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Abstract. This paper concerns projectively Anosov flows jt with smooth stable and

unstable foliations F
s and F

u on a Seifert fibered 3-manifold M over a hyperbolic

orbifold. We show that if the foliations F
s and F

u do not have compact leaves, then

after changing the parameter, jt is di¤erentiably isotopic to a quasi-Fuchsian flow lifted to

a finite cover.

1. Introduction and the statement of the result.

A non singular flow jt on a closed 3-dimensional manifold M is a projectively

Anosov flow if there exist a continuous Riemannian metric on M, a continuous splitting

ÊE u l ÊE s of TM=Tj invariant under the action of T̂Tjt on TM=Tj, and a positive

real number C such that the following inequality holds for tb 0, vu A ÊE unf0g and

v s A ÊE snf0g:

kðT̂TjtÞv
uk

kðT̂TjtÞv
sk
b eCt

kvuk

kvsk
:

This definition was given in [7], where Eliashberg and Thurston called it a con-

formally Anosov flow. The same flow was investigated by Mitsumatsu [19] (see also

[20]) and was called a projectively Anosov flow.

The invariant line bundles ÊE u and ÊE s give rise to the invariant plane fields E u and

E s over M. As is remarked in [7], the plane fields E u and E s are continuous and

integrable, but frequently they are not uniquely integrable. It is, however, interesting to

investigate the case where the plane fields E u and E s are smooth, and then E u and E s

determine codimension 1 smooth foliations Fu and F
s of M. In this case, we call the

projectively Anosov flow regular.

There are a large variety of the Anosov flows with stable and unstable foliations of

class C1 but not C2. On the other hand, the Anosov flows with smooth (at least C3)

stable and unstable foliations (regular Anosov flows) are classified by Ghys ([12], [13]).

Up to finite cover and parameter change, they are either isotopic to the suspension flow

of the Anosov di¤eomorphisms of the torus or to the quasi-Fuchsian flows on the Seifert
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fibered 3-manifolds over hyperbolic orbifolds. These are the most important examples

of regular projectively Anosov flows.

For a regular projectively Anosov flow, the smooth foliations Fu and F
s may have

compact leaves which are tori ([7]). In [20], Noda investigated the regular projectively

Anosov flows with compact leaves, and he also gave the classification of those flows with

compact leaves on torus bundles over the circle.

In this paper, we look at regular projectively Anosov flows without compact leaves

on the Seifert fibered 3-manifolds over hyperbolic orbifolds, and show that they are in

fact the Anosov flows (quasi-Fuchsian flows). More precisely, we show the following

theorem.

Theorem 1.1. Let jt be a regular projectively Anosov flow on a Seifert fibered 3-

manifold M over a hyperbolic orbifold. Assume that the unstable foliation F
u and the

stable foliation F
s do not have compact leaves. Then after changing the parameter of the

flow, jt is di¤erentiably isotopic to a quasi-Fuchsian flow lifted to a finite cover.

Noda showed in [21] that a Seifert fibered 3-manifold over a hyperbolic orbifold

does not admit regular projectively Anosov flows with compact leaves in the unstable

foliation F
u or the stable foliation F

s. Hence the above theorem gives the classi-

fication of regular projectively Anosov flows on a Seifert fibered 3-manifold. Note that

Barbot ([1]) classified the Anosov flows (which are not necessarily regular) on a large

family of graph manifolds including Seifert fibered 3-manifold M over a hyperbolic

orbifold.

Note also that Theorem 1.1 for the regular projectively Anosov flows without

compact leaves on the unit tangent bundle of a closed hyperbolic surface was shown in

[22].

By the assumption of our theorem that the foliations F
u and F

s do not have

compact leaves, the theorems of Thurston ([24]), Levitt ([16]), Eisenbud-Hirsch-Neumann

([6]), Matsumoto ([17]) and Brittenham ([2]) assert that each foliation F
u and F

s can be

individually isotoped to be transverse to the fibers. Hence the lifted foliations ~FF
u and

~FF
s of the universal covering space ~MM are the product foliations.

To show our results, we first look at the leaf spaces Qu and Qs of the lifted

foliations ~FF
u and ~FF

s and the orbit space of the lifted flow ~jjt on the universal covering

space ~MM together with the action of the fundamental group p1ðMÞ. This procedure is

the same as in [22], and the orbit foliation ~jj of ~MM is again shown to be Hausdor¤. The

Hausdor¤ness follows from two facts, namely, that the flow is projectively Anosov and

that the lifted foliations ~FF
u and ~FF

s are product foliations. We review it in Section 2.

In a recent paper [18], it is also shown that without the assumption of being projectively

Anosov, the transverse intersection of F
u and F

s of the unit tangent bundle of the

hyperbolic surface is not unique and the orbit foliation ~jj of ~MM is not Hausdor¤.

To proceed further, we need to know the topology of the leaves of F
u and F

s.

We show in Section 3 that each leaf of Fu or F s is homeomorphic either to a plane or

to a cylinder. By a simple argument of Poincaré-Hopf type, this follows from the fact

that the lifted flow on each lifted leaf is Hausdor¤.

The information on the topology of the leaves of smooth foliations has a re-

markable consequence by the unpublished famous work by Duminy [5] (announced in
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[15], a proof is given by Cantwell-Conlon [3]). Duminy showed that the end set of a

semiproper leaf of an exceptional minimal set of a codimension 1, C 2 foliation of a

closed manifold is homeomorphic to the Cantor set. In our situation, Duminy’s result

implies that all leaves of F
u or F

s are dense.

Then in Sections 4, 5 and 6, we look at the action of p1ðMÞ on the orbit space ~MM=~jj

and we study the shape of the image pð ~MMÞ. If there is a closed orbit of j, then we have

a fixed point in ~MM=~jj for the action of the element of p1ðMÞ represented by the closed

orbit. Even if we assume that there are no closed orbits, we show that there is an

element of p1ðMÞ whose action on Qu and on Qs have fixed points. Then, in both

cases, the image pð ~MMÞ should not be very large and should look like a band from

ð�y;�yÞ to ðy;yÞ in Qu �Qs. We see that the boundary components of the band

are graphs of homeomorphisms Qu ! Qs, for otherwise the action of p1ðMÞ on Qu or

on Qs has exceptional minimal set and this contradicts Duminy’s theorem.

In Section 7, we construct an action on the circle of the fundamental group of the

base 2-orbifold of the Seifert fibered 3-manifold. The fact that the flow is projectively

Anosov implies that the action on the circle is as is described by Barbot [1], that is,

this induces a convergence group action on the circle. Using the results of Tukia [27],

Casson-Jungreis [4] or Gabai [10] as in [1], the action is shown to be topologically

conjugate to a Fuchsian action in Section 8.

In Section 9, we use these results to show our main theorem. Since the holonomy

of the foliations F
u and F

s are topologically conjugate to the lifts of those of the

Anosov foliations for the geodesic flow on the unit tangent bundle of the base orbifold,

M is a finite covering space of the unit tangent bundle of the base orbifold and the

foliations F
u and F

s are topologically conjugate to the Anosov foliations lifted to the

finite cover M. Since our foliations F
u and F

s are smooth foliations topologically

conjugate to the lifted Anosov foliations, the result of Ghys in [13] says that there are

hyperbolic metrics gu and gs such that Fu and F
s are di¤erentiably conjugate to the the

Anosov foliations with respect to gu and gs lifted to the finite cover M. This enable us

to follow the argument of Ghys [12] to show our theorem.

The author is grateful to the Erwin Schrödinger Institute for its warm hospitality

where he could almost finish this work. He is also grateful to Franz Kamber for

organizing an excellent workshop at ESI in 2002. The author thanks the referee for the

detailed reading and the valuable comments.

2. Lifted flow and foliations in the universal covering.

Let jt be a regular projectively Anosov flow on a 3-manifold M. Let Fu and F
s

be the unstable foliation and the stable foliation for jt, respectively. Let ~jjt; ~FF
u and ~FF

s

denote the induced flow and foliations on the universal covering space ~MM of M.

