eSS p@) 2 OR f ol allgimollie < € Nf g gl
(>3 k,m h=(-2 n 2,10 2,1,0
Since Fy = /.y D k. m 9ok, 0f7m, 0, this also gives ||F2||B,, ) < c|lf] B gl 112

To estimate the norm of F3 we divide it into 5 parts

5
(5:6)  IFsllgo 1 < > G
o i=1

jvi—4 j+£ JvIi+2

SO DI IDIED I 3P IR I 9D

J. >0 0 k,mn>kvm h=0 n=0 kvm>n  h=jv{-3 k,m n>kvm

G2 L .
+ Z Z Z "'ZZ Z } n/zﬂ(ﬂ[ ]ka g/mQHLZ-

h=jv{—3 n=0 kvm>n n>j+/ kvm>n

At first, by (4.22), and we have

jvi—4
G <cy, Z 2> > 2 OR £ ol llgem oll e
J.>0 h=0 k,m n>=j+/-3
<! YN 2B IEEOR £ ol lgim.oll e < ¢S gt 1972
By
J, >0 k,m

Secondly, by (4.17) and (4.24) we have

Gr<e Yo D> 3o p@h2r DR ol lgm ol

lj=¢1<2 h=0 n=0 kvm> j+/-3

ST ST DT OR ol ol
li—/|<2 k,m

< " min{]| £ 012 |9l g2, 1 f]

2L0 2,1,0 B(;"ll,/;) “gHB(zpll/Qz)},
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and by [Lemma 5.2 and (4.12) we have

Jvi+2
Grxe Y S pN Y X AR o g ol
Js >0 h=jv{-3 k,m n>j+/-3
< ¢ 30 SRR f ol s lgmmoles < ¢ g gl
7, />0 k,m 2 »he
When Q = P it follows from that N;,;(HK},Z;IDL) < k= m=)/2 < e nthkam)/2,
and when Q = —P it follows from that N;,;(Hh[i’j;};; P]) < 2mtkam)/2 - Therefore
V2 L

Go<ed > > >, p@HR Lol g ol

7,050 h=jvi—2 n=0 kvm> j+/—3

< ¢ S0 ST+ £+ Dp@ )25 TR ool gm0l o

J >0 k,m
< ) A
<c ”f|BE,'II,@)Hg'BE,'ﬂ/é)’

and by [4.8)] we have

Gs<cZZZ 3= p@mHRAmET AR £ ol llgemoll -

J, >0 n>j+{ kvm>j+/

< 30N 2kt n RS £ ol llgim, ol < €IS

J, (>0 k,m

B 9]

B [l

6. Proof of Theorem 2.3 (II).
As Proof of (I), that of (IT) is reduced to

THEOREM 6.1. Let s> —1/4, p(t) =log(2+ 1)t* and let P(&) = +&>. Then we
have

(61) ||fg||B(/’>‘l/2)(R2) = cmin{”f||3(/’>l J(R?) ||g|

2,1,P 2,1,

ey I

6.2)  |/gllg Bl g2y S cllf Mg 129 g2, ||9|B<s 12)# g

a2 e 19y e

First, noting that |P(&) — P(n) + P(¢ — n)| = 2|E(E — n)|, in the same way as
5.2 we obtain

LEMMA 6.1, Let P(&) = +&%  If |0 (&, 0) fup * Gom —p(E D12 # 0, h >0, £ >0,
then we have max{k,m,n} >h+ ¢ —3.

PROOF OF THE ESTIMATE (6.1).
By we have HngB(/),q/z) < C(Go() + Go1 + Goo + Gl), where

(63) G()()—ZZZP n/2||¢ ka*g/m PHL27

n km

(6.4) G =SS5 0@ 220 fo o * Gl 12

¢/ h>0 n km
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(6.5) Gor =33 > p(@" 27"\l g kb * Gom —pll12,

Jj >0 n km

(6.6) G = Z ZZZP(Zh n/zH(ﬂ;mka * Grm, —pll L2

J, (>0 h>0 n km

By Lemma 5.1, [5.3), (4.10) and (4.23) we have

G — z(zzz+zz) T AT

" j>0 n=0 j,l n>j

=595 o o TEEEED SE) (PR
kom |j—£]<2 n>j

<! STNT 2% D2 ol g m-pll
k,m |j—£|<2

< " min{|| /g1 gl 5 1]

By [Lemma 5.1, (4.8) and [4.13) we have

sy 191

2 /42 w /42
Goi <CZ Zz2k/2+z Z pUktm=h)/ ZP )27 for, PNl 2 N g m,—p | 2
70 h= =3 =i
<c 222 Em=N0R2| for pll 12| grm, —pl 12 < C”||f|B<x 1/2>||g\3<\ s

kom ¢

and in the same way we see that Gy, is estimated by c||f ||le/2)||g||B(s 1)

To estimate G| we divide it into 3 parts: Gy = Gy + G12 + G13, Where

( jvl—4
Gui=Y 3 3" 3" pC@M2 Pl fap* G2
J, (>0 h=1 k,mn>=kvm
jvi—4 7l
(6.7) Gy = Z Z Z Z 272 ’(Ph Faep * Gom,—pll 2,
J, />0 h=1 n kvm>n
JvIi+2
Gz = Z Z ZZP (2")2” n/zH(P ka rm,—pll -
k J, (>0 h=jv/=3 k,m n
With the aid of [Lemma 5.1 and Lemma 6.1, by we have
jvi—4

Gize S SN ST 2 2pm b R gl gl

J,0>0,1j—¢|<2 k,m  h=1 n>h+/-3

jvi—4

<c >0 ST p@M2® 2 0R e pllallgim, el

J >0, j—|<2 kym  h=1

< 30 SRR G pllallgom—plle < €17 gl
J,(>0,]j=¢)<2 k,m

(s, 1/2)
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Since (kv m)2-kv™/2 is bounded, by (4.23) and [4.20] we have

jvi—4 kvm—1
Gn<c ) Z 2 > 29 IR f pll o llgm, el 1
J,0>0,1j-¢|<2 h=1 k,m  n=0
> Yk m2 R ) llgom, -l
lj—/1<2 k,m
" > D 25O S el allgem el < " IF g gl
lj—¢1<2 k,m
Also, by (4.13) we have
JvIi+2
Gu<eY, Do 3 p@M2 IR fpllalgom, ol
Ji >0 h=jv/=3 k,m n
<" SN @2 TR fopllgmpllz < €IS Ny gl
750 kom Pair
This completes the proof of (6.1). O

PROOF OF THE ESTIMATE (6.2).

From (5.3) it follows that ||fg||B(s4—l/24# = G + Go1 + G2 + Gy, where
7;1 (p()n (é T) ;
(6.8) Goo = & Sie.p * Grm,—p(E:D)||
Z;; (1+ [loglé|)>” IE

and Gop, Gop, Gy are defined by [6.4), [6.5] and [6.6] with p(2") replaced by 2.

