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Abstract. We introduce the class of concealed generalized canonical algebras
and prove that their Auslander-Reiten quiver admits an infinite family of faithful
standard stable tubes. Moreover, a new wide class of selfinjective algebras whose
Auslander-Reiten quiver admits an infinite family of standard stable tubes is exhib-
ited.

1. Introduction.

Throughout the paper K will denote a fixed algebraically closed field. By an al-
gebra we mean a finite dimensional K-algebra with an identity, which we shall assume
(without loss of generality) to be basic and connected. For an algebra A, we denote
by modA the category of finite dimensional right A-modules and by D the standard
duality HomK(−,K) on mod A. We shall denote by rad(modA) the Jacobson radical
of modA, and by rad∞(mod A) the intersection of all powers radi(mod A), i ≥ 1, of
rad(modA). Further, we denote by ΓA the Auslander-Reiten quiver of A, and by τA

and τ−A the Auslander-Reiten translations DTr and TrD, respectively. We will not dis-
tinguish between an indecomposable A-module and the vertex of ΓA corresponding to
it. A component in ΓA of the form ZA∞/(τ r) r ≥ 1, is called a stable tube of rank r.
Therefore, a stable tube of rank r in ΓA is an infinite component consisting of τA-periodic
indecomposable A-modules having period r. Moreover, a stable tube of ΓA is a regular
component (contains neither a projective nor an injective module). For a component C
of ΓA, we denote by annA C the intersection of the annihilators of all modules from C .
A component C in ΓA with annA C = 0 is said to be faithful. We note that an arbitrary
component C of ΓA is a faithful component of ΓA/ annA C . Moreover, a component C
of ΓA is said to be sincere if any simple A-module occurs as a composition factor of a
module in C . It is known that every faithful component of ΓA is sincere.

The Auslander-Reiten quiver is an important combinatorial and homological invari-
ant of the module category modA of an algebra A. In the paper, we are concerned with
the problem of describing the structure of standard components of the Auslander-Reiten
quiver ΓA of an algebra A, raised more then 20 years ago by Ringel [18]. Recall that a
component C of ΓA is called standard if the full subcategory of modA formed by modules
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from C is equivalent to the mesh category K(C ) of C [3]. Further, following [22], a com-
ponent C of ΓA is called generalized standard if rad∞(X, Y ) = 0 for all modules X and
Y in C . It is known [13] that every standard component of ΓA is generalized standard.
In general, the converse implication is not true. However, the generalized standard stable
tubes are standard (see [26, Lemma 1.3]). We also note that a component C of ΓA is
generalized standard if and only if C is a generalized standard component of ΓA/ annA C .
It has been proved in [22, Theorem 2.3] that every generalized standard component C
of ΓA is quasi-periodic, that is, all but finitely many τA-orbits in C are periodic. In
particular, this implies that every regular (generalized) standard component of ΓA is ei-
ther a stable tube or is of the form Z∆ for a finite connected quiver ∆ without oriented
cycles (solution of Problem 3 from [18]). Moreover, the faithful (generalized) standard
regular components without oriented cycles of the Auslander-Reiten quivers are exactly
the connecting components of the tilted algebras of hereditary algebras by regular tilting
modules (see [22, Corollary 3.3]). We refer also to [21] for a complete description of
arbitrary faithful (generalized) standard components without oriented cycles.

It is expected that the infinite (generalized) standard components with oriented
cycles can be obtained from faithful standard stable tubes by a sequence of admissible
operations (see [14], [15]). Therefore, the description of algebras whose Auslander-
Reiten quiver admits a faithful standard stable tube is an important open problem (see
[23, Problem 3]). Recently this problem has attracted much attention (see [8], [9], [10],
[11], [16], [22], [24], [25], [26], [27]). In [17] Ringel introduced the class of canonical
algebras whose Auslander-Reiten quiver admits a separating family of standard stable
tubes, and this was extended in [9] to the class of concealed canonical algebras. It
has been proved in [10] (see also [24]) that the class of concealed canonical algebras
coincides with the class of all algebras with a separating family of standard stable tubes.
This was deepened in [16], [26], where a characterization of concealed canonical algebras
in terms of external short paths (cycles) has been established. We note that all concealed
canonical algebras are quasitilted [6], that is, algebras of global dimension at most two
and with every indecomposable module either of projective dimension at most one or of
injective dimension at most one. In [26] the second named author introduced the class of
generalized canonical algebras whose Auslander-Reiten quiver contains an infinite family
of faithful standard stable tubes. This is a wide class of algebras, containing the class
of canonical algebras. We only note that there are generalized canonical algebras of
arbitrary high global dimension and every basic algebra is a factor algebra of a generalized
canonical algebra. We also mention that a (very special) class of generalized canonical
algebras, called supercanonical algebras, has been studied in [11].

In the paper we introduce the class of concealed generalized canonical algebras,
which are the endomorphism algebras of special tilting modules over generalized canonical
algebras, containing the class of concealed canonical algebras.

The following theorem is the first main result of the paper.

Theorem 1.1. Let B be a concealed generalized canonical algebra. Then the
Auslander-Reiten quiver ΓB of B admits an infinite family of pairwise orthogonal faithful
stable tubes.

It would be interesting to know if the class of concealed generalized canonical al-
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gebras coincides with the class of all algebras whose Auslander-Reiten quiver admits a
faithful generalized standard stable tube, and hence provides the solution of Problem 3
from [23].

There is a related problem (see [23, Problem 7]) concerning the structure of selfinjec-
tive algebras for which the Auslander-Reiten quiver admits a generalized standard stable
tube. We mention that the selfinjective algebras for which the Auslander-Reiten quiver
admits a nonperiodic generalized standard component have been described completely
in [28, Section 5] and [29].

