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Abstract. Let T be the billiard map for a two-dimensional dispersing billiard

without eclipse. We show that the nonwandering set Wþ for T has a hyperbolic structure

quite similar to that of the horseshoe. We construct a sort of stable foliation for ðWþ;TÞ

each leaf of which is a K-decreasing curve. We call the foliation a K-stable foliation for

ðWþ;TÞ. Moreover, we prove that the foliation is Lipschitz continuous with respect to

the Euclidean distance in the so called ðr; jÞ-coordinates. It is well-known that we can

not always expect the existence of such a Lipschitz continuous invariant foliation for a

dynamical system even if the dynamical system itself is smooth. Therefore, we keep our

construction as elementary and self-contained as possible so that one can see the concrete

structure of the set Wþ and why the K-stable foliation turns out to be Lipschitz con-

tinuous.

1. Introduction.

Let Q1;Q2; . . . ;QJ ðJb 3Þ be a finite number of bounded domains in R
2 with

boundaries qQ1; qQ2; . . . ; qQJ . Each of them is called a scatterer. Throughout the

paper, we assume that these scatterers are located so that they can satisfy the Ikawa

conditions (H.1) and (H.2) in [3] (see Figure 1.1).

(H.1) (dispersing) For each j, the boundary qQj of the domain Qj is a strictly

convex simply closed curve of class C3.

(H.2) (no eclipse) For any triplet of distinct indices ð j1; j2; j3Þ, we have

convðQj1 UQj2ÞVQj3 ¼ q;

where convðAÞ denotes the convex hull of the set A.

Consider the exterior domain Q ¼ R
2n6J

j¼1
Qj of the scatterers. Clearly, qQ ¼

6J

j¼1
qQj . For q A qQ, nðqÞ denotes the unit normal of qQ at q which is directed

towards the inside of the domain Q. The billiard flow S t is, in short, the Euclidean

geodesic flow on the manifold Q obeying the law of reflections at the boundary.

Let SR2 ¼ R
2 � S1 denote the unit tangent bundle over R

2 and p : SR2 ! R
2;

ðq; vÞ 7! q the natural projection. The state space M of the billiard flow S t is given by

M ¼ p�1ðQÞU ðp�1ðqQÞ=@Þ;

where the equivalence relation @ on p�1ðqQÞ means that ðq; vÞ@ ðp;wÞ if and only if

q ¼ p and w ¼ v� 2hv; nðqÞinðqÞ. Namely, the state of incidence and the state of
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reflection are identified. Therefore, selecting the states of reflection as representatives,

we can regard p�1ðqQÞ=@ as

Mþ ¼ fx ¼ ðq; vÞ : q A qQ; hv; nðqÞib 0g:

Our main concern is the billiard flow restricted to its nonwandering set W. For the sake

of simplicity we also denote the restriction by S t.

We define the first collision time and the last collision time for the billiard flow at

the point x A Mþ as follows.

tþðxÞ ¼ infft > 0 : S tx A Mþg

t�ðxÞ ¼ supft < 0 : S tx A Mþg;

�

where tþðxÞ (resp. t�ðxÞ) is regarded as þy (resp. �y) if the set in the above definition

is empty. Set

D1 ¼ fx A Mþ
: tþðxÞ < yg; D�1 ¼ fx A Mþ

: t�ðxÞ > �yg:

We define the local maps T : D1 ! Mþ and T�1
: D�1 ! Mþ by

Tx ¼ S tþðxÞx ðif x A D1Þ;

T�1x ¼ S t�ðxÞx ðif x A D�1Þ:

�

Dn and D�n are defined to be the sets where one has the n-th iterations T n and ðT�1Þn,

respectively. Note that the notation T�1 is compatible with the definition of the inverse

map of T . Thus it is natural to denote ðT�1Þn by T�n. The first collision map of T

for the flow S t is usually called the billiard map. Later we verify that for each positive

integer n, the sets Dn and D�n are identified with unions of mutually disjoint JðJ � 1Þn�1

quadrilarerals with respect to the so called ðr; jÞ-coordinates. In addition we can easily

see that T n and T�n are di¤eomorphisms of class C2 from intDn onto intD�n and from

intD�n onto intDn, respectively.

Clearly, the nonwandering set of the billiard flow S t can be expressed as

W ¼ fx A M : pðS txÞ A qQ holds for both infinitely many t > 0

and infinitely many t < 0g:

Figure 1.1.
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If we put Wþ ¼ WVMþ, Wþ is expressed as Wþ ¼ 7
n AZ

Dn and T is clearly invertible

on Wþ, where D0 is defined to be D1 UD�1 for convenience. Note that the set Wþ and

the map T play the roles of the Poincaré section and the Poincaré map for the flow S t.

Let k; l be in Z U f�y;yg with k < l. To each element x in 7 l

n¼k
Dn, we assign

a sequence ðxnðxÞÞ
l
n¼k so that T nx A qQxnðxÞ. The sequence is called the itinerary of x

from time k to time l. In [7] we show that for each x A Wþ, the local stable curve gsðxÞ

and the local unstable curve guðxÞ can be written as

gsðxÞ ¼ y A 7
y

n¼0

Dn : xnðyÞ ¼ xnðxÞ for any nb 0

( )

and

guðxÞ ¼ y A 7
0

n¼�y

Dn : xnðyÞ ¼ xnðxÞ for any na 0

( )

:

Moreover, it is shown that if the boundary qQ is of class C n for nb 2, the local stable

curve and the local unstable curve are K-monotone curves of class C n�1 whose lengths

are bounded from below by a positive constant independent of x (see also [5]). The

definition of K-monotonicity will be given in Section 2.

The main purpose of the present paper is to show the following theorem that asserts

the existence of a kind of stable foliation. We call it a K-stable foliation for ðWþ
;TÞ.

Theorem 1.1 (c.f. Theorem 3.1 in [8]). Assume that the conditions (H.1) and (H.2)

are satisfied. Then we can construct a foliation F supported on the set D1 with the

following properties.

(F.1) Each leaf of F is a K-decreasing curve.

(F.2) For any x A Wþ, the leaf FðxÞ containing x coincides with the local stable

curve g sðxÞ.

(F.3) For any point x A D2, TFðxÞHFðTxÞ holds.

(F.4) F is a Lipschitz continuous foliation on D1 with respect to the Euclidean

distance in the ðr; jÞ-coordinates.

We note that there are three unpublished papers [8], [9], and [10] concerned with the

present one. One may find that Theorem 1.1 is proved in the first half of [8]. We need

to explain the position of Theorem 1.1 among these works. To this end we recall the

results in [6]. Consider the set S defined by

S ¼ fx ¼ ðxnÞn AZ A f1; 2; . . . ; JgZ : xn 0 xnþ1 for any n A Zg:

Using a positive number y A ð0; 1Þ, we define a function dy : S � S ! R by

dyðx; hÞ ¼ yn for x ¼ ðxnÞn AZ and h ¼ ðhnÞn AZ ;

where n ¼ minf jb 0 : xj 0 hj or x�j 0 h�j holdg. Then it is easy to see that dy be-

comes a metric on S which introduces the same topology as the product topology of the

finite set f1; 2; . . . ; Jg with discrete topology. The shift map s : S ! S is defined so

that

ðsxÞn ¼ xnþ1 for any n A Z

holds for each x A S.
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One of the main results in [6] asserts that the map xð�Þ : Wþ ! S gives a conjugacy

between the dynamical systems ðWþ;TÞ and ðS; sÞ. Moreover, it is shown that for

appropriately chosen y, the inverse map xð�Þ of xð�Þ is Lipschitz continuous with respect

to dy and if we define f : S ! R by f ðxÞ ¼ tþðxðxÞÞ, f turns out to be dy-Lipschitz

continuous. Consequently, we obtain the conjugacy between the billiard flow ðW;S tÞ

and the suspension flow over ðS; sÞ with ceiling function f in such a way that the cor-

responding periodic orbits have the same periods. Therefore, we can apply the result in

Parry and Pollicott [12] to the zeta function of the billiard flow defined by the following

formal Euler product

zðsÞ ¼
Y

t

ð1� expð�slðtÞÞÞ�1;

where the product
Q

t is taken over all the prime periodic orbits t of S t and lðtÞ denotes

the period of t. Hence we see that there exists h > 0 such that the infinite pruduct

above is absolutely convergent in the half-plane fs A C : Re s > hg and has a mero-

morphic extension to some half-plane containing fs A C : Re sb hg in which it has no

zeros and s ¼ h is a unique pole and simple. Consequently we obtain the following

analogue of the prime number theorem.

#ft : lðtÞa ug
hu

expðhuÞ
! 1 ðu ! yÞ:

Now it is natural to ask how wide the domain of meromorphy of zð�Þ is and what

kind of information we can obtain from the analytic properties of zð�Þ. In virtue of the

results in Ruelle [13], zð�Þ could be meromorphic on the entire complex plane if our

billiard map T would be smooth enough and the totality of local stable curves would

make up themselves into smooth invariant foliation supported on some neighborhood of

Wþ. Obviously we are not in such a good situaton because T has singularities and in

addition the definition domain Dn of T n shrinks as n becomes large. Theorem 1.1

above, however, enable us to show the following. First, by combining the results in the

second half of [8] with [9], it is possible to find a positive number b such that zð�Þ can be

extended to a meromorphic function in the half-plane fs A C : Re s > �bg without zero.

Secondly, we can show that we can calculate the special value of zð�Þ as zð0Þ ¼ �1=

ððJ � 2Þ2J�1Þ (see [10]). Hence we can conclude that if we obtain the information of

the length spectrum of Q beforehand, we see how many scatterers there are.

This paper is organized as follows: In Section 2, we give some basic definitions

and fundamental results for billiard maps. In Section 3 alternative proofs of the results

in [6] and [7] are given by using the idea of I. Kubo. This enable us to keep our

construction of K-stable foliation as elementary as possible. Section 4 is devoted to the

construction of K-stable foliation. Finally, we show the validity (F.4) of Lipschitz

continuity in Section 5.