We look at the leaf spaces Qu ¼ ~MM= ~FF
u and Qs ¼ ~MM= ~FF

s ([8], [1]). For the

purpose of this paper, we restrict our attention to the case where Qu and Qs are

Hausdor¤, i.e., ~FF
u and ~FF

s are di¤eomorphic to the product foliation of R3 with leaves

R
2 � f�g. Then Qu and Qs are di¤eomorphic to the real line R. The projections

pu
: ~MM ! Qu and ps

: ~MM ! Qs are both p1ðMÞ equivariant and determine the foliations

F
u and F

s, respectively.
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We consider the juxtaposition map of projections;

p ¼ ðpu; p sÞ : ~MM ! Qu �Qs:

The map p to the plane is a p1ðMÞ equivariant submersion and it determines the

structure of the orbit foliation j of the flow jt.

The problem we need to treat first is to know whether the orbit foliation ~jj of the

lifted flow on ~MM is Hausdor¤. We have the following proposition ([22]) which we also

include the proof.

Proposition 2.1 ([22]). Let jt be a regular projectively Anosov flow on a 3-manifold

M. Assume that the lifted stable foliation ~FF
s of the universal covering space ~MM is

di¤eomorphic to the product foliation of R3. Then the lifted orbit foliation ~jj restricted to

each leaf ~LLu of the lifted unstable foliation ~FF
u is Hausdor¤.

Proof. Assume that there are two distinct orbits l and l
0 of ~jj on ~LLu such that a

sequence flig of orbits of ~jj on ~LLu converges to them simultaneously. Let ~LL s
i denote the

unstable leaf passing li. Then by the assumption that ~FF
s is the product foliation, the

leaf ~LLs
i converges to a leaf ~LL s. Thus l and l

0 are components of the intersection of ~LLu

and ~LL s. See Figure 1.

We take points x and x 0 on l and l
0, respectively. Then we take bi-foliated

rectangles T and T 0 at x and x 0 transverse to ~jj, respectively. There are curves g
u and

g
s on ~LLu and ~LL s joining x and x 0. Then we obtain holonomies hu

g u
and hs

g s
for the

foliations ~FF
u and ~FF

s along g
u and g

s, respectively. Since ~LLu and ~LLs are contractible,

the holonomies do not depend on the paths on the leaves.

Take a Riemannian metric on M adapted for the projectively Anosov flow j. We

lift it to the universal covering space ~MM. We look at the intersections xi; x
0
i of the orbit

li and the bi-foliated rectangles T ;T 0. We may assume that ~jjti
ðxiÞ ¼ x 0

i for positive ti.

Then we see that ti ! y as i ! y. This implies that

kðT̂T ~jjti
Þvuk

kðT̂T ~jjti
Þvsk

b eCti
kvuk

kv sk

for vu A ðT ~FF
u=T ~jjÞnf0g and vs A ðT ~FF

s=T ~jjÞnf0g at xi. Thus this ratio tends to the

infinity as i ! y.

This ratio can also be calculated as the ratio of the derivatives of the holonomies

hu
g u

and hs
g s

at that points, and hence the ratio is bounded. This is a contradiction.

r

Figure 1.
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In our case, both the lifted unstable foliation ~FF
u and the lifted stable foliation ~FF

s

are di¤eomorphic to the product foliation of R
3, and Proposition 2.1 implies the

following lemma.

Lemma 2.2. If both the lifted unstable foliation ~FF
u and the lifted stable foliation

~FF
s are di¤eomorphic to the product foliation of R

3, then the orbit foliation ~jj of ~MM is

Hausdor¤ and p : ~MM ! Qu �Qs is a fibration to the image with fiber being the orbit of

~jjt. The image pð ~MMÞ has the following properties.

(i) The image pð ~MMÞ is a simply connected domain in Qu �Qs.

(ii) The intersection pð ~MMÞV ðQu � fysgÞ for ys A Qs or pð ~MMÞV ðfxug �QsÞ for

xu
A Qu is either empty or homeomorphic to the real line.

3. Poincaré-Hopf type invariant.

First we review an invariant for the immersed curves on a foliated surface, which

should have been well known.

Let j be a nonsingular flow on an oriented 2-manifold L. Let X be the generat-

ing vector field for the flow j. For a smooth immersion g : S1 ! L, one can count

the degree of t 7! g 0ðtÞ=kg 0ðtÞk with respect to the trivialization of TgðtÞL given by

X ðgðtÞÞ=kX ðgðtÞÞk and its normal vector in the positive orientation. This integer

NRjðgÞ (the number of rotations of g with respect to j) depends on the regular ho-

motopy class of the curve g on L.

We have the following well known lemma.

Lemma 3.1 (Poincaré-Hopf Theorem). Let j be a nonsingular flow on an oriented 2-

manifold L. Let S be a smoothly embedded compact surface with boundary qS in L.

Then X

gHqS

NRjðgÞ ¼ wðSÞ;

where gH qS is given the induced orientation and wðSÞ denotes the Euler characteristic

of S.

Proposition 3.2. Let jt be a nonsingular flow on an oriented 2-manifold L.

Assume that the induced orbit foliation ~jj on the universal covering space ~LL of L is the

product foliation ðR2;R� f�gÞ. Then L is homeomorphic either to the plane, to the

cylinder or to the torus.

Proof. If L is homeomorphic neither to the plane, to the cylinder nor to the torus,

one can find a pair P of pants (a 2-disk with two 2-disks deleted) embedded as an essential

submanifold, i.e., the embedding induces the injection in the fundamental groups.

Lemma 3.1 says that the sum of the invariant NRjðgÞ over the three boundaries of P is

�1, hence one of the boundary components, say g0, has non-zero invariant.

On the other hand, ð~LL; ~jjÞ is the product foliation and the action of the element a of

p1ðLÞ represented by the closed curve g0 preserves the product foliation with orientation.

Then g0 is regularly homotopic in L to a closed curve g1 which is an orbit or a curve

transverse to j. (g1 may not be a simple closed curve in the argument.) The reason is

as follows. By the assumption, p1ðLÞ acts on the leaf space ~LL=~jj homeomorphic to R.

If the action of a on ~LL=~jj has a fixed point, then this fixed orbit is a lift of a closed orbit
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g1 in L. If the action of a has no fixed point on ~LL=~jj, we can take a curve ~gg1 in ~LL

transverse to ~jj which is invariant under the action of a. This ~gg1 defines a closed curve

g1 on L. Let ĝg0 and ĝg1 be the lifts of g0 and g1 in ~LL=a which are simple closed curves.

Since the simple closed curves ĝg0 and ĝg1 are in the same homotopy class a in ~LL=a, ĝg0 and

ĝg1 are in the same regular homotopy class in ~LL=a. Hence g0 and g1 are in the same

regular homotopy class in L. Thus NRjðg1Þ ¼ NRjðg0Þ.

Since g1 is tangent or transverse to j, NRjðg1Þ ¼ 0. This contradicts that

NRjðg0Þ0 0. r

When we look at a flow on a 3-manifold tangent to an oriented foliation, this

invariant should play an essential role. In fact the above proposition has the following

corollary.

Corollary 3.3. Let j be a regular projectively Anosov flow on a closed 3-

dimensional manifold M. Assume that the lifted foliation ~FF
s of the universal covering

space ~MM of M is the product foliation. Then each leaf of Fu is homeomorphic either to

the plane, to the cylinder or to the torus.

Now we cite the theorem of Duminy [5] (announced in [15], a proof is given by

Cantwell-Conlon [3]).

Theorem 3.4 (Duminy). The end set of a semiproper leaf of an exceptional minimal

set of a codimension 1, C2 foliation of a closed manifold is homeomorphic to the Cantor set.

Corollary 3.5. Let j be a regular projectively Anosov flow on a closed 3-

dimensional manifold M with the associated foliations F
u and F

s being without compact

leaves. Assume that the lifted foliations ~FF
u and ~FF

s of the universal covering space ~MM of

M are product foliations. Then each leaf of Fu or Fs is dense and homeomorphic either

to the plane or to the cylinder.