An algebra A is said to be a selfinjective algebra of generalized canonical type if A

admits a positive Galois covering B̂ → B̂/G = A (in the sense of [30]) by the repetitive
algebra B̂ of a concealed generalized canonical algebra B. Examples of such algebras are
provided by the trivial extensions T (B) = B nD(B) of concealed generalized canonical
algebras B by the minimal injective cogenerators D(B), which are symmetric algebras.

The following theorem is the second main result of the paper.

Theorem 1.2. Let A be a selfinjective algebra of generalized canonical type. Then
ΓA admits an infinite family of pairwise orthogonal standard stable tubes.

As a consequence we also obtain the following fact.

Corollary 1.3. Let B be a concealed generalized canonical algebra. Then ΓT (B)

admits an infinite family of pairwise orthogonal sincere standard stable tubes.

For basic background on the representation theory of algebras applied here we refer
to [1], [17], [19], [20], [31].

2. Generalized canonical algebras.

The aim of this section is to recall the main result of [26] on the generalized canonical
algebras.

Let m ≥ 1 be a fixed positive integer, B = {B0, . . . , Bm} a family of basic connected
nonsimple algebras, and P = {P0, . . . , Pm} a family of modules such that, for each i ∈
{0, . . . , m}, Pi is a faithful indecomposable projective-injective Bi-module with injective
top and projective socle. Moreover, let Λ = {λ0, . . . , λm} be a set of m + 1 pairwise
different elements of P1(K) = K ∪ {∞}, normalized such that λ0 = ∞, λ1 = 0, λ2 = 1.
Write each Bi as a bound quiver algebra

Bi = K∆(i)/I(i),

where K∆(i) is the path algebra of a connected quiver ∆(i) and I(i) is an admissible ideal
in K∆(i). Then

Pi = PBi
((ω, i)) = IBi

((0, i))

for some vertices (ω, i) and (0, i) of ∆(i). Further, denote by ui a fixed path in ∆(i)

with source (ω, i) and target (0, i). Finally, denote by ∆ = ∆(B,P) the quiver ob-
tained from the disjoint union of the quivers ∆(0), . . . ,∆(m) by identifying the vertices
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(ω, 0), . . . , (ω, m) with a vertex ω, and the vertices (0, 0), . . . , (0,m) with a vertex 0. Then
in ∆ we have paths u0, . . . , um with source ω and target 0.

For m = 1, let C(B,P,Λ) be the bound quiver algebra K∆(B,P)/I(B,P), where
I(B,P) is the ideal in K∆(B,P) generated by I(0) and I(1).

For m ≥ 2, we assume additionally that each ∆(i) is different from the quiver
(ω, i) → (0, i). Consider the ideal I(B,P,Λ) in K∆(B,P) generated by I(0), . . . , I(m),
and the elements

ui + u0 + λiu1, i = 2, . . . , m,

and put C(B,P,Λ) = K∆(B,P)/I(B,P,Λ).
Following [26], the algebra C(B,P,Λ) is said to be a generalized canonical algebra

of type (B,P,Λ). Denote by Φ = Φ(B) the set of all i ∈ {0, . . . , m} for which the
algebra Bi is the path algebra K∆(i) of an equioriented linear quiver

∆(i) : (ω, i)
α1pi−−−→ (pi−1, i) → · · · → (1, i) α1i−−→ (0, i)

and Pi is the unique indecomposable projective-injective Bi-module. Moreover, denote
by Ω = Ω(B) the set of all λi ∈ Λ with i ∈ Φ, and set Σ = Λ \ Ω. Therefore, if Λ = Ω,
then C(B,P,Λ) is the canonical algebra C(p,λ) of type (p,λ), where p = (p0, . . . , pm)
and λ = (λ0, . . . , λm), as defined in [17, (3.7)].

Theorem 2.1. Let C = C(B,P,Λ) be a generalized canonical algebra. Then ΓC

admits a family T C = (T C
µ )µ∈P1(K)\Σ of pairwise orthogonal faithful standard stable

tubes such that

(i) The tubes T C
ξ , ξ ∈ P1(K) \ Λ, are of rank 1.

(ii) For each λi ∈ Ω, T C
λi

is a stable tube of rank pi.

Proof. See [26, Theorem 2.1]. ¤

The family T C is said to be the canonical family of stable tubes of ΓC . We refer to
[26, Section 2] for the precise definition of the family T C , as well as further facts on the
generalized canonical algebras.

We refer also to [12] for a complete description of all tame generalized canonical
algebras.

3. Concealed generalized canonical algebras.

The aim of this section is to introduce the class of concealed generalized canonical
algebras and recall some related results.

Let A be an algebra and X, Y be modules in modA. Then X is said to be cogener-
ated (respectively, generated) by Y if there is a monomorphism X → Y d (respectively,
epimorphism Y d → X) for some d ≥ 1, where Y d is the direct sum of d copies of Y .
Moreover, a module M in modA is said to be faithful if annA M = {a ∈ A|Ma = 0} = 0.
The following two lemmas are well known.
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Lemma 3.1. Let A be an algebra and M be a module in mod A. The following
conditions are equivalent :

(i) M is a faithful A-module.
(ii) AA is cogenerated by M .
(iii) D(A)A is generated by M .

Proof. See [1, (VI.2.2)]. ¤

Lemma 3.2. Let A be an algebra and Γ a stable tube in ΓA. Then Γ is faithful if
and only if all but finitely many indecomposable modules in Γ are faithful.

Proof. See [19, (XII.3.8)]. ¤

We need also a characterization of standard stable tubes. Recall that an indecom-
posable A-module X is called a brick provided EndA(X) ∼= K. Further, by the mouth of
a stable tube T of ΓA we mean the unique τA-orbit in T formed by the modules having
exactly one predecessor (and exactly one successor) in T .

