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By Stéphane R. Louboutin

(Received Nov. 5, 2001)

(Revised Feb. 10, 2003)

Abstract. The simplest quartic fields are the real cyclic quartic number fields defined

by the irreducible quartic polynomials x4 �mx3 � 6x2 þmxþ 1, where m runs over the

positive rational integers such that the odd part of m2 þ 16 is squarefree. We give an

explicit lower bound for their class numbers which is much better than the previous

known ones obtained by A. Lazarus. Then, using it, we determine the simplest quartic

fields with ideal class groups of exponentsa 2.

1. Introduction.

For any positive rational integer m such that the odd part of m2 þ 16 is square-free,

the quartic polynomial x4 �mx3 � 6x2 þmx þ 1 defines a real cyclic quartic number

field Km (see section 3). These fields Km are called the simplest quartic fields. By using

Stark’s e¤ective versions of the Brauer-Siegel theorem (see [Sta]), A. Lazarus obtained

lower bounds for the class numbers hKm
of these simplest quartic fields Km and deter-

mined all these Km’s with hKm
a 2 for m even. However, in the case that m is odd he

could only prove that ma 1014 if hKm
¼ 1, which is of no practical use for the deter-

mination of all these Km’s with hKm
¼ 1. First, we will obtain in Theorem 9 a much

better lower bound for the relative class numbers h�
Km

:¼ hKm
=hkm

of the simplest quartic

fields Km than his, where hkm
is the class number of the quadratic subfield km of Km.

By our lower bound, we obtain ma 381 if hKm
¼ 1 and ma 649 if hKm

a 2, and there-

fore we can easily complete the determination of all these Km’s with hKm
a 2. Next, we

will explain why our lower bound for h�
Km

proves that there are only finitely many sim-

plest quartic fields Km whose ideal class groups have exponentsa 2 and we will deter-

mine all such Km (see [Lou1] for the solution to the same problem for the imaginary

cyclic quartic fields):

Theorem 1. There exist exactly 22 simplest quartic fields Km whose ideal class

groups are of exponentsa 2. This is the case if and only if m A f1; 2; 4; 5; 6; 8; 9; 10;

11; 15; 24g, in which cases hKm
¼ 1, m A f7; 12; 13; 16; 20g, in which cases hKm

¼ 2, or

m A f17; 19; 23; 27; 39; 45g, in which cases hKm
¼ 4.

For preliminaries, in the next section 2, we will prove some facts on general real

cyclic quartic fields. We will obtain a lower bound for the products of their relative

class numbers and relative regulators (see Theorem 4), and we will give a necessary

condition for their ideal class groups to have exponentsa 2 (see Lemma 5). In section
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3, we then apply these facts to the simplest quartic fields to prove Theorem 1. Our

methods would work also for other families of real cyclic quartic fields, like the one

treated in [Wa].

To conclude this introduction, we would like to thank the referee for her/his careful

reading of the preliminary versions of this paper.

2. Real cyclic quartic fields.

Let K be a real cyclic quartic field and k be its real quadratic subfield. Let dK ,

fK , ClK , hK , UK , RegK and Ress¼1ðzKÞ (resp. dk, fk, Clk, hk, Uk, Regk ¼ log ek and

Ress¼1ðzkÞ) be the discriminant, conductor, ideal class group, class number, unit group,

regulator and residue at s ¼ 1 of the Dedekind zeta function zK of K (resp. k), where

ek > 1 is the fundamental unit of k. Let s be a generator of the Galois group of K .

Finally, let U �
K ¼ fe A UK ;NK=kðeÞ A fG1gg denote the so-called group of relative units of

K . If G10 e A U �
K , then es A U �

K and

Regðek; e; e
sÞ ¼ 2Regk Reg�

e ;

where

Reg�
e :¼ log2jej þ log2jesj > 0:

It is known that there exists some so-called generating relative unit e� A U �
K such that

f�1; e�; e
s
� g generate U �

K (see [Gras] and [Has, Satz 22]), and we set

Reg�
K :¼ Reg�

e� ¼ log2je�j þ log2jes� j > 0:

By the following Lemma, this does not depend on the choice of the generating relative

unit e�:

Lemma 2 (See [Has, Satz 16]). It holds that Regðek; e�; e
s
� Þ ¼ 2Regk Reg�

K ¼

QK RegK for some QK A f1; 2g such that QK ¼ 2 if and only if h�1;NK=kðUKÞi ¼ Uk.