EsTIMATE OF GJ. We divide G# into 4 parts: Gi = G¥, + G&, + G¥, + G,
where

Gy = 35" 27| (1 + [loglé] ) 202 (£, 7) forp # Gom (&l 21

n k.m

GOOI—ZZZN”H + log|E| )20 (&, ) forp * Grm,—p(E D 12,

/=1 n km

Gy, = ZZZz "2||(1 + [loglé] ) el (. 7) fip * Gom,—p(E D) 2

j=1 n km

Gos= > 3 S 221 + Nloglél )2 e (&9 fiep * Grm,p(E, D)o

J/>07|/_/|S2 . k7m

When |£|/2 < |n] <2 we have 2(1 + |log|é||) = 1+ [log|y|| and when |&]/2 > |5],
| —#n| <2 we have |£|/2 < |&—#| hence 2(1 + |log|é||) = 1+ |log|é —#||. Therefore,
we have the inequality

n@nlmrE—m _ 4l . 4E—n)
(1+lloglél)® (1+ lloglnl)* (1 + Jloglé —nl)*
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which implies that

106()(1 + oglé] ) s p * dom _p(&, )]
— po(&)(1 + floglé] )2 “fokf(n, Niom (& — 1,7 — o) dndo

< 4B p(1,0); | foi ol |Git_p1)(E,7) +4BOE _p(& = n.1 = 0); | foh pls 10 _p) (E,7),
where
(6.9) 78 o(E,7) = (1 + |loglé] )70 (&) (T — 0(6)).

Combining this with the fact that

(6.10) Nbl(V;?,Q(’?aU)) = Nbl(V}ﬁQ(f —n,1—0)) < 22,

which is a consequence of [Cemma 3.2 and the estimate ||y (¢, )|l g2y < 2/2, we
have

Gooo < ¢33 272lpy (&)1 + loglé] ) fagp * Gom, —p (&, )l

n k.,m

<SSR L 2P| £k ol eligly, pll < 21 N

ot 19l
n k,m

2

It follows from the identity

(611) ﬁ)k,P * g/m, Q(ga T) = B(yk#f(m 0'); f()i,P? gA/m,Q)(é T)
and that
(6.12) 1 fok, pG7m —pllz2 < 221 £5% pllz2llgrm, —pll2,

which implies that

2

Gl <Y DS 2R sl gim,—pll 2 < cllf]

/=1 n km

sy e 19l e

In the same way we have Giy, < ¢/l /g9l o12.#-
2,1, P 2,1,—-P
To estimate G, we note that the identity ¢y(z) + > /2, ¢;(27%z) = 1 implies that

J—1

(6.13) v0(z) = ) 01(2"2) + 9y(272).
p=0

It follows from the fact that (1 -+ |log|é||)™ < ¢o(1 + p)™> when ¢,(27&) # 0 and
(1+ logle] ) > < eo(1+)~> when ¢y(27¢) # 0 that

J
Gos<co > > > > 2"+ Livm,

J,/>0,1j—(|<2p=0 n k,m
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where
Liomnp = 01 (27E)p,(t = P(O) o * Gy, —p(E, D)l 2 for p < j,
Licomnj = 1196(27E) 0, (x — P(E) fi p * Gpm,—p (&) 2.

By the identity (ﬂo(zlf)fkp*g/m _p(&,1) = Blpy(27)y,,(t — 0+ P(E—1)); fik, P Grm.—P)
we have 90(2E) Sy p G & Dz < QD2 f pl 2 lgim, -l 2, since

Nit(99(278) %7t — o + P(E — 1)) < 20122,

which follows from
(6.14) [[ /eyt =0+ P& = my e < 254

and [Cemma 3.2. Therefore, we have

S D> 2P < D> Y 2" PG pllallgom -l 2

j.0>0,[j—¢|<2 1 k,m 7,¢>0,1j—¢)<2 k,m

<c|lf]

w09l

Assume now p < j. Note that 277 <|P(&) — P(y) 4+ P(E—n)| =2|E(E—n)| < 2/—P+4
if p,(278)y,(E—n) #0. We write ' =7 — P({), 6’ =0 — P(n). Assume moreover that

kvm</—p—3. Then, ¢;(27&)y,(&—n)e,(t")y,(t" =+ P(&) — P(n) + P(E—n))y(a’)
# 0 implies that

2n—1 < |‘L'/’ Sz‘f(é—i’])|+|0'/|+2m+l <2/—p+4+2k+1 +2m+1 <2/—p+57

and 2" > |t/| = 2|E(E —n)| — |o!| — 27 > 2/ 2k _pmHl > 2/=p=1 " which imply
that /—p—-1<n</—p—+5. On the other hand from the estimate

(13 [[o12er stz - o - 01— ny) détn < 2morve
for any function Q and it follows that

I]k/mnp < ||€01 (2 é)fk p* g/m P( )HL2

< HJJ%(%@)M(T —o+ P(&— ﬂ))f;kvp(n,a)g/mﬁp(é —n,1—0)dndo
12

< 22| fo pll 2 g em, —pll 12

Since fi p* Gsm,—p = Gym —p * Jir, p» the same calculation shows that Ii/mm, is estimated
k—p)/2
by 2%P72| fic pll2llgsm,—pll;2- Hence we have

(6.16) Limmp < 2% P2\ i pll 2l gom,—pll 2
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Thus we obtain that

{—p+5
§ § E 27n/21jk/mnp < g § E 27n/2ljk/mnp
J,0>0,]j—¢|<2 n kvim<{—p-2 J,£>0,|j—C| <2 kvm</—p—2 n=(—p—1

<c 3 S22 ol e llgom - pll

< N g 119l g, -

It follows from the estimate and the identity kK Am + kvm =k + m that

Z Z Z 2_n/21_jk/mnp

J,/>0,j—|<2 n kvm>(—p-2

<c > Nt ST 2®m 22y f bl gom, -l

J,0>0,]j—¢|<2 n kvm>{—p-2

< c/ Z Z 2(/{/\m+k\/m—p+p—f)/2Hf]'kPHLZ ”g(’nnprLz
J,0>0,1j—¢|<2 k,m

<c \ 1) 8
< N g gl g e

Combining these estimates, we can conclude that

J
G(?)E‘(&B < ¢o Z(l +p)72 Z Zzz " 2Ijkfmnp

p=0 J,(>0,]j—()<2 n

J
<cay (1+p) 7/

p=0

ESTIMATE OF Go; AND Gp,. By [Lemma 5.1 we have Gy = Goio + Gor1, where

Bl 1/2).# Hg\

; <
e lollgy e < )]

sy 2?19 gy

Goo = Zzzzéh n/2||(ﬂ;m <) T)fOkP*QOm P&,

=1 n km
o0 /42 R
Gon = Z > Zzzsh "2 gy ( (&) fox, P * Grm, (& D) 2
=1 h=lv(/=2) n
Note that when || <2, |E—n| <2, |{]>1
(1 + llogln| [)*(1 + [log|¢ — n[[)* < 4(1 + [logln| [)* + 4(1 + [log|¢ — ] |)*.
In fact, 1 < |&| < || + |& —#| implies that || > 1/2 or |& —#y| > 1/2. Hence we have

104(E) for »* Gom _p(&7)]
— Ujfph(é)(l + llogl| )2(1 + loglé — [ )2/ p(,0)tt_p(& — 1.7 — o) dndo

< 4B(V/ﬁ1>(’7»<7)3 |fot,1>|a |gA0m7—P|)(é’ T) + 4B(%ﬁ,—P<f —1,T—0); |f0k Pl |90m (& 7).
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From this fact and [6.10) we see that

o (E )fokp*gom P& <C(2k/2+2m/2)||f0k P”LZHQOm _pllres

which implies that

Goo <szzz "2 g (€, %) fok,p * Gom, — (&0l 2

h=1 n km

k
<ey @42 £k pllillady, —pllze < N1
k,m

s #19 lggmye-

Similarly, by (6.12) we have

o0 /42

ZIEDSED D B0 Bl A C T L

=1 h=1v(/-2) n km

<c Z 2° ”f()k p* g/m (é T)||L2

/7

\Méﬁ

s/ +k /2 #
Zzé/Jr / Hf()k,P“LZHWW—PHLZ < ch\By,}l/:),#HgHB<s.1/z>,#.
£ Rt

2,1,-P

We can estimate Gy, in the same way as Gy;.
Finally, the arguments in the proof of (6.1) give the estimate of Gj. O]

7. Proof of Theorem 2.4.
The auxiliary result to prove [Theorem 2.4 is the following theorem:

THEOREM 7.1. Let p be a weight on R+, be R, P(&) a real-valued C*-function, and
define. W (1) by {W(1)f}(x, Z) F e POF ] (x,1).

