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Abstract. In the framework of microlocal analysis, a boundary value morphism

is defined for solutions to the regular-specializable system of analytic linear partial

di¤erential equations. This morphism can be regarded as a microlocal counterpart of

the boundary value morphism for hyperfunction solutions due to Monteiro Fernandes,

and the injectivity of this morphism (that is, the Holmgren type theorem) is proved.

Moreover, under a kind of hyperbolicity condition, it is proved that this morphism is

surjective (that is, the solvability).

Introduction.

In microlocal analysis, it is one of the main subjects to give an appropriate

formulation of the boundary value problems for hyperfunction or microfunction solu-

tions to a system of analytic linear partial di¤erential equations (that is, a coherent (left)

D-Module, here in this paper, we shall write Module or Ring with capital letters, instead

of sheaf of modules or sheaf of rings). We shall recall the previous results:

When we impose the non-characteristic condition, we can obtain the following

satisfactory results: Suppose that the boundary is real analytic and non-characteristic

for the system. Then all the hyperfunction or microfunction solutions have bound-

ary values as hyperfunction or microfunction solutions to the induced system on the

boundary, and the local or microlocal uniqueness theorem (Holmgren type theorem)

hold. Note that in the case of hyperfunction solutions to a di¤erential equation, these

results are given by Komatsu-Kawai [Ko-K] and Schapira [Sc1], and in the case of

a system, we can prove these facts by means of the theory of microsupports (cf.

Kashiwara-Kawai [K-K1]). See also Kataoka [Kat] for microlocal boundary value

problems in the framework of the theory of mild microfunctions.

However, once we release the non-characteristic condition for the system, the

problem is much involved; In general, we must impose some regularity condition on

the solutions in order to define their boundary values as solutions to the induced

system. As this condition, Oaku [Oa1], [Oa2] introduced the sheaf of F-mild hyper-

functions and of F-mild microfunctions as a microlocalization. For the F-mild hy-

perfunction or microfunction solutions to a Fuchsian system in the sense of Laurent-

Monteiro Fernandes [L-MF1], we can obtain the local or microlocal uniqueness theorem

for boundary value problem (see Oaku [Oa1], [Oa2], and cf. Oaku and Yamazaki

[O-Y]).

On the other hand, if we assume the following condition to the Fuchsian system,
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all the hyperfunction solutions have boundary values and a local uniqueness theorem

holds as in the non-characteristic case: Suppose that the system is regular-specializable.

Then the nearby-cycle of the system is defined in the theory of D-Modules. The

definitions of the regular-specializable D-Module and its nearby-cycle are initiated by

Kashiwara [Kas], Kashiwara and Kawai [K-K2] and Malgrange [Mal] for regular-

holonomic cases. Further the notion of nearby-cycle is extended to the specializable D-

Module (see Laurent [L2], Laurent and Malgrange [L-Ma] and Mebkhout [Me]). Note

that we do not have a definition of nearby-cycle for general Fuchsian systems at this

stage. After the results by Kashiwara-Oshima [K-O], Oshima [Os1] and Schapira [Sc3],

[Sc4], for the hyperfunction solution sheaf to regular-specializable system Monteiro

Fernandes [MF1] defined a boundary value morphism which takes values in hyper-

function solutions to the nearby-cycle of the system instead of the induced system. This

morphism is injective (cf. [MF2]) and gives a generalization of the non-characteristic

boundary value morphism. Moreover Laurent-Monteiro Fernandes [L-MF2] redefined

this morphism and discussed the solvability under a kind of hyperbolicity condition

(the near-hyperbolicity). Here we should remark that even in single equation cases,

some results due to Tahara [T] can not be recovered by Laurent-Monteiro Fernandes

[L-MF2]. However, since this morphism is defined only for hyperfunction solutions,

a microlocal boundary value problem is not considered. Therefore in this paper, we

shall microlocalize this morphism in the framework of Oaku [Oa3] and Oaku-Yamazaki

[O-Y] and extend their result to our case; that is, for the regular-specializable system we

shall define a injective boundary value morphism as a microlocalization of the boundary

value morphism in the sense of Monteiro Fernandes [MF1], and prove this morphism is

surjective under the near-hyperbolicity condition.

We remark that for a Fuchsian system in the sense of Tahara [T], Oaku [Oa3]

defined an injective boundary value morphism under additional conditions of charac-

teristic exponents by using a detailed study due to Tahara [T].

The plan of this paper is as follows: In §1, we shall introduce the notation and

recall complementary results used in later sections. In §2, we shall define a general

boundary morphism for a complex of sheaves under some condition. Further, we shall

prove this morphism is isomorphic under the near-hyperbolicity condition in the sense of

Laurent and Monteiro Fernandes [L-MF2] (cf. Kashiwara-Schapira [K-S1]). §§3 and 4

are preparations for §5; §3 is an exposition of the regular-specializable D-Module. In

§4, we recall several sheaves and in particular, a sheaf CNjM attached to the boundary

on some cotangent bundles in order to formulate our boundary value problem. We

remark that roughly speaking, CNjM is a microlocalization of the specialization of the

sheaf of hyperfunctions. In §5, for any CNjM solutions to the regular-specializable

system, we shall define a boundary value morphism which takes values in microfunction

solutions to the nearby-cycle of the system, and prove this morphism is injective in

the zero-th cohomology (this means the microlocal uniqueness theorem). Note that the

restriction of our morphism to the zero-section coincides with that in the sense of

Monteiro Fernandes [MF1]. Finally §6 is devoted to examples.

We shall end this introduction with the following remarks: The non-characteristic,

Fuchsian or regular-specializable conditions are generalized to the higher-codimensional

case. If we impose non-characteristic or Fuchsian conditions, we can extend the results
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of the one-codimensional case mentioned above to that of the higher-codimensional

case in the framework of F -mild microfunctions (see Oaku-Yamazaki [O-Y]). On

the contrary, if we assume only the regular-specializable condition, we cannot define

boundary values for any hyperfunction solution as a natural extension of the boundary

values in the sense of Monteiro Fernandes [MF1]. Hence in this case, we need ad-

ditional conditions on the system in order to obtain an appropriate formulation of

the higher-codimensional boundary value problem (cf. Kashiwara-Oshima [K-O] and

Oshima [Os2]).

The author would like to thank the referee for carefully reading the manuscript. In

particular, the proof of Theorem 2.5 would be incomplete without the referee’s com-

ments.

1. Preliminaries.

In this section, we shall fix the notation and recall known results used in later

sections. General references are made to Kashiwara-Schapira [K-S2].

We denote by Z;R and C the sets of all the integers, real numbers and complex

numbers respectively. Moreover we set N :¼ fn A Z; nb 1g and N0 :¼ N U f0g.
In this paper, all the manifolds are assumed to be paracompact. In general,

let t : E ! Z a vector bundle over a manifold Z. Then, set _EE :¼ EnZ and _tt the

restriction of t to _EE. Let M be an ðnþ 1Þ-dimensional real analytic manifold and N

a one-codimensional closed real analytic submanifold of M. Let X and Y be com-

plexifications of M and N respectively such that Y is a closed submanifold of X and

that Y VM ¼ N. Moreover in this paper, we assume the existence of a partial com-

plexification of M in X ; that is, there exists a ð2nþ 1Þ-dimensional real analytic

submanifold L of X containing both M and Y such that the triplet ðN;M;LÞ is

locally isomorphic to ðRn � f0g;Rnþ1
;C

n � RÞ by local coordinates ðz; tÞ ¼ ðxþ
ffiffiffiffiffiffiffi

�1
p

y;

tþ
ffiffiffiffiffiffiffi

�1
p

sÞ of X around each point of N. We say such local coordinates admissible.