Proof. Noting that NK=kðhÞ ¼ h2 for h A Uk, we obtain that the kernel of

UK ��!
NK=k

Uk ��! Uk=h�1;U 2
k i

is equal to UkU
�
K . Hence, the index QK :¼ ðUK : UkU

�
KÞ divides 2. r

Since fk > 1 divides fK and dK ¼ fk f
2
K (by the conductor-discriminant formula), we

cannot have dK ¼ d 2
k ð¼ f 2k Þ. Hence, K=k is ramified and hk divides hK (by class field

theory). Hence, h�
K :¼ hK=hk is a positive integer that divides hK , which we call the

relative class number of K . According to the analytic class number formula, we have

h�
K ¼

QK fK

8Reg�
K

jLð1; wKÞj
2; ð1Þ

where wK is any one of the two conjugate quartic Dirichlet characters associated with K

(note that dK=dk ¼ f 2K ). Our first aim is to obtain an explicit lower bound for h�
K Reg�

K

(see Theorem 4 below). Then, using an upper bound for Reg�
Km

(see Proposition 8

below), we will obtain a lower bound for h�
Km

(see Theorem 9 below).
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Lemma 3. Set k ¼ 2þ g� logð4pÞ ¼ 0:046 � � � , where g ¼ 0:577 � � � denotes Euler’s

constant.

1. Let K be a totally real quartic number field of discriminant dKb 6 � 1012. Then,

zKð1� ð2=log dKÞÞa 0 implies

Ress¼1ðzKÞb
2

e log dK
; ð2Þ

and 1� ð2=log dKÞa b < 1 and zKðbÞ ¼ 0 imply

Ress¼1ðzKÞb
1� b

4e
: ð3Þ

2. (See [Lou3, Corollaire 5A(a)]). Let k be a real quadratic number field. Then,

Ress¼1ðzkÞa
1

2
ðlog dk þ kÞ: ð4Þ

Moreover (see [Lou3, Corollaire 7B]), 1=2a b < 1 and zkðbÞ ¼ 0 imply

Ress¼1ðzkÞa
1� b

8
log2 dk: ð5Þ

Proof. We need only to prove (2) and (3). According to [Lou5, proof of Lemma

3], 1=2a b < 1 and zKðbÞa 0 imply

Ress¼1ðzKÞb ð1� bÞd
ðb�1Þ=2
K ð1þ l4ð1� bÞÞ 1�

8d
ð1�bÞ=8
K

d
1=8
K

 !

; ð6Þ

where l4 ¼ 2ðgþ logð4pÞÞ � 1 ¼ 5:216 � � � :

To obtain (2), we choose b ¼ 1� ð2=log dKÞ in (6) and note that

gðxÞ :¼ 1þ
2l4
log x

� �

1�
8e1=4

x1=8

� �

satisfies gðxÞb 1 for xb 6 � 1012.

To obtain (3), we use (6) to obtain

Ress¼1ðzNÞb
1� b

e
hðdNÞ;

where hðxÞ :¼ 1� 8e1=4x�1=8 satisfies hðxÞb 1=4 for xb 2 � 109. r

Theorem 4. Let K be a real cyclic quartic field and let k be its real quadratic

subfield. If dKb 6 � 1012, then we have

h�
K Reg�

Kb
QK

ffiffiffiffiffiffiffiffiffiffiffiffiffi

dK=dk
p

2eðlog dKÞðlog dk þ kÞ
b

fK

6eðlog fK þ k=2Þ2
; ð7Þ

where k is as in Lemma 3.

Proof. First, assume that zkð1� ð2=log dKÞÞa 0. Since zKðsÞ=zkðsÞ ¼ jLðs; wKÞj
2

for s real, we have zKð1� ð2=log dKÞÞa 0 and using (2) and (4) we obtain
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jLð1; wKÞj
2 ¼

Ress¼1ðzKÞ

Ress¼1ðzkÞ
b

4

eðlog dKÞðlog dk þ kÞ
: ð8Þ

Second, assume that zkð1� ð2=log dKÞÞ > 0. Then, there exists b in the range

1� ð2=log dKÞa b < 1 such that zkðbÞ ¼ 0. Therefore, zKðbÞ ¼ 0a 0 and using (3), (5)

and dKb d 2
k , we obtain

jLð1; wKÞj
2 ¼

Ress¼1ðzKÞ

Ress¼1ðzkÞ
b

2

e log2 dk
b

4

eðlog dKÞðlog dkÞ
: ð9Þ

Since the right hand side of (9) is greater than the right hand side of (8), we conclude

that (8) is always valid and, using (1), we obtain the desired result. r

The following Lemma will be used in Proposition 11 to prove that there are only

finitely many simplest quartic fields (to be defined below) with ideal class groups of

exponenta 2.