(a) Assume that Y € BY | (R)

If ug € BY | (R?), then we have (t)W (1)ug € B2 L PR and

(7.1) Il (®) W(l)“OHBgffj,(RdH) = ”uOHB;l(R"’)HlM|B£1(R)
If uo GB;:?(Rd), then we have (1) W (t)ug GBgS,’lb’)j,#(RdH) and
(7.2) ||¢<t) W<t)u0||B§51{’)P#(Rd+l) = Hu() B;?(Rd) l'bHszl(R)

(b) Assume that Yy € S (R) and 1/2 <b < 1. Then,

(7.3) an(t) l W(t — ") f(x, ") dt’

<c b
BE?i,bL(R"“) HfHBg,pl‘[pl)(R‘M)

holds for any feB;leI)(Rd“), and

(7.4) Hw(z) W(t—1t)f(x,t)dt

<c L5o1),
Bgs‘jlli)}a#(RdH) ||f||B§,1[?P1) #(RI

holds for any f estlb Pl) (R, where ¢ is a constant independent of f.
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In proving we may assume that P(¢) =0 because of the following
identity

(7'5) ||f||B;qu1)D(Rd+l) = || W(_t)fHBg/’qb)(RdJrl)?

which is a simple consequence of the formula Z{W(—t)f} = f(¢, 7+ P(¢)) and Par-
seval’s identity.

PrOOF OF THEOREM 7.1 (a). Since Z ((f)uo(x)) = ¥(2)ilg(&), we have

WOl = 3 P22 oy (i IO, = Nl 11y,
j?
The same arguments as above also work for the case B;f. ]

PRrOOF OF THEOREM 7.1 (b). Setting £,(&,7) := ¢, (2) f(&,7), ¥, (7) := @, (D)Y(7), by
the identities /' =), fr, ¥ = >, ¥,, we obtain that

(7.6) F(x,1) == (1) JO S ) dl =" Fn(x, 1),
m  k

(7.7) Fion(x, 1) := 4, (1) J; Sie(x, ") dt'.

To estimate the norm of F we divide F into two parts:

o0 k—1
F=F+F, Fi=) 3% Fum F=) % Fn
k k m=0

m=k
First we estimate the norm of F;. It follows from the identity

(7.8) Fon(é,7) = Zijemwm(z) dt JO dr' Je”’f’ fi(&,0)do

T

— 1 ¢ —itt ! igt" g1
—2—njfk(f70')dﬂje m(l)dtJe dt

0
and [e ™y, (1) dt [§ e di’ = [, dO [ e D ty(1)dt = /27 [, i, (t — o0) dO that

R i (! < N
7.9 Fon(& 1) =—| dO|(¥,) (t — a0 ,o0)do.
(7.9) e = = 0 [ (e = a0 (E.0)
Since [y (z — a0)|dz = |, |11, [ (x —a0)|do = (1/0)|. ., by Lemma 3.2 we
have
i ! do T A IAm/2\,7./
0, (1ED) @, (T) Fian (&, 7)1 < € . —thﬁmHuHJ&kHu < C2" [ 2] Sl 2
where f;(¢,7) := ,(|€))g(2) f(£,7). On the other hand, if ¢,(c)y(a)y;,(z — ab0) #0,
then |t — o] < 2"+ || < 2K*1, 7| > 2"~ which gives n < m + 2. Thus we obtain that
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oo m+2

(7.10) |Fillgen < e > pQ@) DD D 272" 2l ol fil .o
| j

k m=k n=0

< ¢ 37 p(27) ST 2R S Al il
j k m=k

< c'llap (1)l - 1]

Next, we estimate the norm of F,. Since

Je—itt m([> dt J;eiat’ df = %‘[(e—i(t—a)t o e_m>lﬁm(l) dt — \/ﬂlpm(f - J) - lpm(f)

1o

(p,b—1)
By

holds when ¢ # 0, by we have

1 ‘[l;m(r — O-) — lpm(‘[)
V2nr io

so that we obtain that F, = F>| + F>,, where

k—
(7.12) By (E,7) = ZZJ @ %) do
7[ k m=

(7.11) Fion(&,7) = fi(&,0)do

k
(7.13) Fy(&,1) = ZZJ >da.
27-[ k m=0

To estimate the norm of Fy we note that ¢,(7)F> (&, 7) is the sum of terms with 0 <
n<k+2, since |7| < |t —a| + |o| < 27! 4 2k+1 < 2k+2 on the support of the function
Y,,(t — )y, (o) and since 2"~ < |z| on the support of ¢,. Thus, by [Cemma 3.1 and the
formula [ [i,,(t — o)|dt = [ |[Y,,(t — &)|do = ||,,||,1 we obtain

k—1 k+2
121l < ¢ p(2)) ZZzzbn\WmHkaHﬁkHLz
‘ - a

m=0 n=0

N~ (b—1)k m/2
L0 L D T A L LR e

Finally consider F». Since ¢,(7)¥,,(t) # 0 only when |m —n| < 1, ¢, (7)F»(&, 1) is
the sum of the terms with |[m —n| < 1. Hence, with the aid of the inequality

o (1N £ (&, o)‘

(7.14) J do <272 £ (&, 0) o m,):

which is a consequence of Schwarz’s inequality, we have

-1 m+l

[Pl <c2p (2/) ZZ > 2P g e 2

m=0n=m—1

<D p@) 3 20D S el il < €Wy - 1 g
J m ’ '

The same argument as above also works for the case Bgﬂl‘/ﬁ)’#. O
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Now we are ready to prove Let f,g€ szlll/pz) (Rx 1), and let f,je

BY(R?), flper = 1 Glrus = 9 We take lp( ) € CF such that y(¢) = 1 if 1] < 1, and
put

F(x,t) = lp(t)J[ W(t— ) {erf(x,t)g(x, 1) + erf (x,)G(x, ')} dt’'.

Then, F(x,t):= J}; W(t—t){eif(x,t)g(x,t") + eof (x,t)g(x, ")y dt’ = F(x,1)|g.;. By
(1.11), Mheorem 7.1 (b) and (I), we have

’FHB;/’LI;Z)(RX]) < HFHBgl)lléz)(Rz) < CHf‘

p,1/2 7] s, 1/2 .
s, ) 19l e

Taking the infimum for all £ and § with f|g.; = f, Glg.; = ¢, this gives [2.7). We can
prove (2.8) and (2.9) in the same way, and complete the proof of [Theorem 2.4.