By admissible coordinates we have locally the following relation:

N ¼ R
n
x � f0g H���! M ¼ R

n
x � Rt

?
?
?
y

H

i

?
?
?
y

H

H

H

iM

Y ¼ C
n
z � f0g H���!

iY
L ¼ C

n
z � Rt H���!

iL
X ¼ C

n
z � Ct;

and with these coordinates, we often identify TYX and TYL with X and L re-

spectively. We shall mainly follow the notation in Kashiwara-Schapira [K-S2]; we

denote by ~MMN and ~LLY the normal deformations of N and Y in M and L respectively

and regard ~MMN as a closed submanifold of ~LLY . The projection tY : TYL! Y induces

natural mappings:

T �NY  �
tYp

TNM �
N
T �NY �!@

tYd

T �TNM
TYL;

and by tYd we identify T �TNM
TYL with TNM �

N
T �NY . Similarly by natural map-

pings
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T �~MMN

~LLY  �
sLp

TNM �
~MMN

T �~MMN

~LLY �!
@

sLd
T �TNM

TYL;

we identify TNM �
~MMN

T �~MMN

~LLY with T �TNM
TYL.

We have the following commutative diagram:

TNM H��������!
sM

~MMN  ��������I

jM
WM

 
�
�
��

tN

 
�
�
��

pM ~ppM

 
�
�
��

N H�����������! M H��������!
iM

X

 
�
�
�
�
�
�
�� I

i 0 ijN
 
�
�
�
�
�
�
�
�� I

 
�
�
�

~ii 0

 
�
�
�
�
�
�
�
�� I

i

 
�
�
�

~ii

TYL �����!
sL ~LLY  ���

jL
WL

 
�
�
��

tY

 
�
�
��

pL ~ppL

 
�
�
��

Y H�����������!
iY

L H��������!
iL

X :

TYLnTYY has two components with respect to its fiber. We denote by TYL
þ one

of them and represent (at least locally) by fixing admissible coordinates

TYL
þ ¼ fðz; tÞ A TYL; t > 0g:

Moreover set TNM
þ :¼ TYL

þ VTNM. Define open embeddings f and fN by:

TYL
þ H���!

f

TYL
x
?
?
?

H

g

x
?
?
?

H

TNM
þ H���!

fN
TNM:

Thus we regard TNM
þ�

N
T �NY as an open set of T �TNM

TYL. Moreover f induces

mappings:

T �TNMþTYL
þ  ���

@

TNM
þ �

TNM
T �TNM

TYL ���!
fp

T �TNM
TYL

�
�
�
�
o g

�
�
�
�
o

TNM
þ�

N
T �NY ���!

fN�1
TNM �

N
T �NY :

Hence we identify T �TNMþTYL
þ with TNM

þ�
N
T �NY , and fp with fN � 1.

Remark 1.1. To define TYL
þ (or TNM

þ) by means of admissible coordinates

is equivalent to determining a local isomorphism orY=L FZY (or equivalently orN=M F

ZN ). Here orY=L denotes the relative orientation sheaf.

Let pN;M : T �~MMN

~LLY ! ~MMN and pNjM : T �TNM
TYL! TNM, be the natural projec-

tions. We denote by n�ð�Þ and m�ð�Þ the specialization and microlocalization functors

respectively. Let F be an object of DbðXÞ. Then, by Sato’s fundamental distinguished

triangle we have

RjL� ~pp
�1
L i !LF j ~MMN

noM=L ! RG ~MMN
ðRjL� ~pp

�1
L i !LFÞ ! R _ppN;M�m ~MMN

ðRjL� ~pp
�1
L i !LFÞ !

þ1
;
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where oM=L denotes the dualizing complex. Applying the functor s�1
M , we have

s�1
M ðRjL� ~pp

�1
L i !LF j ~MMN

Þ ¼ i 0�1s�1
L RjL� ~pp

�1
L i !LF ¼ nY ði

!
LFÞjTNM

;

s�1
M RG ~MMN

ðRjL� ~pp
�1
L i !LFÞF s�1

M
~ii 0!RjL� ~pp

!
Li

!
LF no

n�1
Y=L F s�1

M RjM�
~ii !~pp!Li

!
LF no

n�1
N=M

F s�1
M RjM�p

!
M i!i !LF no

n�1
N=M F s�1

M RjM�p
�1
M i!MF

¼ nNði
!
MFÞ:

Further, since m ~MMN
ðRjL� ~pp

�1
L i !LF Þ is a conic object, it is easy to see that

s�1
M R _ppN;M�m ~MMN

ðRjL� ~pp
�1
L i !LFÞFR _ppNjM�s

�1
Lpm ~MMN

ðRjL� ~pp
�1
L i !LF Þ:

Hence we obtain the following distinguished triangle:

nY ði
!
LF ÞjTNM

no
n�1
M=L ! nNði

!
MFÞ ! R _ppNjM�s

�1
Lpm ~MMN

ðRjL� ~pp
�1
L i !LFÞ !

þ1
:

By Kashiwara-Schapira [K-S2, Proposition 4.3.5], we have a natural morphism

s�1
Lpm ~MMN

ðRjL� ~pp
�1
L i !LF Þ ! mTNM

ðs�1
L RjL� ~pp

�1
L i !LFÞnoTYL=~LLY

no
n�1

TNM= ~MMN

F mTNM
ðnY ði

!
LFÞÞ;

and this morphism induces a natural morphism of distinguished triangles:

nY ði
!
LFÞjTNM

no
n�1
M=L ���! nNði

!
MF Þ ���! R _ppNjM�s

�1
Lpm ~MMN

ðRjL� ~pp
�1
L i !LFÞ ���!

þ1

�
�
�
�

?
?
?
y

?
?
?
y

nY ði
!
LFÞjTNM

no
n�1
M=L ���! RGTNMðnY ði

!
LFÞÞ ���! R _ppNjM�mTNM

ðnY ði
!
LF ÞÞ ���!

þ1

(see Proposition 4.3 (3)).

Next, we shall recall a general result. Let Z be a complex manifold, t : E ! Z

a complex vector bundle, and p : E � ! Z its dual bundle. Then, as in the real case

(see for example Kashiwara-Schapira [K-S2, Section 5.5]) the action of C
� :¼ Cnf0g

on E induces a natural mapping yE : T �E ! C . Set SC

E :¼ y�1
E ð0Þ. Let ðz; xÞ be

local coordinates of E such that z is coordinates of Z and x is linear coordinates.

Let ðz; x; z; xÞ be associated coordinates of T �E. Then yE is written explicitly as

yEðz; x; z; xÞ ¼ hx; xi. Denote by D
b
C

�ðEÞ the subcategory of D
bðEÞ consisting of C

�-

conic objects, and by SSð�Þ the microsupport. Then we have the following result which

seems to be first stated in Laurent-Monteiro Fernandes [L-MF2, Lemma 1.1.1]:

Proposition 1.2. The category D
b
C

�ðEÞ is the full subcategory of D
bðEÞ consisting

of objects F such that SSðF ÞHSC

E .

Indeed, the proof in Kashiwara-Schapira [K-S2, Proposition 5.4.5] still works in

the complex case, and _EE �
_EE=C�

T �ð _EE=C�Þ ¼ _EE�
E
SC

E . Hence by the same proof as in

Kashiwara-Schapira [K-S2, Proposition 5.5.3] we obtain the proposition.
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2. General boundary values.

In this section, we shall define our boundary value morphism.

First, by using admissible coordinates, we set (at least locally)

TYX
þ :¼ fðz; tÞ A TYX ;Re t > 0g;

and consider the following commutative diagram:

TYL
þ
H���!

f

TYL

TY iL

?
?
?
y

H

TY iL

?
?
?
y

H

H

tY

TYX
þ
H���!

f

TYX ���!���!
tX

Y :

We regard TYL as a closed conic subset of TYX by TY iL. Note that both

TYL
þ ! TYL and TYX

þ ! TYX are open embeddings. Set tþX :¼ tX f : TYX
þ ! Y .