Lemma 5. Let K be a real cyclic quartic field. Let k denote its real quadratic

subfield. If the exponent expðClKÞ of the ideal class group ClK of K is a2, then

expðClkÞa 2, h�
Ka 2Tþt�2 and ta 2, where T (resp. t) is the number of prime ideals of k

ramified in K=k (resp. in k=Q).

Proof. Let N : ClK ! Clk and let j : Clk ! ClK denote the norm and canonical

map, and let Clamb
K=k denote the subgroup of the ambiguous classes of K (the ideal classes

C A ClK which satisfy C
s ¼ C). Recall that #Clamb

K=k divides 2T�1hk (see [Lang, Chapter

13, Lemma 4.1, page 307]). Since at least one finite place of k is ramified in K=k (the

rational primes which are ramified in k=Q are totally ramified in K=Q), the norm map

N is onto, which proves the first assertion, and #kerN ¼ hK=hk ¼ h�
K . If expðClKÞa 2,

then expðClkÞa 2, which implies that hk divides 2 t�1, ker j �N ¼ Clamb
K=k (for j �NðCÞ ¼

CC
s ¼ C

s�1) and h�
K ¼ #kerN divides #ker j �N ¼ #Clamb

K=k , hence divides 2T�1hk, hence

divides 2Tþt�2.

Finally, let Gþ
K denote the maximal real subfield of the genus field GK of K . Then,

Gþ
K=K is an unramified abelian extension and the 4-rank of the ideal class group of K is

greater than or equal to the 4-rank of the Galois group GalðGþ
K=KÞ, by class field theory.

Since the 4-rank of GalðGK=KÞ is equal to t� 1 and since the degree of the extension

GK=G
þ
K is equal to 1 if GK is real and to 2 is GK is imaginary, the 4-rank of GalðGþ

K=KÞ

is bt� 2, and the proof is complete. r

3. Simplest quartic fields.

For any rational integer m, we consider the quartic polynomial

PmðxÞ ¼ x4 �mx3 � 6x2 þmxþ 1

of discriminant dm ¼ 4D3
m, where

Dm :¼ m2 þ 16:

Since Pmð�xÞ ¼ P�mðxÞ, we may and we will assume that mb 0. The reader will

easily check that PmðxÞ has no rational root (for PmðG1Þ ¼ �40 0), and that PmðxÞ is
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Q-irreducible, except for m A f0; 3g (in which cases we have P0ðxÞ ¼ x4 � 6x2 þ 1 ¼
ðx2�2x�1Þðx2þ2x�1Þ and P3ðxÞ ¼ x4�3x3�6x2þ3xþ1¼ ðx2�4x�1Þðx2þx�1Þ).
Hence, from now on, we assume that mb 1 and m0 3. Since ð1� xÞ4Pmðð1þ xÞ=
ð1� xÞÞ ¼ �4PmðxÞ, if y is any complex root of PmðxÞ then sðyÞ :¼ ðy� 1Þ=ðyþ 1Þ,
s2ðyÞ ¼ �1=y and s3ðyÞ ¼ �ðyþ 1Þ=ðy� 1Þ are the other complex roots of PmðxÞ.
Since PmðG1Þ ¼ �4 < 0 and Pmð0Þ ¼ 1 > 0, all the roots of PmðxÞ are real and if we

denote by am the largest one, then we have

am > 1 > sðamÞ > 0 > s2ðamÞ > �1 > s3ðamÞ:

Hence, PmðxÞ defines a real cyclic quartic number field Km :¼ QðamÞ and s gives a gener-

ator of the Galois group GalðKm=QÞ. Set bm ¼ am � a�1
m > 0. Then b2

m �mbm � 4 ¼ 0

(use a�2
m PmðamÞ ¼ a2m �mam � 6þma�1

m þ a�2
m ¼ 0) and bm ¼ ðmþ

ffiffiffiffiffiffiffi

Dm

p
Þ=2. In partic-

ular, km ¼ Qð
ffiffiffiffiffiffiffi

Dm

p
Þ is the quadratic subfield of the real cyclic quartic field Km ¼ QðamÞ

and

NKm=km
ðamÞ ¼ �1: ð10Þ

Since am > 1 and a2m � bmam � 1 ¼ 0, we obtain

am ¼ 1

2
ððmþ

ffiffiffiffiffiffiffi

Dm

p

Þ=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðDm þm
ffiffiffiffiffiffiffi