8. Proof of Theorem 2.5.

In proving we use the theorem on the equivalent norm of anisotropic
Besov spaces. For the sake of completeness we state and prove it here:

THEOREM 8.1. Let 0 <b < 1. Then the norm of BY;” (R is equivalent to the
norm

8-1) 1PNl oty Hlyoy IR LS Cx 14 ) = fi(x, D)}

Also, the norm of the space Bg’q)’ (R is equivalent to the norm

Lo}

|/4(N)] ||Lf(R,/)'

(82) 1271l oy Hloiy + NIV 117" £ 4 ) = £ O} 2 Hl ool o,
I e+ NI TP IHAT G+ ) = 15 e 02 Yl o,
Where f(&,7) = g;(I€) £ (&), A (&) = po(IED (1 + lloglé| )£ (&, 7).

Here we write LI(R) := L4(R,dt/t).
To prove this theorem we need the following.

Lemma 8.1.  Let H( ) = min(¢, 1), and assume that m > 0 > 0. Then the inequality
1520 (H (2% 1)/ 2512) ")k oy < CH{ak}ll/qN holds for any {ai} € /*(N), and the

inequality ||{ [ (H (2"[1])" /(2k|t|) ) (1)(dt/1) ) < CllfllLa(ry holds for any f € LI(R).
Here C is a constant.

ProoF. This lemma is a special case of [Cemma 3.1, since

H(2 )"

<(C; <o for any teR,
= @k’

M

jR< HM)" /H)°)(dt/1) = C < o0 for any ke . .
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Proor OF THEOREM 8.1. Put ¢,(z) = ¢ (z/2) + ¢4 (2) + 9 (22) for k=1, ¢y(z) =
@o(z/2). Then we have ¢, ¢, =¢,. Hence, f,(x, 1) = - Cl oo cbk*fk, where ¢; =1/v/2x,
FED=0(EDF(E 0. Ful&0) =0 (1ED0x(0)F (7). Br(t) = F '3, (1) We also see that

t,
qskﬂ;ﬁk(x,t+ ') — qskﬂ;ﬁk(x, 1) = J Jqs,’{(t —r+u) fiu(x,r) drdu,
0

where B](1) = ddb/di. Hence |fi(x, i+ () — fi(x0lln < S50 B4l il n
view of the identity [ |®; (¢)|dt = [|(d/dt)2*~ 1@1(2" 0| dt = 21|\ @} ||, for k > 1, this
implies that || f;(x, 7+ 1) — fi(x, 0|0 < > 0202517 ||lfxll;,- On the other hand,

1B fie (6, £+ 1) = Dic i (x, D)l o < 2Pl ol fiell o = 20Dl [ e o

Therefore we have | fi(x,t+1t") — fi(x, )|, < CZ/ZO:() H(2k|t’|)\|j§k\

1»» Which gives

PO NS 14 1) =[x )l < > K k)p(2)2% ) el
k=0

where K (7, k) = H(2|¢'|)(2¥|¢|)™". Thus, by [Cemma 8.1, we have

NPT LA Gt 4 ) = £G8 Do H o ze < {127 fiel 2o Y oy

By Minkowski’s inequality and Hélder’s inequality we have

{Zp@j)!lﬁk!\u}
k

< 2" p ) Sl o}

KOS L HI o <

< > @)U fill ol o
k

[‘I

(49(NxN) — Cl”f”gé@@-

We show the reverse inequality. For £ > 1 we have

Sfix(x, 1) = quk(z — 1) fi(x,t")dt' = J(Dk(—z’)(f,-(x, t+1t') — fi(x, 1) dr’,

where  @i(1) := F '9.(r), which gives that ||full, < [|@c()] | fi(x,t+1) —
[0, de. We set K(¢',k) = /|7 @y (1) |20% = 2-1|¢/|PH12kB+1) @) (26-17)|.  Since
D e, |@(1)] <cmin(l,r2) =t 2H(1)?, so that K(¢',k) < c%¢/|)" " H(2K|1'])*.
gives

1pC2D2% fitll o Moy < el NPT LGt + ) = £ Ol Hlzocr ) 0

For k =0, it is clear that [{[{p(2/)fo} s} I,+ < el {I{p2) 5} o} Io.  Similarly, we
have the same consequence for the norm of B(;”qb W# . ]

Next, we recall the following integral representations:

LemMma 8.2. Let [ =(—a,a), a>0, 1< p < oo, and X a Banach space. Assume
that w € C*(R), [w(z)dz =1, suppw < (—1,1), w(z) =0, and put w(t,z) := w(z — 1),
Mi(t,z) := 0.{zw(t,2)} = 0.{zw(z — £)}. Then,
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(8.3 7o = [ [ (550 ) Fwan + 7
S (“di (1 1—1
(8.4) :;JOTJIKI'(Q’ - ) (L n)dn + O,
(5.5) 7= [ ()7 an
5 L a/ld/,t —u 1 Hh th—060\ =
&0 o= [ LS [ (G452 e
. N N AT
(87) uz(i, l]) .—u)”u u JﬂLz(a, u )f(lz) dlz,
A
(8.8) (2 11) = oiﬂJ;L3(2 “ﬂ )f(tz)dtz,

hold for any fe LP(I; X), where Ki(t,z) = Kx(1,z) := zw(z — 1), Kz := M, Li(t,z) :=
aZ{ZwI(Z - t)}) LZ(I7 Z) = 622{260(2 — t)}, L3 = Ml-

PrROOF (cf. [6] p. 331 or [7]). Let feLr(I; X) and define

(8.9) Fn0) = J%wl (é,t;tl)f(tl)dtl,

(8.10) U1(0, 1) = J%Ml (é,t;tl>f(t1)dtl.

Then, we see that [ /i(i1) ~ F()llosx) < Joa IF( = 22) = F (D)l sy dz — 0 s

) — +0. This and the identity 0,/ (4,7) = —Ui(4, 1)/ give [83).
Substitute into the right-hand side of (8.10). An integration by parts gives

1 t t—t 4 d t t—t du
JEMI (;, 7 1){L Ul(ﬂ,ll)ju} dt :JK1< ] 1>{J 00 Ut (p 1) —— p }dll,

-1(1 I h—H\ = 1(1 ot H\ =
5;1U1(,u,11) aJ—L1<1 ! Z)f(tz)dlz—l—ﬂjﬂLz(l l'u Z)f(l‘z)dtz.

U a a

Therefore we have [8.4).
The following lemma is closely related to the above formula [8.4).

LemMma 8.3. Let X be a Banach space, 1 < p < oo, I :=(—a,a), a>0. Assume
that K(t,z) is a bounded continuous function of (t,z), and that supp. K(t,z) < (—1,1) + ¢
Define

(8.11) T2, 1) ::J%K(é,t;m)f(n)dﬁ.

(a) The inequality |U(2, O oy < 4Co]|f\]L,,(,;X) holds for any f e LP(I;X) and
0<i<a.
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(b) Assume that [K(t,z)dz=0. Then, the inequality
Co

4 = 2
()17 1) = F Oy

holds for any feL”(I;X) and 0 < A < a.
Here Cy = sup, .|K(t,z)|, and y denotes the defining function of the interval (—1,1).

1O (2 1)l oy <

Proor. (a) This follows from Lemma 2.1, since

1 t t—1 1 t t—1t

(b) Since t+ ¢ €l if K(t/a,—t;/2) #0, tel, 0 < i<a, we see that

dt; <4C.