Using admissible coordinates we define a continuous section s : Y ! _TTYX by z 7! ðz; 1Þ.

Similarly we define ts : Y ! _TT �YX by z 7! ðz; 1Þ.

Theorem 2.1. For any F A ObDbðXÞ with nY ðF Þ A ObDb
C
�ðTYXÞ, there exists the

following natural isomorphism:

f �1nY ði
!
LFÞF f �1t�1Y s�1nY ðF ÞnoL=X :

Proof. Recall that by Kashiwara-Schapira [K-S2, Proposition 4.2.5], we have

natural morphisms:

ðTY iLÞ
�1
nY ðF ÞnoL=X ���! nY ði

�1
L F ÞnoL=X

?
?
?
y

g

?
?
?
y

ðTY iLÞ
!
nY ðFÞ  ���

b
nY ði

!
LFÞ:

Set G :¼ RtþX� f
�1nY ðFÞ A ObDbðY Þ. Since nY ðF Þ A ObDb

C
�ðTYXÞ, by Kashiwara-

Schapira [K-S2, Proposition 2.7.8], it follows that f �1nY ðFÞF tþ�1X G. Hence, we see

that s�1nY ðF ÞF s�1 f �1nY ðFÞF s�1tþ�1X GFG. In particular, we have

f �1ðTY iLÞ
�1
nY ðF ÞF ðTY iLÞ

�1
f �1nY ðFÞF ðTY iLÞ

�1
tþ�1X GF f �1t�1Y G

F f �1t�1Y s�1 f �1nY ðF ÞF f �1t�1Y s�1nY ðFÞ:

Moreover, we have the following chain of isomorphisms:

f �1ðTY iLÞ
!
nY ðFÞF f !ðTY iLÞ

!
nY ðFÞF ðTY iLÞ

!
f !nY ðF ÞF ðTY iLÞ

!
f �1nY ðFÞ

F ðTY iLÞ
!
tþ�1X GF ðTY iLÞ

!
tþ!X Gno

n�1
TYXþ=Y

F f !t!YGno
n�1
TYXþ=Y

F f �1t�1Y GnoTYLþ=Y no
n�1
TYXþ=Y

F ðTY iLÞ
�1
tþ�1X GnoL=X F f �1ðTY iLÞ

�1
nY ðFÞnoL=X :
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Hence, we obtain the following commutative diagram:

f �1t�1Y s�1nY ðF ÞnoL=X F f �1ðTY iLÞ
�1
nY ðF ÞnoL=X ���! f �1nY ði

�1
L FÞnoL=X

?
?
?
y
o

?
?
?
y

f �1ðTY iLÞ
!
nY ðFÞ  ���

b
f �1nY ði

!
LF Þ;

which implies that b is an epimorphism.

Next, we shall prove that b is a monomorphism. By taking admissible coordinates,

we may assume that X ¼ C
nþ1 and L ¼ C

n � R, hence we identify orL=X with ZL. By

a distinguished triangle

ðTY iLÞ
!
nY ðF Þ ! ðTY iLÞ

�1
nY ðFÞ ! ðTY iLÞ

�1
RGTYXnTYLðnY ðFÞÞ !

þ1
;

for any p A TYL
þ and j A Z, we have the exact sequences

lim
�!
W

H jðW ;F Þ ���! lim
�!
W

H jðWnL;FÞ ���! ðH jþ1nY ði
!
LF ÞÞp ���! lim

�!
W

H jþ1ðW ;F Þ
�
�
�
�

g

?
?
?
y
r g

?
?
?
y

?
?
?
y
b g

�
�
�
�

lim
�!
W

H jðW ;F Þ ���!H
j

TYXnTYL
ðnY ðFÞÞp ���! H

jþ1
TYL
ðnY ðF ÞÞp ���! lim

�!
W

H jþ1ðW ;FÞ;

where W ranges through the family of open subsets of X such that p B CY ðXnWÞ.

In fact, by the excision we can take the same family of W to calculate the stalk

of H
jþ1nY ði

!
LFÞ. Set TYXnTYL ¼ Wþ tW�, where WG :¼ fðz; tÞ A TYX ;GIm t > 0g.

Hence we have

H
j

TYXnTYL
ðnY ðF ÞÞp FH

j

Wþ
ðnY ðF ÞÞp lH

j
W�ðnY ðF ÞÞp

F lim
�!
V

H jðV VWþ; nY ðFÞÞl lim
�!
V

H jðV VW�; nY ðF ÞÞ

F lim
�!

V ;Uþ
V

H jðUþV ;FÞl lim
�!

V ;U�
V

H jðU�V ;FÞ;

where V ranges through the fundamental system of conic open neighborhoods of p

in TYX , and each UG
V ranges through the family of open subsets of X such that

CY ðXnU
G
V ÞVWG VV ¼q. We set WG :¼ fðz; tÞ A W ;GIm t > 0g. Then

lim
�!
W

H jðWnL;FÞ ¼ lim
�!
W

ðH jðWþ;FÞlH jðW�;F ÞÞ:

Thus we can write r ¼ ðrþ; r�Þ, where each rG is the restriction of sheaves:

lim
�!
W

H jðWG;FÞ ! lim
�!

V ;UG
V

H jðUG
V ;FÞ:

Suppose that ðuþ; u�Þ A lim
�!
W

ðH jðWþ;F ÞlH jðW�;FÞÞ satisfies

rðuþ; u�Þ ¼ 0 A lim
�!

V ;Uþ
V

H jðUþV ;FÞl lim
�!

V ;U�
V

H jðU�V ;F Þ

F lim
�!
V

ðH jðV VWþ; nY ðFÞÞlH jðV VW�; nY ðFÞÞÞ:
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Set z0 :¼ tY ðpÞ A Y and Ve ¼ fðz; tÞ A X ; jz� z0j < e; 0 < jtj < e;Re t > �ejIm tjg for an

e > 0. Then, we can find an e > 0 such that uG ¼ 0 A H jðVe;F Þ since H
jnY ðFÞ is C�-

conic. Hence it follows that

ðuþ; u�Þ ¼ 0 A lim�!
W

ðH jðWþ;F ÞlH jðW�;FÞÞ;

namely, r is injective. Thus by Five Lemma, we can show that b is a mono-

morphism. Therefore, we have

f �1t�1
Y s�1nY ðFÞnoL=X F f �1ðTY iLÞ�1

nY ðFÞnoL=X !@ f �1nY ði !LFÞ:
The proof is complete. r

Theorem 2.2. For any F A ObDbðXÞ with nY ðF Þ A ObDb
C

�ðTYXÞ, there exists the

following natural isomorphism:

f �1
p mTNM

ðnY ði !LF ÞÞ !
@

f �1
p t�1

YpmNðs�1nY ðFÞÞnoL=X :

Proof. By Theorem 2.1 and Kashiwara-Schapira [K-S2, Proposition 4.3.5], we

obtain the following chain of isomorphisms:

f �1
p mTNM

ðnY ði !LF ÞÞF mTNMþð f �1nY ði !LFÞÞF mTNMþð f �1t�1
Y s�1nY ðFÞÞnoL=X

F f �1
p t�1

YpmNðs�1nY ðFÞÞnoL=X noTNMþ=N no
n�1
TYLþ=Y

F f �1
p t�1

YpmNðs�1nY ðFÞÞnoL=X :

This proves the theorem. r

Definition 2.3. For any F A ObDbðXÞ with nY ðFÞ A ObDb
C

�ðTYXÞ, by virtue of

Theorem 2.2 we define:

b : f �1
p s�1

Lpm ~MMN
ðRjL� ~pp�1

L i !LFÞ ! f �1
p mTNM

ðnY ði !LFÞÞ

!@ f �1
p t�1

YpmNðs�1nY ðF ÞÞnoL=X :

Next, we shall show that b is an epimorphism under the near-hyperbolicity

condition due to Laurent-Monteiro Fernandes [L-MF2, Definition 1.3.1]:

Definition 2.4. Let F be an object of DbðXÞ. Then we say F is near-hyperbolic

at x0 A N (in dt-codirection) if there exist positive constants C and e1 such that

SSðFÞV fðz; t; z�; t�Þ A T �X ; jz� x0j < e1; jtj < e1; 0 < tg

H fðz; t; z�; t�Þ A T �X ; jt�jaCðjy�jðjyj þ jsjÞ þ jx�jÞg

holds by admissible coordinates ðz; tÞ ¼ ðxþ
ffiffiffiffiffiffiffi

�1
p

y; tþ
ffiffiffiffiffiffiffi

�1
p

sÞ of X and associated

coordinates ðz; t; z�; t�Þ ¼ ðxþ
ffiffiffiffiffiffiffi

�1
p

y; tþ
ffiffiffiffiffiffiffi

�1
p

s; x� þ
ffiffiffiffiffiffiffi

�1
p

y�; t� þ
ffiffiffiffiffiffiffi

�1
p

s�Þ of T �X .