Dm

p

Þ=2
q

Þ: ð11Þ

In the same way, sðbmÞ ¼ ðm�
ffiffiffiffiffiffiffi

Dm

p
Þ=2 and

sðamÞ ¼
1

2
ððm�

ffiffiffiffiffiffiffi

Dm

p

Þ=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðDm �m
ffiffiffiffiffiffiffi

Dm

p

Þ=2
q

Þ: ð12Þ

Note also that

Km ¼ QðamÞ ¼ Qð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðDm þm
ffiffiffiffiffiffiffi

Dm

p

Þ=2
q

Þ:

We will say that Km is a simplest quartic field if mb 1 is such that the odd part of Dm is

square-free, which implies m0 3. We have:

Proposition 6. Assume that mb 1 and that the odd part of Dm ¼ m2 þ 16 is square-

free. Let fKm
and fkm

denote the conductors of the simplest quartic field Km and of its real

quadratic subfield km. Then,

ð fKm
; fkm

Þ ¼

ðDm;DmÞ if m1 1 ðmod 2Þ
ðDm;Dm=4Þ if m1 2 ðmod 4Þ
ðDm=2;Dm=4Þ if m1 4 ðmod 8Þ
ðDm=2;Dm=16Þ if m1 0 ðmod 8Þ:

8

>

>

>

<

>

>

>

:

In particular, di¤erent values of m define di¤erent simplest quartic fields, fKm
is odd if and

only if m is odd, and fkm
is even if and only if m1 4 ðmod 8Þ.

Proof. Let us content ourselves with a simple proof of the first case (see [Gras,

Proposition 8] for a proof of the remaining cases). Since km ¼ Qð
ffiffiffiffiffiffiffi

Dm

p
Þ of discrim-

inant Dm 1 1 ðmod 4Þ is the quadratic subfield of the cyclic quartic field Km, we obtain
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that D
3
m divides dKm

(use the conductor-discriminant formula). Since ða3m þ 1Þ=2 is a

root of X 4 � ððm3 þ 15mþ 4Þ=2ÞX 3 þ ðð3m3 � 12m2 þ 45m� 192Þ=4ÞX 2 � ððm3�
12m2 þ 15m� 196Þ=4ÞX � ðð3m2 þ 49Þ=4Þ A Z½X �, it is an algebraic integer of Km and

dKm
divides dð1; am; a2m; ða3m þ 1Þ=2Þ ¼ dð1; am; a2m; a3mÞ=4 ¼ dm=4 ¼ D

3
m. r

Proposition 7. Set c ¼
Q

p11 ðmod 4Þð1� 2p�2Þ ¼ 0:894 � � � : Then, #f1ama x;

the odd part of Dm is square-free} is asymptotic to cx, and #f1ama x; m is odd and Dm

is square-free} is asymptotic to ð1=2Þcx.

3.1. Lower bounds for class numbers.

Proposition 8. Assume that mb 1 and that the odd part of Dm ¼ m2 þ 16 is square-

free. Then, am is a generating relative unit and

Reg�
Km

¼ log2 am þ log2 sðamÞa
1

4
log2 Dm: ð13Þ

Proof. For the proof of the first assertion, see [Gras, Proposition 8], or adapt the

method in the proof of [Wa, Section 2]. To prove (13), we note that it holds true for

m ¼ 1; 2 (use (11) and (12)). Thus, we assume that mb 3, which implies Pmð4Þ ¼
�60mþ 161 < 0 and am > 4. Now, a

1�s

m ¼ ð2þ
ffiffiffiffiffiffiffi

Dm

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2þ
ffiffiffiffiffiffiffi

Dm

p
Þ2 � 4

q

Þ=2, by (11)

and (12). Hence, a1�s

m < 2þ
ffiffiffiffiffiffiffi

Dm

p
, 1 < a

1�s

m

ffiffiffiffiffiffiffi

Dm

p
< ð2þ

ffiffiffiffiffiffiffi

Dm

p
Þ

ffiffiffiffiffiffiffi

Dm

p
< ð1þ

ffiffiffiffiffiffiffi

Dm

p
Þ2 and

1 < a
1�s

m =
ffiffiffiffiffiffiffi

Dm

p
< 1þ ð2=

ffiffiffiffiffiffiffi

Dm

p
Þ. Using ð1=sðamÞÞ ¼ 1þ ð2=ðam � 1ÞÞ, we obtain

log2 am þ log2 sðamÞ �
1

4
log2 Dm

¼ ðlogða1�s

m

ffiffiffiffiffiffiffi

Dm

p

ÞÞ log
a
1�s

m
ffiffiffiffiffiffiffi

Dm

p
� �� �

� 2ðlog amÞ log
1

sðamÞ

� �

< 2ðF ð1þ
ffiffiffiffiffiffiffi

Dm

p

Þ � F ðamÞÞ; where F ðxÞ :¼ ðlog xÞ log 1þ 2

x� 1

� �� �

; x > 1:

Now, xðx2� 1ÞF 0ðxÞ ¼ ðx2�1Þ logð1þ 2=ðx� 1ÞÞ� 2x log x<GðxÞ :¼ 2ðxþ 1�x log xÞ
where G 0ðxÞ ¼ �2 log x < 0 for x > 1. Hence, GðxÞaGð4Þ < 0 and F 0ðxÞ < 0 for

x > 4, and F ð1þ
ffiffiffiffiffiffiffi

Dm

p
Þ � FðamÞ < 0, for am <

ffiffiffiffiffiffiffi

Dm

p
, by (11). r

Theorem 9. Assume that mb 1 and that the odd part of Dm ¼ m2 þ 16 is square-

free. Let fKm
denote the conductor of the simplest quartic field Km. Then,

h�
Km
b

2fKm

3eðlog fKm
þ 0:35Þ4

: ð14Þ

In particular, h�
Km

> 1 for fKm
b 73000 (hence for mb 382) and h�

Km
> 2 for

fKm
b 210000 (hence for mb 649).

Proof. The right hand side of (14) being less than one for fKm
< 7 � 104, we

may assume that fKm
b 7 � 104, which implies dKm

¼ fkm
f 2
Km

> f 3Km
=8b 4 � 1013 (for

fkm
b fKm

=8, by Proposition 6). Hence, using (7), (13) and the bounds Dma 2fKm
(by

Proposition 6) and log 2þ k=2ð Þ=2a 0:35, we obtain (14). r
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3.2. Computation of the unit index QKm
.

Proposition 10. Assume that mb 1 and that the odd part of Dm ¼ m2 þ 16 is

square-free. Let 1 < ekm
¼ ðxm þ ym

ffiffiffiffiffiffiffi

Dm

p
Þ=2 A Qð

ffiffiffiffiffiffiffi

Dm

p
Þ denote the fundamental unit of

the real quadratic subfield km ¼ Qð
ffiffiffiffiffiffiffi

Dm

p
Þ of the simplest quartic field Km.

1. If Nkm=Qðekm
Þ ¼ 1, then QKm

¼ 1.

2. If Nkm=Qðekm
Þ ¼ �1, then QKm

¼ 2 if and only if at least one of the two rational

integers 4xm þ Dmym G 2m is a perfect square.

3. If mb 2 is even, then, QKm
¼ 1 if m0 4, and QKm

¼ 2 if m ¼ 4.

Proof. To begin with, we note that QKm
¼ 2 if and only if Gekm

a1�s
m is a square

in Km (see [Gras, Proposition 1]), hence if and only if hm :¼ ekm
a1�s
m is a square in Km

(for ekm
> 1 and am > 1 > sðamÞ > 0). Assume that Nkm=Qðekm

Þ ¼ þ1. Then, h1þs
m ¼

Nkm=Qðekm
Þa1�s2

m ¼ a2m=NKm=km
ðamÞ ¼ �a2m (use (10)) is not a square in Km. Hence, hm

is not a square in Km, and QKm
¼ 1, which proves the first assertion. Let us now prove

the second assertion. To begin with, using a4m þ 1 ¼ amðma2m þ 6am �mÞ, we obtain:

a1�s
m þ a�ð1�sÞ

m ¼ amðam þ 1Þ
am � 1

þ am � 1

amðam þ 1Þ

¼ a4m þ 2a3m þ 2a2m � 2am þ 1

amða2m � 1Þ

¼ ðmþ 2Þa2m þ 8am � ðmþ 2Þ
a2m � 1

¼ mþ 2þ ð8=bmÞ ¼ 2þ
ffiffiffiffiffiffiffi

Dm

p

:

Now, NKm=km
ðhmÞ ¼ e2km

(use (10)) is a square in km. Hence, by [Lou4, Proposition 3.1],

hm is a square in Km if and only if TrKm=km
ðhmÞ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NKm=km
ðhmÞ

q

¼ ekm
ða1�s

m þ as2�s3

m Þ þ
2ekm

¼ ekm
ða1�s

m þ a
�ð1�sÞ
m þ 2Þ ¼ ekm

ð4þ
ffiffiffiffiffiffiffi

Dm

p
Þ is a square in km (for TrKm=km

ðhmÞ �
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NKm=km
ðhmÞ

q

¼ ekm

ffiffiffiffiffiffiffi

Dm

p
cannnot be a square in km, since Nkm=Qðekm

ffiffiffiffiffiffiffi

Dm

p
Þ ¼ Dm is not

a square in Q). Finally, by [Lou4, Corollary 3.3], ekm
ð4þ

ffiffiffiffiffiffiffi

Dm

p
Þ (of absolute norm m2 a

square in Q) is a square in km if and only if Tm þ 2m or Tm � 2m is a square in Q,

where Tm ¼ 4xm þ Dmym is the trace of ekm
ð4þ

ffiffiffiffiffiffiffi

Dm

p
Þ. Let us finally prove the last

assertion. Assume that m0 4; 8 is even. In that case, ekm
¼ ððm=2Þ þ ð

ffiffiffiffiffiffiffi

Dm

p
=2ÞÞ=2 is of

norm �1 and QKm
¼ 1, for neither 4xm þ Dmym þ 2m ¼ ðmþ 4Þ2=2 nor 4xm þ Dmym �

2m ¼ ðm2 þ 16Þ=2 is a perfect square (if Dm=2 ¼ ðm2 þ 16Þ=2 is a perfect square then

Dm ¼ m2 þ 16 must be a perfect 2-power, which implies m ¼ 0 or m ¼ 4). Now, if

m ¼ 8, then ekm
¼ ð1þ

ffiffiffi

5
p

Þ=2 ¼ ð1þ ð
ffiffiffiffiffiffiffi

Dm

p
=4ÞÞ=2 is of norm �1 and QKm

¼ 1, for

neither 4xm þ Dmym þ 2m ¼ 40 nor 4xm þ Dmym � 2m ¼ 8 is a perfect square. Finally,

if m ¼ 4 then ekm
¼ 1þ

ffiffiffi

2
p

¼ ð2þ ð
ffiffiffiffiffiffiffi

Dm

p
=2ÞÞ=2 is of norm �1 and QKm

¼ 2, for 4xm þ
Dmym � 2m ¼ 16 is a perfect square. r

3.3. Computation of class numbers.

Let wKm
be any one of the two conjugate primitive quartic Dirichlet characters

modulo fKm
associated with a simplest quartic field Km of conductor fKm

. According to
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(1), Proposition 8 and to the explicit formula for Lð1; wÞ for even primitive Dirichlet

characters, we have

h�
Km

¼
QKm

2ðlog2 am þ log2 sðamÞÞ

X

1ala fKm=2

wKm
ðlÞ log sinðlp=DmÞ

�

�

�

�

�

�

�

�

�

�

�

�

2

(where QKm
is computed by using Proposition 10), which provides us with a simple

technique for computing e‰ciently hKm
for m not too large. Let us now explain how

one can e‰ciently determine such a wKm
(see also [Lou5]). To begin with, we note that

if D ¼
Q t

i¼1 pi is the product of tb 1 pairwise distinct odd primes pi 1 1 ðmod 4Þ then

we can enumerate all the 2 t primitive quartic characters cn;D, 0a na 2 t � 1 whose

components modulo each pi are primitive quartic characters. Indeed, for a given prime

p1 1 ðmod4Þ, set gp ¼ minfgb 1; gðp�1Þ=2
1�1 ðmod pÞg, Gp ¼ g

ðp�1Þ=4
p mod p and let

fp be the quartic character mod p defined by

fpðxÞ ¼ z
nðxÞ
4 ; where nðxÞ ¼ minfnb 0; xðp�1Þ=4

1G n
p ðmod pÞg A f0; 1; 2; 3g

(for gcdðx; pÞ ¼ 1). To each n A f0; 1; . . . ; 2 t � 1g of 2-adic expansion n ¼
P t

i¼1 ai2
i�1,

ai A f0; 1g, we associate the primitive modD quartic character

cn;D ¼
Y

t

i¼1

fð�1Þai

pi
:

1. First, assume that m is odd. Then, fKm
¼ Dm ¼

Q t
i¼1 pi is a product of tb 1

pairwise distinct odd primes pi 1 1 ðmod 4Þ and there exists a unique odd n ¼ nm A

f0; 1; . . . ; 2 t�1 � 1g such that the primitive quartic character cnm;Dm
is one of the two

conjugate primitive quartic characters wKm
associated with Km. The following algorithm

provides us with an e‰cient technique for determining this unique n ¼ nm:

1. E :¼ f0; 1; . . . ; 2 t�1 � 1g, p :¼ 3.

2. nmin :¼ minðEÞ, nmax :¼ maxðEÞ.