4. Properties of the orbit space.

Our situation is as follows. We have foliations Fu and F
s of the Seifert fibered 3-

manifold M without compact leaves. By the theorems of Thurston ([24]), Levitt ([16]),

Eisenbud-Hirsch-Neumann ([6]), Matsumoto ([17]) and Brittenham ([2]), the foliations

F
u and F

s can be isotoped to be transverse to the fibers. Hence the lifted folia-

tions ~FF
u and ~FF

s of the universal covering space ~MM are the product foliations. Let

Qu ¼ ~MM= ~FF
u and Qs ¼ ~MM= ~FF

s denote the leaf spaces. Then we have the projection

p : ~MM ! Qu �Qs. Since the intersection F
u VF

s is projectively Anosov, p is a fi-

bration to the image by Lemma 2.2.

Now the transverse structure of the foliations and the flow is given by the diagonal

p1ðMÞ action on the image pð ~MMÞ in the product Qu �Qs. The fundamental group

p1ðMÞ has the center Z whose generator is represented by the general fiber of the Seifert

fibration. Since the foliations F
u and F

s can be isotoped to be transverse to the

general fiber, the generator of the center acts by a non trivial translation on the leaf

space Qu as well as on the leaf space Qs. We fix a generator c of the center Z and fix

the transverse orientations of Fu and F
s so that the action of the generator c of Z is

the translation by 1 on Qu and on Qs.

Then using Lemma 2.2 and Corollary 3.5, we see the following lemmas.
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Lemma 4.1. The image pð ~MMÞHQu �Qs has the following property.

(i) The image pð ~MMÞ is a simply connected domain in Qu �Qs.

(ii) The intersection pð ~MMÞVQu � fysg ðys A QsÞ or pð ~MMÞV fxug �Qs ðxu A QuÞ

is non empty and homeomorphic to the real line.

(iii) For xu
1 ; x

u
2 A Qu and x s

1; x
s
2 A Qs such that xu

1 < xu
2 < xu

1 þ 1 and x s
1 < x s

2 <

xs
1 þ 1, if ðxu

1 ; x
s
2Þ and ðxu

2 ; x
s
1Þ belong to pð ~MMÞ, then ðxu

1 ; x
s
1Þ and ðxu

2 ; x
s
2Þ belong

to pð ~MMÞ.

(iv) If A is a component of the boundary of pð ~MMÞ, then A is the graph of a

homeomorphism Qu ! Qs.

Proof. The statements (i) and (ii) follow from the first part of Lemma 2.2 and the

fact that the center acts as non trivial translations on Qu and on Qs.

The statement (iii), which is a kind of convexity property, is shown as follows. By

the invariance under the action of the center, ðxu
1 þ 1; x s

2 þ 1Þ belongs to pð ~MMÞ as well.

Note that any path from ðxu
1 ; x

s
2Þ to ðxu

1 þ 1; xs
2 þ 1Þ in pð ~MMÞ passes across the union of

half lines:

fxu
2g � ½xs

2;yÞU ½xu
2 ;yÞ � fxs

2g:

Hence either ðxu
2 ; x

s
3Þ A pð ~MMÞ for xs

3b x s
2 or ðxu

3 ; x
s
2Þ A pð ~MMÞ for xu

3b xu
2 . In either case,

by statement (ii), ðxu
2 ; x

s
2Þ belongs to pð ~MMÞ.

In a similar way, ðxu
1 ; x

s
1Þ belongs to pð ~MMÞ.

For the statement (iv), the statements (i) and (ii) imply that a component A of the

boundary of pð ~MMÞ is the completed graph of a non decreasing function Qu ! Qs. Here

the completed graph means that gaps of the graph are filled by vertical segments.

Now A is invariant under the action of p1ðMÞ. If A is not the graph of a

homeomorphism, there is either a vertical segment or a horizontal segment in A.

Assume that there is a vertical segment JHA. We take a maximal vertical

segment containing J and contained in A, and by changing the name let J denote the

maximal one. Since the action of p1ðMÞ on Qu �Qs is the diagonal action, an ele-

ment of p1ðMÞ sends a vertical segment to a vertical segment in A. Then the orbit

p1ðMÞðInt JÞ is an invariant set under the action of p1ðMÞ. Again since the action of

p1ðMÞ on Qu �Qs is the diagonal action, psðp1ðMÞðInt JÞÞ is invariant under the action

of p1ðMÞ on Qs. Since psðp1ðMÞðInt JÞÞ is a disjoint union of open intervals, the

closure of an orbit of a point of the complement of psðp1ðMÞðInt JÞÞ is not equal to the

whole Qs. This implies that a leaf of Fs is not dense. This contradicts Corollary 3.5.

If there is a horizontal segment JHA, then we see in the same way that a leaf of

F
u is not dense, and this contradicts Corollary 3.5.

Thus the statement (iv) is proved. r

Lemma 4.2. Neither F
u nor F

s is a foliation without holonomy.

Proof. If F
u is without holonomy, then the global holonomy of the foliated

bundle over the orbifold is contained in a subgroup conjugate to the group of rota-

tions. This implies that each leaf is a covering associated to a subgroup containing the

commutator subgroup of the base space, and hence has nontrivial genus. This con-

tradicts Corollary 3.5. r
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5. Closed orbits.

We look at the closed orbits of our regular projectively Anosov flows. The ex-

istence of a closed orbit gives a lot of restrictions on the shape of the orbit space.

Lemma 5.1. If there is a closed orbit g of j, the actions of the element ½g� A p1ðMÞ

on Qu and Qs have fixed points and there is a fixed point ðxu
0 ; x

s
0Þ A pð ~MMÞ of the action of

½g� in the image pð ~MMÞ such that for a positive real number e, the interval ðxu
0 ; x

u
0 þ eÞHQu

or ðx s
0; x

s
0 þ eÞHQs does not contain fixed points for ½g�.

Proof. If there is a closed orbit g of j, then by taking a suitable lift ~ggH ~MM,

pð~ggÞ ¼ ðpuð~ggÞ; p sð~ggÞÞ is a fixed point for the action of ½g� A p1ðMÞ.

If the germ of the action of ½g� at puð~ggÞ A Qu is the identity, g has a neighborhood in

L s saturated by closed orbits, where L s is the leaf of the stable foliation F
s containing

g. Since all leaves are dense and homeomorphic either to the plane or to the cylinder

by Corollary 3.5, all leaves of the unstable foliation F
u are cylinders. Then it is easy

to see that the unstable foliation F
u is without holonomy and topologically conjugate to

a linear foliation by cylinders on T 3, contradicting the assumption on the manifold M

(or Lemma 4.2).

Thus the germ of the action of ½g� on the positive side of puð~ggÞ A Qu is not that of

the identity.

If there are no fixed points on ðpuð~ggÞ; puð~ggÞ þ eÞ, we take xu
0 ¼ puð~ggÞ. Otherwise

puð~ggÞ is an accumulation point of the fixed point set of the action of ½g� on Qu and we

can find a desired xu
0 ð> puð~ggÞÞ such that ðxu

0; p
uð~ggÞÞ A pð ~MMÞ.

In a similar way, we can take x s
0 A Qs and ðxu

0; x
s
0Þ is the desired point.

Note that p�1ðxu
0; p

uð~ggÞÞ corresponds to a closed orbit g 0 which is in the same stable

leaf as g and parallel to g. In the same way, p�1ðxu
0 ; x

s
0Þ corresponds to a closed orbit

g
00 which is in the same unstable leaf as g

0 parallel to g
0. r

We will see that there is a unique closed orbit on each cylindrical leaf of the

unstable foliation F
u or of the stable foliation F

s. But it is necessary to see the

consequences of the unrealizable case where there are two closed orbit on a leaf. We

have the following technical lemma.

Lemma 5.2. For xu
0 < xu

1a xu
0 þ 1 and x s

0 < xs
1a x s

0 þ 1, let ½xu
0 ; x

u
1 �HQu and

½x s
0; x

s
1�HQs be invariant intervals for the action of ½g� A p1ðMÞ such that the action of ½g�

has no fixed points in the open intervals ðxu
0 ; x

u
1 Þ and ðx s

0; x
s
1Þ.

Figure 2. Proof of Lemma 5.2 (i).
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(i) If the interval ½xu
0 ; x

u
1 � � fxs

0g is contained in pð ~MMÞ, then the interval

fxu
1g � ½xs

0; x
s
1� is contained in pð ~MMÞ.