Lemma 3.3. Let A be an algebra and T a stable tube of ΓA. The following condi-
tions are equivalent :

(i) T is standard.
(ii) The mouth of T consists of pairwise orthogonal bricks.
(iii) rad∞(M, M) = 0 for all modules M in T .
(iv) T is generalized standard.

Proof. See [26, Lemma 1.3]. ¤

The following homological fact will be also useful.

Lemma 3.4. Let A be an algebra and T be a faithful generalized standard stable
tube of ΓA. Then, for any module X in T , we have pdAX ≤ 1 and idAX ≤ 1.

Proof. See [22, Lemma 5.9]. ¤

A module T in modA is said to be a tilting module if pdAT ≤ 1, Ext1A(T, T ) = 0,
and T is a direct sum of n pairwise nonisomorphic indecomposable A-modules, where n

is the rank of the Grothendieck group K0(A) of A. We refer to [1, Chapter VI] for a
basic tilting theory.

Let C = C(B,P,Λ) be a generalized canonical algebra and

T C =
(
T C

µ

)
µ∈P1(K)\Σ

be the canonical family of pairwise orthogonal faithful (generalized) standard stable
tubes. We say that a module M in modA is cogenerated by the family T C , if, for any
µ ∈ P1(K) \ Σ, M is cogenerated by a direct sum Nµ of indecomposable modules from
T C

µ . We note also that such a module M has no direct summand from T C , because the
different tubes in T C are orthogonal. In fact, then M is cogenerated by all but finitely
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many indecomposable modules of any fixed tube Tµ.

Definition 3.5. An algebra B is said to be a concealed generalized canonical
algebra of type (B,P,Λ) if B is the endomorphism algebra EndC(T ) for a generalized
canonical algebra C = C(B,P,Λ) and a tilting C-module T cogenerated by the tubular
family T C .

We show now that the class of concealed generalized canonical algebras contains
the class of concealed canonical algebras, defined in [9]. Indeed, let C = C(p,λ) be a
canonical algebra of type (p,λ). Then the canonical family T C of stable tubes in ΓC is a
separating family T C = (T C

µ )µ∈P1(K) and hence the category indC of indecomposable
modules in modC has a decomposition

indC = PC ∨T C ∨QC

where HomC(T C ,PC) = 0, HomC(QC ,T C) = 0, HomC(QC ,PC) = 0, and any
nonzero map from PC to QC factors through any of the stable tubes of T C . This
implies that all modules in the additive category addPC of PC are cogenerated by
the family T C . Therefore, the class of concealed generalized canonical algebras of type
(p,λ) coincide with the class of tilted algebras of the form EndC(T ) for tilting modules
T from addPC , which are exactly the concealed canonical algebras defined in [9].

Finally, we note that a generalized canonical algebra C = C(B,P,Λ) is itself a
concealed generalized canonical algebra. Indeed, C = EndC(T, T ) for the projective
tilting C-module T = CC , which is cogenerated by any of the faithful stable tubes of the
canonical family T C (see Lemma 3.1).

A module T in modA is said to be a cotilting module if idAT ≤ 1, Ext1A(T, T ) = 0,
and T is a direct sum of n pairwise nonisomorphic indecomposable A-modules, where n

is the rank of K0(A).

Lemma 3.6. Let C = C(B,P,Λ) be a generalized canonical algebra, T be a
cotilting C-module generated by the canonical family T C of stable tubes of ΓC , and
B = EndC(T ). Then B is a concealed generalized canonical algebra.

Proof. Consider the opposite algebra Cop of C and the standard duality D :
mod C → mod Cop. Observe that C∗ = Cop is a generalized canonical algebra. Indeed,
if B = {B0, . . . , Bm} and P = {P0, . . . , Pm}, then C∗ = C(B∗,P∗,Λ∗), where B∗ =
{Bop

0 , . . . , Bop
m }, P∗ = {D(P0), . . . , D(Pm)}, Λ∗ = Λ. Moreover, T ∗ = D(T ) is a tilting

C∗-module cogenerated by the canonical family T C∗ = (T C∗
µ )µ∈P1(K)\Σ, with T C∗

µ =
D(T C

µ ), of stable tubes of ΓC∗ . Finally, we have B = EndC(T ) ∼= EndC∗(T ∗), and hence
B is a concealed generalized canonical algebra. ¤

4. Proof of Theorem 1.1.

Let C = C(B,P,Λ) be a generalized canonical algebra, T a tilting module
in modC cogenerated by T C , and B = EndC(T ). We will prove that the family
T B = (T B

µ )µ∈P1(K)\Σ of indecomposable B-modules formed by the images T B
µ =

HomC(T, T C
µ ) of the stable tubes T C

µ is a family of pairwise orthogonal faithful standard



Concealed generalized canonical algebras 527

stable tubes of ΓB .
The tilting C-module T induces a torsion pair (T (T ),F (T )) in modC, where

F (T ) = {X ∈ mod C | HomC(T, X) = 0}

is the torsion-free class, and

T (T ) = {X ∈ mod C | Ext1C(T,X) = 0}

is the torsion class. Further, T induces also a torsion pair (X (T ),Y (T )) in modB,
where

Y (T ) = {Y ∈ mod B | TorB
1 (Y, T ) = 0}

is the torsion-free class, and

X (T ) = {Y ∈ mod B | X ⊗B T = 0}

is the torsion class. Then by the Brenner-Butler theorem (see [1, (VI.3.8)]) the func-
tor HomC(T,−) induces an equivalence of categories T (T ) ∼−→ Y (T ) and the functor
Ext1C(T,−) induces on equivalence of categories F (T ) ∼−→ X (T ). We note that in our
situation the torsion pair (X (T ),Y (T )) in modB is usually not splitting, that is there
are indecomposable B-modules which are neither in X (T ) nor in Y (T ). Therefore, it is
not clear how we may recover the Auslander-Reiten quiver ΓB of B from the Auslander-
Reiten quiver ΓC of C. However, we will show that T B

µ = HomC(T, T C
µ ), µ ∈ P1(K)\Σ,

form components of ΓB . We divide the prove into several steps.