3. If nmin ¼ nmax then go to step 6.

4. While p divides Dm, or PmðxÞ has no root in Z=pZ, do p :¼ next prime.

(Now, since PmðxÞ has at least one root in Z=pZ and since p does not divide the

discriminant dm ¼ 4D3
m of PmðxÞ, it holds that p splits in Km and wKm

ðpÞ ¼ þ1.)

5. Exclude all n with cn;Dm
ðpÞ0 1 from E. Then, go to step 2.

6. ReturnðnminÞ.

2. Now, assume that m is even. Let w�4 denote the only primitive quadratic

Dirichlet character modulo 4 (hence, w�4 ð�1Þ ¼ �1), wþ8 be the only primitive even qua-

dratic Dirichlet character modulo 8 and wþ16 be any one of the two conjugate primitive

even quartic Dirichlet characters modulo 16.

1. If m1 2 ðmod 4Þ, then fKm
¼ 4D 0

m, where D 0
m ¼ ðm=2Þ2 þ 4 ¼

Q t
i¼1 pi 1 5

ðmod8Þ is a product of tb 1 pairwise distinct odd primes pi 1 1 ðmod 4Þ, and

there exists a unique n ¼ nm A f0; 1; . . . ; 2 t�1 � 1g such that the primitive quartic

character w�4 cnm;D
0
m
is one of the two conjugate primitive quartic characters wKm

associated with Km.

2. If m1 4 ðmod 8Þ, then fKm
¼ 16D 0

m, where D 0
m ¼ ððm=4Þ2 þ 1Þ=2 ¼

Q t
i¼1 pi 1 1

ðmod4Þ is a product of tb 1 pairwise distinct odd primes pi 1 1 ðmod 4Þ.
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(a) If m1G4 ðmod 32Þ, then D 0
m 1 1 ðmod 8Þ and there exists a unique n ¼

nm A f0; 1; . . . ; 2 t � 1g such that the primitive quartic character wþ16cnm;D
0
m

is one of the two conjugate primitive quartic characters wKm
associated

with Km.

(b) If m1G12 ðmod 32Þ, then D 0
m 1 5 ðmod8Þ and there exists a unique n ¼

nm A f0; 1; . . . ; 2 t � 1g such that the primitive quartic character w�4 w
þ
16cnm;D

0
m

is one of the two conjugate primitive quartic characters wKm
associated

with Km.

3. If m1 8 ðmod 16Þ, then fKm
¼ 8D 0

m, where D 0
m ¼ 4ðm=8Þ2 þ 1 ¼

Q t
i¼1 pi 1 5

ðmod8Þ is a product of tb 1 pairwise distinct odd primes pi 1 1 ðmod 4Þ, and

there exists a unique n ¼ nm A f0; 1; . . . ; 2 t�1 � 1g such that the primitive quartic

character w�4 w
þ
8 cnm;D

0
m
is one of the two conjugate primitive quartic characters

wKm
associated with Km.

4. Finally, if m1 0 ðmod 16Þ, then fKm
¼ 8D 0

m, where D 0
m ¼ 16ðm=16Þ2 þ 1 ¼

Q t
i¼1 pi 1 1 ðmod 8Þ is a product of tb 1 pairwise distinct odd primes pi 1 1

ðmod4Þ, and there exists a unique n ¼ nm A f0; 1; . . . ; 2 t�1 � 1g such that the

primitive quartic character wþ8 cnm;D
0
m

is one of the two conjugate primitive

quartic characters wKm
associated with Km.

3.4. Bounds for the relative class numbers and conductors of the simplest quartic

fields with ideal class groups of exponentsa 2.

Proposition 11. Assume that mb 1, that the odd part of Dm ¼ m2 þ 16 is square-

free and that the exponent of the ideal class group of the simplest quartic field Km is a2.

1. If m is odd, then either (i) Dm ¼ p1 1 ðmod 8Þ is prime or (ii) Dm ¼ p1 p2 is the

product of two distinct odd primes p1 1 p2 1 5 ðmod 8Þ. Moreover, h�
Km
a 4

and ma 750.

2. If mb 2 is even, then, h�
Km
a 16 and ma 2800.

Proof. By Lemma 5, at most two primes are ramified in km. Moreover, if mb 1

is odd and dkm
¼ Dm ¼ p1 p2 is a product of two primes, then p1 1 p2 1 1 ðmod4Þ and

p1 1 p2 ðmod 8Þ, for Dm ¼ m2 þ 161 1 ðmod 8Þ. If we had p1 1 p2 1 1 ðmod 8Þ, then

the genus field GKm
of Km would be real, GKm

=Km would be an unramified cyclic

extension and the 4-rank of the ideal class group of K would be b1, a contradiction.