Acknowledgement. The author would like to thank I. Kubo for his comments on

the preceding works of authors. He would also like to thank N. Aoki and N. Chernov

for valuable comments on the Lipschitz continuity.
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2. Preliminaries.

In this section, we recall some notions and fundamental properties of the billiard

map. First of all, we introduce convenient coordinates to p�1qQ. Choose a base point

qð jÞ for each j ¼ 1; 2; . . . ; J and define the following quantities for x ¼ ðq; vÞ A p�1qQ

(Figure 2.1).

x0ðxÞ ¼ j if q A qQj;

rðxÞ ¼ the arclength from qðx0ðxÞÞ to q

measured counterclockwise along the curve qQj;

jðxÞ ¼ the angle between the vector v and the unit normal

nðqÞ which is directed towards the inside of the domain Q;

measured counterclockwise from nðqÞ to v:

8
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>
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>

>
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>

>

>

>

>

>

>

:

Such coordinates will be called the ðr; jÞ-coordinates of x. The quantities x0ðxÞ and

jðxÞ do not depend on the choice of the base point qð jÞ but rðxÞ does. Clearly, the

change of the base point causes just the translation of the r-coordinate.

Note that

fð j; r; jÞ : 0a r < the perimeter of qQj;�p < ja pg

gives a global parametrization for the set p�1qQj but it is not a global parametrization

for the C3 manifold p�1qQj. We often use this coordinates without specifying which

points are chosen as base points. This ambiguity causes us no trouble because most of

our investigations below are carried out locally. Therefore we often abuse the notation

x ¼ ð j; r; jÞ for x ¼ ðq; vÞ and ð j; rÞ for q, respectively. Further, we drop the first

coordinate j if there is no possibility of confusion. The totality of reflection states Mþ

is expressed as

Mþ ¼ x A p�1qQ : �
p

2
a jðxÞa

p

2

� �

:

For j ¼ 1; 2; . . . ; J, set

Mþ
j ¼ fx A Mþ

: x0ðxÞ ¼ jg:

Figure 2.1.
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Each Mþ
j will be called a connected component of Mþ. As we mentioned in Introduc-

tion, the state space M of the billiard flow can be regarded as

M ¼ p�1QUMþ
:

We define the first collision time and the last collision time for the billiard flow at

the point x A Mþ as follows.

tþðxÞ ¼ infft > 0 : S tx A Mþg

t�ðxÞ ¼ supft < 0 : S tx A Mþg;

�

where tþðxÞ (resp. t�ðxÞ) is regarded as þy (resp. �y) if the set in the definition above

is empty. Set

D1 ¼ fx A Mþ
: tþðxÞ < yg; D�1 ¼ fx A Mþ

: t�ðxÞ > �yg:

We define the local maps T : D1 ! Mþ and T�1
: D�1 ! Mþ by

Tx ¼ S tþðxÞx ðif x A D1Þ;

T�1x ¼ S t�ðxÞx ðif x A D�1Þ:

�

For each positive integer n, we define the sets Dn and D�n and the maps T n and ðT�1Þn

inductively as follows.

Dnþ1 ¼ fx A Dn : t
þðT nxÞ < yg

D�ðnþ1Þ ¼ fx A D�n : t
�ðT�nxÞ > �yg

�

and

T nþ1x ¼ TðT nxÞ; for x A Dnþ1

T�ðnþ1Þx ¼ T�1ðT�nxÞ; for x A D�ðnþ1Þ:

�

Note that the notation T�1 is compatible with the definition of the inverse map of T

and T n (resp. T�n) coincides with n-fold iteration of T (resp. T�1). Usually the first

collision map T is called the billiard map for the flow S t.

It is not hard to see that the nonwandering set W of S t is the totality of all initial

states such that pðS txÞ A qQ holds for both infinitely many t > 0 and infinitely many

t < 0. If we set Wþ ¼ Mþ VW, Wþ can be expressed as Wþ ¼7
n AZ

Dn and T is clearly

invertible on Wþ, where D0 is defined to be D1 UD�1 for convenience.

For x A Mþ we put

xiðxÞ ¼ x0ðT
ixÞ; if T i is defined:

For k and l with �ya k < lay, a sequence fxig
l
i¼k is called the itinerary of x A Mþ

from time k to time l if xi ¼ xiðxÞ holds for each i A Z V ½k; l �. The number l � k þ 1,

possibly y, is called the length of the itinerary. On the other hand, any sequence

fxig
l
i¼k which can be the itinerary of some point from time k to time l is called an

admissible word and the number l � k þ 1 is called the length of the admissible word.

Wn denotes the totality of admissible words of length n for nb 2 (W1 ¼ f1; 2; . . . ; Jg

for convenience). Under the conditions (H.1) and (H.2), the admissibility is equivalent

to the condition that xi A f1; 2; . . . ; Jg for each i A Z V ½k; l � and xi 0 xiþ1 for each

i A Z V ½k; l � 1�.
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We employ the following slightly abusive notations for our convenience. For

x ¼ ðq; vÞ ¼ ð j; r; jÞ, ki; ri; ji; ci; t
þ
i , and t�i denote kðT ixÞ; rðT ixÞ; jðT ixÞ; cðT ixÞ; tþðT ixÞ,

and t�ðT ixÞ, respectively, where kðxÞ ¼ kðqÞ ¼ kð j; rÞ denotes the curvature of qQj at

q ¼ ð j; rÞ and cðxÞ ¼ cos jðxÞ.

By the help of the Implicit Function Theorem, the Jacobi matrix DðTÞ for T and

DðT�1Þ for T�1 can be calculated as follows in terms of the ðr; jÞ-coordinates at the

point where they are defined (see [1], [2], [6] and [14]).

qr1

qr
¼ � 1þ

tþk

c

� �

c

c1
;

qr1

qj
¼ �

tþ

c1
;

qj1
qr

¼ �k1 1þ
tþk

c

� �

c

c1
� k;

qj1
qj

¼ � 1þ
tþk1

c1

� �

;
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>

>

>

>

>

>

:

qr�1

qr
¼ � 1�

t�k

c

� �

c

c�1
;

qr�1

qj
¼ �

t�

c�1
;

qj�1

qr
¼ k�1 1�

t�k

c

� �

c

c�1
þ k;

qj�1

qj
¼ � 1�

t�k�1

c�1

� �

:
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>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð2:1Þ

In addition, the partial derivatives of tþ and t� are given by

qtþ

qr
¼ sin j1

qr1

qr
� sin j;

qtþ

qj
¼ �tþ tan j1;

8

>

>

>

<

>

>

>

:

qt�

qr
¼ sin j�1

qr�1

qr
� sin j;

qt�

qj
¼ �t� tan j�1:

8

>

>

>

<

>

>

>

:

ð2:2Þ

Then we obtain the following.

Lemma 2.1 (see [4], [6], [8], and [14]). Let g be a curve of class C1 which is

expressed as fð j; r; jÞ : j ¼ jðrÞ; aa ra bg in the ðr; jÞ-coordinates, where jð�Þ is a C 1

function in r. Assume that T and T�1 are defined on g. If the images g1 ¼ Tg and

g�1 ¼ T�1g are expressed as fð j1; r1; j1Þ : j1 ¼ j1ðr1Þ; a1a r1a b1g and fð j�1; r�1; j�1Þ :

j�1 ¼ j�1ðr�1Þ; a�1a r�1a b�1g, where j1ð�Þ and j�1ð�Þ are C1 functions in r1 and r�1,

respectively, then we have the formulas:

dj1
dr1

¼ k1 þ
c1

c

1

tþ

c
þ

1

dj

dr
þ k

;

dj�1

dr�1
¼ �k�1 þ

c�1

c

1

t�

c
þ

1

dj

dr
� k

;

dr1

dr
¼ �

c

c1

0

B

B

B

@

1þ

tþ
dj

dr
þ k

� �

c

1

C

C

C

A

;

dr�1

dr
¼ �

c

c�1

0

B

B

B

@

1þ

t�
dj

dr
� k

� �

c

1

C

C

C

A

;

dj1
dj

¼ �k1
c

c1

dr

dj
� 1þ

tþk

c1

� �

1þ k
dr

dj

� �

;

dj�1

dj
¼ k�1

c

c�1

dr

dj
� 1�

t�k

c�1

� �

1� k
dr

dj

� �

;

dtþ

dr
¼ sin j1

dr1

dr
� sin j;

dt�

dr
¼ sin j�1

dr�1

dr
� sin j:
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These formulas make sense even when dj=dr ¼ 0 and we obtain similar formulas if the role

of the r-coordinate and that of the j-coordinate are exchanged in the representaitions of

curves g; g1, and g�1.

Next we introduce the notions of increasing curves and decreasing curves. A curve

in Mþ which is expressed as j ¼ jðrÞ, aa ra b in the ðr; jÞ-coordinates is said to be

increasing (resp. dcreasing) if jð�Þ is increasing (resp. decreasing) as a function of r. In

the case when a curve is expressed as r ¼ rðjÞ, aa ja b, we also say it to be increasing

or decreasing according as rð�Þ is increasing or decreasing.

Put

kmax ¼ maxfkðqÞ : q A qQg; kmin ¼ minfkðqÞ : q A qQg;

tmin ¼ minfdistðQj1 ;Qj2Þ : j1 0 j2g;

Kmax ¼ kmax þ
1

tmin
; y ¼

1

1þ tminkmin
:

An increasing (resp. decreasing) curve as above is called a K-increasing (resp. K-

decreasing) curve if

kmina
jðr2Þ � jðr1Þ

r2 � r1
aKmax resp: �Kmaxa

jðr2Þ � jðr1Þ

r2 � r1
a�kmin

� �

holds for any r1 and r2 with aa r1 < r2a b. (K-)increasing curves and (K-)decreasing

curves are often called (K-)monotone curves.