(1) HomC(T C , T ) = 0. Suppose that X is a module in the family T C with
HomC(X, T ) 6= 0, and let T C

µ be the tube of T C containing X. Since T is cogenerated
by T C , there are a module Nµ in addT C

µ and a monomorphism f : T → Nµ. Then, for
a nonzero morphism g : X → T , we have the composed nonzero morphism fg : X → Nµ.
Moreover, T has no direct summands for the tube T C

µ , and hence fg ∈ rad∞(X, Nµ)
(see [1, (IV.5.1)]). Therefore, the stable tube T C

µ is not generalized standard and hence
not standard, a contradiction with Theorem 2.1.

(2) T C ⊆ T (T ). Let X be a module in T C . Then, applying the Auslander-Reiten
formula [1, (IV.2.13)], and (1), we obtain

Ext1C(T, X) ∼= DHomC

(
τ−C X, T

)
= 0,

because τ−C X ∈ T C , and hence X ∈ T (T ). In particular, the images HomC(T,X) of
all modules X from T C are indecomposable modules in the torsion-free part Y (T ) of
mod B.

(3) pdCX ≤ 1 and idCX ≤ 1 for any module X in T C . This follows from Lemma
3.4 and the fact that, by Theorem 2.1, all stable tubes in T C are faithful and generalized
standard.
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(4) Ext1C(X, T ) ∼= D HomC(T, τCX). This is a direct consequence of the Auslander-
Reiten formula and the fact that pdCX ≤ 1 is equivalent to HomC(D(C), τCX) = 0 (see
[1, (IV.2.7), (IV.2.14)]).

(5) pdB HomC(T, X) ≤ 1 for any module X in T C . This follows from (3) and the
fact that pdB HomB(T,M) ≤ pdCM for any module M in T (T ) (see [1, (VI.4.1)]).

(6) τB HomC(T, X) ∼= HomC(T, τCX) for any module X in T C . This follows from
[17, p. 171, 6(c)], (2) and (3). For convenience of the reader we present an alternative
proof. Observe that the projective B-modules are the modules of the form HomC(T, T ′)
for all modules T ′ from the additive category addT of T . Let X be a module in T C .
Then it follows from (5) that there is an exact sequence

(∗) 0 → T1 → T0 → X → 0

in modC with T0, T1 from addT such that induced exact sequence

0 → HomC(T, T1) → HomC(T, T0) → HomC(T,X) → 0

is a minimal projective resolution of M = HomC(T, X) in modB. Observe that the
above sequence is exact because Ext1C(T, T1) = 0. Set P0 = HomC(T, T0) and P1 =
HomC(T, T1). Consider the Nakayama functor

ν = D HomB(−, B) : modB → mod B.

Then, by [1, (IV.2.4)], there exists an exact sequence

0 → τBM → νP1 → νP0 → νM → 0.

On the other hand, applying the functor HomC(−, T ) to the exact sequence (∗) we obtain
the exact sequence

0 → HomC(X, T ) → HomC(T0, T ) → HomC(T1, T ) → Ext1C(X, T ) → 0.

Hence, by (1) and (4), we get an exact sequence of left B-modules

0 → HomC(T0, T ) → HomC(T1, T ) → D HomC(T, τCX) → 0,

and consequently an exact sequence

0 → HomC(T, τCX) → D HomC(T1, T ) → D HomC(T0, T ) → 0

in modB. Finally, there are natural isomorphisms

νP0 = D HomB(HomC(T, T0),HomC(T, T )) ∼= D HomC(T0, T ),

νP1 = D HomB(HomC(T, T1),HomC(T, T )) ∼= D HomC(T1, T ),
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in modB, because the functor HomC(T,−) induces an equivalence T (T ) ∼−→ Y (T ) and
clearly T0, T1 ∈ T (T ). Therefore, comparing the above exact sequences, we obtain the
required isomorphism of B-modules τB HomC(T, X) ∼= HomC(T, τCX).

(7) For each µ ∈ P1(K) \ Σ, T B
µ = HomC(T, T C

µ ) is a stable tube of ΓB . Indeed,
let X be a module in a tube T C

µ and

0 → τCX → E → X → 0

be an almost split sequence in modC. Since X ∈ T (T ), we have then the induced exact
sequence

0 → HomC(T, τCX) → HomC(T, E) → HomC(T, X) → 0

with HomC(T, τCX) ∼= τB HomC(T, X), by (6). Then it is an almost split sequence in
mod B, because the torsion-free part Y (T ) of modB is closed under extensions. There-
fore, T B

µ is a stable tube of ΓB and has the same rank as T C
µ .

(8) For each µ ∈ P1(K) \ Σ, T B
µ is a standard stable tube. Observe that the

mouth of the tube T B
µ consists of the images of the C-modules forming the mouth of

T C
µ via the functor HomC(T,−) : T (T ) ∼−→ Y (T ). Since the tube T C

µ is standard its
mouth consists of pairwise orthogonal bricks. Therefore the mouth of T B

µ also consists
of pairwise orthogonal bricks. Applying now Lemma 3.3, we conclude that the tube T B

µ

is standard.
(9) For each µ ∈ P1(K) \ Σ, T B

µ is a faithful stable tube. Take µ ∈ P1(K) \ Σ.
Since, by assumption, the tilting C-module T is cogenerated by the family T C of stable
tubes, there exists a monomorphism f : T → Nµ for some module Nµ from addT C

µ .
Then we get a monomorphism HomC(T, f) : HomC(T, T ) → HomC(T,Nµ) with Mµ =
HomC(T, Nµ) from addT B

µ . Hence, the algebra B = EndC(T ) is cogenerated by the
module Mµ, and applying Lemma 3.1, we conclude that Mµ is a faithful B-module.
Therefore, T B

µ is a faithful stable tube of ΓB .
(10) T B = (T B

µ )µ∈P1(K)\Σ is a family of pairwise orthogonal faithful standard
stable tubes of ΓB . This follows from (7), (8), (9) and the fact that the tubes T C

µ ,
µ ∈ P1(K) \ Σ, are pairwise orthogonal (see Theorem 2.1).