10 (2,1)|

v =K (T Fa+ ) - Foyan

Lo (I;X)

Co I+n\,z S
=7 J[M x( a >{f(t+t1)—f(t)} a0
G . ,
- 7”]%(%) LA+ 0) = FO o yex) 411 -

To prove we need the following

THEOREM 8.2. Let I = (—a,a), 0<a<l, 1 <p<oo, 0<b< 1, and let p be a
weight on R.. Then, the following formula holds for any f € B’Spl’b) (R x I):

(8.13) Flx,0) —ifﬁjlzc LI v x, ) di + £ ()
. ) - |, PR i a7 R i\ Ay b 1 )
(814) f (X) = ;CO 7 f(x,ll)dtl,
a —u\ 1
. ur(4,x,11) == - I ) O B X, 1) db,
8.15 P cduf(=m\ L (0 =B b vy
L u\a
“ 1
(8.16) ur (4, x,11) = &d—J—ch—l,tl tz)f(xyfz)dlz,
Lwplpy " \a pu
bl
1 _
(8.17) (X, 11) = @J—g(’—l,“ tz)f(x,tz)dtz.
o u)u " \a’ u
Moreover,
(8.18) NG T sy + 1A N or. ey < Cull A Nlgo gy
(8.19) ”fHB,Sf)ib)(RdX[) < C2||G1(1’)|1/|—b||L$(R) + Cza—l/P||f||Lp(1;j_%)‘q(Rd))7
(8.20) Gi(t') = {pCOIPAS (x,t 4+ 1) = £ omesani—imy I

where Pj:= @ %, ®j(x) = cd%’l(pjﬂﬂ), and Cy, Cy are constants independent of a.
X
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PrOOF. Let f eBl(f P(R') be an extension of f eBl(f ib)(Rd><~I). Then,
by Mheorem X1 we  have  [Go(OIF] iy < IHA(2IBAT (x4 1) -
SO  pogen Ha Ul s <C||f||pr (R Thus we have G ()N yry <
CHfHB,ﬁ,”lh (RIx1) Also, from

Lr R"]

L17(Rd+l) S CHf||BlEplb)(Rd+l)

”fHLp I B” Rd

[Zp@’ 1P (x,1)]

L7(R)
< > Q)P (x,0)]
J
b

we see that BY'; ><Rd ><1> < L'(I; B <Rd>> and [/l ey < CI Ngind ey

Next, by we see that ] holds in the topology of L7 (I B L(RY).
We will show that the 1ntegrals with respect to A on the right-hand side of thlS formula
are convergent in Blgf’ PRI,

Take € C*(R) with suppy < (=2,2), ¥(t)=1 on [-1,1], 0<y(7) <1, put
u;(x,t) = ui(x,t) for tel, u;(x,t) =0 for t¢ I, and define

1 t t—1
(8.21) Fi(hx, 1) = JZK"(E’ . 1)ul-(/l,x7 1) dn,

(8.22) Fid,x, 1) = J%w G) K, (2%) G2, x, 1) diy,

for i=1,2,3. From [Lemma 3.1 and the inequality
/_ p—
’w(t+t> (H—I’H—t Zl)—w(£>Ki<£,t z1>’
a A a a A
v t+1 -1 -1
< — - -
<G {5 (5

if 0 < A <a, where H(z) := min{z, 1} and C is a constant independent of (a, /¢, t;),
it follows that

: ']
|1 P{Fi(Z,x,1+1 ) — F(’l Xy t)}”Lﬂ R = CH( | Pyui(4, x, tl)“LP(RdXI)'

Also, from [Lemma 3.9 and the inequalities similar to it follows that
(8.23) 1PiEi(2, x, 1)]

Lr(R™) < C”Pjui(/la)@ tI)HLI’(R”iXI)‘

Hence we have

i 1N o d
||Fi(l7x’ t>||B;pib)(Rd“) < CJRH(T |t/| TZP(2])||PJ'MI'U"X7 tl)”LP(R"xI)
" J

+C  pQN P2y x, 1) Lo (g
J

< C'27" 1) Y p@ON Py x, )| o e
J
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On the other hand, it follows from that

Hh 1 — b 15} |l2’ d[z
824 p2J J ( )Pf X, ) dt SCJX(—)—G h)—
Z a U J ( ) Lp(RdX]) 2,[1 2/1 1( ) ’t2’

holds for i =1,2,3, which gives that

. |12| dtr
J TR -
(8.25) S o e € (5 )6

holds for i=1,2,3, where Hi(z) = Hy(z) = H(2)*/z, Hi(z) = x(z). (Note that
2 [ x(r/2)x( rdr— fo (z/r)x(r)dr < x(2).)
In view of the fact that Fi(,x,1)|ge,; = Fi(4,x,1), these inequalities imply that

dA

¢ dtr a b |t2| di
(8.26) L ||Fl-(z,x,z)||B;f,ib>(RdX,)7gcJG,( )|2|J(/1 +1)H(u &z

dt
< C/JGI(l2)|l2|_bﬁ, for i = 1,2,3.
2

Finally, by Holder’s inequality we have

1 —1 _
||f[0](x)||315{1(1ef’) < J;w(T) 1/ (x 2) gy () dt2 < Ca VPl (x, 2)lrir;y, r)-

Hence, by [Theorem 7.1 we have
||ll(z)f[o](x)HBp(pl,b)(Rdxl) < W(z)f[ol||B;pi;,>(Rd+1) < Ca V| f(x, t2)|‘Lp(1;B;fl(Rd))v
where 1;(¢) =1 for any z€ 1. ]

THEOREM 8.3. Let [ = (—a,a), 0<a <1, 1<p< oo, 1/p<b< 1, and let p be
a weight on R,. Then, B(/) ) (R? x I = BC(I; Bpl(Rd)) with continuous inclusion, and

(8.27) 1f g e ey < CNGH (N Nl + ClIS 0)lg &)

holds, where Gy is the function defined by (8.20), ty is any fixed point in I, and C is a
constant independent of a. Here, BC denotes the space of bounded continuous functions.

Proor. By (8.25) we see that

dt
ok gy < 3PP Ol < € [ 1153 ) Gt
Since the right-hand side is finite, which follows from G;(5)|r,|™" € L!(R) (see Proof
of Theorem 8.2), this implies that F;(4,x,7) = [(1/A)K;(t/a, (t — t1)/2)u;(A, x, 1) dt; is a
bounded continuous B[i [ (R")-valued function of rel for any 0 < 2 <a. Hence, the
inequality
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di di
(8.28) J 1£:(2, %, )llgr (me) )7 S CJ Py (4, x, 11)||Lp(1;3p71(kd))7
T RN dt>
1/p &%
scjoz iJH(ZDG,( S

dtr

< Ciabl/pj|l2| G[(lg) |Z |

implies that [ F;(4,x,t)(dA/2) is a B” 1(Rd) valued bounded continuous function of 7 € 1
and its norm is estimated by Ca’~ 1/I’HG]( N rig)- Thus, by the identity |
see that f € BC(I; B;I(Rd)) and its norm is estrmated by C(a)HfHBI(’/)ib)(RdXI), where C(a)
is a constant indepedent of f (but depend on a). ’

Furthermore, the estimate (8.28) and the identity imply that

2_3: Ja Fi(4, x, to)d/1

A

I/\

H793) = 705 DOl e

, b a
p(‘ﬂl )(R"“)

a" |Gy (f Nl
holds for any fixed # € /. Therefore, by (8.26) and [8.13)] we have

I/\

||f||B[(’>”ib>(Rd><I)

3. (@ d
[Z J Fi(Z, x,1) -t {O00x) = f(x 00) () + [, to)lz(t>]

i=1 Y0

B (R7x1)
—b — —b
< CGi ()"l py + Ca PG| 77 1+ ClILf (x, 0)llg (re)- N

Lemma 8.4. ||fHpr> RixD) = HW(—Z)fHBp‘b) (wixpy Here I = (—a,a), a>0.