From Lemma 2.1, we can easily show:

Lemma 2.2. Let g be a C1 curve in Mþ which is expressed as fðr; jÞ : j ¼ jðrÞ;

a < r < bg. Assume that g is increasing (resp. decreasing) and T (resp. T�1) is defined on

g. Then Tg (resp. T�1g) turns out to be a C1 curve which is expressed as fðr1; j1Þ : j1 ¼

j1ðr1Þ; a1 < r1 < b1g (resp. fðr�1; j�1Þ : j�1 ¼ j�1ðr�1Þ; a�1 < r�1 < b�1g) satisfying

kmina
dj1
dr1
aKmax resp: �Kmaxa

dj�1

dr�1
a�kmin

� �

:

In addition, we have

YðTgÞb y�1YðgÞ ðresp: YðT�1gÞb y�1YðgÞÞ;

where YðgÞ denotes the variation of the j-coordinate along g.

It follows immediately from Lemma 2.2 that if g is an increasing curve (resp. a

decreasing curve) of class C1, then Tg (resp. T�1g) is a K-increasing curve (resp. K-

decreasing curve) of class C1. In fact, we can see that the T-image (resp. T�1-image)

of any increasing curve (resp. decreasing curve) is always a K-increasing curve (K-

decreasing curve) by a routine approximation argument.

3. Structure of W
þ
.

Next, we observe the sturcture of the definition domain Dn (resp. D�n) of T
n (resp.

T�n). Consider any admissible word j�n j�ðn�1Þ � � � j0 � � � jn�1 jn of length 2nþ 1. We set
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D1ð j0 j1Þ ¼ ðD1 VMþ
j0
ÞVT�1ðD�1 VMþ

j1
Þ;

D�1ð j�1 j0Þ ¼ ðD�1 VMþ
j0
ÞVTðD1 VMþ

j�1
Þ;

Dnð j0 j1 � � � jnÞ ¼ T�1ðDn�1ð j1 j2 � � � jnÞVD�1ð j0 j1ÞÞ ðnb 2Þ;

D�nð j�n j�ðn�1Þ � � � j0Þ ¼ TðD�ðn�1Þð j�n � � � j�2 j�1ÞVD1ð j�1 j0ÞÞ ðnb 2Þ:

Then it is easy to see that Dnð j0 j1 � � � jnÞ (resp. D�nð j�n j�ðn�1Þ � � � j0Þ) is a connected

component of Dn (resp. D�n). Therefore we have

Dn ¼ 6
j0 j1���jn AWnþ1

Dnð j0 j1 � � � jnÞ

D�n ¼ 6
j�n j�ðn�1Þ��� j0 AWnþ1

D�nð j�n j�ðn�1Þ � � � j0Þ:

For j ¼ 1; 2; . . . ; J, put

Sþ
j ¼ x A Mþ

: xðxÞ ¼ j; jðxÞ ¼
p

2

� �

; S�
j ¼ x A Mþ

: xðxÞ ¼ j; jðxÞ ¼ �
p

2

� �

and put

Sþ ¼ 6
J

j¼1

Sþ
j ; S� ¼ 6

J

j¼1

S�
j ; S ¼ S� USþ:

Each Sþ
j (resp. S�

j ) is identified with the line segment in j ¼ p=2 (resp. j ¼ �p=2) in the

ðr; jÞ-plane. If ij is admissible, we can show that D1ðijÞ is a closed domain in Mþ
i

enclosed by the four curves T�1Sþ
j , j ¼ �p=2, T�1S�

j , and j ¼ p=2. Similarly, D�1ð jiÞ

is a closed domain in Mþ
i enclosed by the four curves TS�

j , j ¼ �p=2, TSþ
j , and

j ¼ p=2. Since cos j1 ¼ 0 (resp. cos j�1 ¼ 0) holds on T�1S (resp. TS), T�1Sþ
j and

T�1S�
j (resp. TS�

j and TSþ
j ) are K-decreasing curves (resp. K-increasing curves) ex-

pressed by the equation of the form

dj

dr
¼ �k �

cos j

tþ
resp:

dj

dr
¼ k �

cos j

t�

� �

:

Combining these facts and Lemma 2.2, we can conclude inductively that if n is a posi-

tive integer and j0 j1 � � � jn is admissible, then the set Dnð j0 j1 � � � jnÞ is a closed domain

enclosed by a pair of K-decreasing curves and j ¼Gp=2 and the set D�nð j0 j1 � � � jnÞ is a

closed domain enclosed by a pair of K-increasing curves and jn ¼Gp=2. We call such

a closed domain enclosed by four curves a quadrilateral.

Following the idea of Izumi Kubo, we prove some estimates which are necessary

for further investigations. Note that estimates which play similar roles to them are

obtained in [6]. But in the present case, the following seem to be more useful than

those in [6].

Lemma 3.1. Assume that the conditions (H.1) and (H.2) are satisfied. Let j�n � � �

j0 � � � jn be an admissible word of length 2nþ 1. Then we have the following.
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(1) The Euclidean length of the boundary curve of the quadrilateral Dnð j0 � � � jnÞ

(resp. D�nð j�n � � � j0Þ) contained in j ¼Gp=2 is not greater than C1y
n, where C1 is a

positive constant depending only on the domain Q.

(2) The Hausdor¤ distance between K-decreasing curves (resp. K-increasing curves)

in the boudary of Dnð j0 � � � jnÞ (resp. D�nð j�n � � � j0Þ) is not greater than C1y
n, where C1 is

the same constant as in the assertion (1).

(3) There is a positive constant C2 > 0 depending only on the domain Q such that

the diameter of the set D�nð j�n � � � j0ÞVDnð j0 � � � jnÞ is not greater than C2y
n.

In the above, the Euclidean length, the Hausdor¤ distance, and the diameter are

measured in terms of the ðr; jÞ-coordinates.

Before we prove Lemma 3.1, we observe the structure of Dnð j0 � � � jnÞ and

D�nð j�n � � � j0Þ. We can choose the base point qð j0Þ so that the corresponding ðr; jÞ-

coordinates represents D1ð j0Þ and D�1ð j0Þ as quadrilaterals in the ðr; jÞ-plane. This

fact enable us to identify D1ð j0Þ and D�1ð j0Þ with quadrilaterals in the ðr; jÞ-plane. We

label the sides of quadrilateral Dnð j0 � � � jnÞ (resp. D�nð j�n � � � j0Þ) as gt ¼ gtð j0 � � � jnÞ,

gl ¼ glð j0 � � � jnÞ, gb ¼ gbð j0 � � � jnÞ, and gr ¼ grð j0 � � � jnÞ (resp. dt ¼ dtð j�n � � � j0Þ, dl ¼

dlð j�n � � � j0Þ, db ¼ dbð j�n � � � j0Þ and dr ¼ drð j�n � � � j0Þ) in counterclockwise order so that

gt (resp. dt) is contained in j ¼ p=2, gb (resp. db) is contained in j ¼ �p=2, gl and gr are

K-decreasing curves (resp. dl and dr are K-increasing curves) (see Figure 3.1). It is not

hard to see the following facts:

(i) T kgt and T kgb are K-increasing curves (resp. T�kdt and T�kdb are K-decreasing

curves) for each k with 1a ka n.

(ii) T kgl and T kgr are K-decreasing curves (resp. T�kdl and T�kdr are K-increasing

curves) for each k with 0a ka n� 1.

(iii) T n
Dnð j0 � � � jnÞ ¼ D�nð j0 � � � jnÞ (resp. T�n

D�nð j�n � � � j0Þ ¼ Dnð j�n � � � j0Þ).

(iv) T kgt;T
kgl ;T

kgb, and T kgr (resp. T
�kdt;T

�kdl ;T
�kdb and T�kdr) are the sides

of the quadrilateral T k
Dnð j0 � � � jnÞ (resp. T�k

D�nð j�n � � � j0Þ). In particular, T ngr (resp.

T�ndl) is contained in jn ¼ p=2 or jn ¼ �p=2 (resp. j�n ¼ p=2 or j�n ¼ �p=2) ac-

cording as n is even or odd.

D

D

Figure 3.1.
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Proof of Lemma 3.1. To establish the assertion (1), we estimate the length of gt
and gb. Let gt is given by j ¼ p=2, aa ra b. In virtue of Lemma 2.1, the equation of

the curve Tgt is given by

dj1
dr1

¼ k1 þ
c1

tþ

and dr1=dr ¼ �tþk=c1 for a < r < b. Therefore we have

p ¼

ð b

a

djn
dr

�

�

�

�

�

�

�

�

dr ¼

ð b

a

djn
dj1

dj1
dr1

dr1

dr

�

�

�

�

�

�

�

�

drb y�nkminðb� aÞ:

We just note that the last inequality can be easily obtained from Lemma 2.1. For the

curve gb, we get the same estimate. Now the first assertion of Lemma 3.1 follows if we

put C1 ¼ pð1=kminÞ.

The assertion (2) is proved as follows. Consider any line segment g in Dnð j0 � � � jnÞ

parallel to the r-axis. Then we can apply the same argument as in the proof of the

assertion (1) to g instead of gt. Thus we conclude that the Euclidean length of g is less

than C1y
n. Hence gr is contained in C1y

n neighborhood of gl . This implies that the

assertion (2) is valid.

The assertion (3) can be shown as follows. Consider the line segment s passing

through the vertex of D�nð j�n � � � j0ÞVDnð j0 � � � jnÞ at the bottom, joining the curves dl
and gr and parallel to the r-axis. The length of s is not greater than 2C1y

n by the

assertion (2). Next we consider the line segment h parallel to the j-axis and joinning

the vertex of D�nð j�n � � � j0ÞVDnð j0 � � � jnÞ at the top and the line segment s. Since dl is

K-increasing and gr is K-decreasing, it is easy to see that the length of h is not greater

than KmaxC1y
n. Clearly, the quadrilateral D�nð j�n � � � j0ÞVDnð j0 � � � jnÞ is contained in

a rectangle with base side s and with height not greater than KmaxC1y
n. Hence C2 is

chosen to be C1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K 2
max þ 4

p

¼ ðp=kminÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K 2
max þ 4

p

. r

Next we recall the itinerary problem studied in [6] (see [15] for heigher dimensional

cases). The itinerary problem means the problem finding a point x A Wþ which satisfies

the equation

xðxÞ ¼ x

for a sequence x in S given beforehand. If the itinerary problem has a unique solution,

we denote it by xðxÞ. For x; h A S, put dyðx; hÞ ¼ yn, where n ¼ minfib 0 : x�i 0 h�i

or xi 0 hig. Then dy is a metric on S which introduces the same topology that is

induced by the product topology of f1; 2; . . . ; JgZ . In virtue of Lemma 3.1, we can

show the Lipschitz well-posedness of the itinerary problem as follows.