5. Selfinjective orbit algebras.

In this section we recall needed background on selfinjective orbit algebras and intro-
duce the class of selfinjective algebras of generalized canonical type.

An algebra A is called selfinjective if A ∼= D(A) in modA, that is the projective
A-modules are injective. Moreover, A is called symmetric if A and D(A) are isomorphic
as A − A-bimodules. An important class of selfinjective algebras is formed by the orbit
algebras of the form B̂/G where B̂ is the repetitive algebra (locally finite dimensional,
without identity)

B̂ =
⊕

m∈Z

(Bm ⊕Qm)
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of an algebra B, where Bm = B and Qm = D(B) for all m ∈ Z, the multiplication in B̂

is defined by

(am, fm)m · (bm, gm)m = (ambm, amgm + fmbm−1)m

for all am, bm ∈ Bm, fm, gm ∈ Qm, and G is an admissible group of automorphisms of
B̂. Observe that B̂ is the matrix algebra

B̂ =




. . . . . . 0
Qm−1 Bm−1

Qm Bm

Qm+1 Bm+1

0 . . . . . .




as defined in [7].
Let B be an algebra and E = {ei | 1 ≤ i ≤ n} be a fixed set of orthogonal

primitive idempotents of B with 1B = e1 + · · · + en. Then we have the canonical set
Ê = {ej,k | 1 ≤ j ≤ n, k ∈ Z} of orthogonal primitive idempotents of B̂ such that
ej,kB̂ = (ejB)k ⊕ (ejD(B))k for 1 ≤ j ≤ n and k ∈ Z. By an automorphism of B̂

we mean a K-algebra automorphism of B̂ which fixes the chosen set Ê of orthogonal
primitive idempotents of B̂. A group G of automorphisms of B̂ is said to be admissible if
the induced action of G on Ê is free and has finitely many orbits. Then the orbit algebra
B̂/G is a selfinjective algebra and the G-orbits in Ê form a canonical set of orthogonal
primitive idempotents of B̂/G whose sum is the identity of B̂/G (see [5]). Moreover, there
are a Galois covering F : B̂ → B̂/G and the associated push-down functor Fλ : mod B̂ →
mod B̂/G (see [3], [5]). We denote by ν bB the Nakayama automorphism of B̂ such that
ν bB(ej,k) = ej,k+1 for all 1 ≤ j ≤ n, k ∈ Z. Then the infinite cyclic group (ν bB) generated
by ν bB is admissible and B̂/(ν bB) is the trivial extension T (B) = B nD(B) of B by the
injective cogenerator D(B). Further, an automorphism ϕ of B̂ is said to be positive when,
for each j ∈ {1, . . . , n}, k ∈ Z, we have ϕ(ej,k) = em,r for some m ∈ {1, . . . , n} and r ≥ k.
We note that, if ϕ is a positive automorphism of B̂, then the infinite cyclic group (ϕν bB)
is an admissible group of automorphisms of B̂. Following [30], a Galois covering of the
form B̂ → B̂/(ϕν bB), where ϕ is a positive automorphism of B̂ is said to be positive. We
refer to [28] and [30] for results on selfinjective algebras having positive Galois coverings
by repetitive algebras of algebras. We also note that the class of selfinjective algebras for
which the Auslander-Reiten quiver admits a nonperiodic generalized standard component
coincides with the class of selfinjective algebras having positive Galois coverings by the
repetitive algebras of representation-infinite tilted algebras (see [28], [29]).

We will use the following consequence of [5, Theorem 3.6].

Proposition 5.1. Let F : B̂ → B̂/(ϕν bB) = A be a positive Galois covering. Then
the push-down functor Fλ : mod B̂ → mod A preserves the indecomposable modules and
the almost split sequences. Moreover, the orbit quiver Γ bB/G is a full translation subquiver
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of ΓA.

We note that in general the push-down functor Fλ is not dense (see [2], [4]).

Definition 5.2. Let C = C(B,P,Λ) be a generalized canonical algebra, T a
tilting C-module cogenerated by the canonical family T C of stable tubes in ΓC , and
B = EndC(T ) the associated concealed generalized canonical algebra. A selfinjective
algebra of the form B̂/(ϕν bB), where ϕ is a positive automorphism of B̂, is said to be a
selfinjective algebra of generalized canonical type (B,P,Λ).

6. Proof of Theorem 1.2 and Corollary 1.3.

We will use the following general lemma on almost split sequences over matrix alge-
bras.

Lemma 6.1. Let R and S be algebras, N an S − R-bimodule and Λ =
[

S N
0 R

]
the

associated matrix algebra. Let

η : 0 → X → Y → Z → 0

be an almost split sequence in mod R such that HomR(N, X) = 0. Then η is an almost
split sequence in mod Λ.

Proof. See [17, (2.5)]. ¤

Let B be a concealed generalized canonical algebra, ϕ a positive automorphism of
B̂, and A = B̂/(ϕν bB) the associated selfinjective algebra of generalized canonical type.
We identify modB with the full subcategory modB0 of mod B̂.