If fxu
0g � ½xs

0; x
s
1� is contained in pð ~MMÞ, then the interval ½xu

0 ; x
u
1 � � fxs

1g is

contained in pð ~MMÞ.

(ii) If the point ðxu
0 ; x

s
0Þ belongs to pð ~MMÞ, then the point ðxu

1 ; x
s
1Þ belongs to pð ~MMÞ.

If the point ðxu
1 ; x

s
1Þ belongs to pð ~MMÞ, then the point ðxu

0 ; x
s
0Þ belongs to pð ~MMÞ.

Proof. (i). Assume that ½xu
0 ; x

u
1 � � fx s

0g is contained in pð ~MMÞ. By the invariance

of pð ~MMÞ under the action of ½g�, the half intervals fxu
0g � ½x s

0; x
s
1Þ and fxu

1g � ½x s
0; x

s
1Þ are

contained in pð ~MMÞ. Hence by Lemma 4.1 (ii), ½xu
0 ; x

u
1 � � ½xs

0; x
s
1Þ is contained in pð ~MMÞ.

If the point ðxu
1 ; x

s
1Þ does not belong to pð ~MMÞ, by Lemma 4.1 (iii), the point ðxu

0 ; x
s
1Þ

does not belong to pð ~MMÞ. See Figure 2. By the invariance under the action of the

center, pð ~MMÞ intersects fxu
1g � ½x s

1;yÞU ½xu
1 ;yÞ � fx s

1g, but by Lemma 4.1 (ii), pð ~MMÞ

does not intersect fxu
1g � ½x s

1;yÞ, and pð ~MMÞ intersects ½xu
1 ;yÞ � fx s

1g. Hence again by

Lemma 4.1 (ii), ½xu
0 ; x

u
1 � � fx s

1g is a horizontal segment on the boundary of pð ~MMÞ. This

contradicts Lemma 4.1 (iv) and the assertion (i) is shown.

The case where fxu
0g � ½xs

0; x
s
1� is contained in pð ~MMÞ is treated in a similar way.

(ii). By the invariance of pð ~MMÞ under the action of ½g�, ½xu
0 ; x

u
1 Þ � fxs

0gU fxu
0g�

½x s
0; x

s
1Þ is contained in pð ~MMÞ. If the point ðxu

1 ; x
s
1Þ does not belong to pð ~MMÞ, then by (i)

just shown, the points ðxu
1 ; x

s
0Þ and ðxu

0 ; x
s
1Þ do not belong to pð ~MMÞ. By the invariance

under the action of the center, pð ~MMÞ intersects fxu
1g � ðx s

1;yÞU ðxu
1 ;yÞ � fx s

1g.

If pð ~MMÞ intersects fxu
1g � ðx s

1;yÞ, then by Lemma 4.1 (iii), pð ~MMÞ does not intersect

fxu
1g � ð�y; xs

1Þ and does intersect ðxu
0 ; x

u
1 Þ � fxs

1g. See Figure 3. By the invariance

under the action of ½g�, ðxu
0 ; x

u
1 Þ � fx s

1g is contained in pð ~MMÞ, and by Lemma 4.1 (iii),

½xu
0 ; x

u
1 Þ � ½x s

0; x
s
1Þ is contained in pð ~MMÞ. Then fxu

1g � ½xs
0; x

s
1� is a vertical segment on

the boundary of pð ~MMÞ. This contradicts Lemma 4.1 (iv).

If pð ~MMÞ intersects ðxu
1 ;yÞ � fx s

1g, we find in a similar way that ½xu
0 ; x

u
1 � � fxs

1g is

a horizontal segment on the boundary of pð ~MMÞ and this contradicts Lemma 4.1 (iv).

Thus the assertion (ii) is shown. r

Lemma 5.3. Let g be a closed orbit, and ðxu
0 ; x

s
0Þ ¼ pð~ggÞ A Qu �Qs is the point

invariant under the action of ½g� A p1ðMÞ. Then the point ðxu
0 ; x

s
0Þ is neither an attractor

nor a repeller for each of the 4 quadrants.

Figure 3. Proof of Lemma 5.2 (ii).
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Proof. Assume that the point ðxu
0 ; x

s
0Þ is an attractor in one of the 4 quadrants for

the action of ½g�. Since the flow in M is projectively Anosov, the action of ½g� on the

tangent space Tðx u
0
;x s

0
ÞQ

u �Qs at the point ðxu
0 ; x

s
0Þ sends the direction of the vectors nearer

to the direction of Qs. Thus xu
0 is a linearly nontrivial attractor for the action of ½g� on Qu.

Then we have the nearby fixed points xu
�1 and xu

1 for the action of ½g� on Qu.

These points ðxu
�1; x

s
0Þ and ðxu

1 ; x
s
0Þ do not belong to pð ~MMÞ. The reason is as

follows. If the point ðxu
1 ; x

s
0Þ is in the image pð ~MMÞ, p�1ð½xu

0 ; x
u
1 � � fxs

0gÞ projects to an

embedded annulus on a leaf L s with the boundary components being closed orbits.

Then the action at the closed orbit corresponding to p�1ðxu
1 ; x

s
0Þ is repelling in the

direction of Qu (that is, in the direction of Ls) and attracting in the direction of Qs (that

is in the direction of Lu). This contradicts the definition of F
u and F

s. Thus the

point ðxu
1 ; x

s
0Þ is not in the image pð ~MMÞ.

By the same reason, the point ðxu
�1; x

s
0Þ is not in the image pð ~MMÞ.

Now we assume that the action of ½g� is attracting in a neighborhood of ðxu
0 ; x

s
0Þ in

the upper half plane Qu � ½x s
0;yÞ. Let xs

1 ðx s
0 < xs

1Þ be the adjacent fixed point for the

action of ½g�. Then the point ðxu
0 ; x

s
1Þ belongs to pð ~MMÞ by the following reason. By the

invariance of pð ~MMÞ under the action, ðxu
�1; x

u
1 Þ � ½x s

0; x
s
1Þ is contained in pð ~MMÞ. See Figure

4. Then by Lemma 5.2 (ii) just shown, the point ðxu
1 ; x

s
1Þ belongs to pð ~MMÞ. If the point

ðxu
0 ; x

s
1Þ does not belong to pð ~MMÞ, ½xu

�1; x
u
0 Þ � fx s

1g is a horizontal segment on the boundary

of pð ~MMÞ contradicting Lemma 4.1 (iv). Hence the point ðxu
0 ; x

s
1Þ belongs to pð ~MMÞ.

Now again by Lemma 5.2 (ii), if the point ðxu
0 ; x

s
1Þ belongs to pð ~MMÞ, the point

ðxu
�1; x

s
0Þ belongs to pð ~MMÞ. This contradicts the above.

If we assume that the action of ½g� is attracting in a neighborhood in the lower half

plane Qu � ð�y; xs
0�, then we see that the point ðxu

0 ; x
s
�1Þ belongs to pð ~MMÞ, Lemma 5.2

(ii) implies that the point ðxu
1 ; x

s
0Þ belongs to pð ~MMÞ and we have contradiction.

If the point ðxu
0 ; x

s
0Þ is a repeller in one of the 4 quadrants, we argue in a similar

way. That is, then xs
0 is a linearly nontrivial repeller for the action of ½g� on Qs, and for

the nearby fixed points xs
�1 and x s

1, the points ðxu
0 ; x

s
�1Þ and ðxu

0 ; x
s
1Þ do not belong to

pð ~MMÞ, and however, ðxu
1 ; x

s
0Þ or ðx

u
�1; x

s
0Þ belongs to pð ~MMÞ. This contradicts Lemma 5.2

(ii). r

Thus we obtain the following lemma.

Lemma 5.4. Let g be a closed orbit. Let ðxu
0 ; x

s
0Þ ¼ pð~ggÞ be the fixed point for the

action of ½g�. Then for ½g� or ½g��1, xu
0 is a repeller for the action on Qu and x s

0 is an

attractor for the action on Qs. For the adjacent fixed points xu
�1 < xu

0 < xu
1 and x s

�1 <

x s
0 < x s

1, fðxu
�1; x

s
�1Þ; ðx

u
1 ; x

s
1ÞgH pð ~MMÞ and

fðxu
�1; x

s
0Þ; ðx

u
0 ; x

s
�1Þ; ðx

u
0 ; x

s
1Þ; ðx

u
1 ; x

s
0ÞgV pð ~MMÞ ¼ q:

The cylindrical leaves Lu and L s containing g do not contain other closed orbits.