Theorem 3.1. Assume that the conditions (H.1) and (H.2) are satisfied. Then for

any sequence x A S, there exists a unique x A Wþ such that xðxÞ ¼ x. Moreover, there

exists a positive constant C3 depending only on the domain Q such that

jrðxðxÞÞ � rðxðhÞÞjaC3dyðx; hÞ; and jjðxðxÞÞ � jðxðhÞÞjaC3dyðx; hÞ

hold for any x; h A S.
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Proof. Let x be any element in S. Then fDnðx0 � � � xnÞVD�nðx�n � � � x0Þg
y

n¼1 is a

decreasing sequence of compact subsets of Mþ
x0

such that the diameter of Dnðx0 � � � xnÞV

D�nðx�n � � � x0Þ is not greater than C2y
n for each nb 1 in virtue of Lemma 3.1. Thus

we see the validity of the existence and the uniqueness of the itinerary problem.

Let h be an element in S with dyðx; hÞ ¼ yn for some nonnegative integer n. If

n ¼ 0, then we have jrðxðxÞÞ � rðxðhÞÞjaL and jjðxðxÞÞ � jðxðhÞÞja p, where L is

the maximum of perimeters of qQj’s. Assume nb 1. Then we see by definition that

xi ¼ hi holds for each i with jija n� 1. Therefore xðxÞ and xðhÞ are both contained in

Dn�1ðx0 � � � xn�1ÞVD�ðn�1Þðx�ðn�1Þ � � � x0Þ. Thus by Lemma 3.1 we obtain

jrðxðxÞÞ � rðxðhÞÞjaC2y
�1dyðx; hÞ; and jjðxðxÞÞ � jðxðhÞÞjaC2y

�1dyðx; hÞ:

Hence if we set C3 ¼ maxfL; p;C2y
�1g, we reach the desired inequalities. r

Next we summarize the facts on the structure of the local stable curve and the local

unstable curve for x A Wþ.

Theorem 3.2 ([7]). The local stable curve gsðxÞ (resp. the local unstable curve guðxÞ)

for x A Wþ coincides with the set

7
y

n¼1

Dnðx0ðxÞ; . . . ; xnðxÞÞ resp: 7
y

n¼1

D�nðx�nðxÞ; . . . ; x0ðxÞÞ

 !

:

and it turns out to be a K-decreasing curve (resp. K-increasing curve) of class C2 except

for its end points. Moreover, there exists a function X s (resp. X u) in Cð½�p=2; p=2�ÞV

C 1ðð�p=2; p=2ÞÞ such that gsðxÞ (resp. guðxÞ) is expressed by the di¤erential equation

dr

dj
ðjÞ ¼ X sðjÞ; resp:

dr

dj
ðjÞ ¼ X uðjÞ

� �

for each j A �
p

2
;
p

2

� �

with respect to the appropriately chosen ðr; jÞ-coordinates.

Proof. Set

X1ðy; sÞ ¼
ðktþ þ cÞsþ tþ

ðk1ktþ þ k1cþ c1kÞsþ k1tþ þ c1
if y A D1 and sb 0;

X�1ðy; sÞ ¼
ð�kt� þ cÞsþ t�

ðk�1kt� � k�1c� c�1kÞs� k�1t� þ c�1
if y A D�1 and sa 0:

8

>

>

>

<

>

>

>

:

ð3:1Þ

Inductively we can define for nb 1

Xnþ1ðy; sÞ ¼ X1ðT
ny;Xnðy; sÞÞ if y A Dn and sb 0;

X�ðnþ1Þðy; sÞ ¼ X�1ðT
�ny;X�nðy; sÞÞ if y A D�n and sa 0:

�

ð3:2Þ

We notice that if guðxÞ (resp. gsðxÞ) is expressed by the equation r ¼ rðjÞ, j A

½�p=2; p=2�, we must have

dr

dj
ðjÞ ¼ Xn T�nðr; jÞ;

dr�n

dj�n

� �

resp:
dr

dj
ðjÞ ¼ X�n T nðr; jÞ;

drn

djn

� �� �

in ð�p=2; p=2Þ.
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Here we consider the case of guðxÞ. gsðxÞ is treated in the same way. By defini-

tion guðxÞ is a curve consisting of all points y such that the Euclidean distance between

T�nx and T�ny goes to 0 as n ! y. By Lemma 3.1 (2), we can verify that guðxÞ is a

K-increasing curve and

guðxÞ ¼ 7
y

n¼1

D�nðx�nðxÞ � � � x0ðxÞÞ:

Let guðxÞ be expressed as r ¼ rðjÞ, �p=2a ja p=2. In this stage, we do not know

whether rðjÞ is of class C2 in �p=2 < j < p=2 or not, but we know that it is absolutely

continuous on ½�p=2; p=2�. Thus using the approximation by C1 function, we can show

that T�nguðxÞ is K-increasing for each nb 1 and

dr

dj
ðjÞ ¼ Xn r�n; j�n;

dr�n

dj�n

ðjnÞ

� �

holds for alomost every j, where we denote T�nðr; jÞ by ðr�n; j�nÞ. Therefore if we can

show that Xnðr�n; jn
; a�nÞ converges to some function uniformly on any compact set in

ð�p=2; p=2Þ, and the limit function XðjÞ is independent of the choice of the sequence

fa�ng with 1=Kmaxa a�na 1=kmin, then we can easily see that the function rðjÞ is of

class C1.

Di¤erentiating X1 by s, we hve

qX1

qs
¼

cc1

ðc1 þ k1tþ þ ðkk1tþ þ k1cþ c1kÞsÞ
2

¼
c

c1

1

1þ
k1t

þ

c1
þ
ðkk1t

þ þ k1cþ c1kÞs

c1

� �2
:

It follows that

0a
qX1

qs
a

1

ðk1tþÞ
2

and 0a
qX1

qs
a

c

c1
y2: ð3:3Þ

Therefore, if m > n, we obtain

jXmðr; j; a�mÞ � Xnðr; j; a�nÞj

¼ jX1ðr�1; j�1;Xm�1ðr�m; j�m; a�mÞÞ � X1ðr�1; j�1;Xn�1ðr�n; j�n; a�nÞÞj

a
c�1

c
y2jXm�1ðr�m; j�m; a�mÞ � Xn�1ðr�n; j�n; a�nÞj

a
c�ðn�1Þ

c
y2njXm�nðr�m; j�m; a�mÞ � a�nj

a
c�n

c

2

kmin
y2n

by using the Mean Value Theorem repeatedly. Hence we have seen that the sequence

of continuous functions XnðrðjÞ; j; a�nÞ converges to a continuous function X ðjÞ which
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is independent of the choice of fa�ng uniformly on any compact set in ð�p=2; p=2Þ.

Now we have proved guðxÞ is a K-increasing curve of class C1 except for its end points.

In order to show guðxÞ is of class C2 except for its end points, we need to prove

X ðjÞ is class C1 in ð�p=2; p=2Þ. Recall that XðjÞ is the uniform limit of the sequence

of functions fXnðr�n; j�n; aÞg on any compact set in ð�p=2; p=2Þ, where a is any number

with 1=Kmaxa aa 1=kmin. From the equations (3.1) and (3.2) combining with the for-

mula (2.1), it is clear that Xnðr�n; j�n; aÞ is of class C
1 in the variable j if each scatterer

has C3 boundary. Thus for nb 2 we have

d

dj
ðXnðr�n; j�n; aÞÞ

¼
X

n

k¼1

Y

k

i¼2

qX1

qs
ðT�ði�1Þy;Xn�iþ1ðT

�ny; aÞÞ

 !

�

�
qX1

qr�k

ðT�ky;Xn�kðT
�ny; aÞÞ

dr�k

dj�k

þ
qX1

qj�k

ðT�ky;Xn�kðT
�ny; aÞÞ

� �

;

where we denote ðr�i; j�iÞ by T�iy for i ¼ 1; 2; . . . ; n and we regard
Q1

i¼2 � as 1 for

convenience.

Let us assume that j A ½�a; a� for some 0 < a < p=2. The no eclipse condition

(H.2) implies jjijb j0 for some j0 A ð0; p=2Þ depending only on Q for any i ¼ �1;

�2; . . . : Thus there is a positive number CðaÞ depending only on Q and a such that

Y

k

i¼2

qX1

qs
ðT�ði�1Þy;Xn�iþ1ðT

�ny; aÞÞ

�

�

�

�

�

�

�

�

�

�

a
1

cos a
y2ðk�1Þ;

qX1

qr�k

ðT�ky;Xn�kðT
�ny; aÞÞ

dr�k

dj�k

þ
qX1

qj�k

ðT�ky;Xn�kðT
�ny; aÞÞ

�

�

�

�

�

�

�

�

aCðaÞ;

dj�k

dj

�

�

�

�

�

�

�

�

a yk

ð3:4Þ

for any y ¼ ðr; jÞ A guðxÞ with j A ½�a; a�. Note that the first inequality follows from

(3.3) and we have used the fact that T�i, i ¼ 1; 2; . . . are all K-increasing. Since

Xn�iþ1ðT
�ny; aÞ converges uniformly on ½�a; a� as n ! y, so does ðdXn=djÞðT

�ny; aÞ in

virtue of (3.4) above. Hence we have seen that r ¼ rðjÞ is of class C2. r

The facts in Remark 3.1 below will be used frequently in our argument.

Remark 3.1. If we just want to prove gsðxÞ and guðxÞ are of class C1 in Theorem

3.1, it is enough to assume that the boundary of each scatterer is of class C 2. The

following are consequences of C3 assumption of the boundary.

(1) T is a C2 di¤eomorphism from intD1 onto intD�1 in virtue of the expression

(2.1) of the Jacobi matrix of T .