It follows from Theorem 1.1 (and its proof) that ΓB admits a family T B =
(T B

µ )µ∈P1(K)\Σ, for a finite subset Σ of P1(K), of pairwise orthogonal faithful standard
stable tubes. We shall prove that, under the canonical embedding modB = mod B0 into
mod B̂, T B remains a family of standard stable tubes. Since modB0 is closed under
extensions in mod B̂, it is enough to prove that τ bBZ ∼= τBZ for any indecomposable
B-module Z from T B .

For each positive integer r, denote by Λ(r) the matrix algebra

Λ(r) =




Br Qr

Br−1 Qr−1 0
. . . . . .

B1 Q1

B0 Q0

B−1 Q−1

. . . . . .

0 B−r+1 Q−r+1

B−r
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that is, the factor algebra of B̂ by the ideal

I(r) =
⊕

s≥r+1

(Bs ⊕Qs)⊕Q−r ⊕
⊕

s≤−r−1

(Bs ⊕Qs).

Observe that an arbitrary almost split sequence in mod B̂ is an almost split sequence in
mod Λ(r), for some r ≥ 1. Moreover, denote by Ω(r) the matrix algebra

Ω(r) =




Br Qr 0
Br−1 Qr−1

. . . . . .

0 B1 Q1

B0




and observe that Ω(r) is a factor algebra of Λ(r).
We first prove that T B is a family of stable tubes of the Auslander-Reiten quiver

ΓΩ(r) of any algebra Ω(r), r ≥ 1. Consider the matrix algebra

Ω(1) =

[
B1 Q1

0 B0

]
=

[
B D(B)

0 B

]
.

In order to prove that T B is a family of stable tubes of ΓΩ(1), it is enough to show, by
Lemma 6.1, that HomB(D(B), Z) = 0 for any module Z in T B . Suppose that there is a
nonzero morphism f : D(B) → Z for an indecomposable module Z in a tube T B

µ of T B .
Since T B

µ is a faithful stable tube of ΓB , by Lemma 3.2, all but finitely many modules in
T B

µ are faithful. Therefore, applying Lemma 3.1, we obtain that D(B) is generated by an
indecomposable module M of T B

µ , and hence there is an epimorphism g : M t → D(B),
for some t ≥ 1. Then the composed morphism fg is a nonzero morphism in rad∞(M t, Z),
because the injective cogenerator D(B) has no direct summands in the stable tube T B

µ .
This implies that rad∞(M, Z) 6= 0, a contradiction because the standard stable tube T B

µ

is generalized standard. Therefore, indeed T B is a family of standard stable tubes of
ΓΩ(1).

Let r ≥ 2. Then Ω(r) is the matrix algebra

Ω(r) =

[
Br Qr

0 Ω(r − 1)

]
.

Moreover, Qr is an injective Ω(r− 1)-module having no simple composition factors from
mod B0, and hence without common simple composition factors with the modules in T B .
Therefore, we have HomΩ(r−1)(Q(r), Z) = 0 for any module Z in T B and r ≥ 2. Since,
Ω(r) can be obtained from Ω(1) by iterated matrix extensions, we conclude inductively,
applying Lemma 6.1, that T B is a family of standard stable tubes of ΓΩ(r).
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Consider now the matrix algebra

D(1) =

[
Ω(r) Q−1

0 B−1

]
=

[
Ω(r) D(B)

0 B

]
,

which is the coextension algebra of Ω(r) by the projective B-module BB . Since T B is
a family of faithful stable tubes of ΓB , we know that B is cogenerated by each of the
stable tubes T B

µ of T B . Moreover, the tubes T B
µ are standard, and hence generalized

standard in modB, so applying dual arguments we conclude that HomB(Z, B) = 0 for
any indecomposable module Z in T B . Therefore, by the lemma dual to Lemma 6.1, we
conclude that T B is a family of stable tubes of ΓD(1).

For r ≥ 2 and s = {2, . . . , r}, consider the coextension algebras

D(s) =

[
D(s− 1) Q−s+1

0 B−s

]
.

Observe that we have HomD(s−1)(Z, B−s+1) = 0 for any module Z in T B , because
the simple B0-modules are not composition factors of B−s+1. Therefore, applying the
dual of Lemma 6.1, we conclude inductively that T B is a family of stable tubes of the
Auslander-Reiten quivers ΓD(s), 1 ≤ s ≤ r. Since D(r) = Λ(r), we finally infer that T B

is a family of stable tubes of ΓΛ(r), as required.
Therefore, we proved that τ bBZ ∼= τBZ for any indecomposable module in T B , and

hence T B is a family of stable tubes of B̂. Moreover, since mod B is a full subcategory
of mod B̂, T B is a family of pairwise orthogonal standard stable tubes of Γ bB . Finally,
applying Proposition 5.1, we conclude that T A = (T A

µ )µ∈P1(K)\Σ for T A
µ = Fλ(T B

µ ),
for any µ ∈ P1(K) \ Σ, is a family of stable tubes in ΓA.

We will show now that T A is a generalized standard family of stable tubes of ΓA.
This will imply, by Lemma 3.3 (applied to each tube of the family T A), that T A is a
family of pairwise orthogonal standard stable tubes of ΓA. Consider the Galois covering
F : B̂ → B̂/(ϕν bB) = A and the associated push-down functor Fλ : mod B̂ → mod A. Let
g = ϕν bB and G = (g). Then G acts on the category mod B̂ such that, for any shift hM of
a module M from mod B̂ by an element h ∈ G, we have FλM ∼= Fλ

hM (see [5, Lemma
3.2]). Moreover, for any modules M and N in mod B̂, we have a canonical K-linear
isomorphism

HomA(FλM, FλN) ∼−→
⊕

h∈G

Hom bB(M,hN)

(see [5, Lemma 3.2, Theorem 3.6]). Take now two indecomposable modules X and Y from
the family T B of stable tubes of Γ bB . Recall that T B is a family of pairwise orthogonal
standard stable tubes in the full subcategory modB0 = modB of mod B̂. Because the
generator g of the group G is of the form g = ϕν bB , for a positive automorphism ϕ of B̂,
we conclude that the simple composition factors of the module X and any shift hY of Y

by an element h ∈ G \ {1} are disjoint, and consequently we obtain that
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⊕

h∈G

Hom bB(X,hY ) ∼−→ Hom bB(X, Y ) = HomB(X, Y ).