Figure 4. Proof of Lemma 5.3.
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Proof. We proceed as in the proof of Lemma 5.1. Then for the closed orbit g 00,

the action of ½g� ¼ ½g 0� ¼ ½g 00� is hyperbolic in a quadrant. If g
0 0 g

00, we find an at-

tracting or repelling orbit in a quadrant between g
0 and g

00, or g 0 is attracting or repelling

in a quadrant. By Lemma 5.3, g
0 ¼ g

00. In a similar way, g ¼ g
0.

The same argument shows the statement for the adjacent fixed points. r

If there are closed orbits, then we see that the holonomy of the closed orbit is

topologically hyperbolic by Lemma 5.4 and we also determined the shape of the orbit

space. See Figure 5.

There are periodic homeomorphisms fþ : Qu ! Qs and f� : Qs ! Qu such that

pð ~MMÞ ¼ fðxu
; xsÞ; f �1

� ðxuÞ < xs
< fþðx

uÞg;

where periodic means fGðxþ 1Þ ¼ fGðxÞ þ 1.

Since pð ~MMÞHQu �Qs is invariant under the action of p1ðMÞ, as the image of the

rectangle ðxu; f�ðx
sÞÞ � ðxs; fþðx

uÞÞ by the action of a A p1ðMÞ, we have the following

equality:

ðaxu
; af�ðx

sÞÞ � ðaxs
; afþðx

uÞÞ ¼ ðaxu
; f�ðax

sÞÞ � ðaxs
; fþðax

uÞÞ:

Hence we have

af�ðx
sÞ ¼ f�ðax

sÞ and afþðx
uÞ ¼ fþðax

uÞ:

Then we see that the action of a on Qu commutes with f� fþ and the action of a on Qs

commutes with fþ f�.

To summarize what we have shown, we have the following proposition.

Proposition 5.5. If a cylindrical leaf Lu of Fu contains a closed orbit g, g is in the

intersection of Lu and a cylindrical leaf L s of F s and g is the unique closed orbit on Lu

and on L s.

Figure 5. Topologically hyperbolic action.
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There are periodic homeomorphisms fþ : Qu ! Qs and f� : Qs ! Qu such that

pð ~MMÞ ¼ fðxu
; xsÞ; f �1

� ðxuÞ < xs
< fþðx

uÞg;

where periodic means fGðxþ 1Þ ¼ fGðxÞ þ 1.

Let ~gg be a lift of g, and ~LLu and ~LLs be the lifts containing ~gg. Then

pð~LLuÞ ¼ ðfpuð~ggÞg �QsÞV pð ~MMÞ ¼ fpuð~ggÞg � ð f �1
� ðpuð~ggÞÞ; fþðp

uð~ggÞÞÞ;

pð~LL sÞ ¼ ðQu � fp sð~ggÞgÞV pð ~MMÞ ¼ ð f �1
þ ðp sð~ggÞÞ; f�ðp

sð~ggÞÞÞ � fpsð~ggÞg:

For integers m, ð f� fþÞ
mðpuð~ggÞÞ are attracting fixed points and ð f� fþÞ

m
f�ðp

sð~ggÞÞ are

repelling fixed points for the action of ½g� on Qu, and ð fþ f�Þ
m
fþðp

uð~ggÞÞ are attracting

fixed points and ð fþ f�Þ
mðpsð~ggÞÞ are repelling fixed points for the action of ½g� on Qs.

Since the actions commute with the action of the center c, there is an integer k such that

ð f� fþÞ
kðxuÞ ¼ xu þ 1 and ð fþ f�Þ

kðx sÞ ¼ xs þ 1.

6. Cylindrical leaves without closed orbits.

Assume that a cylindrical leaf Lu of the unstable foliation F
u does not contain

closed orbits of j. Then by Proposition 2.1, the orbits of j traverse from one end of Lu

to the other. Hence we can take a simple closed transverse curve s for the orbits on Lu.

Lemma 6.1. Assume that a cylindrical leaf Lu of the unstable foliation F
u does not

contain closed orbits of j. Let s be a simple closed transverse curve for the orbits on Lu.

(i) By a suitable choice of the lift ~LLu, the action of ½s� on Qu has a fixed point

xu ¼ puð~LLuÞ.

(ii) The action of ½s� on p sð~LLuÞ has no fixed points.

(iii) The action of ½s� on Qs has fixed points.

Proof. The statements (i), (ii) follows from the choice of s and ~LLu.

To show the statement (iii), assume that the action of ½g� on Qs has no fixed points.

Then pð~LLuÞ ¼ fpuð~LLuÞg �Qs and since pð ~MMÞ is invariant under the action of the center,

Lemma 4.1 (ii) implies pð ~MMÞ ¼ Qu �Qs.

Then we take a point ðxu; x sÞ on pð~LLuÞ and draw a curve d from ðxu; xsÞ to

ðxu þ 1; x s þ 1Þ. We have a parallelogram P bounded by the curves d; ½s�d, and

segments fxug � ½x s; ½s�xs�, fxu þ 1g � ½x s þ 1; ½s�x s þ 1�. If the curve ½s�d intersects the

curve d, we replace ½s�d by ½s�md for a large m, and the argument goes without

change. The boundary of P can be lifted to ~MM so that they connects ðxu; x sÞg ; cðxu; x sÞg ;

c½g�ðxu; xsÞg ; ½g�ðxu; x sÞg , where c denotes the generator of the center Z of p1ðMÞ. Then P

Figure 6. Cylindrical leaves without closed orbits.
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can be lifted to ~MM, and in M it defines an immersed torus transverse to the flow. By

modifying the immersed transverse torus as in Fried [9], we obtain an oriented em-

bedded surface transverse to the flow. Since the embedded surface is transverse to F
u

and F
s, its connected component is again a torus. Since the orbit under ½s� and c of P

covers Qu �Qs, the obtained embedded surface intersects all orbits of jt. Thus M is a

torus bundle over the circle and is not a Seifert fibered 3-manifold over a hyperbolic

orbifold. r

Lemma 6.2. Assume that all cylindrical leaves of the unstable foliation F
u and the

stable foliation F
s do not contain closed orbits of j. Let s be a simple closed transverse

curve for the orbits on a cylindrical leaf Lu of the unstable foliation F
u. Then the

following holds.

(i) psð~LLuÞ is a bounded interval ðxs
0; x

s
1Þ, where x s

0 and x s
1 are fixed points for the

action of ½s� on Qs, and ½s� has no fixed points on ðxs
0; x

s
1Þ.

(ii) There are fixed points xu
�1 < xu

0 < xu
1 for the action of ½s� on Qu such that

Qu � fx s
0gV pð ~MMÞ ¼ ðxu

�1; x
u
0 Þ � fxs

0g and

Qu � fx s
1gV pð ~MMÞ ¼ ðxu

0 ; x
u
1 Þ � fx s

1g:

Proof. (i) is shown in the previous Lemma 6.1. If the action of ½s� on Qs has

fixed points, then the action of ½s� commutes with the action of the center and psð~LLuÞ is

a bounded interval ðxs
0; x

s
1Þ, where x s

0 and xs
1 are fixed points for the action of ½s� on Qs.

Then pð~LLuÞ ¼ fxu
0g � ðx s

0; x
s
1Þ, where xu

0 ¼ puð~LLuÞ is a fixed point for the action of ½s� on

Qu, and ½s� has no fixed points on ðx s
0; x

s
1Þ. We look at the intersection of Qu � fxs

0g

and pð ~MMÞ, or Qu � fxs
1g and pð ~MMÞ. See Figure 6. Then we see that Qu � fxs

1g

Figure 7. Topologically parabolic action.
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intersects pð ~MMÞ on ðxu
0 ; x

u
1 Þ � fx s

1g for xu
0 < xu

1 and Qu � fx s
0g intersects pð ~MMÞ on

ðxu
�1; x

u
0 Þ � fxs

0g for xu
�1 < xu

0. Then xu
�1 and xu

1 are the fixed points of the action of ½s�

on Qu. Since we are assuming that there are no closed orbits, there are no fixed points

for this action on ðxu
�1; x

u
0 Þ or ðxu

0 ; x
u
1 Þ.