(2) In Lemma 2.1, if we assume that the curve g is of class C2, then the image

curves Tg and T�1g are of class C 2 from (1) above.

(3) In Theorem 3.2, the local stable curve and the local unstable curve of each

point in Wþ are shown to be of class C2 except for their end points. As we noticed, if x
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is an element in D1 VD�1, then we can find j0 with 0 < j0 < p=2 depending only on Q

such that jjðxÞj < j0 holds in virtue of the no eclipse condition (H.2). Thus

inf
x AD1VD�1

cos jðxÞ > C4 ð3:5Þ

holds for some C4 > 0 depending only on Q. Thus if we look at the proof of Theorem

3.2 carefully, it is not hard to see that there exists a positive number C5 depending only

on Q such that

sup
x A g uVD1

d 2r

dj2
ðjðxÞÞ

�

�

�

�

�

�

�

�

aC5 ð3:6Þ

holds for any local unstable curve gu expressed as r ¼ rðjÞ, �p=2 < j < p=2.

4. Construction of a K-stable foliation for ðWþ;TÞ.

The purpose of this section is to construct a K-stable foliation for the set Wþ. A

K-stable foliation for Wþ in this paper is a foliation F supported on D1 satisfying the

following conditions:

(F.1) Each leaf of F is a K-decreasing curve.

(F.2) For any x A Wþ, the leaf FðxÞ containing x coincides with the local stable

curve gsðxÞ.

(F.3) For any point x A D2, TFðxÞHFðTxÞ holds.

(F.4) F is a Lipschitz continuous foliation on D1 with respect to the Euclidean

distance in the ðr; jÞ-coordinates.

The construction is divided into several steps. Except for the proof of Lipschitz

continuity, we follow the argument in Palis and Takens [11, Chapter 2]. Now let us

begin the first step (see Figure 4.1 throughout the construction).

Step 1. We start with giving an initial foliation F1 supported on D1. Recall that

D1 is written as

D1 ¼ 6
ij AW2

D1ðijÞ:

For each j, we can choose the base point in qQj so that with respect to the corre-

sponding ðr; jÞ-coordinates D1ð jiÞ and D�1ðijÞ can be identified with quadrilaterals in the

ðr; jÞ-plane for all i0 j. In the other words such a choice of the base points enable

us to carry out our construction as if D1ð jiÞ and D�1ðijÞ themselves are quadrilaterals in

the ðr; jÞ-plane. In this sense, each D1ðijÞ is a quadrilateral whose boundary qD1ðijÞ

consists of two curves parallel to the r-axis, say gtðijÞ and gbðijÞ and two K-decreasing

curves, say glðijÞ and grðijÞ. Similarly, each D�1ðijÞ is a quadrilateral whose boundary

qD�1ðijÞ consists of two curves parallel to the r-axis, say dtðijÞ and dbðijÞ and two K-

increasing curves, say dlðijÞ and drðijÞ.

Our initial foliation F1 is chosen to be a Lipschitz continuous foliation on D1

satisfying the following.

(F1.1) F1 restricted to D1nðqD1 U qD2Þ is a C2 foliation.

(F1.2) All leaves of F1 are K-decreasing.

(F1.3) glðijÞ; grðijÞ; glðijpÞ, and grðijpÞ are leaves of F1 for any ij A W2 and for any

ijp A W3.
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We can choose such a foliation since glðijÞ; grðijÞ; glðijpÞ, and grðijpÞ are K-decreasing

curves of class C1 and of class C 2 except for their end points (Recall the equation of the

curves in TS and Remark 3.1 (1) and (2)).

Step 2. Inductively, we can construct a sequence of foliations Fn ðnb 2Þ on D1

with the following properties:

(Fn.1) Fn restricted to the set D1n6
nþ1

k¼1
qDk is a C2 foliation.

(Fn.2) All leaves on D1 are K-decreasing.

(Fn.3) On the set DknDkþ1, we have FkjDknDkþ1
¼ FnjDknDkþ1

for each 1a ka

n� 1.

(Fn.4) Leaves of Fn on the set Dn are T�1-images of leaves of Fn�1 on the set

D�1 VDn�1.

If we are given a sequence of foliations F1; . . . ;Fn with initial foliation F1 for some

nb 1, then we have to define Fnþ1 as follows because of the desired properties (Fnþ1.3)

and (Fnþ1.4). First, we employ the leaves of Fn on D1nDnþ1 as those of Fnþ1. Next,

on the set Dnþ1, we employ the T�1-images of leaves of Fn restricted to D�1 VDn.

Then it is not hard to see that the foliation Fnþ1 obtained above satisfies (Fnþ1.1) and

(Fnþ1.2) in virtue of the following facts.

6n

k¼1
qDk consists of leaves glðwÞ and grðwÞ with w A Wkþ1, 1a ka n and the curves

gtðijÞ and gbðijÞ with ij A W2, where glðwÞ and (resp. grðwÞ) denotes the K-decreasing

curve appearing as the left (resp. right) side of the quadrilateral DkðwÞ in terms of the

D D

F

D

D

D

D D D

F
D

Figure 4.1.
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ðr; jÞ-coordinates for each w A Wkþ1. The ðr; jÞ-coordinates being used in the above are

the same as we choose in Step 1. Let j0 j1 � � � jnþ1 be any element in Wnþ2. Then we

have

T�1ðglð j1 � � � jnþ1ÞVD�1ð j0 j1ÞÞ ¼ grð j0 � � � jnþ1Þ

T�1ðgrð j1 � � � jnþ1ÞVD�1ð j0 j1ÞÞ ¼ glð j0 � � � jnþ1Þ

T�1ðdlð j0 j1ÞVDnð j1 � � � jnþ1ÞÞ ¼ gbð j0 � � � jnþ1Þ

T�1ðdrð j0 j1ÞVDnð j1 � � � jnþ1ÞÞ ¼ gtð j0 � � � jnþ1Þ:

In addition, T�1 is a C2 di¤eomorphism from intðDnð j1 � � � jnþ1ÞVD�1ð j0 j1ÞÞ onto

intDnþ1ð j0 � � � jnþ1Þ as well as a homeomorphism from Dnð j1 � � � jnþ1ÞVD�1ð j0 j1Þ onto

Dnþ1ð j0 � � � jnþ1Þ.

Step 3. We define F on D1 as follows.

For each positive integer n, F restricted to DnnDnþ1 is defined so that Fj
DnnDnþ1

¼

FnjDnnDnþ1
holds. Then it remains to define F on the set

D1n 6
y

n¼1

ðDnnDnþ1Þ

 !

¼ 7
y

n¼1

Dn ¼ 6
x AWþ

guðxÞ:

Therefore the leaf FðxÞ passing through x A Wþ must be defined so that FðxÞ ¼ g sðxÞ.

Then it is obvious by definition that F satisfies (F.1), (F.2), and (F.3). We note that

for positive integers n and k with ka n, we see that leaves of F restricted to DnnDnþ1

are T�k-image of leaves of the foliation F restricted to ðDn�knDnþ1�kÞVD�k.

We prove that F restricted to the set D1 satisfies the Lipschitz continuity (F.4) in

the next section.

5. Proof of Lipschitz continuity.

In what follows, F restricted to the set D1 will be denoted by the same notation

F. We fix the base points which are chosen in Step 1 of the construction of F.

Namely, to each j, we assign the ðr; jÞ-plane Pj and we treat D1ð jiÞ and D�1ðijÞ as if

they are quadrilaterals in Pj by means of the fixed ðr; jÞ-coordinates.

Let g be a decreasing curve of class C1 expressed as r ¼ rðjÞ, aa ja b with

�p=2 < a < b < p=2. We consider a nonnegative valued function u ¼ u0 in j which is

continuous on ½a; b� and C1 in ða; bÞ. Assume that T n can be defined on g for a posi-

tive integer n. Define ui, i ¼ 0; 1; . . . ; n inductively by

uiþ1 ¼ kiþ1 þ
ciþ1

tþi þ
ci

ui þ ki

;

where the abbreviation ki ¼ kðT iðrðjÞ; jÞÞ, tþi ¼ tþi ððT
iðrðjÞ; jÞÞ etc. are the same as

before.

First of all we evaluate ðd=djÞ logðun þ knÞ.
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Lemma 5.1. Let g be a C1 curve on which T nþ1 is defined and T ng is K-

decreasing. Let u ¼ u0 be a nonnegative valued function which is of class C1 along the

curve g. Let ui, i ¼ 0; 1; . . . ; n be defined as above. Then there are constant C6 and C7

depending only on the domain Q such that

d

dj
logðun þ knÞ

�

�

�

�

�

�

�

�

aC6y
n þ C7y

2n d

dj
logðu0 þ k0Þ

�

�

�

�

�

�

�

�

holds. In particular, if T�1 is also defined on g, then we can put C7 ¼ 1.