Theorem 2.5. Let F be an object of D
bðXÞ. Assume that nY ðFÞ A ObDb

C
�ðTYX Þ

and F is near-hyperbolic at x0 A N. Then, for any p� ¼ ðx0; t0;
ffiffiffiffiffiffiffi

�1
p

hx0; dxiÞ A
T �
TNMþTYL

þ, the morphism b induces an isomorphism:

b : s�1
Lpm ~MMN

ðRjL� ~pp�1
L i !LFÞp � ! mNðs�1nY ðFÞÞtYpð p�Þ noL=X :
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Proof. By Theorem 2.2, we may show the isomorphism

s�1
Lpm ~MMN

ðRjL� ~pp�1
L i !LFÞp � !@ mTNM

ðnY ði !LFÞÞp� :

By virtue of the inverse Fourier-Sato transformation, it is enough to show that the

isomorphism

~ss�1
L n ~MMN

ðRjL� ~pp�1
L RGLðF ÞÞp0 !

@

nTNMðnY ðRGLðFÞÞÞp0
holds at any point p0 ¼ ðx0; t0;

ffiffiffiffiffiffiffi

�1
p

y0Þ A TTNMþTYL
þ. Here ~ssL : TTNMTYL ! T ~MMN

~LLY

is a natural mapping. Since

~ss�1
L n ~MMN

ðRjL� ~pp�1
L RGLðF ÞÞjTNMþ F nTNMðnY ðRGLðF ÞÞÞjTNMþ F nY ðRGLðF ÞÞjTNMþ ;

we may assume that y0 0 0. By taking suitable admissible coordinates, we may

assume that X ¼ C
nþ1

IL ¼ C
n � R and so on with x0 ¼ 0. We set as in Bony-

Schapira [B-S2]

Bð0; aÞ :¼ fðx; tÞ A R
nþ1; jxj þ jtj < ag; B 0ð0; aÞ :¼ fx A R

n; jxj < ag:
Set Kþða; dÞ :¼ Int g½B 0ð0; aÞU fð0; adÞg�. Here g½�� means the convex hull and IntA

denotes the interior of A. For an open convex cone G 0
HR

n, we set G 0
e :¼ G 0 VB 0ð0; eÞ.

Then, for any k A Z we have

H
kn ~MMN

ðRjL� ~pp�1
L RGLðF ÞÞj~ssLðp0Þ ¼ lim�!

a; d;G 0
e

H kðKþða; dÞ þ
ffiffiffiffiffiffiffi

�1
p

G 0
e ;RGLðF ÞÞ;

H
knTNMðnY ðRGLðFÞÞjp0 ¼ lim�!

Uða; d;G 0
e Þ
H kðUþða; d;G 0

e Þ;RGLðF ÞÞ:

Here G 0
HR

n ranges through the family of open conic neighborhoods of y0;Uða; d;G 0
e Þ

ranges through the family of open neighborhoods of Bð0; aÞ þ
ffiffiffiffiffiffiffi

�1
p

G 0
e in L, and we set

Uþða; d;G 0
e Þ :¼ Uða; d;G 0

e ÞV fðz; tÞ A L; t > 0g:
Then the proof of the theorem is reduced to the following proposition. r

Proposition 2.6 [cf. [B-S2, Lemme 3.2]). Let G 0
HR

n be a conic neighborhood

of y0. Then there exists a positive constant d > 0 satisfying the following: If a and e are

su‰ciently small positive constants, then for any k A Z there exist e 0; d 0 > 0 and a conic

neighborhood G HR
n of y0 such that

H kðKþða; d 0Þ þ
ffiffiffiffiffiffiffi

�1
p

Ge 0 ;RGLðFÞÞ !
@

H kðUþða; d;G 0
e Þ;RGLðFÞÞ:

Proof. The proof is very similar to that of [B-S2, Lemme 3.2]. We use the

following lemma instead of [B-S2, Théorème 1.1]):

Lemma 2.7 (cf. [B-S1, Théorème 2.1]). Let oHWHL be convex sets such that o is

locally compact and W is an open set. Let G be an object of D
bðLÞ. Set

A :¼ fðz�; t�Þ; ðz; t; z�; t�Þ A SSðGÞ for some ðz; tÞ A Wg:
Suppose that if a hyperplane with normal vector in A crosses W, then this hyperplane

always crosses o. Then for any open neighborhood o 0
HW of o, it follows that

RGðW;GÞ !@ RGðo 0;GÞ:
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Proof of Lemma 2.7. Set

F :¼ fV HW;V is open;o 0 HV ;RGðV ;GÞ !@ RGðo 0;GÞg:
Then F0q. Let fVigi A I HF be any totally ordered subset. Set ~VV :¼ 6

i A I
Vi.

Since L is a Lindelöf space, we can find a subsequence fV 0
j gj AN H fVigi A I such that

~VV ¼ 6
j AN

V 0
j and V 0

j HV 0
k if ja k. Hence fH k�1ðV 0

j ;GÞgj AN satisfies Mittag-Le¿er

condition for any k A Z since H k�1ðV 0
j ;GÞFH k�1ðo 0;GÞ for any j A N . Thus we

have H kð ~VV ;GÞ !@ H kðo 0;GÞ (see [K-S2, Proposition 2.7.1]). Hence by induction on

k, we see ~VV A F. Therefore by Zorn’s Lemma, there exists a maximal element V A F.

Suppose that V 0W. Take p A WnV . Then instead of Zerner’s theorem, we can use

the theory of microsupports to prove the existence of W A F such that p A W (see the

proof of [B-S1, Théorème 2.1] and [K-S2, Proposition 5.2.1, Lemma 5.2.2]). Further

by the method of proof, we may assume RGðW ;GÞ !@ RGðV VW ;GÞ. Thus, we have

isomorphisms RGðV ;GÞFRGðo 0;GÞFRGðV ;GÞFRGðV VW ;GÞ. Hence, by the

distinguished triangle

RGðV UW ;GÞ ! RGðV ;GÞlRGðW ;GÞ ! RGðV VW ;GÞ !þ1
;

RGðV UW ;GÞFRGðo 0;GÞ holds; that is, VWV UW A F, which is a contradic-

tion. r

We end the proof of Proposition 2.6 (cf. also Tahara [T, Lemmata 2.1.1 and

2.1.2]). Recall that iL : L ! X is the canonical embedding. By [K-S2, Corollary 6.4.4]

we have

SSðRGLðFÞÞH i#L ðSSðF ÞÞ:
Thus if ð0; t0; z�0 ; t�0 Þ A SSðRGLðFÞÞV fðz; t; z�; t�Þ A T �L; jzj < e1; 0 < t < e1g, then by