Hence, we have HomA(FλX, FλY ) ∼−→ HomB(X, Y ), and consequently rad∞A (FλX, FλY )
∼−→ rad∞B (X, Y ) = 0. This shows that indeed T A is a generalized standard family of
stable tubes, as required. This finishes the proof of Theorem 1.2.

For the proof of Corollary 1.3, take ϕ the identity automorphism of B̂ and A =
B̂/(ν bB) = T (B). Observe that the simple T (B)-modules coincide with the simple B-
modules. Since every faithful B-module is sincere, we conclude that the constructed
family T T (B) = Fλ(T B), for the Galois covering F : B̂ → B̂/(ν bB) = T (B), is a family
of pairwise orthogonal sincere stable tubes of ΓT (B).

7. Examples.

The aim of this section is to present some examples illustrating the above consider-
ations.

We exhibit first examples of concealed generalized canonical algebras which are not
generalized canonical algebras.

Examples 7.1. Let C be the bound quiver algebra KQ/I where Q is the quiver

1
α0

wwpppppppppppppp 2
α1oo

0 3
β0oo 8

β3oo

α2

ggNNNNNNNNNNNNNN

γ7
¡¡¡¡

¡¡
¡¡

¡

4

γ0

^^>>>>>>>
5γ4

oo 6γ5
oo

ε

EE 7γ6
oo

and I is the ideal in the path algebra KQ generated by the elements

α2α1α0 + β3β0 + γ7γ6γ5γ4γ0, ε2, γ6γ5 − γ6εγ5.

Observe first that C is a generalized canonical algebra C(B,P,Λ), where m = 2, Λ =
{∞, 0, 1}, B = {B0, B1, B2}, with B0 = K∆(0) the path algebra of the quiver ∆(0) given
by the arrows α0, α1, α2, B1 = K∆(1) the path algebra of the quiver ∆(1) given by the
arrows β0, β3, B2 = K∆(2)/I(2) the bound quiver algebra of the quiver ∆(2) given by
the arrows γ0, γ4, γ5, γ6, γ7, ε and I(2) the ideal of K∆(2) generated by ε2, γ6γ5 − γ6εγ5,
and P = {P0, P1, P2} for the unique faithful indecomposable projective-injective Bi-
modules Pi, i ∈ {0, 1, 2}. Moreover, in the above notation, we have Ω = {∞, 0} and
Σ = Λ \ Ω = {1}. Therefore, by Theorem 2.1, the Auslander-Reiten quiver ΓC admits
the canonical family T C = (T C

µ )µ∈P (K)\{1} of pairwise orthogonal faithful standard
stable tubes, with T C

∞ the stable tube of rank 3, T C
0 the stable tube of rank 2, and the

remaining stable tubes T C
µ , µ ∈ P1(K)\{0, 1,∞}, of rank 1. We note that gl dimC = ∞
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because the simple C-module S(6) at the vertex 6 has infinite projective dimension.
Denote by C the component of ΓA containing the unique simple projective C-module

S(0). Then the standard calculation shows that the left hand part of the component C
looks as follows

1 1
1 0 0
00 00

$$III
I

0 0
1 1 0
10 00

$$III
I

1 0
1 0 0
00 00

::uuuu

$$III
I

1 1
2 1 0
10 00

::uuuu

$$III
I

1 0
2 1 0
21 00

::uuuu

$$III
III

0 0
1 0 0
00 00

//

::uuuu

$$III
I

0 0
1 1 0
00 00

// 1 0
2 1 0
10 00

//

::uuuu

$$III
I

1 0
1 0 0
10 00

// 2 1
3 1 0
21 00

//

::uuuu

$$III
III

· · · . . .

0 0
1 0 0
10 00

::uuuu

$$III
I

1 0
2 1 0
11 00

::uuuu

$$III
III

. . .

0 0
1 0 0
11 00

::uuuu

$$III
III

. . .

. . .

where the indecomposable modules are represented by their dimension vectors and

P (0) = S(0) =
0 0

1 0 0
00 00

, P (1) =
1 0

1 0 0
00 00

, P (2) =
1 1

1 0 0
00 00

,

P (3) =
0 0

1 1 0
00 00

, P (4) =
0 0

1 0 0
10 00

, P (5) =
0 0

1 0 0
11 00

are the indecomposable projective C-modules at the vertices 0, 1, 2, 3, 4, 5, respectively.
Consider the C-module

T = τ−1
C P (0)⊕

( 8⊕

i=1

P (i)
)

Then T is the APR-tilting module at the simple projective module S(0) = P (0) (see [1,
(VI.2.8)]). Moreover, τ−1

C P (0) is a submodule of the projective module

P (8) =
1 1

2 1 1
11 11

.

Since T C consists of faithful stable tubes, CC is cogenerated by T C , and consequently
the tilting C-module T is also cogenerated by T C . Hence the tilted algebra B = EndC(T )
is a concealed generalized canonical algebra. Further, by Theorem 1.1, ΓB admits a family
T B = (T B

µ )µ∈P1(K)\{1}, with T B
µ = HomC(T, T C

µ ), of pairwise orthogonal faithful
standard stable tubes. Observe also that B is the bound quiver algebra KQB/J where
QB is the quiver
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and J is the ideal in KQB generated by the elements

α2α1 − βξ, βη − γ7γ6γ5γ4, ε2, γ6γ5 − γ6εγ5.