Proof. Put

biþ1 ¼
2kiþ1

ciþ1

tþi þ
ci

ai þ ki

� �

for i ¼ 0; 1; . . . ; n� 1. Since

uiþ1 þ kiþ1 ¼ 2kiþ1 þ
ciþ1

tþi þ
ci

ui þ ki

holds, we can obtain

ðuiþ1 þ kiþ1Þ tþi þ
ci

ui þ ki

� �

ciþ1

¼
2kiþ1

ciþ1

tþi þ
ci

ui þ ki

� �

þ 1

¼ biþ1 þ 1b 1þ 2kmintmin: ð5:1Þ

For each integer i ¼ 0; 1; . . . ; n� 1, we have

d

djiþ1

logðuiþ1 þ kiþ1Þ

¼
1

uiþ1 þ kiþ1

d

djiþ1

2kiþ1 þ
ciþ1

tþi þ
ci

ui þ ki

0

B

@

1

C

A

¼
2

uiþ1 þ kiþ1

dkiþ1

driþ1

driþ1

djiþ1

�
siþ1

uiþ1 þ kiþ1

1

tþi þ
ci

ui þ ki

�
1

uiþ1 þ kiþ1

ciþ1

tþi þ
ci

ui þ ki

� �2

dtþi
dri

dri

dji
�

si

ui þ ki

� �

dji
djiþ1

þ
ciþ1

ðuiþ1 þ kiþ1Þ tþi þ
ci

ui þ ki

� �2

ci

ui þ ki

dji
djiþ1

d

dji
logðui þ kiÞ

¼ Aiþ1ðjiþ1Þ þ
1

ð1þ biþ1Þ 1þ
tþi ðai þ kiÞ

ci

� �

dji
djiþ1

d

dji
logðui þ kiÞ; ð5:2Þ
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where si denotes sin ji as ci does cos ji and Aiþ1ðjiþ1Þ denotes the sum of the three terms

after the second ‘‘¼’’. Therefore we have

d

dj
logðun þ knÞ

¼ AnðjnÞ
djn
dj

þ
1

ð1þ bnÞ 1þ
tþn�1ðun�1 þ kn�1Þ

cn�1

� �

d

dj
logðun�1 þ kn�1Þ: ð5:3Þ

Since g is contained in the set Dnþ1, we see that cibC4, i ¼ 1; 2; . . . ; n holds in

virtue of the inequality (3.5) which is a consequence of no eclipse condition (H.2). But

in the case when i ¼ 0, we can not use the condition (H.2). We have to proceed with

the proof being careful about this di¤erence. Recall the following equalities in Lemma

2.1.

dji
djiþ1

¼ ki
ciþ1

ci

driþ1

djiþ1

� 1�
t�iþ1kiþ1

ci

� �

1� kiþ1
driþ1

djiþ1

� �

: ð5:4Þ

Since T ig is a K-decreasing curve for i ¼ 0; . . . ; n and cibC4 holds for i ¼ 1; 2; . . . ; n,

we can see that for each i ¼ 1; 2; . . . ; n� 1

�y�1
b

dji
djiþ1

b�C8 ð5:5Þ

for some C8b 1 depending only on Q. In fact, the second inequality in (5.5) follows

from the equality in (5.4) if we set

C8 ¼
Kmax

C4kmin
þ 1þ

diamðqQÞKmax

C4kmin

� �

1þ
Kmax

C4kmin

� �

and the first inequality in (5.5) follows from Lemma 2.2. Hence we can find a positive

number C9 depending only on Q such that

jAiþ1jaC9

holds for each i ¼ 1; 2; . . . ; n� 1.

On the other hand, by the inequality (5.1), it is obvious that

ð1þ biþ1Þ 1þ
tþi ðui þ kiÞ

ci

� �

b ð1þ kmintminÞ
2 ¼ y�2

holds for i ¼ 0; 1; 2; . . . ; n. In addition, since T ig is decreasing, we have

0 >
dji
dj

> �y i

holds for i ¼ 1; 2; . . . ; n by Lemma 2.2. Thus if we use the equation (5.3) repeatedly, we

can reach the inequality

d

dj
logðun þ knÞ

�

�

�

�

�

�

�

�

aC10y
n þ y2ðn�1Þ d

dj
logðu1 þ k1Þ

�

�

�

�

�

�

�

�

ð5:6Þ

with C10 ¼ C9=ð1� yÞ.
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Now we consider the case when i ¼ 0 in the formula (5.3). Since we do not have a

lower bound for cos j independent of j, we can not have the estimate (5.5) for jdj=dj1j

if T�1 is not defined on g. Consequently, it seems hard to obtain an upper bound for

jA1ðj1Þj depending only on Q. But it is easy to see from the explicit form (5.2) that

there is a poitive number C11 depending only on Q such that

A1ðj1Þ
dj1
dj

�

�

�

�

�

�

�

�

aC11:

Therefore we have

d

dj
logðu1 þ k1Þ

�

�

�

�

�

�

�

�

aC11 þ y2
d

dj
logðu0 þ k0Þ

�

�

�

�

�

�

�

�

: ð5:7Þ

Combining (5.6) with (5.7), we arrive at the desired result.

Finally, if T�1 is defined on g, we see that c0 ¼ cos j > C4 follows from the condi-

tion (H.2). Thus (5.5) is true for i ¼ 0. This implies that we can proceed to one step

further in (5.6). Now the proof of Lemma 5.1 is complete. r

Next we consider the following situation: Let g and g 0 be K-decreasing curves of

class C1 contained in the same connected component of D1, say D1ðijÞ for some ij A W2.

Note that we are working on the direct sum of the ðr; jÞ-planes P1; . . . ;PJ as mentioned

in the beginning of the present section. Therefore we regard D1ðijÞ as a quadrilateral in

Pi. Assume that g and g 0 do not intersect each other. Let x and x̂x be points on g and

y and ŷy be points on g 0. We assume that the line segment g joining x and y is parallel

to the r-axis. We also assume that the line segment ĝg joining x̂x and ŷy is parallel to the

r-axis. Let E be the quadrilateral enclosed by g; g 0; g, and ĝg whose vertices are labelled

as x; x̂x; ŷy, and y in counterclockwise order (see Figure 5.1). Then we can show:

Lemma 5.2. Let E be the quadrilateral as above. Further we assume that T nþ1 is

defined on E for some nb 1. Then there exists a constant C12b 1 depending only on the

domain Q such that

jrðx̂xÞ � rð ŷyÞj

jrðxÞ � rðyÞj
A ½C�1

12 ;C12�
YðT nĝgÞ

YðT ngÞ
; ð5:8Þ

where a A ½b; c�d means bda aa cd.

E

Figure 5.1.
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Proof. In order to avoid trifling confusions, we put and ^ on variables cor-

responding to g and ĝg, respectively. For example, if x A g, ci ¼ cos jðT ixÞ, ki ¼ kðT ixÞ

and so on.

First of all we note that Tg and T ĝg are in D�1 VDn. Therefore T ig and T i ĝg are all

K-increasing and

cibC4; and ĉcibC4 ð5:9Þ

for i ¼ 1; 2; . . . ; n by Lemma 2.2 and the inequality (3.5). In addition, these curves are

of class C2 except for their end points at worst since T i is a C2 di¤eomorphism from

intðDiÞ onto intðD�iÞ.

Next we show that there is a number C13b 1 depending only on Q such that

jrðxÞ � rðyÞj A ½C�1
13 ;C13�YðTgÞ and jrðx̂xÞ � rð ŷyÞj A ½C�1

13 ;C13�YðT ĝgÞ: ð5:10Þ

Indeed, we have

dj1
dr

¼ �k �
1

c1
ðcþ tþkÞk1

from Lemma 2.1. Thus we can easily see that (5.10) holds for g by the inequality (5.9).

By exactly the same reason we obtain (5.10) for ĝg.

Now we show that there exists a constant C14b 1 depending only on Q such that

YðTgÞ A ½C�1
14 ;C14�

dj1
djn

ðjðT nxÞÞYðT ngÞ

YðT ĝgÞ A ½C�1
14 ;C14�

dĵj1
dĵjn

ðjðT nx̂xÞÞYðT nĝgÞ:

ð5:11Þ

Take any xðiÞ A T ig for i ¼ 1; . . . ; n. Applying the formula in Lemma 2.1 to ji=jiþ1

with i ¼ 1; 2; . . . ; n� 1, we have

dji
djiþ1

¼ ki
ciþ1

ci

driþ1

djiþ1

� 1�
t�iþ1kiþ1

ci

� �

1� kiþ1
driþ1

djiþ1

� �

:

Then it is not hard to see that

dji
djiþ1

ðjðT iþ1xÞÞ �
dji
djiþ1

ðjðxði þ 1ÞÞÞ

�

�

�

�

�

�

�

�

aC15YðT iþ1gÞaC16y
n�i

holds for i ¼ 1; . . . ; n� 1 in virtue of the Mean Value Theorem and the estimate

(3.6), where C15 and C16 are positive numbers depending only on Q. Since T ig is K-

increasing for each i ¼ 1; . . . ; n� 1, we have

�C8a
djiþ1

dji
a�y�1

by the same reason as (5.4) from the equation

djiþ1

dji
¼ �kiþ1

ci

ciþ1

dri

dji
� 1þ

tþi ki

ciþ1

� �

1þ ki
dri

dji

� �
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in Lemma 2.1. Hence we obtain for i ¼ 1; . . . ; n� 1

dji
djiþ1

ðT iþ1xÞ

dji
djiþ1

ðxði þ 1ÞÞ

� 1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

aC17y
n�i

for any xði þ 1Þ A T iþ1g. Consequently, we arrive at the inequality

dj1
djn

ðjðxðnÞÞÞ

�

�

�

�

�

�

�

�

A ½C�1
18 ;C18�

dj1
djn

ðjðT nxÞÞ

�

�

�

�

�

�

�

�

; ð5:12Þ

where C17 and C18 are positive constants depending only on Q.

Denote by IðTgÞ the interval in the j-axis corresponding to the curve Tg.

Similarly, IðT ngÞ denotes the interval corresponding to T ng. Combining the formula

YðTgÞ ¼

ð

IðTgÞ

jdj1j ¼

ð

IðT ngÞ

dj1
djn

�

�

�

�

�

�

�

�

jdjnj

with the inequality (5.12), we have the desired inequality (5.11) for g. (5.11) for ĝg is

obtained in exactly the same way.

Finally we prove that

dĵj1
dĵjn

ðT nx̂xÞ

�

�

�

�

�

�

�

�

A ½C�1
19 ;C19�

dj1
djn

ðT nxÞ

�

�

�

�

�

�

�

�

ð5:13Þ

holds for some C19 depending only on Q. Combining (5.10), (5.11), and (5.13), we can

easily obtain the desired estimate (5.8).