Hence, we are in case (i) or (ii). Now, with the notation of Lemma 5, we have

t ¼ T ¼ 1 in case (i) and t ¼ T ¼ 2 in case (ii). Hence T þ t� 2a 2 and h�
Km
a 4 in

both cases. Finally, using (14) we obtain fKm
a 560000, which implies ma 748 (for

m2 þ 16 ¼ Dm ¼ fKm
, by Proposition 6). Let us now prove the second assertion. With

the notation of Lemma 5, we must have ta 2. Since Ta 2þ t (since a prime ideal of

km which is ramified in Km=km but unramified in km=Q must lie above 2), we obtain

tþ T � 2a 2ta 4 and h�
Ka 24 ¼ 16. Finally, using (14) we obtain fKm

a 3800000,

which implies ma 2756 (for m2 þ 16 ¼ Dma 2fKm
, by Proposition 6). r

3.5. The exponent 2 class group problem for the simplest quartic fields: proof of

Theorem 1.

To begin with, we note that if the exponent of the ideal class group of the simplest

quartic field Km is a2, then hKm
is a perfect 2-power. First, let us deal with the case
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that mb 1 is odd. According to computations based on Section 3.3, only 18 out of

the simplest quartic fields Km, m odd and 1ama 750, have class numbers of the

form hKm
¼ 2em , emb 0: m A f1; 5; 7; 9; 11; 13; 15; 17; 19; 23; 27; 33; 39; 45; 69; 87; 255; 549g.

Moreover, only 11 out of these 18 values are such that hKm
> 2, namely m A f17; 19;

23; 27; 33; 39; 45; 69; 87; 255; 549g. Since Dm is a product of three distint primes for

m A f33; 87g whereas Dm is a product of two distinct primes p1 1 p2 1 1 ðmod8Þ for

m A f69; 255; 549g, by Proposition 11, it remains to compute the structure of the ideal

class groups of the 6 quartic fields Km, m A f17; 19; 23; 27; 39; 45g. We obtain the

following Table 1, which completes the proof of Theorem 1 in the case that m is

odd. Now, as explained in the introduction, the case that m is even is simpler to deal

with:

Lemma 12 (See also [LMW]). Assume that mb 2 is even and that the odd part of

Dm ¼ m2 þ 16 is square-free. If the exponent of the ideal class group of Km is a2 then

hkm
¼ 2 tkm�1, where tkm

denotes the number of distinct prime divisors of the discriminant of

km. Moreover, the only such ma 1000 are m A f2; 4; 6; 8; 10; 12; 14; 16; 18; 20; 24; 26; 32;

34; 38; 40; 44; 46; 50; 52; 56; 62; 68; 76; 82; 86; 88; 92; 98; 104; 106; 118; 124; 136; 148; 184; 188;

202; 232; 254; 292; 358; 392; 488; 568; 968g (46 values).

Proof. The exponent of the ideal class group of km must be a2 (by Lemma 5),

and since all the odd prime divisors p of dkm
satisfy p1 1 ðmod 4Þ, the 2-rank of the

ideal class group of km is equal to tkm
� 1. r

Now, according to computations based on Section 3.3, only 11 out of these 46

values of m are such that the class numbers of the simplest quartic fields Km are of the

form hKm
¼ 2em , emb 0, namely m A f2; 4; 6; 8; 10; 12; 16; 18; 20; 24; 32g. Moreover, only

2 out of these 11 values are such that hKm
> 2, namely m A f18; 32g. Finally, using

the Pari software for algebraic number fields to compute the structure of the ideal

class groups of these 2 quartic fields, we obtain that neither ClK18
¼ ½4� nor ClK32

¼

½4; 2� is elementary, which completes the proof of Theorem 1 in the case that m is

even.

All our computations were carried out on a personal microcomputer by using Pr. Y.

Kida’s UBASIC language (for class number computations) and Pari GP (for the deter-

mination of the structures of the ideal class groups of K17, K19, K23, K27, K39, K17, K45,

K18, and K32).

Table 1.

m 17 19 23 27 39 45

Dm 5 � 61 13 � 29 5 � 109 5 � 149 29 � 53 13 � 157

hkm 2 2 2 2 2 2

QKm
1 1 1 1 1 1

h�
Km

2 2 2 2 2 2

hKm
4 4 4 4 4 4

ClKm
½2; 2� ½2; 2� ½2; 2� ½2; 2� ½2; 2� ½2; 2�
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