Consider also the C-module

T ′ = P (3)⊕ τ−1
C P (1)⊕ τ−1

C P (4)⊕ τ−2
C P (3)⊕ P (2)⊕ P (5)⊕ P (6)⊕ P (7)⊕ P (8).

Then it follows from the described above left hand part of C that T ′ is a tilting C-module,
and τ−1

C P (1), τ−1
C P (4), τ−2

C P (3) are submodules of the projective module P (8). Hence
T ′ is cogenerated by the family T C . The associated concealed generalized canonical
algebra B′ = EndC(T ′) is the bound quiver algebra KQB′/J ′ where QB′ is the quiver

8
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¡
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2 0 5

and J ′ is the ideal of KQB′ generated by the elements

αβ − ξη, σξ%− γ7γ6γ5, ε2, γ6γ5 − γ6εγ5.

Again, by Theorem 1.1, ΓB′ admits a family T B′ = (T B′
µ )µ∈P1(K)\{1}, with T B′

µ =
HomC(T ′,T C

µ ), of pairwise orthogonal faithful standard stable tubes.
Observe also that gl dimB = ∞ and gl dimB′ = ∞, because pdBS(6) = ∞ and

pdB′S(6) = ∞. Moreover, the algebras B and B′ are not generalized canonical algebras,
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because they have three simple projective modules. We also note that although B and
B′ are of infinite global dimension, all modules in the tubular families T B and T B′

have the projective dimension one and the injective dimension one, because T B and
T B′ consist of generalized standard faithful stable tubes (see Lemma 3.4).

We may generalize the above examples as follows. Let F = K∆/R be an arbitrary
basic connected nonsimple algebra having a faithful indecomposable projective-injective
module P with injective top and projective socle. We note that for an arbitrary basic
algebra D and an arbitrary faithful D-module M we may take such an algebra F with D

a factor algebra of F and M = radP/socP (see [26, Corollary 2.5]). Moreover, we may
take such an algebra F with gl dimF = n for any fixed n ≥ 1 (see [26, Corollary 2.4]).
Denote by 5 the unique sink of ∆, by 7 the unique source of ∆, and by u a path in ∆
from 7 to 5.

Denote by E the bound quiver algebra KΘ/L given by the quiver

5 6
γ5oo

ε

EE 7,
γ6oo

and the ideal L of KΘ generated by ε2 and γ6γ5 − γ6εγ5. Further, denote by Q∗,
Q∗B , Q∗B′ the quiver obtained from the quiver Q, QB , QB′ , respectively, by replacing
the subquiver Θ by the quiver ∆. Moreover, let I∗ be the ideal of KQ∗ generated by
α2α1α0+β3β0+γ7uγ4γ0 and R, J∗ the ideal of KQ∗

B generated by α2α1−βξ, βη−γ7uγ4

and R, and by (J ′)∗ the ideal of KQ∗
B′ generated by αβ−ξη, σξ%−γ7u and R. Consider

the bound quiver algebras C∗ = KQ∗/I∗, B∗ = KQ∗
B/J∗, and (B′)∗ = KQ∗

B′/(J ′)∗.
Then C∗ is a generalized canonical algebra and B∗, (B′)∗ are concealed generalized
canonical algebras of the forms B∗ = EndC∗(T ∗), (B′)∗ = EndC∗((T ′)∗), where T ∗ is
the tilting C∗-module of the form

T ∗ = τ−1
C∗ P (0)⊕

( ⊕

i∈Q∗0\{0}
P ∗(i)

)
,

(T ′)∗ is the tilting C∗-module of the form

(T ′)∗ = P ∗(3)⊕ τ−1
C∗ P ∗(1)⊕ τ−1

C∗ P ∗(4)⊕ τ−2
C∗ P ∗(3)⊕ P ∗(2)⊕ P ∗(8)⊕ P,

and, for each vertex i of Q∗, P ∗(i) is the indecomposable projective C∗-module at i,
P =

⊕
i∈∆0

P ∗(i). Observe also that the algebra F is a factor algebra of any of the
algebras C∗, B∗, (B′)∗.

Finally we exhibit also an example of the trivial extension of a concealed generalized
canonical algebra.

Example 7.2. Let B be the concealed generalized canonical algebra defined in
Examples 7.1. Then the trivial extension T (B) is the bound quiver algebra KΓ/S,
where Γ is the quiver



538 P. Malicki and A. Skowroński
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and S is the ideal of KΓ generated by the elements α2α1 − βξ, βη − γ7γ6γ5γ4, ε2,
γ6γ5−γ6εγ5, %α2, %γ7, ϕγ7, ψα2, ϕβσ, ψβσ, %βσ%, α1ϕα2α1, γ4ψγ7γ6γ5γ4, γ6γ5γ4ψγ7γ6,
γ5γ4ψγ7γ6ε− εγ5γ4ψγ7γ6.
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[ 8 ] O. Kerner and A. Skowroński, Quasitilted one-point extensions of wild hereditary algebras, J.

Algebra, 244 (2001), 785–827.

[ 9 ] H. Lenzing and H. Meltzer, Tilting sheaves and concealed-canonical algebras, In: Representations

of Algebras, CMS Conference Proceedings, 18, Amer. Math. Soc., 1996, pp. 455–473.

[10] H. Lenzing and J. A. de la Peña, Concealed-canonical algebras and separating tubular families,

Proc. London Math. Soc., 78 (1999), 513–540.

[11] H. Lenzing and J. A. de la Peña, Supercanonical algebras, J. Algebra, 282 (2004), 298–348.
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