Since (5.13) is trivial in the case when n ¼ 1, we assume nb 2 in the sequel. Let g

be expressed as r ¼ rðjÞ, aa ja b. Without loss of generality, we may assume that

x̂x ¼ ðrðaÞ; aÞ and x ¼ ðrðbÞ; bÞ. Consider a function u ¼ u0 identically 0 on g. Note

that the function ui is defined so that

uiðjðT
ixÞÞ ¼

dji
dri

ðrðT ixÞÞ and uiðjðT
ix̂xÞÞ ¼

dĵji
dr̂ri

ðrðT ix̂xÞÞ ð5:14Þ

can hold for i ¼ 0; 1 . . . ; n. It is clear that g is a K-decreasing curve lying in Dn and the

function u satisfy the assumptions in Lemma 5.1. Therefore we have

d

dj
logðui þ kiÞ

�

�

�

�

�

�

�

�

aC6y
i þ C7y

2i d

dj
log k0

�

�

�

�

�

�

�

�

¼ C6y
i þ C7y

2i 1

k0

dk

dr

dr

dj

�

�

�

�

�

�

�

�

ð5:15Þ

for each i ¼ 0; 1; . . . ; n. Thus from (5.14) and (5.15), it is not hard to show that there

exists a positive number C20 depending only on Q such that

�C20y
i � jk̂ki � kija

dji
dri

ðrðT ixÞÞ �
dĵji
dr̂ri

ðrðT ix̂xÞÞ

�

�

�

�

�

�

�

�

aC20y
i þ jk̂ki � kij ð5:16Þ

holds for each i ¼ 0; 1; 2; . . . ; n, where k0 ¼ kðxÞ, ki ¼ kðT ixÞ, and k̂ki ¼ kðT ix̂xÞ with

x ¼ ðrðjÞ; jÞ. Since the curvature of qQ is of class C1, we have

kðT ixÞ � kðT ix̂xÞ ¼ kðriðjiðxÞÞÞ � kðriðjiðx̂xÞÞÞ ¼
dk

dr
ðriðji;0ÞÞ

dri

dji
ðji;0ÞðjiðxÞ � jiðx̂xÞÞ
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for some ji;0 by the Mean Value Theorem. Thus using the fact that T ig is K-

decreasing for each i ¼ 0; 1; . . . n, we arrive at the inequality

jkðT ixÞ � kðT ix̂xÞja max
r A qQ

dk

dr
ðrÞ

�

�

�

�

�

�

�

�

y ip

kmin
:

This and the inequality (5.16) yield

dĵji
dr̂ri

ðrðT ix̂xÞÞ �
dji
dri

ðrðT ixÞÞ

�

�

�

�

�

�

�

�

aC21y
i ð5:17Þ

for each i ¼ 0; 1; . . . n for some C21 depending only on Q.

We have to estimate the di¤erence

dji
djiþ1

¼ ki
ciþ1

ci

driþ1

djiþ1

� 1�
t�iþ1kiþ1

ci

 !

1� kiþ1
driþ1

djiþ1

� �

from

dĵji
dĵjiþ1

¼ k̂ki
ĉciþ1

ĉci

dr̂riþ1

dĵjiþ1

� 1�
t̂t�iþ1k̂kiþ1

ĉci

 !

1� k̂kiþ1
dr̂riþ1

dĵjiþ1

� �

for i ¼ 1; 2; . . . ; n� 1. The functions ci ¼ cos ji, ki ¼ kðriÞ, and t� ¼ t�ðri; jiÞ are ob-

tained by substituting ðri; jiÞ for ðr; jÞ in the C 1 functions cos j; kðrÞ, and t�. Similarly,

ĉci ¼ cos ĵji, k̂ki ¼ kðr̂riÞ, and t̂t� ¼ t�ðr̂ri; ĵjiÞ are obtained by substituting ðr̂ri; ĵjiÞ for ðr; jÞ

in the C1 functions cos j, kðrÞ, and t�. Therefore, we can easily estimate the di¤erences

ci from ĉci, ki from k̂ki, and t� from t̂t� directly. On the other hand, ðdriþ1=djiþ1Þ and

ðdr̂riþ1=dĵjiþ1Þ are defined on T iþ1g and T iþ1ĝg. So at first sight, it seems hard to esti-

mate their di¤erence. But we have already established the estimate (5.17) of the dif-

ference ðdriþ1=djiþ1Þ from ðdr̂riþ1=dĵjiþ1Þ for i ¼ 1; 2; . . . ; n� 1. It is easy to see that all

the functions in the right hand sides of the equations expressing dji=djiþ1 and dĵji=dĵjiþ1

are bounded from above by positive constants depending only on Q. In particular, ci
and ĉci are also bounded from below by C4 for i ¼ 1; 2; . . . ; n� 1 in virtue of (3.5).

Thus if we make use of the elementary inequality of type jab� cdja ja� cj jbj þ jcj

jb� dj repeatedly, we can arrive at the inequality

dĵji
dĵjiþ1

�
dji
djiþ1

�

�

�

�

�

�

�

�

aC22y
i

for each i ¼ 1; 2; . . . ; n� 1 for some constant C22 depending only on Q. Since we can

show that jdji=djiþ1jbC�1
8 for i ¼ 1; 2; . . . ; n� 1 by the same way as (5.5), we reach

dĵji
dĵjiþ1

ðT iþ1x̂xÞ

dji
djiþ1

ðT iþ1xÞ

� 1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

aC23y
i

for each i ¼ 1; 2; . . . ; n� 1. Consequently, we conclude that (5.13) is valid. r

Now we are in a position to prove the main result in this section. The Lipschitz

continuity (F.4) turns out to be its easy consequence.

Construction of K-stable foliations 825



Theorem 5.1. Let x and y be distinct points contained in the same connected

component of D1 such that the line segment joining x and y is parallel to the r-axis.

Choose any points x̂x A FðxÞ and ŷy A FðyÞ such that the line segment joining x̂x and ŷy is

parallel to the r-axis. Then

jrðx̂xÞ � rð ŷyÞj

jrðxÞ � rðyÞj
A ½C�1

24 ;C24�

holds for some constant C24 > 1 depending only on Q.

Proof. Before we get into the body of the proof, we observe the structure of the

quadrilateral Dn for our convenience (see Figure 5.2 which illustrates the case when

J ¼ 3 and wn ¼ 3). The quadrilateral Dn consists of JðJ � 1Þn�1 connected components

DnðwÞ with w A Wnþ1, where Wnþ1 is the totality of admissible words of length nþ 1.

For each w ¼ w0w1 � � �wn A Wnþ1, glðwÞ (resp. grðwÞ) denotes the K-decreasing curve

lying on the left (resp. right) side boundary of DnðwÞ. Each DnðwÞ contains J � 1

components Dnþ1ðwjÞ of Dnþ1 and DnðwÞ is divided into 2J � 1 quadrilaterals by

2ðJ � 1Þ curves glðwjÞ and grðwjÞ with j0wn, where wj denotes the concatenation of the

words w and j. Since we regard DnðwÞ as a quadrilateral in the ðr; jÞ-plane Pw0
, we

can give indices to these 2J � 1 quadrilaterals as EnðwÞ1;EnðwÞ2; . . . ;EnðwÞ2J�1 from the

left to the right. Then each connected component of DnnDnþ1 contained in DnðwÞ

conincides with one of the quadrilaterals EnðwÞ1;EnðwÞ3; . . . ;EnðwÞ2J�1 with odd indices

up to boundary curves.

In what follows g (resp. ĝg) denotes the line segment joining x and y (resp. x̂x and ŷy).

There are four possibilities.

Case (i) There exists an integer Nb 1 such that x; y A DN , xiðxÞ ¼ xiðyÞ for each i

with 0a iaN � 1 but xNðxÞ0 xNðyÞ.

Case (ii) There exists an integer Nb 1 such that x; y A DNnDNþ1, xiðxÞ ¼ xiðyÞ for

each i with 0a iaN, and x and y are contained in distinct connected components of

DNnDNþ1.

D

D

E D

E

EDE

E

D

Figure 5.2.
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Case (iii) There exists an integer Nb 1 such that x; y A DNnDNþ1, xiðxÞ ¼ xiðyÞ

for each i with 0a iaN, and x and y are contained in the same connected component

of DNnDNþ1.

Case (iv) There exists an integer Nb 1 such that x A DNþ1 (resp. y A DNþ1), y A

DNnDNþ1 (resp. x A DNnDNþ1), and xiðxÞ ¼ xiðyÞ for each i with 0a iaN.

Case (i) and Case (ii). First of all, we consider Case (i) and Case (ii). Let G be

the totality of K-decreasing curves which appear as sides of quadrilaterals D1ðwÞ with

w A W2 or D2ðwÞ with w A W3. Namely, we can write as

G ¼ fglðwÞ; grðwÞ : w A W2 UW3g:

We note that for each ij A W2, the quadrilateral D1ðijÞ contains 2J elements in G .

Precisely, D1ðijÞ has glðijÞ and grðijÞ as its sides and it is divided into 2J � 1 quad-

rilaterals by 2ðJ � 1Þ curves glðijkÞ and grðijkÞ with j0 k. Put

D ¼ minfdistðg; g 0Þ : g; g 0 A G ; g0 g 0; g; g 0 HD1ðwÞ for some w A W2g;

where distðg; g 0Þ denotes the Euclidean distance between the curves g and g 0 with respect

to the fixed ðr; jÞ-coordinates. Clearly D is positive.