Considering Lemma 4.1 (iv), if the action of ½s� on ðx s
0; x

s
1ÞHQs is increasing, then

the action of ½s� on ðxu
�1; x

u
0 Þ or ðxu

0 ; x
u
1 Þ is increasing. r

To summarize what we know for the (unrealized) case where there are no closed

orbits, we have the following proposition.

Proposition 6.3. Suppose that all cylindrical leaves of the unstable foliation F
u

and the stable foliation F
s do not contain closed orbits of j. Then there are periodic

homeomorphisms fþ : Qu ! Qs and f� : Qs ! Qu such that

pð ~MMÞ ¼ fðxu; xsÞ; f �1
� ðxuÞ < xs < fþðx

uÞg:

Let s be a simple closed transverse curve for the orbits on Lu. Then

pð~LLuÞ ¼ ðfpuð~LLuÞg �QsÞV pð ~MMÞ ¼ fpuð~LLuÞg � ð f �1
� ðpuð~LLuÞÞ; fþðp

uð~LLuÞÞÞ:

For integers m, ð f� fþÞ
mðpuð~LLuÞÞ are fixed points for the action of ½s� on Qu, and

ð fþ f�Þ
m
fþðp

uð~LLuÞÞ are fixed points for the action of ½s� on Qs. Both of the actions of ½s�

on Qu and on Qs are simultaneously non decreasing or non increasing. Since the actions

commute with the action of the center c, there is an integer k such that ð f� fþÞ
kðxuÞ ¼

xu þ 1 and ð fþ f�Þ
kðx sÞ ¼ x s þ 1.

7. Conjugate actions on the circle.

By Propositions 5.5 and 6.3, we know of the shape of pð ~MMÞHQu �Qs. That is,

we always have periodic homeomorphisms fþ : Qu ! Qs and f� : Qs ! Qu such that

pð ~MMÞ ¼ fðxu; xsÞ; f �1
� ðxuÞ < xs < fþðx

uÞg:

Moreover there is an integer k such that ð f� fþÞ
kðxuÞ ¼ xu þ 1 and ð fþ f�Þ

kðx sÞ ¼

x s þ 1.

Now we look at the circles obtained from Qu and Qs by identifying by the actions

of f� fþ and fþ f�, respectively. Let S1
u ¼ Qu=ð f� fþÞ and S1

s ¼ Qs=ð fþ f�Þ denote

them. The graphs of fþ and f� are identified to give rise to a graph of a homeo-

morphism f : Qu=ð f� fþÞ ! Qs=ð fþ f�Þ. The diagonal action of p1ðMÞ on Qu �Qs

induces an action of p1ðMÞ on S1
u � S1

s ¼ Qu=ð f� fþÞ �Qs=ð fþ f�Þ for which the graph

of f is an invariant subset. Note that this action factors through the orbifold fun-

damental group porb
1 ðSÞ of the base space S of the Seifert fibered 3-manifold M.

The actions of p1ðMÞ on S1
u and S1

s are conjugate by the homeomorphism

f : S1
u ! S1

s .

We arrived at the delicate point that f� fþ and fþ f� may not be di¤erentiable.

They are topological translations whose k-th powers are the translation by 1. The

argument by Ghys [13] on the projective structure on the general fiber of the Siefert

fibered 3-manifold asserts that in fact they are di¤erentiable. See Section 9.
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8. Convergence group action.

A convergence group is a subgroup G of the group of orientation preserving

homeomorphisms of the circle with the following property: For any infinite sequence

fgig of G, there are a pair of points x and y (possibly x ¼ y) and a subsequence fgijg

such that gij ! x uniformly on the compact sets in S1 � fyg and g�1
ij

! y uniformly on

the compact sets in S1 � fxg. By the result of Tukia [27], Casson-Jungreis [4] or Gabai

[10], the convergence groups are topologically conjugate to the Fuchsian group.

For our case, we have a little easier criterion to be a convergence group which is

found in [1].

Theorem 8.1 ([1]). A finitely generated group G of HomeoþðS
1Þ satisfying the

following condition is topologically conjugate to a subgroup of PSLð2;RÞ.

(i) All orbits are dense.

(ii) Any element g of G has at most two fixed points and if g has two fixed points,

one is attracting and the other is repelling.

(iii) The isotropy subgroup of a point is either trivial or cyclic.

(iv) For a fixed point ðx0; y0Þ A S1 � S1nD for the diagonal action of a A G on

S1 � S1, its G orbit is discrete on S1 � S1nD.

(v) G is not a free group.

Moreover if G is not conjugate to a group generated by an irrational rotation, G is a

convergence group.

We are going to show that the image of p1ðMÞ in HomeoðS1
u Þ is a convergence

group.

If we identify S1
u � S1

s with S1
u � S1

u , by the homeomorphism

ðid; f �1Þ : S1
u � S1

s ! S1
u � S1

u ;

the action of an element a of p1ðMÞ on S1
u � S1

u is given by

ðaðxÞ; f �1ðað f ðyÞÞÞÞ;

and the action is the diagonal action. That is, the action of p1ðMÞ on S1
u � S1

s is

conjugate to the diagonal action.

Now we use the action of p1ðMÞ on S1
u � S1

s to show that the image of p1ðMÞ in

HomeoðS1
u Þ satisfies the conditions of Theorem 8.1.

Lemma 8.2. If the action of an element a of p1ðMÞ has a fixed point ½xu� A

Qu=ð f� fþÞ ¼ S1
u , then f ð½xu�Þ A Qs=ð fþ f�Þ ¼ S1

s is a fixed point. If the action is not

trivial, either the action of a has no other fixed points on Qu=ð f� fþÞ ¼ S1
u , or the action of

a has only one other fixed point ½xu
1 � A Qu=ð f� fþÞ ¼ S1

u and one of the two fixed points is

attracting and the other is repelling.

Proof. Let k be the integer such that ð f� fþÞ
kðxuÞ ¼ xu þ 1. If there is a fixed

point ½xu� A Qu=ð f� fþÞ ¼ S1
u , there is an integer l such that the action of akcl on Qu has

a fixed point. Since pð ~MMÞ is invariant under the diagonal action of akcl, the action of

a
kcl on Qs has fixed points. If there are two other fixed points on Qu=ð f� fþÞ ¼ S1

u , the

configuration of the fixed points gives two closed orbits on a leaf of Fs or F
u. This

contradicts Lemma 5.4. r
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Lemma 8.3. If the action of an element a of p1ðMÞ on S1
u has a periodic point of

period greater than 1, the action of a is finite order.

Proof. Let k be the integer such that ð f� fþÞ
kðxuÞ ¼ xu þ 1. Assume that the

action of a is not finite order and ½xu� A S1
u is a non trivial periodic point. Then there is

an integer m > 1 such that am½xu� ¼ ½xu� and ½xu�; a½xu�; . . . ; am�1½xu� are distinct points

in S1
u . Since these ½xu�; a½xu�; . . . ; am�1½xu� are fixed points for am and they are con-

jugate by the action of a, we have a contradiction to Lemma 8.2. r

Lemma 8.4. Assume that there is an element a of p1ðMÞ such that the action of a on

S1
u has no periodic points. Then the followings hold.

(i) The action of a on S1
s has no periodic points.

(ii) The action of a on S1
u or S1

s is topologically conjugate to an irrational rotation.

(iii) There is a closed orbit g for the projectively Anosov flow j.

Proof. By Lemma 8.2, the assertion (i) follows.

The assertion (ii) follows from the assumption that foliations are smooth and the

Denjoy theorem for the action of a on Qu=Z or Qs=Z which is a k-fold covering of S1
u

or S1
s . Since the action on Qu=Z or Qs=Z is topologically conjugate to an irrational

rotation, so is that on S1
u or S1

s .

To show the assertion (iii), first note that the action of a and c generates a group

topologically conjugate to a dense subgroup of translations of Qu and Qs. Hence there

are integers m; n such that amcn is a positive translation C0 close to the identity.