PrOOF. Let f eBZP qbz,(Rd xI) and let f esz qbg,(Rd“) be any extension of f.
Then, it follows from the identity [7.5) that || W (—¢)/] B (Rixr) < | W (- )fHB;p;b)(RM) -
17l sy Therefore, W11 e oy < 171505, o ’

Conversely, let W(—1)f eBp b) (Rd X I) and let geB(p b)(Rd“) be any exten-
sion of W(—t)f. Then, Hf||B<,,h \(Rix) S | ( )gHBpm (RO ||g||B<2p_b> i) Therefore,
1 g ey < NIV (= t)f||B<,,b JRIxI)" ! H

Now we are ready fo prove [Theorem 2.3. Let feBgf”lf’},(Rd x I) with f(x,0) =
0, 1/2<b< 1, and put g(x,t) = W(—t)f(x, ). We may assume that ¢ < 1. Then,
ge Bgf’ib)(R‘l x I) and ¢(x,0) = 0. Therefore, by Theorem 8.2 we see that G;(¢')|¢/|””
eLl(R), Where G;(t') is defined by [8.20) with f replaced by g. Since g(x,0) =0,
and [Theorem 8.3 lmply that ||f”Bﬂb) (Rx(=5,5)) ||g||B/>b> Rx(=5,0)) <
C||G aa( NP z1r) for any 0<J <a, which Wwith the ard of the fact that
G_s5.0)(t") < Gy(1), and that G(_s (') =0 if || > 26 gives

20 G(_57(5)(l/) d_l/ - CJ~25 G( )dt
N e R ML

—0 aso— +0. [

11t e ooy < € |

2,1, P
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9. Proof of Main Theorem.
To remove the smallness assumption of the initial data we need one more theorem:

THEOREM 9.1. Let 6 =277, p a positive integer, and let s < 0.
(@) Then we have

©.1) 1/ (0x)

s—d /2
By, (RY) <P f

B (RT)

(9:2) 1/ (0x)]

) S5s—d/2||f

By} (R By (R")’

(b) Let P(&) = +|¢]?, b >0, and let I = (—a,a). Assume that a weight p on R. sat-
isfies the condition: p(z2) < z°p(z122) for any zi,zo > 1. Then we have

. 290, R ,
(9.3) 17 ©@x,0% D)l o) g2y <O 1/ o) ety

(9-4) 1f (6x,6%0)] <o 1]

s.b), # — s, b), # d .
B;l‘)[, (R'x5721) B;l’),, (RxT)

Proor. (a) Let g(x):= f(dx). Then the identity
05 i = [e o0ty = e [P r(a =07 (5),

where ¢; = (27) "%, gives |lgll,2 =6 /Nl (1ENS(E/O) 2 = 0Pl @lnl) f (m)l| 2. Take
0 =277, = 2r¢ with positive integer p and recall that ¢, (277[5]) = > -7_, ¢«(|n]) which
is a consequence of the identity E}T;O ¢; = 1. Then we obtain the estimates

20412 o (27 ) f () 12 = 27977

> o (n).f(n)
k=0

)4
<55 2% o,
k=0

L2
202290, (27 ) f () 2 = 2722 oy Q7P ) F () 2 = P2

which imply that

V4 0
lolls;, < 5“’/2{;zskuﬁ<uy ¥ 22"’“”Hﬁ+pllm} 5 fl
= j=
Now consider the case B;? Let g(x):=f(©x), 0=27 peN, p>1.
Then, as above from the identity §(&) =0 9f(¢/0) we have > 27gill: =
22wy 29| fill 2. On the other hand the identity ¢,(277[n|) = Y-7_o ¢k (|nl)
implies that

lgg 1122 = 111+ [logle] 0o ()G (&),

= 2072/ {1 + [log(12 70|} 200220 S ()]

4

(1 + [togln| ) go (DS (0] + D o). ()]

k=1

< 2rd/2

Y

LZ
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which gives [l > < 272 £ |2 + 2020 S, 2 fllye < 2792

| e Hence

o0 0
lgllpes = Ngd 1z + D _27llgjll < ZP‘J/Z_S’J{HJ’O#HU + ZZSIHJ;'HLZ} =

J=1 J=1

(b) Let feszle(Rd+1) and put g(x, 1) := f(0x,6%1). Then, §(&,7) =0"92f(£/5,1/5?).

S0
Hence, defining f, ;. p := 0;(I€)ox(t — P() S (1), Gk p = 0,(1EDes(x — P(£)4(&,7), it
follows that the inequalities

||9j,k,P||L2 = 5_d/2_1HJ,£/'+p-,k+2p,P||L2 if jak > 0,

2p
lgi.o.pll 2 <0~ Nl fispepll 2 if >0,
k=0

P
190,k Pll2 < o~ Z | figewop,pll 2 if k>0,
=0

P2
—d/2—
lgo.0.pll2 <3~ * SN I frkpll 2

=0 k=0

B (R <9492 1Hf] since

hold for the case 0 =277, p e N, which gives ||g]|
p(2/> <2 spp(zj—i-p) 2 bk < 2b(k+2p)

Now, let fe szlbi,(Rd“) be an extension of f e szlb},(Rd x I). Then, §(x,1) :=
f(0x,0%1) is an extension of g(x,7) := f(0x,0°t). Therefore, it follows from the in-

equality just proved that |||, 09 (R x5 21) ||g||pr> (Riry SO0 d/2- 1||f|B(/)b (1) Which

implies the inequality [9.3). We can prove the 1nequa11ty (9.4) in the same way. [J

(s, }7 R(l+l)

We only give the proof of Part (a), that is, the case where N(u,it) = ciu® + cyit’.
(Part (b) can be proved in the same way). Let u be a solution to the semilinear
Schrédinger equation (1.1) when |7 < T with the initial data u(x,0) = uo(x). Put
v(x, 1) := u(dx,0%t). Then v satisfies

(9.6) 0w = i0tv+ AN(v,8), xeR, |t <a,

and the initial condition v(x,0) = vo(x) := ug(dx), where i =0% a= To >,

We take P(¢) = —&%, a =1, and define {W (1) f}(x,t) = Z, e OF f(x,1). Then,
any solution v to [(9.6) with v(x,0) = vp(x) must satisfy the equation v = W(#)vy+
AB(v,v), where B(f,g) is defined by (2.6). Put v = W (f)vp +w. Then the equation to
be solved is w = @(w), where @(w) = AB(W (t)vo, W (t)vg) + 2AB(W (t)vg, w) + AB(w, w).

We take s= —3/4 and be(1/2,1). Then, it follows from that
W (t)vo € BS V(R x 1), | W (0)oollgen gpy < Com where = (=1,1), &= [log]l5;, and Cy

is a constant independ of vy. Define

(9.7) X =By (R 1), p(t) =log(2+ 1)
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Then, implies that

9.5) I1BOv, w2l < Crllwn llwal .
9.9) |BOW ()0, W (5w < €1 Caot,

(9.10) [1B(W (t)vo, w)|lx < C1Coaljwl|y.