[K-S2, Remark 6.2.8] and the near-hyperbolicity condition, we can find a sequence

fðzj ; tj; z�j ; t�j Þgj AN H fðz; t; z�; t�Þ A T �X ; jt�jaCðjy�jðjyj þ jsjÞ þ jx�jÞg such that

ðzj; tj ; z�j ; t�j Þ !
j
ð0; t0; z�0 ; t�0 Þ and jsjj js�j j !

j
0. In particular since jsjj !

j
0, we see

SSðRGLðF ÞÞV fðz; t; z�; t�Þ A T �L; jzj < e1; 0 < t < e1g

H fðz; t; z�; t�Þ A T �L; jzj < e1; 0 < t < e1; jt�jaCðjy�j jyj þ jx�jÞg:

Thus we have only to follow the argument in the proof of [B-S2, Lemme 3.2] to obtain

RGðMh; e;RGLðFÞÞ !
@

RGðUþða; d;G 0
e Þ;RGLðFÞÞ:

Here Mh; e :¼ Int g½ðB 0ð0; aÞ þ
ffiffiffiffiffiffiffi

�1
p

G 0
e=2ÞU fð0; adÞ þ

ffiffiffiffiffiffiffi

�1
p

hg� for an h A G 0
e=4 and an in-

dependent constant a > 0. By the same argument as in the proof of Lemma 2.7, we

have

RG
�

6
h AG 0

e=4

Mh; e;RGLðF Þ
�

!@ RG
�

Uþða; d;G 0
e Þ;RGLðFÞ

�

:

We can find e 0; d 0 > 0 and a conic neighborhood G HR
n of y0 such that

Kþða; d 0Þ þ
ffiffiffiffiffiffiffi

�1
p

Ge 0 H 6
h AG 0

e=4

Mh; e:

The proof is complete. r
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3. Regular-specializable systems.

In this section, we shall recall the basic results concerning the regular-specializable

D-Module and its nearby-cycle. Although all the contents in this section are well-

known to specialists, we shall give a detailed review for the convenience of the reader.

Note that a generalization to the higher-codimensional case is obtained, but we restrict

ourselves to the one-codimensional case. We inherit the notation from §1. In par-

ticular, Y denotes a one-codimensional complex submanifold of X .

Let DX be the Ring on X of holomorphic di¤erential operators, and fD
ðmÞ
X gm AN0

the usual order filtration on DX . Let us recall the definition of the V -filtration:

Definition 3.1. Let IY be the defining Ideal of Y in OX with a convention that

I
j
Y ¼ OX for ja 0. The V -filtration fFk

Y ðDX Þgk AZ (along Y ) is a filtration on DX jY
defined by

F
k
Y ðDX Þ :¼ 7

j AZ

fP A DX jY ;PI
j
Y HI

j�k
Y g:

It is easy to see that by admissible coordinates, this filtration is written as

F
k
Y ðDX Þ ¼

�
P

j�iak

Pijðz; qzÞt
iq j

t A DX jY
�

:

Let D½TYX � be the subsheaf of DTYX consisting of operators which are polynomials with

respect to the fiber variables. Then the associated graded Ring with fFk
Y ðDX Þgk AZ is

canonically isomorphic to tX�D½TYX �, hence this graded Ring is non-commutative (for

details of this filtration, we refer to Björk [Bj], Sabbah [Sab] and Schapira [Sc2]).

We denote by Q the Euler vector field on TYX . Then Q is characterized by

Qj ¼ kj for any j A I
k
Y =I

kþ1
Y and k A N , and Q can be represented by tqt by admissible

coordinates.

Definition 3.2. A coherent DX jY -Module M is said to be regular-specializable

(along Y ) if there exist locally a coherent OX -sub-Module L of M and a non-zero

polynomial bðaÞ A C ½a� such that the following conditions are satisfied:

(1) L generates M over DX ; that is, M ¼ DXL;

(2) bðQÞLH ðF�1
Y ðDX ÞVD

ðmÞ
X ÞL, where m is the degree deg b of bðaÞ.

In what follows, we shall omit the phrase ‘‘along Y ’’ since Y is fixed.

Remark 3.3. (1) Let M be a coherent DX jY -Module for which Y is non-

characteristic. Then M is regular-specializable.

(2) By Kashiwara-Kawai [K-K2, Lemma 4.1.5], any regular-holonomic f �1
DX -

Module is regular-specializable.

Proposition 3.4. (1) A coherent DX jY -Module M is regular-specializable if and

only if the following condition is satisfied: For any local section u of M, there exist a

non-zero polynomial buðaÞ A C ½a� and Qu A F
�1
Y ðDX ÞVD

ðdeg buÞ
X such that

ðbuðQÞ þQuÞu ¼ 0:
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(2) In an exact sequence of coherent DX jY -Modules

0!M
0 !M!M

00 ! 0;

M is regular-specializable if and only if both M
0 and M

00 are regular-specializable.

For the proof, see Mebkhout [Me] or Sabbah [Sab].

Proposition 3.5. Let M be a coherent DX jY -Module. If M is regular-

specializable, then RHomDX
ðM; mY ðOX ÞÞ and RHomDX

ðM; nY ðOX ÞÞ are objects of

D
b
C
�ðT �YX Þ and D

b
C
�ðTYXÞ respectively.

Proof. Denote by CT �
Y
X ð�Þ the normal cone along T �YX . Since the Hamiltonian

isomorphism induces isomorphisms T �TYX FT �T �YX FTT �
Y
XT

�X , we identify these

spaces. Then by Kashiwara-Schapira [K-S2, Theorem 6.4.1], for any F A ObDbðX Þ we

have:

SSðnY ðFÞÞ ¼ SSðmY ðF ÞÞHCT �
Y
X ðSSðFÞÞ:

Let ðz; tÞ be admissible coordinates of X and ðz; t; z�; t�Þ the associated coordinates of

T �X . As in §1, we use identification TYX ¼ X and T �X ¼ TT �
Y
XT

�X by means of

ðz; tÞ. Then under these coordinates we have (see [K-S2, (6.2.3)]):

T �TYX
@ T �T �YX

@ TT �
Y
XT

�X

Uj Uj Uj

ðz; t; z�; t�Þ  ��! ðz; t�; z�;�tÞ  ��! ðz; t; z�; t�Þ

SC

T �
Y
X ¼ fðz; t

�
; z�;�tÞ A T �T �YX ; tt� ¼ 0g:

Assume that M is generated by fujg
J
j¼1 over DX . Then by virtue of Proposition 3.4,

each DXuj is regular-specializable. Hence, for each j we can find a non-zero poly-

nomial bjðaÞ and Q j A D
ðmjÞ
X VF

�1
Y ðDX Þ such that ðbjðQÞ þQ jÞuj ¼ 0, where mj denotes

the degree of bjðaÞ. Set Lj :¼ DX=DX ðbjðQÞ þQ jÞ. Then it follows that each Lj is

regular-specializable and that there exists an epimorphism 0J

j¼1 Lj !M! 0. Hence

we have

charðMÞH charð0
J

j¼1

LjÞ ¼ 6
J

j¼1

charðLjÞ:

Since the principal symbol of bjðQÞ þQ j has the form of ðtt�Þmj þ tqjðz; t; z
�; tt�Þ, we

have CT �
Y
X ðcharðLjÞÞ ¼ fðz; t; z

�; t�Þ; tt� ¼ 0g. Thus we have

SSðRHomDX
ðM; nY ðOX ÞÞÞ ¼ SSðRHomDX

ðM; mY ðOX ÞÞÞHCT �
Y
X ðcharðMÞÞ

H 6
J

j¼1

CT �
Y
X ðcharðLjÞÞ ¼ SC

T �
Y
X :

This proves the proposition by virtue of Proposition 1.2. r

We denote by C
R

Y jX :¼ mY ðOX Þ½1� the sheaf of real holomorphic microfunctions on

T �YX . Then, by Proposition 3.5 and the proof in Kashiwara-Schapira [K-S2, Propo-

sition 8.6.3], we obtain the following:
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Corollary 3.6. For any regular-specializable DX jY -Module M, there exists the

following distinguished triangle:

RHomDX
ðM;OX ÞjY ! RHomDX

ðM; s�1nY ðOX ÞÞ ! RHomDX
ðM; ts�1

C
R

Y jX Þ !
þ1

:

Let M be a coherent DX jY -Module. Recall that a V -filtration fFkðMÞgkZ is said

to be good if there exist (locally) generators fujgm
j¼1 and kj A Z such that for any k A Z

F
kðMÞ ¼

Xm

j¼1

F
k�kj
Y ðDX Þuj

holds. The following theorem is proved by Kashiwara [Kas] (cf. also Björk [Bj]):

Theorem 3.7. Set G :¼ fa A C ;�1aRe a < 0g. Then, for any regular-

specializable DX -Module M, there exist a unique good V-filtration fFk
Y ðMÞgk AZ on M

and a non-zero polynomial bY ðaÞ A C ½a� such that b�1
Y ð0ÞHG and for any k A Z the

following holds:

bY ðQþ kÞFk
Y ðMÞH F

k�1
Y ðMÞ:

Definition 3.8. Let M be a regular-specializable DX jY -Module. Under the

notation of Theorem 3.7, the nearby-cycle CY ðMÞ and the vanishing-cycle FY ðMÞ are

defined by:

CY ðMÞ :¼ F
�1
Y ðMÞ=F�2

Y ðMÞ;

FY ðMÞ :¼ F
0
Y ðMÞ=F�1

Y ðMÞ:

Remark 3.9. Laurent [L2] extended the definitions of nearby and vanishing cycles

to the derived category of bounded complexes with (regular-)specializable cohomologies

by using the theory of second microlocalization.

Let i : Y ! X be the natural embedding. The inverse image in the sense of D-

Module is defined by

Di�M :¼ OY n
L

i�1OX

i�1
M ¼ DY!X n

L

i�1DX

i�1
M:

Here DY!X :¼ OY n
i�1OX

i�1
DX is the transfer bi-Module. Then we have (cf. Laurent

[L2], Mebkhout [Me] or Sabbah [Sab]):

Proposition 3.10. For any regular-specializable DX jY -Module M;CY ðMÞ;FY ðMÞ
and each cohomology of Di�M are coherent DY -Modules. Moreover, there exists the

following distinguished triangle:

FY ðMÞ �!Var CY ðMÞ �! Di�M �!þ1
:

Here, Var :¼ jðQÞt with jðzÞ :¼ ðe2p
ffiffiffiffiffi
�1

p
z � 1Þ=z.

Let _gg : _TT �
YX ! P

�
YX :¼ _TT �

YX=C� be the natural projection. Denote by C
R; f
Y jX the

sheaf of temperate real holomorphic microfunctions on T �
YX (see Andronikof [A] for the
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definition). Since C
R; f

Y jX has the unique continuation property, Laurent [L2] introduced

a subsheaf ~CCY jX of C
R; f

Y jX as follows: If p�
A _TT �

YX , then the stalk ~CCY jX jp � HC
R; f

Y jX jp � is

consisting of germs which have a continuation to the universal covering of _gg�1
_ggðp�Þ with

finite determinations. If p�
A T �

YY ¼ Y , then set ~CCY jX jp � :¼ C
R; f

Y jX jp � ¼ BY jX jp � .

Remark 3.11. In fact, Laurent defined several sheaves in order to describe the

growth condition of holomorphic microfunction solutions to a general specializable D-

Module (see [L1] and [L2]).

Denote by NX jY the sheaf of Nilsson class functions on X along Y and regard as a

sheaf on Y . Then the following theorem is proved by Laurent [L2] (cf. also Kashiwara-

Kawai [K-K3]):

Theorem 3.12. (1) There exists the following exact sequence:

0 �! OX jY �! NX jY �!
Can ts�1 ~CCY jX �! 0:

(2) For any regular-specializable DX jY -Module M, there exists a natural iso-

morphism

RHomDX
ðM;

~CCY jX Þ !
@

RHomDX
ðM;C

R

Y jX Þ:

Further there exists the following isomorphism of distinguished triangles:

RHomDX
ðM;OX ÞjY ���! RHomDX

ðM;NX jY Þ ���!
Can

RHomDX
ðM;

ts�1 ~CCY jX Þ ���!
þ1

?
?
?
y
o

?
?
?
y
o

?
?
?
y
o

RHomDY
ðDi�M;OY Þ ���! RHomDY

ðCY ðMÞ;OY Þ ���!
tðVarÞ

RHomDY
ðFY ðMÞ;OY Þ ���!

þ1
:

Remark 3.13. (1) The isomorphism (Cauchy-Kovalevskaja type theorem)

RHomDY
ðDi�M;OY ÞFRHomDX

ðM;OX ÞjY

holds for Fuchsian systems in the sense of Laurent-Monteiro Fernandes [L-MF1].

(2) Mandai [Man] extended the definition of boundary values to a general

Fuchsian di¤erential equation in the complex domain.

By Corollary 3.6 and Theorem 3.12, we can obtain:

Theorem 3.14. Let M be a regular-specializable DX jY -Module. Then, a natural

morphism NX jY ! s�1nY ðOX Þ induces the following isomorphism of distinguished tri-

angles:

RHomDX
ðM;OX ÞjY ����! RHomDX

ðM;NX jY Þ ����!
Can

RHomDX
ðM;

ts�1 ~CCY jX Þ ����!
þ1

�
�
�
�

?
?
?
y
o

?
?
?
y
o

RHomDX
ðM;OX ÞjY ����! RHomDX

ðM; s�1nY ðOX ÞÞ ����! RHomDX
ðM;

ts�1
C

R

Y jX Þ ����!
þ1

:

In particular, there exists the following isomorphism:

RHomDY
ðCY ðMÞ;OY ÞFRHomDX

ðM; s�1nY ðOX ÞÞ:
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4. Several sheaves attached to the boundary.

In this section, we recall several sheaves attached to the boundary due to Oaku

[Oa3]. These sheaves will play essential roles for our boundary value problem. Note

that in Oaku [Oa3] these sheaves are defined on cosphere bundles. So we shall present

equivalent but slightly di¤erent definitions on cotangent bundles along the line of Oaku-

Yamazaki [O-Y]. We refer to Oaku [Oa3] or Oaku-Yamazaki [O-Y] for the proofs.

Although only the higher-codimensional case is treated in Oaku-Yamazaki [O-Y], the

same proofs also work as in the one-codimensional case.

We inherit the notation from §2, and we denote by OX ;BM and CM the sheaves of

holomorphic functions on X , of hyperfunctions on M and of microfunctions on T �
MX

respectively. Further, Let BOL be the sheaf of hyperfunctions with holomorphic pa-

rameters z on L; that is,

BOL :¼ H
1
L ðOX Þn orL=X F i !LOX n orL=X ½1�:

Definition 4.1. We set:

CNjM :¼ s�1
Lpm ~MMN

ðRjL� ~pp
�1
L i !LOX Þn orM=X ½nþ 1�;

~CCNjM :¼ mTNM
ðnY ði

!

LOX ÞÞn orN=L½nþ 1�;

~BBNjM :¼ ~CCN;M jTNM
:

Remark 4.2. The reader may confuse the sheaf ~CCY jX with the sheaf ~CCNjM in §3

because we used a notation similar to each other. However, these sheaves are quite

di¤erent.

By virtue of the following proposition, we can regard CNjM as a microlocalization

of nNðBMÞ, and CNjM as a subsheaf of ~CCNjM :

Proposition 4.3. (1) CNjM and ~CCNjM are concentrated in degree zero; that is, CNjM

and ~CCNjM are regarded as sheaves on T �
TNM

TYL.