If N ¼ 1, both g and ĝg join distinct elements in G . Therefore we have Da

jrðxÞ � rðyÞjaL and Da jrðx̂xÞ � rð ŷyÞjaL hold for both Case (i) and Case (ii), where

L ¼ max
1ajaJ

fthe perimeter of qQjg:

Therefore we obtain

jrðx̂xÞ � rð ŷyÞj

jrðxÞ � rðyÞj
A

L

D

� ��1

;

L

D

" #

: ð5:18Þ

If Nb 2, both T N�1g and T N�1ĝg join distinct elements in G . Thus we see

that Da jrðT N�1xÞ � rðT N�1yÞjaL and Da jrðT N�1x̂xÞ � rðT N�1ŷyÞjaL. In addition,

T N�1g and T N�1ĝg are K-increasing. Therefore it follows that

DkminaYðT N�1gÞa p and DkminaYðT N�1ĝgÞa p:

Then we can easily see that we can apply Lemma 5.2 with setting g ¼ FðxÞ, g 0 ¼ FðyÞ,

and n ¼ N � 1. Consequently we have

jrðx̂xÞ � rð ŷyÞj

jrðxÞ � rðyÞj
A

C12p

Dkmin

� ��1

;

C12p

Dkmin

" #

: ð5:19Þ

Case (iii). Next we consider Case (iii). If N ¼ 1, we use the fact that the leaves

of F on the set D1nD2 are those of F1. Obviously F1 is Lipschitz continuous. In

fact, we can easily find a number C25 depending only on F1 (i.e. depending only on Q

and the choice of the initial foliation F0) such that

jrðx̂xÞ � rð ŷyÞj

jrðxÞ � rðyÞj
A ½C�1

25 ;C25�: ð5:20Þ

Now we consider the case Nb 2. Let E denote the quadrilateral enclosed by the
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leaves FðxÞ and FðyÞ and the curves g and ĝg. Then it is easy to see that we can apply

Lemma 5.2 to E with g ¼ FðxÞ, g 0 ¼ FðyÞ, and n ¼ N � 1. Thus (5.8) holds with

n ¼ N � 1.

jrðx̂xÞ � rð ŷyÞj

jrðxÞ � rðyÞj
A ½C�1

12 ;C12�
YðT N�1ĝgÞ

YðT N�1gÞ
: ð5:21Þ

We note that the following fact which is an easy exercise. Let g1 and g2 be

mutually disjoint K-decreasing curves and let d be a K-increasing curve intersecting both

of them. Without loss of generality we may assume that g1 is lying on the left hand

side of g2. Consider any line l intersecting d and parallel to the r-axis. Let x1 and x2
be the points where l intersects g1 and g2, respectively. Then we can easily show that

rðx2Þ � rðx1Þ A
2

Kmax
;

2

kmin

� �

YðdÞ ð5:22Þ

holds.

Now we can apply this fact to the case when g1 ¼ FðT N�1xÞ, g2 ¼ FðT N�1yÞ, and

d ¼ T N�1g and the case when g1 ¼ FðT N�1xÞ, g2 ¼ FðT N�1yÞ, and d ¼ T N�1ĝg. On

the other hand, in virtue of Step 4 of the construction of F, the leaves of F on a

connected component of DNnDNþ1 are mapped by T N�1 onto the leaves of F on the

corresponding connected component of ðD1nD2ÞVD�ðN�1Þ. Thus we can apply (5.20)

to any curves joining FðT N�1xÞ and FðT N�1yÞ parallel to the r-axis. Hence we arrive

at

YðT N�1gÞ

YðT N�1ĝgÞ
A

KmaxC25

kmin

� ��1

;
KmaxC25

kmin

" #

ð5:23Þ

in virtue of (5.20) and (5.22). Combining (5.21) with (5.23) we obtain

jrðx̂xÞ � rð ŷyÞj

jrðxÞ � rðyÞj
A

KmaxC12C25

kmin

� ��1

;
KmaxC12C25

kmin

" #

: ð5:24Þ

This completes the proof for Case (iii).

Case (iv). We set

C26 ¼ max
L

D
;
C12p

Dkmin
;C25;

KmaxC12C25

kmin

� �

:

Then the argument above implies that

jrðx̂xÞ � rð ŷyÞj

jrðxÞ � rðyÞj
A ½C�1

26 ;C26� ð5:25Þ

is valid for Case (i), Case (ii), and Case (iii). It remains to prove (5.25) for Case (iv).

We may assume that x A DNþ1, y A DNnDNþ1, and rðxÞ < rðyÞ. The other cases

are dealt with in the same way. Let w0w1 � � �wNwNþ1 be the element in WNþ2 such

that x A DNþ1ðw0w1 � � �wNwNþ1Þ and y A DNðw0w1 � � �wNÞ. For simplicity we denote

w0w1 � � �wNwNþ1 as the concatenation wwNþ1 of w ¼ w0w1 � � �wN and wNþ1. From

T. Morita828



our assumption, we see that g and ĝg intersect grðwwNþ1Þ. Let z and ẑz be the points at

which g and ĝg intersect grðwwNþ1Þ, respectively. We note that grðwwNþ1Þ ¼ FðzÞ ¼

FðẑzÞ holds. We can show that

rð ŷyÞ � rðẑzÞ

rðyÞ � rðzÞ
A ½C�1

26 ;C26�: ð5:26Þ

In fact, any u A g with the di¤erence rðuÞ � rðzÞ > 0 being small enough is contained in

DNðwÞnDNþ1. If ûu is the point in FðuÞV ĝg, the same assertion is also true. Thus the

argument for Case (ii) or that for Case (iii) can be applied to u; y; ûu, and ŷy. Hence we

have

rð ŷyÞ � rðûuÞ

rðyÞ � rðuÞ
A ½C�1

26 ;C26�:

Letting u ! z we obtain (5.26).

Note that there are the following possibilities.

(iv-1) x A DNþ2.

(iv-2) x A DNþ1nDNþ2.

If (iv-1) occurs, then the line segment gðxzÞ joining x and z (resp. ĝgðx̂xẑzÞ joining x̂x

and ẑz) is contained in DNþ1ðwwNþ1Þ and crosses at least one connected component

ENþ1ðwwNþ1Þi of DNþ1nDNþ2. Therefore, it is easy to see that D < jrðT NzÞ � rðT NxÞj

< L (resp. D < jrðT N ẑzÞ � rðT N x̂xÞj < L). Since T igðxzÞ and T iĝgðx̂xẑzÞ are K-increasing

curves for i ¼ 1; 2; . . . ;N, we can apply Lemma 5.2 to our situation with g ¼ FðxÞ,

g 0 ¼ FðzÞ, and n ¼ N. Therefore we obtain

rðx̂xÞ � rðẑzÞ

rðxÞ � rðzÞ
A

C12p

Dkmin

� ��1

;
C12p

Dkmin

" #

ð5:27Þ

in the same way as (5.18).

Next we assume that (iv-2) occurs. If x coincides with z we do not need to prove

any more in virtue of (5.26). Therefore we may assume that x does not coincide with

z. Then we can apply the same argument for Case (ii) or Case (iii) according as x A

ENþ1ðwwNþ1Þ2i�1 with i ¼ 1; . . . ; J � 1 or x A ENþ1ðwwNþ1Þ2J�1. Hence we can conclude

that

rðx̂xÞ � rðẑzÞ

rðxÞ � rðzÞ
A ½C�1

26 ;C26� ð5:28Þ

holds in both cases (iv-1) and (iv-2). Combining (5.26) with (5.28) we arrive at the

desired inequality

rðx̂xÞ � rð ŷyÞ

rðxÞ � rðyÞ
A ½C�1

26 ;C26�:

This completes the proof of Theorem 5.1. r

Now we prove Theorem 1.1.
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Proof of Theorem 1.1. We have only to verify the property (F.4). As before

we regard D1ðijÞ as a quadrilateral in the ðr; jÞ-plane Pi for each ij A W2. Fix ij A W2.

Let a ¼ aðijÞ ¼ gtðijÞV glðijÞ, b ¼ bðijÞ ¼ glðijÞV gbðijÞ, c ¼ cðijÞ ¼ gbðijÞV grðijÞ, and d ¼

dðijÞ ¼ grðijÞV gtðijÞ be the vertices of the quadrilateral D1ðijÞ. Our goal is to construct

a homeomorphism

F ¼ Fij : ½rðaÞ; rðdÞ� � �
p

2
;
p

2

� �

! D1ðijÞ

with the following properties.

(1) F is Lipschitz continuous with respect to the usual Euclidean distance on

½rðaÞ; rðdÞ� � ½�p=2; p=2� and the Euclidean distance on the ðr; jÞ-plane.

(2) F�1 is Lipschitz continuous with respect to the Euclidean distance on the

ðr; jÞ-plane and the usual Euclidean distance on ½rðaÞ; rðdÞ� � ½�p=2; p=2�.

(3) For each r A ½rðaÞ; rðdÞ�, F maps frg � ½�p=2; p=2� homeomorphically to a leaf

of F.

For ðr; jÞ A ½rðaÞ; rðdÞ� � ½�p=2; p=2�, there exists a unique point xr A gtðijÞ such that

rðxrÞ ¼ r (clearly, jðxÞ ¼ p=2). The point Fðr; jÞ is defined to be a unique point x on

FðxrÞ satisfying jðxÞ ¼ j. Then property (3) is obviously satisfied.

The property (1) is verified as follows. Let ðr1; j1Þ and ðr2; j2Þ be any points in

½rðaÞ; rðdÞ� � ½�p=2; p=2�. Then we have

jFðr1; j1Þ �Fðr2; j2Þja jFðr1; j1Þ �Fðr1; j2Þj þ jFðr1; j2Þ �Fðr2; j2Þj

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
1

kmin

� �2
s

jj1 � j2j þ C24jr1 � r2j

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
1

kmin

� �2

þ C2
24

s

jðr1; j1Þ � ðr2; j2Þj:

In the above, we have used the property (F.1) and Theorem 5.1 to estimate the first

term and the second term of the first line, respectively.

Next we verify the property (3). Let x ¼ ðrðxÞ; jðxÞÞ and x ¼ ðrðyÞ; jðyÞÞ be any

points in D1ðijÞ. We can write F�1x ¼ ðr1; jðxÞÞ and F�1y ¼ ðr2; jðyÞÞ for some r1 and

r2 in ½rðaÞ; rðdÞ� by definition. Let z be the unique point in FðxÞ with jðzÞ ¼ jðyÞ.

Since we can write as F�1z ¼ ðr1; jðyÞÞ, we obtain

jF�1x�F�1yja jF�1x�F�1zj þ jF�1z�F�1yj

a jjðxÞ � jðyÞj þ jr1 � r2j

a jjðxÞ � jðyÞj þ C24jrðxÞ � rðzÞj:

Note that the second inequality above is a consequence of Theorem 5.1. On the other

hand the property (F.1) yields

jrðxÞ � rðzÞj ¼ jz� yja jz� xj þ jx� yja

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
1

kmin

� �2
s

jjðxÞ � jðyÞj þ jx� yj:
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Therefore we obtain

jF�1x�F
�1yja 1þ C24 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
1

kmin

� �2
s

0

@

1

A

0

@

1

Ajx� yj:

Now (3) is verified. r
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