We assume that 41CyCio < 1, and take f to be the smaller root of the equation:
AC) C2a? + 2).C Coof 4 AC1p* = B, that is,

20148 =1 —2CoCiio — /1 = 4CyC .
Then we see by [9.8], and that when |w|y <f
[2(w)lly < AC1(Cgo? +2Conp + ) = ,
and that when ||wi|ly < B, |wally <p
[@(w1) — @(w2)lly < AIBRW (t)vo + w1 + w2, wi —wa)|ly < &llwi —waf y

holds, where x :=2C;Colo+2Ciif=1—+/1—4CiJo < 1. Thus, @ is a contraction
which maps M = {we X;|w|y <p} into itself. The fixed point theorem says that
there exists one and only one fixed point we M of &. It is easy to show that v =
W (t)vo(x) + w satisfies the equation when e (—1,1).

If 0 =277, where p is a positive integer, is chosen so that

(9.11) 4CoCi [luollpy <67,

then [Theorem 9.1 implies that 42CoCillvoll, 34000153/4||u0||351 < 1. Therefore,
there exists a solution v to the equation [9.6]. In conclusion, u(x,) = v(d~'x,d %) is a
solution to the semilinear Schrodinger equation in the interval (—0%,0%).

PROOF OF UNIQUENESS. Assume that u;,u, are solutions to such that u;(x,0) =
ur(x,0) € By {(R) and

(9.12) ui(x, 1) — W(tui(x,0) € BY' (R x Ir), i=1,2,

where I := (=T, T). We take =277, p e N so that 4C; Cod>/*||uo B (R) < 1, and put
vi(x, 1) == u;(0x,0%1), i =1,2. Here, up(x) := u;(x,0) = u(x,0). Then, v;,vs are solu-
tions to [9.6). Put v =wv; —v,. Then, v satisfies the equation

(9.13) 0,0 = i02v + Acrv{vy + 02} + Aert{Dy + Ba},

and v(x,0) = 0, where A =02, which implies v = AB(v, v + v2).
Since wu; —u; € ng’lfl/,z)(Rd x Ir), u; +us € Bgf’ll/Pz)(Rd x Ir), by [Theorem 9.1 (b)

we see that vy — vy € Bgf’ifl/)z)(Rd x1I), v+uvye B;f’l{/ﬁ)(Rd x I), where [ :=0 *Ir. Put
w(x, t) == v1(x, 1) + va(x, 1) = 2W(t)vo(x). Then, we Bgf’ll/z) (RxI) and w(x,0)=0.
Hence, it follows from that there exists a positive number ¢ <5 2T such

that 2C15%(|w| 4.0 (Rx(_s5 < 1. Thus, by (a) we have
2,1,P ’
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2 2
Cro7 o1+ vallgs 12 o,y < C1O°A2C0 M0 gy () + 1l (e}
< 21 Cod™* ol ) + O 1y < 1
On the other hand, gives that

2
1ollg0.172 o —s,9) = O 1B, 01+ 02) o172 o)

’1/2)(R><( e¢)) “ HB(/’ 1/2)(R><( ¢))"

Therefore, we see that ||v ||B(2ﬂ111/)z>(RX(_87£))
1] < & = &d”.
By this result we can prove that u(x,?) = ux(x,¢) for any ¢ € Iy as follows: First,

gives that

= 0, which means that u;(x,?) = uz(x,?) when

[, 1) = ui(x,0) — W(uo € BY;'3) (R x It) = BC(Ir; BY | (R),

for i = 1,2, which implies that the set 4 := {t € Ir; fi(-, 1) = fa(-,?) in BS |(R)} is closed.

Secondly, we show that A4 is open. In fact, let 7 e A4, and put u(x,7)
= u;(x,t+1). Then, & (-,0)=i(-,0)€ B; (R). By [Lemma 84 we see that
W(—t — to) fi(x, t + to) engll/”(R x (=Ti,T)), where T,:=T —|f]. Since W(1)
maps ngll/z) (Rx (=T, T1)) onto itself, Lemma 8.4 gives that fi(x,1+4 1) =
W (W (10) W (~1 — 10) filx,t + t0)} € BY}';” (R x (~T1, T1)), which gives, with the help
of the fact that fi(x, %) € B) |(R),

fi(x, 1) == i;(x, 1) — W(0)ii;(x,0)
= wi(x, 1+ t0) — W(O){W (to)uo(x) + fi(x,10)}
= filx.t+ 1) = W(0) filx, 10) € B} (R x (~Ti, Th)).

Of course, u#;, i = 1,2, are solutions to [I.I]. Therefore, the result just proved 1mphes
that there exists a positive number ¢ such that f,(-,7) = f5(-,1) for any 7€ (—¢,¢),
which means that (#) — &', 7o +¢’) = A4, that is, 4 is an open set. In conclusion, 4 is an
open and closed subset of a connected set Iy, hence A4 = I7. O]

Appendix A. Proof of and
We shall prove the basic properties of our Besov type spaces here. First we shall
show

Lemma A1, Let 7(¢) € CF(R?), y(t) € CF(R), and let P(&) be a real-valued C*-
function such that [0ZP(&)] < c,(1 + €)' for any «. Define

(A.1) Kit.p(&,7) = (2727 (= P(%)), Kip:=F 'Ku.p.

Then ||Ky. p * f ., < C2U294K| £, holds for any f e LP(RTY), where C is a constant
independent of j,k and f.
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Proor. The estimate
(A.2) 1" Ky p(x,1)| < C,24+k1=n)

follows from the identity

K p(x, 1) = Capi™2 k"“e“xf*” QI 2K (¢ — P(8)) drde,

which is a consequence of integration by parts. The identity

xmk,P<x,z>=cd+li"” EH) 00 (2T (2 (¢ — P(E)))} dedé

is also obtained by integration by parts, and the identity

L {n2IEWR (- PE)} = Z( )zf”*fmfyﬁz"‘"“)(zf@ag::{wz%—P(@))},

m=0

where n,gm)(é) = 0:'n(¢), is given by Leibniz’ formula. On the other hand, the identity

(A3) Y (- PE))
m ) EV ) 2k (r — p(¢
_ ¥ H( <>> Y alnﬁ..a,f,! )

o200+ +moy,=m r

where P,E")(f) = 0z, P(¢), which is given by the formula for derivatives of composite
functions, implies that

|02, {n27 w2 (1= P} < ZCan (278 i?”_”j_k/\tﬁ“)@_k(f—P(é)))!,
/=0

since |P\” (&) < ¢,2Y7 on the support of 7" " (27&). Therefore it follows that
(A.4) |xp Kite,p(x, 1)| < Cpa¥=rtkenti=hvo,

This and give (1400 ] + 1|97 K. p(x, 1)) < C26+29+Fwhich implies

(A5) T CATIVE ot < Cra ik
. i, Pl < ” xdt < v
J L 1+ z;ll' |xh|d+2 + |t|d+2
This and [Lemma 3.1 imply the conclusion of the lemma. O]

Next
LemMa A2, (R < Blgp qbl)D(RdH), and the inclusion is continuous.
PrOOF. Let f e (R, and define

(A6)  gu p(S 1) = 0;(IEDer(x = P(E)),

A7) 9(2) = 00(2), 0 (2) == 20y (2), 0 (2) == ) (27 2) for j =1,
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(A8) ol (E) =0/ (1E)el" (= PO Gy = F oy,
(A9) S =F P - P} (E D)

(A10)  fi p(& 1) = g p(&, ) S (€ D).