(2) A canonical morphism s�NjM : CNjM ! ~CCNjM is a monomorphism.

(3) CNjM jTNM
¼ nNðBMÞ holds. Further, there exists the following commutative

diagram with exact rows on TNM:

0 ���! nY ðBOLÞjTNM
���! nNðBMÞ ���! _ppNjM�CNjM ���! 0

�
�
�
�

?
?
y

< ?
?
y

<

0 ���! nY ðBOLÞjTNM
���! ~BBNjM ���! _ppNjM�

~CCNjM ���! 0:

Note that nY ðBOLÞ is concentrated in degree zero.

5. Boundary values for regular-specializable system.

We are ready to define our boundary value morphism:

Definition 5.1. Let M be a regular-specializable DX jY -Module. Then by Prop-

osition 3.5, RHomDX
ðM;OX Þ satisfies the assumption of Theorem 2.2. Thus combin-

Microlocal boundary value problem 1123



ing Definition 2.3 with Proposition 4.3 and Theorem 3.14, we define the morphism

b as:

b : f �1
p RHomDX

ðM;CNjMÞ ! f �1
p RHomDX

ðM; ~CCNjMÞ

!@ f �1
p t�1

YpRHomDY
ðCY ðMÞ;CNÞ:

By the construction, we can obtain the following Holmgren type theorem:

Theorem 5.2. (1) The morphism b gives a monomorphism

b0
: f �1

p HomDX
ðM;CNjMÞ q f �1

p t�1
YpHomDY

ðCY ðMÞ;CNÞ:

(2) The restriction of b0 to the zero-section TNM
þ of T �

TNMþTYL
þ coincides with

the boundary value morphism due to Monteiro Fernandes [MF1].

Proof. (1) follows from the fact that s�NjM : f �1
p CNjM ! f �1

p
~CCNjM is a mono-

morphism by Proposition 4.3.

(2) Comparing our construction with that of Laurent-Monteiro Fernandes [L-

MF2], we easily obtain the desired result. r

Remark 5.3. By Theorem 2.1, Proposition 3.5 and Theorem 3.14, for any regular-

specializable DX jY -Module M we have

f �1RHomDX
ðM; nY ðBOLÞÞF f �1t�1

Y RHomDY
ðCY ðMÞ;OY Þ:

Next we shall discuss the solvability.

Definition 5.4. Let M be a coherent DX jY -Module. Then we say M is near-

hyperbolic at x0 A N (in dt-codirection) if RHomDX
ðM;OX Þ is near-hyperbolic in the

sense of Definition 2.4. We remark that SSðRHomDX
ðM;OX ÞÞ ¼ charðMÞ.

Remark 5.5. As is shown by Laurent-Monteiro Fernandes [L-MF2, Lemma 1.3.2],

the near-hyperbolicity condition is weaker than the Fuchsian hyperbolicity condition due

to Tahara [T] (cf. Bony-Schapira [B-S2]).

The following theorem is a direct consequence of Theorem 2.5:

Theorem 5.6. Let M be a regular-specializable DX jY -Module. Assume that M is

near-hyperbolic at x0 A N. Then, for any p� ¼ ðx0; t0;
ffiffiffiffiffiffiffi

�1
p

hx0; dxiÞ A T �
TNMþTYL

þ,

b : RHomDX
ðM;CNjMÞp� ! RHomDY

ðCY ðMÞ;CNÞtYpðp �Þ

is an isomorphism. In particular,

b : RHomDX
ðM; nNðBMÞÞðx0; t0Þ ! RHomDY

ðCY ðMÞ;BNÞx0
is an isomorphism.

6. Examples.

Example 6.1. Let CF
NjM be the sheaf of F -mild microfunctions on T �

TNM
TYL, and

set ~CCA
NjM :¼ H

nmNðOX jY Þn orN=Y (see Oaku [Oa2], [Oa3], and Oaku-Yamazaki [O-Y]).

Let M be a regular-specializable DX jY -Module. Set MY :¼ H
0
Di�M ¼ OY ni�1OX

i�1
M.
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Since M is a Fuchsian system in the sense of Laurent-Monteiro Fernandes [L-MF1], by

the argument in Oaku-Yamazaki [O-Y] we have the following commutative diagram:

f �1
p HomDX

ðM;CF
NjMÞ >��! f �1

p t�1
YpHomDX

ðM; ~CCA
NjMÞ ���!@

f �1
p t�1

YpHomDY
ðMY ;CNÞ

?
?
y

< ?
?
y

< ?
?
y

<

f �1
p HomDX

ðM;CNjMÞ >��! f �1
p HomDX

ðM; ~CCNjMÞ ���!@

f �1
p t�1

YpHomDY
ðCY ðMÞ;CNÞ;

that is, the boundary value morphism

gF : f �1
p HomDX

ðM;CF
NjMÞq f �1

p t�1
YpHomDY

ðMY ;CNÞ

and b0 are compatible. In particular, suppose that Y is non-characteristic for M.

Then, it is known that CY ðMÞ !@ Di�MFMY and by Oaku [Oa3, Propositions 2.1, 2.2]

(see also Oaku-Yamazaki [O-Y, Proposition 5.1]) we have:

~ggNjM : RHomDX
ðM; ~CCNjMÞ !@ t�1

YpRHomDY
ðMY ;CNÞ:

In this case we see that b0 is equivalent to the non-characteristic boundary value

morphism (see Oaku [Oa3]). In particular, the restriction of b0 to the zero-section

TNM
þ is equivalent to Komatsu-Kawai [Ko-K] and Schapira [Sc1]. In addition, if

Gdt A T �
NM is hyperbolic for M, then the nearly-hyperbolic condition is satisfied (cf.

Kashiwara-Schapira [K-S1]) and b is an isomorphism.

Example 6.2. Assume that X ¼ C
nþ1 by admissible coordinates.

(1) Let bðaÞ be a non-zero polynomial with degree m, and Q A D
ðmÞ
X V F

�1
Y ðDX Þ.

Set

M :¼ DX=DX ðbðQÞ þQÞ:

Then M is regular-specializable. Assume that

bðaÞ ¼
Ym

j¼1

ða� ajÞnj ðai � aj B Z for 1a i0 ja mÞ

(note that
Pm

j¼1 nj ¼ m). Then a direct calculation shows that CY ðMÞFD
m
Y , and b0

is equivalent to g in Oaku [Oa3, Theorem 2.4 and Remark]: Let p� ¼ ðx0; t0;
ffiffiffiffiffiffiffi

�1
p

hx0; dxiÞ be a point of T �
TNMþTYL

þ, and f ðx; tÞ a germ of HomDX
ðM;CNjMÞ at

p�. Then, since RHomDX
ðM;NX jY ÞFRHomDX

ðM; s�1nY ðOX ÞÞ by virtue of Theorem

3.14, we can see that as a germ of HomDX
ðM; ~CCNjMÞ at p�, f ðx; tÞ has a defining

function

Fðz; tÞ ¼
Xm

j¼1

X
nj

k¼1

Fjkðz; tÞtaj ðlog tÞk�1:

Here each Fjkðz; tÞ is holomorphic on a neighborhood of fðz; 0Þ A X ;

jx0 � zj < e; Im z A Gg with a positive constant e and an open convex cone G such

that x0 A IntG �, where G � denotes the dual cone. Then, b0ð f Þ is equivalent to

fspNðFjkðxþ
ffiffiffiffiffiffiffi

�1
p

G0; 0ÞÞ; 1a ka nj ; 1a ja mg. Moreover, if the principal symbol of

bðQÞ þQ is written as tmPðz; t; z�; t�Þ for a hyperbolic polynomial P at dt-codirection,
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then the nearly-hyperbolic condition is satisfied. Note that this operator is a special

case of Fuchsian hyperbolic operators due to Tahara [T].