If we do not find a closed orbit, we may assume that the situation is as in

Proposition 6.3. Then for an element b A p1ðMÞ which has a fixed point xu on Qu, the

action of b is parabolic like and we assume it is not decreasing on fxug �Qs.

Then if r ¼ amcn is taken close to the identity, there are points xu
1 a little larger than

xu and xu
2 a little smaller than f� fþðx

uÞ such that rðxu
1 Þ ¼ bðxu

1 Þ and rðxu
2 Þ ¼ bðxu

2 Þ,

respectively. There are also points xs
1 a little larger than f �1

� ðxuÞ and xs
2 a little

smaller than fþðx
uÞ such that rðxs

1Þ ¼ bðxs
1Þ and rðx s

2Þ ¼ bðx s
2Þ, respectively. Then

ðxu
1 ; x

s
2Þ A pð ~MMÞ is a fixed point for the action of r�1b on pð ~MMÞ. Thus this corresponds

to a periodic orbit of j. r

Lemma 8.5. Either the action of an element a of p1ðMÞ is conjugate to a rotation of

finite order, or the action of a has 1 or 2 fixed points on Qu=ð f� fþÞ. If the action has 2

fixed points, one is attracting and the other is repelling.

Proof. We show that there are no elements a of p1ðMÞ such that the action of a

on S1
u has no periodic points. Then the statement follows from Lemmas 8.2 and 8.3.

If such a exists, by Lemma 8.4 (iii), there is a closed orbit g. It is easy to show

that the image of the lifts of g which is the p1ðMÞ orbit of the image pð~ggÞ of a lift is

discrete in pð ~MMÞ. (For, a finite family of compact disks in pð ~MMÞ has a lift in ~MM and

project to M which have only finitely many intersections with g.) On the other hand,

the action of a and c makes an accumulation of the p1ðMÞ orbit of pð~ggÞ to pð~ggÞ. This

contradiction shows the lemma. r

Proposition 8.6. The image G of p1ðMÞ or porb
1 ðSÞ in HomeoðS1

u Þ is a convergence

group.
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Proof. We verify the conditions of Theorem 8.1. The condition (i) is Corollary

3.5. The condition (ii) is Lemma 8.5. The condition (iii) also follows from Corollary

3.5, because the isotropy subgroup is the holonomy of the leaves of F
u or F

s, which

are homeomorphic either to the plane or to the cylinder. The condition (iv) is satisfied

because the fixed point ðx0; y0Þ A S1
u � S1

unD corresponds to a closed orbit g. The

p1ðMÞ orbit of ð gx0; y0x0; y0Þ in the universal cover ~XX of X ¼ S1
u � S1

unD is the image of the

lifts of g and is discrete in pð ~MMÞ identified with ~XX . Since the image is invariant under

the action of the center Z and ~XX=Z is a k fold covering of X ¼ S1
u � S1

unD, the G orbit

of ðx0; y0Þ is discrete in S1
u � S1

unD. The condition (v) is satisfied because G is image of

the fundamental group of the base orbifold.

Since we showed in Lemma 8.5 that G is not conjugate to a group generated by an

irrational rotation, G is a convergence group. r

Thus the image G of p1ðMÞ in HomeoðS1
u Þ is a convergence group. By the result

of Tukia [27], Casson-Jungreis [4] or Gabai [10], this group is topologically conjugate to

a Fuchsian group.

A Fuchsian group corresponds to a hyperbolic orbifold S0 and it is isomorphic to

the orbifold fundamental group porb
1 ðS0Þ.

Lemma 8.7. The base orbifold S of Seifert fibered 3-manifold M is di¤eomorphic

to S0.

Proof. We have the surjective homomorphism porb
1 ðSÞ ! porb

1 ðS0Þ. If the kernel

is non trivial, we take a closed curve g representing a nontrivial element of the kernel.

Then the global holonomy of the foliation F
u (or F

s) along g is the identity. As in

the proof of Lemma 5.1, using Corollary 3.5, we see that all leaves of the unstable

foliation F
u are cylinders, that the unstable foliation F

u is without holonomy and

topologically conjugate to a linear foliation by cylinders on T 3, contradicting the

assumption on the manifold M (or Lemma 4.2). r

Since the Fuchsian group action is determined by the base orbifold S of the Seifert

fibered 3-manifold, it cannot have the parabolic element whose action was drawn in

Figure 7.

9. Proof of the main theorem.

Let S be a hyperbolic orbifold with the hyperbolic structure g0. We have the

Anosov geodesic flow on the unit tangent bundle T1S of the orbifold S. The stable

foliation and the unstable foliation for the Anosov geodesic flow are both defined by the

holonomy homomorphism which is a Fuchsian group representation:

porb
1 ðSÞ ! PSLð2;RÞHHomeoðRP1Þ:

Note that the holonomy homomorphisms for the stable foliation and for the unstable

foliation are conjugate by an elliptic element of PSLð2;RÞ and the holonomy homo-

morphisms for di¤erent hyperbolic structures are topologically conjugate.

The homomorphism porb
1 ðSÞ ! HomeoðS1

u Þ derived from F
u determines a foliation

of a Seifert fibered space over S. By the argument of Section 8, porb
1 ðSÞ ! HomeoðS1

u Þ

is topologically conjugate to a Fuchsian group representation porb
1 ðSÞ ! PSLð2; RÞ.
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Hence porb
1 ðSÞ ! HomeoðS1

u Þ determines a topological foliation of T1S transverse to the

fibers.

By the argument of Section 7, the action of porb
1 ðSÞ on S1

u ¼ Qu=ð f� fþÞ lifts to the

action on the k-fold cyclic covering Qu=Z of S1
u ¼ Qu=ð f� fþÞ. That is, we have a

homomorphism porb
1 ðSÞ ! HomeoðQu=Z Þ. Hence the Fuchsian group action of porb

1 ðSÞ

on RP1 also lifts to the action on the k-fold cyclic covering ðRP1Þk of RP1. This

determines the transversely projective foliations F u
g0

or F s
g0

of Mk ¼ ðT1SÞk which is the

k-fold cyclic covering of T1S in the direction of the fibers. Since the lifted homo-

morphism porb
1 ðSÞ ! HomeoðQu=Z Þ determines the smooth foliation F

u, this is a

homomorphism to the di¤eomorphism group: porb
1 ðSÞ ! Di¤eoðQu=Z Þ.

Now Ghys showed in [13] the following:

‘‘A smooth foliation F of Mk topologically isotopic to F u
g0

is transversely projective and

hence di¤erentiably isotopic to F u
g for a hyperbolic structure g of S.’’

By this result, F
u is di¤erentiably isotopic to F u

gu
.

In the same way, there is a hyperbolic structure gs such that F
s is di¤erentiably

isotopic to F s
gs
.

For a pair gu and gs of hyperbolic structures on S, we have the quasi-Fuchsian flow

on T1S which is the Anosov flow with the unstable foliation and the stable foliation

di¤erentiably isotopic to those of the geodesic flows determined by the hyperbolic

structures gu and gs, respectively [12]. We can lift the quasi-Fuchsian flow to Mk and

obtain an Anosov flow f on Mk such that the unstable foliation and the stable foliation

are di¤erentiably isotopic to F u
gu

and F s
gs
, respectively.

We are going to show that our projectively Anosov flow j is di¤erentiably isotopic

to the quasi-Fuchsian flow f.

There is a homeomorphism H A HomeoðRP1Þ which conjugates the holonomy

homomorphism hu of the unstable foliation of the geodesic flow determined by the

hyperbolic structures gu to that h s of the stable foliation of the geodesic flow determined

by the hyperbolic structures gs:

Hðhu
a ðH

�1ðx sÞÞÞ ¼ h s
aðx

sÞ for a A porb
1 ðSÞ:

This homeomorphism H lifts to homeomorphisms of the k-fold cyclic covering ðRP1Þk
as well as those of the universal covering fRPRP1.