Then it follows that

S p(x, 1) = 2720k g L & ) P {r = POY (€ 7))

2L j—mk~+2L o240, m 2/, m
_2 j—mk+ +m¢j[kp] [[ ](x,t),

which gives, with the aid of Lemma A.l,

i pll o = 2" 2j— mk+2f+mH (27, m] f[Z/ m]| < (Y —mk+20+m(d+2)v( j—l)+k—1H f}LZK,m]|

Lr =

Lr:

Thus, assuming that p(z) < ¢z? and taking / and m so that 2/ > o+ (d +2)v, m >
b+ 1, we obtain that

f o— vYj —-m 2/, m 2/,m|
1{p27) 25 fix pll 1o Yo < {2172 Grlmmkeyy oy g20m < )| ™)

L

[

Now we proceed to give PROOF OF THEOREM 2.1. First we shall show that

(A.11) IS D gg| < C||f||BI<,_p-q{?; W llgasn, o
holds for feBpqu} and € Z(R™), where 1/p+1/p' =1, 1/qg+1/q" = 1.
In fact, writing ¢; = Z|k—j|g] P> Pk, p(S:7) = 9;(|S)) @k (r — P(£)), we have

ps > = T p 0> = Gppfap 0> = Sapr 0> = S s bimpds

[/—j| <1, |k—m| <1

where t/}/m p= ¢/m7P$. Hence, by Holder’s inequality we have

1S o] = ‘<Zfik,P,lp>‘
Jik
<>y > | fie, el Lo = 1em, pll Lo

1 —bk
Lrilga” —=2 Z Hw/m,PHLP’

q "
p(27) —jl <1 k—m| <1

= C“f”B;”;I”; : Hlﬁ“B(}/ﬂ;—;)-

< [1p(27)2" || fi. |

VAl

Next, let {f™} be a Cauchy sequence in B(p h). Then (A 11) shows that
{{f > o} converges for any v e V (R, Wthh 1mphes that { "} converges to a
distribution f in &’. We write f e p = Pjk, Pf f P = Pk, Pf Since the Fourier

transform is continuous on ./, we see that ];.k‘ » — fi,p in &', which, with the aid of
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the fact that { ];,((")P} is a Cauchy sequence in L?, gives that ]?E(")P — fx.p in LP. Thus,
for the case ¢ < oo we have

1/q 1/q
Z{p(zf)zb’fuﬁk,pm}"] = lim [Z{p(z-">2b"!\ﬁ%uu}" < sup |/ g,

jrk<t Jtk<t
b)
for any /. This means that f e Bppq p, and HfHBW n < sup,, ||/ HB(”b . The same ar-
gument shows that ||/ — £ B0, < sup, || ™ m || ()5 which 1mp11es that £ — f
in BI(,” qb} In the same way we can prove the same results for q=

We define here K, = Z ¢,(27"|¢])py(27"7), and prove that K, *f f in pq} as
n— oo when f e B[g{’(ﬂ, and ¢ is finite. Since K, (x, ) = 2(¢*V"K(2"x,2"t), we see that

| Kull,1 = ||Kol|,1- Hence, by making use of [Lemma 3.1, we have

1Ko+ )i plle = 11K+ (S Pl 2o < 1Kol - [l fje pll o

Moreover, (K, * f)y p=fi,p if k<n—2, v(j+2)<n—1-log,c, since [t <
Iz — P(&)| + [P(&)] < 2541 + ¢92U+2" <27 on the support of fie.p(¢,7). Hence, putting
L ={(,k);v(j+2)>n—1—-1logyco or k >n—2}, we see that

1K f = S < > {p@N2"I(f = K )y pll o}
Brar (j.k)el,
<L+ 1Kol )" D £p@)2% Skl

(J.k)el,

which implies that K, x f — f in B’} as n — .

Finally assume that f e B' ql)’> the support of f is contained in the set {(& ) €
R & <27 || <2} for some ne N and p,q are finite. Then we see that k <
(n+ 1+ logycol + 1 f pl&,7) #0, since 261 < |z — P(&)] < |e] + |P(&)] < 2"+
2" This implies that f =", knzl)”“ogz‘“lﬂ Jiw.peLP. For any positive
number ¢ there exists g € ¢ such that || S =9l <e for & is dense in L”. The identity
1Kl = [|Koll;1, Lemma All and imply that

I = K @) pllr = [H{Ks + (F = ) b pller < Ciel K+ (f = 9)ll2r < Cil[ Kol pre:

Since the support of Z{K, * (f —g)} is contained in the set {(&, 7);|¢| < 2", |7| <
211 by the same argument as above we see that {K, * (f — 9}tk p =0 when k>
(n+1)v+ |log, co| +3. Thus we have

n+1)v+|log, co|+3

n+2 (
1/ — K = gngw = Z Z P12 (K, * (f — g)}jk,P”Zp < Cpef.
reP im0 k=0

Since K, * g € &, this means that & (R?"!) is a dense subset of Bl()f)é,bl)’
finite.

Consider now the space B( )#. Let /.,y e (R™"). Then, from the fact that
(14 [log|é] )0 (1€]) € L2 (p, is the defining function of the interval [—2,2|) and the
inequality
A1) s 20D (7 = P(&)

it (1+172)

if p and ¢ are

< C(m)27%™ for any me N,
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where C(m) is a constant independent of k, it follows that the L?-norm of the function
(1+ [log|é] )*70(E)@x (r = PE)P(&,7) is estimated by

C27 %" sup
4

Uel’xé(l — )" (x, t) dx

< CI(L = 035,y Ml ey
L

t

Hence, taking m such that b+ 2m > 0 we have

S [ orr 01 = S p (1 lloglé] )2 70(E)de(z — PEWD(E, 7))
k k

< C{Z 2_2mka07#c,PHL2}H{”(1 = 07)" x| 2y Ml ey

k
< A Mg I = 0™ 6 )2y Ml ey
which shows that

Sl < el f Mg # HILNCE — )" Wl 2oy Mo ey + Wl o]

Since the second factor of the right-hand side is a continuous norm on ., this means
that 82 q)P is a Banach space continuously imbedded in ./(RY*). O

PrOOF OF THEOREM 2.2. Let f € .%. Then Schwarz’s inequality implies

1/2
j|fkp< >|dr<{J dr} 1 rE o) < 252 &) o,
|[t—P(¢& )\<2"Jrl

Since |j—/| <1 if go/(é)fjkf(f,r) = (p/(f)gojk’P(f,r)f(é, 7) # 0, it follows that

I 0lag, = 32000 3 3 Lo = st rnac)

li—¢1<1 k

< cZZk/ZZP (29) Z o, (1)) fk P& D 2

li—¢1<1

<c sz/z Zp(zj)uﬁk,PHu(Rd“) - C/HfHngil;z)
- - S

L2(R%)

holds for any # € R. With the help of the fact that .’ is dense in Bé 1 P , this inequality
(p,1/2) ( pd+1 p d
implies that By~ (R“"") = BC(R; By {(R“)) and the inclusion is continuous. ]
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