(2) Take an operator Aðz; qzÞ A D
ð1Þ
Y at the origin and set A0 :¼ 1 and Að jÞ :¼

ð1=j!ÞA � Að j�1Þ A D
ð jÞ
Y for jb 1. Let p� ¼ ð0; 1;

ffiffiffiffiffiffiffi

�1
p

hx; dxiÞ be a point of T �
TNMþTYL

þ

and set p0 :¼ ð0;
ffiffiffiffiffiffiffi

�1
p

hx; dxiÞ A T �
NY . Set

P :¼ ðQ� a1ÞðQ� a2Þ � tAðz; qzÞQ A DX jY ;

where ða1; a2Þ A C
2. Consider M :¼ DX=DXP ¼ DXu, where u :¼ 1 modP. Then we

see that CY ðMÞFD
2
Y and FY ðMÞFD

2
Y . Let f ðx; tÞ be a germ of HomDX

ðM;CNjMÞ
at p�. We regard f ðx; tÞ as a germ of HomDX

ðM; ~CCNjMÞ at p�. Then:

(i) If ða1; a2Þ ¼ ð�1; 0Þ, then

FY ðMÞ ¼ F
0
Y ðDX Þuþ F

1
Y ðDX ÞðQþ 1Þu

F
�1
Y ðDX Þuþ F

0
Y ðDX ÞðQþ 1Þu

¼ DY ½u� þDY ½qtðQþ 1Þu�;

CY ðMÞ ¼ F
�1
Y ðDX Þuþ F

0
Y ðDX ÞðQþ 1Þu

F
�2
Y ðDX Þuþ F

�1
Y ðDX ÞðQþ 1Þu

¼ DY ½tu� þDY ½ðQþ 1Þu�;

and Var : ð½u�; ½qtðQ� 1Þu�Þ 7! ð½tu�; 0Þ. Hence MY FDY ½ðQþ 1Þu�FDY . In this case

f ðx; tÞ has the following defining function:

Fðz; tÞ ¼ U0ðzÞ þ
U�1ðzÞ

t
�
X

y

j¼1

Að jþ1ÞU�1ðzÞ
j

t j � AU�1ðzÞ log t;

and b0ð f ðx; tÞÞ is given by fspNðUiÞðxÞgi¼�1;0 at p0. If f ðx; tÞ is F -mild at p0, then

U�1ðzÞ ¼ 0 and gF ð f ðx; tÞÞ ¼ f f ðx;þ0Þg ¼ fspNðU0ÞðxÞg.
(ii) If ða1; a2Þ ¼ ð0; 1Þ, then:

FY ðMÞ ¼ F
1
Y ðDX Þuþ F

2
Y ðDX ÞQu

F
0
Y ðDX Þuþ F

1
Y ðDX ÞQu

¼ DY ½qtu� þDY ½q2tQu�;

CY ðMÞ ¼ F
0
Y ðDX Þuþ F

1
Y ðDX ÞQu

F
�1
Y ðDX Þuþ F

0
Y ðDX ÞQu

¼ DY ½u� þDY ½qtQu�;

and Var½qtu� ¼ Var½q2tQu� ¼ 0. Hence MY FDY ½u� þDY ½qtQu�FD
2
Y . In this case

f ðx; tÞ has the following defining function:

Fðz; tÞ ¼ U0ðzÞ þ
X

y

j¼0

Að jÞU1ðzÞ
j þ 1

t jþ1;

and f ðx; tÞ is always F -mild. Hence b0ð f ðx; tÞÞ at p0 coincides with

gF ð f ðx; tÞÞ ¼ fq i
t f ðx;þ0Þgi¼0;1 ¼ fspNðUiÞðxÞgi¼0;1:

Indeed if t0 0, M is isomorphic to DX=DX ðq2t � Aðz; qzÞqtÞ for which Y is non-

characteristic.
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(iii) If ða1; a2Þ ¼ ð1; 1Þ, then

FY ðMÞ ¼ F
2
Y ðDX Þu

F
1
Y ðDX Þu

¼ DY ½q2tu� þDY ½q2t ðQ� 1Þu�;

CY ðMÞ ¼ F
1
Y ðDX Þu

F
0
Y ðDX Þu

¼ DY ½qtu� þDY ½qtðQ� 1Þu�;

and Var : ð½q2tu�; ½q2t ðQ� 1Þu�Þ 7! ð2p
ffiffiffiffiffiffiffi

�1
p

½qtðQ� 1Þu�; 0Þ. Hence MY FDY ½qtu�FDY .

In this case f ðx; tÞ has the following defining function:

Fðz; tÞ ¼
X

y

j¼0

Að jÞU0ðzÞt jþ1 �
X

y

j¼1

X

j

k¼1

Að jÞU1ðzÞ
k

t jþ1 þ
X

y

j¼0

Að jÞU1ðzÞt jþ1 log t;

and b0ð f ðx; tÞÞ is given by fspNðUiÞðxÞgi¼0;1 at p0. If f ðx; tÞ is F -mild at p0, then

U1ðzÞ ¼ 0 and gF ð f ðx; tÞÞ ¼ fqt f ðx;þ0Þg ¼ fspNðU0ÞðxÞg.
(iv) If ða1; a2Þ ¼ ð1; 2Þ, then:

FY ðMÞ ¼ F
2
Y ðDX Þuþ F

3
Y ðDX ÞðQ� 1Þu

F
1
Y ðDX Þuþ F

2
Y ðDX ÞðQ� 1Þu

¼ DY ½q2tu� þDY ½q3t ðQ� 1Þu�;

CY ðMÞ ¼ F
1
Y ðDX Þuþ F

2
Y ðDX ÞðQ� 1Þu

F
0
Y ðDX Þuþ F

1
Y ðDX ÞðQ� 1Þu

¼ DY ½qtu� þDY ½q2t ðQ� 1Þu�;

and Var : ð½q2tu�; ½q3t ðQ� 1Þu�Þ 7! ð0; 2A½qtu�Þ. Hence

MY F

DY ½qtu� þDY ½q2t ðQ� 1Þu�
DYA½qtu�

:

In this case f ðx; tÞ has the following defining function:

Fðz; tÞ ¼
X

y

j¼0

Að jÞU2ðzÞt jþ2 þU1ðzÞt�
X

y

j¼2

X

j�1

k¼1

jAð jÞU1ðzÞ
k

t jþ1

þ
X

y

j¼0

ð j þ 1ÞAð jþ1ÞU1ðzÞt j

 !

t2 log t;

and b0ð f ðx; tÞÞ is given by fspNðUiÞðxÞgi¼1;2 at p0. f ðx; tÞ is F -mild under the

condition that AU1ðzÞ ¼ 0, and in this case gF ð f ðx; tÞÞ at p0 is given by

gF ð f3ðx; tÞÞ ¼ fq i
t f ðx;þ0Þgi¼1;2 ¼ fspNðU1ÞðxÞ; 2 spNðU2ÞðxÞg

with Aqt f ðx;þ0Þ ¼ A spNðU1ÞðxÞ ¼ 0.
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Publ. Res. Inst. Math. Sci., 24 (1981), 397–431.

[L-MF2] Y. Laurent and T. Monteiro Fernandes, Topological boundary values and regular D-modules,

Duke Math. J., 93 (1998), 207–230.
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Conf. de Rábida, 1984, Travaux en Cours, 24, Herman, Paris, 1987, pp. 53–98.

[S-K-K] M. Sato, T. Kawai and M. Kashiwara, Microfunctions and pseudo-di¤erential equations, In:

Hyperfunctions and Pseudo-Di¤erential Equations, (ed. H. Komatsu), Proceedings, Katata, 1971,

Lecture Notes in Math., 287, Springer, Berlin-Heidelberg-New York, 1973, pp. 265–529.

[Sc1] P. Schapira, Problème de Dirichlet et solutions hyperfonctions des équations elliptiques, Boll. Un.
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