We identify Qu=Z with ðRP1Þk by the di¤eomorphism conjugating the holonomy of

F
u to that of F u

gu
. Since the action of f� fþ on Qu=Z is order k and commutes with all

the holonomy, the action of f� fþ is conjugated to the 1=k rotation on ðRP1Þk. For, if

the action of a A porb
1 ðSÞ has hyperbolic fixed points, it has k attracting fixed points in

Qu=Z which are in the orbit of the 1=k rotation in ðRP1Þk. Such fixed points are dense

in the circle. This shows that f� fþ is smooth on Qu=Z.

In the same way, we identify Qs=Z with ðRP1Þk by the di¤eomorphism conjugating

the holonomy of F s to that of F s
gs

and the action of fþ f� is also conjugated to the 1=k

rotation on ðRP1Þk.

Hence S1
u ¼ Qu=ð f� fþÞ and S1

s ¼ Qs=ð fþ f�Þ have the di¤erentiable structure and

in fact the homomorphisms porb
1 ðSÞ ! HomeoðS1

u Þ and porb
1 ðSÞ ! HomeoðS1

s Þ are

homomorphisms to the di¤eomorphism groups: porb
1 ðSÞ ! Di¤eoðS1

u Þ and porb
1 ðSÞ !
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Di¤eoðS1
s Þ, respectively. As is shown in Section 7, these two homomorphisms are

conjugate by the homeomorphism f : S1
u ! S1

s .

The result of Ghys implies that porb
1 ðSÞ ! Di¤eoðS1

u Þ and porb
1 ðSÞ ! Di¤eoðS1

s Þ

are conjugate to the holonomy homomorphisms of Anosov foliations for the geodesic

flows with respect to gu and gs, respectively. We identify S1
u ;S

1
s with RP1 by the

conjugating di¤eomorphisms, and we compare the homeomorphisms H and f . Since

H�1 f commute with hu
a for any a A porb

1 ðSÞ, f coincides with H:

S1
u ���!

f
S1
s

�
�
�
�

�
�
�
�

RP1
���!

H
RP1:

For the foliations F u
gu

and F s
gs

of Mk, we take the lifts ~FF u
gu

and ~FF s
gs

of them to the

universal covering space ~MMk. The lifted foliations ~FF u
gu

and ~FF s
gs

are product foliations

and we look at the map to the product of their leaf spaces:

p0 : ~MMk ! ~MMk= ~FF
u
gu
� ~MMk= ~FF

s
gs
:

Since the product action on RP1 � RP1 of the Fuchsian group actions on RP1 with

respect to gu and gs leaves the graph of H invariant, the image p0ð ~MMkÞ is the region

between the two adjacent graphs of lifts of H. (See [12]).

The action of p1ðMÞ on pð ~MMÞ is e¤ective, because the action of porb
1 ðSÞ on S1

u or

S1
s is e¤ective and the action of the class of general fiber is a nontrivial translation.

Since the image of p1ðMÞ in Homeoðpð ~MMÞÞ coincides with the image of p1ðMkÞ in

Homeoðpð ~MMÞÞ, we obtain the isomorphism; p1ðMÞG p1ðMkÞ.

Now we can prove that our projecctively Anosov flow j is di¤erentiablly isotopic

to the quasi-Fuchsian flow f by looking at the transverse structures of the flows j

and f.

Proof of Theorem 1.1. We follow the argument by Ghys [12].

We compare the map p : ~MM ! Qu �Qs ¼ ~MM= ~FF
u � ~MM= ~FF

s defined by ~FF
u and ~FF

s

with p0 : ~MMk ! ~MMk= ~FF
u
gu
� ~MMk= ~FF

s
gs

defined by ~FF u
gu

and ~FF s
gs
. As we discussed, the images

of p and p0 coincide. The actions of p1ðMÞG p1ðMkÞ on the images also coincide.

They define the transverse structure of the orbit foliations j and f. This implies that

the holonomy groupoids for j and f are equivalent.

For a closed orbit c of j on M, we look at a lift ~cc of c in ~MM and its image in

Qu �Qs. The curve c represents an element a A p1ðMÞ and the image of ~cc in Qu �Qs

is a fixed point of the action of a and the action is topologically hyperbolic. Hence the

holonomy covering of c is contractible.

For a closed orbit c of f on Mk, we have a lift ~cc of c in ~MMk and its image in
~MMk= ~FF

u
gu
� ~MMk= ~FF

s
gs
. In a similar way, the holonomy covering of c is contractible.

Thus both ðM; jÞ and ðMk; fÞ are the classifying space for the groupoid ([14]).

Hence we have a homotopy equivalence M ! Mk which sends the orbit of j to the orbit

of f and is transversely a di¤eomorphism. As in [11] (see also [1], [18]), one can deform

this homotopy equivalence to a di¤eomorphism which sends an orbit of j to an orbit

of f.
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In fact the Seifert fibered 3-manifold M is determined by its fundamental group.

Since the resultant di¤eomorphism can be thought inducing the identity on the fun-

damental group, it is isotopic to the identity. r

Remark 9.1. Since the fibrations ~MM ! pð ~MMÞ and ~MMk ! p0ð ~MMkÞ are locally trivial

fibration with fiber being R, we can construct an equivariant lift ~MM ! ~MMk as described

in [18]:

~MM ���! ~MMk

p

?
?
?
y

?
?
?
y
p0

pð ~MMÞ p0ð ~MMkÞ:

This also shows that we have a homotopy equivalence M ! Mk which sends the orbit

of j to the orbit of f which is transversely a di¤eomorphism.
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[11] É. Ghys, Flots d’Anosov sur les 3-variétés fibrées en cercles, Ergodic Theory Dynam. Systems, 4

(1984), 67–80.
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[16] G. Levitt, Feuilletages des variétés de dimension 3 qui sont des fibres en cercles, Comment. Math.

Helv., 53 (1978), 572–594.

[17] S. Matsumoto, Foliations of Seifert fibered spaces over S2, Foliations Tokyo, 1983, (ed. I. Tamura)

Adv. Stud. Pure Math., 5, Kinokuniya, Tokyo; North-Holland, Amsterdam-New York-Oxford, 1985, pp.

325–339.

[18] S. Matsumoto and T. Tsuboi, Transverse intersections of foliations in three-manifolds, Monographie

de L’Enseignement Math., 38 (2001), 503–525.

[19] Y. Mitsumatsu, Anosov flows and non-Stein symplectic manifolds, Ann. Inst. Fourier (Grenoble), 45

(1995), 1407–1421.

[20] T. Noda, Projectively Anosov flows with di¤erentiable (un)stable foliations, Ann. Inst. Fourier

(Grenoble), 50 (2000), 1617–1647.

[21] T. Noda, Regular projectively Anosov flows with compact leaves, Ann. Inst. Fourier (Grenoble), 54

(2004), 353–363.

T. Tsuboi1252



[22] T. Noda and T. Tsuboi, Regular projectively Anosov flows without compact leaves, Proceedings of

Foliations: Geometry and Dynamics, Warsaw, 2000, World Scientific, Singapore, 2002, 403–419.

[23] I. Tamura and A. Sato, On transverse foliations, Inst. Hautes Études Sci. Publ. Math., 54 (1981),

205–235.

[24] W. Thurston, Foliations of 3-manifolds that are circle bundles, University of California at Berkeley,

Thesis, 1972.

[25] W. Thurston, Three-dimensional geometry and topology, Vol. 1, Princeton Math. Ser., 35, Princeton

Univ. Press, Princeton, NJ, 1997.

[26] W. Thurston, Three-manifolds, Foliations and Circles, I, e-Print archive, math/9712268.

[27] P. Tukia, Homeomorphic conjugates of Fuchsian groups, J. Reine Angew. Math., 391 (1988), 1–54.

Takashi Tsuboi

Graduate School of Mathematical Sciences

University of Tokyo

Komaba Meguro, Tokyo 153

Japan

E-mail: tsuboi@ms.u-tokyo.ac.jp

Regular projectively Anosov flows 1253


	1. Introduction and the ...
	THEOREM 1.1. ...

	2. Lifted flow and foliations ...
	3. Poincar\'e-Hopf type ...
	THEOREM 3.4 ...

	4. Properties of the orbit ...
	5. Closed orbits.
	6. Cylindrical leaves ...
	7. Conjugate actions on ...
	8. Convergence group action.
	THEOREM 8.1 ...

	9. Proof of the main theorem.

