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Abstract. We consider Riemann surfaces of infinite type and their reduced

Teichmüller spaces. The reduced Teichmüller space admits the action of the reduced

mapping class group. Generally, the action is not discrete while it is faithful. We give

su‰cient conditions for the discreteness of the action in terms of the geometry of Riemann

surfaces.

1. Introduction.

The mapping class group (or the Teichmüller modular group) ModðRÞ for a Riemann

surface R is the set of equivalence classes of quasiconformal automorphisms of R (see

[10]). Two quasiconformal automorphisms h1 and h2 of R are equivalent if h�1
2 � h1 is

homotopic to the identity by a homotopy that keeps every point of ideal boundary qR

fixed throughout. In the theory of Teichmüller spaces of Riemann surfaces of ana-

lytically finite type, the mapping class group plays an important role in various fields.

This is a group of the biholomorphic automorphisms of the Teichmüller space and it

acts faithfully and properly discontinuously. On the other hand, it seems that there

are few studies on ModðRÞ for a Riemann surface R of infinite type. Recently, Earle-

Gardiner-Lakic showed in [3] that it acts faithfully on the Teichmüller space TðRÞ. In

this paper, we consider the discreteness of the action of the mapping class group. We

say that a subgroup G of ModðRÞ is discrete if the orbit of any point of TðRÞ under the

G action is discrete.

For a Riemann surface of analytically finite type, ModðRÞ is discrete, while in the

case of infinite type, ModðRÞ is not necessarily discrete. In particular, if R has a

boundary curve (border), ModðRÞ is not discrete since a slight change of the boundary

value of a quasiconformal map produces a di¤erent mapping class in ModðRÞ. Thus,

it is natural that we consider another group, the reduced mapping class group. The

reduced mapping class group Mod#ðRÞ is the set of homotopy classes of quasiconformal

automorphisms of R whose homotopy maps do not necessarily keep points of qR

fixed. The reduced mapping class group is also important because it naturally acts on

the reduced Teichmüller space.

We explore the problem of discreteness of the reduced mapping class group for

Riemann surfaces of infinite type. Actually, if R is a Riemann surface of topologically
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finite type, then Mod#ðRÞ is discrete. However, Mod#ðRÞ is not discrete in general.

For example, if R has a sequence of disjoint simple closed geodesics which are not freely

homotopic to a boundary component and whose lengths tend to 0, then we see that

Mod#ðRÞ is not discrete (See §3 and §6). The purpose of this paper is to give a suf-

ficient condition for discreteness.

The authors thank Katsuhiko Matsuzaki for his valuable suggestions. The authors

also thank the referee for his/her valuable suggestions and comments.

2. The mapping class group for the reduced Teichmüller space.

Throughout this paper, we assume that a Riemann surface R is hyperbolic, that is,

it is represented by H=G for some Fuchsian group G acting on the upper half-plane H

with the hyperbolic metric jdzj=y ðz ¼ xþ y
ffiffiffiffiffiffiffi

�1
p

Þ. We also assume that the Fuchsian

group G is always non-elementary. In other words, we assume that the group G is non-

abelian. A Riemann surface is called of analytically finite type if the hyperbolic area is

finite, and is called of analytically infinite type if the area is not finite.

For an open Riemann surface R, a relatively non-compact connected component

of the complement of a compact subset of R is called an end. An end V of R is called

a hole if it is doubly connected and the hyperbolic area of V is infinite. A doubly

connected end of R is called a cusp if the hyperbolic area of V is finite. A cusp V with

smooth relative boundary is conformally equivalent to the punctured disk f0 < jzj < 1g.
An ideal boundary of R corresponding to the origin z ¼ 0 is called a puncture.

Notation. The hyperbolic distance on H and on a Riemann surface R is denoted

by dHð� ; �Þ and dRð� ; �Þ respectively. Further the hyperbolic length of a curve c in H or

in R is denoted by lðcÞ.

We review the theory of Teichmüller spaces and mapping class groups. See [4], [6]

and [10] for the details.

Definition 1. Fix a Riemann surface R. For pairs ðSj; fjÞ of Riemann surfaces

Sj and quasiconformal maps fj of R onto Sj ð j ¼ 1; 2Þ, we say that ðS1; f1Þ and ðS2; f2Þ
are RT (reduced Teichmüller) equivalent if there exists a conformal map h of S1 onto S2

such that f �1
2 � h � f1 is homotopic to the identity on R. The reduced Teichmüller space

T #ðRÞ with the base Riemann surface R is the set of all the RT equivalence classes

½S; f � of such pairs ðS; f Þ as above.

Definition 2. We say that two quasiconformal automorphisms h1 and h2 of R are

RT equivalent if h�1
2 � h1 is homotopic to the identity on R. The reduced mapping class

group Mod#ðRÞ is the set of all the RT equivalence classes ½h� of quasiconformal

automorphisms h of R. Furthermore, for a simple closed geodesic c on R, we set

Mod#
c ðRÞ ¼ f½h� A Mod#ðRÞ j hðcÞ is freely homotopic to cg:

Every quasiconformal map of R ¼ H=G induces an isomorphism of G into

PSLð2;RÞ. We see that if two automorphisms h1 and h2 are RT equivalent then they

induce the same isomorphism modulo PSLð2;RÞ conjugacy.
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If R is a compact Riemann surface, then the reduced Teichmüller space T #ðRÞ is

nothing but the ordinary Teichmüller space TðRÞ of R and the reduced mapping class

group Mod#ðRÞ is the ordinary mapping class group ModðRÞ.

Similar to the case of TðRÞ, the reduced Teichmüller space T #ðRÞ is equipped with

the reduced Teichmüller distance dTð� ; �Þ defined by

dTð½S1; f1�; ½S2; f2�Þ ¼
1

2
inf
g1;g2

logKðg1 � g
�1
2 Þ;

where Kð�Þ is the maximal dilatation of a quasiconformal map and the infimum is taken

over all quasiconformal maps g1 and g2 determining ½S1; f1� and ½S2; f2�, respectively. It

is known that T #ðRÞ is a complete metric space with respect to this dT . An element

o ¼ ½h� A Mod#ðRÞ induces an automorphism of T #ðRÞ by

½S; f � 7! ½S; f � h�1�:

This is an isometric automorphism with respect to dT and denoted by o�. Namely, we

have a homomorphism Mod#ðRÞ ! AutðT #ðRÞÞ.

Remark 1. In [3], it is proved that for any Riemann surface R of analytically

infinite type (and if 2gþ n > 4 when R is of finite ðg; nÞ-type), the homomorphism

Mod#ðRÞ ! AutðT #ðRÞÞ as above is faithful. Therefore we can identify o� with o and

omit the asterisk hereafter.

Definition 3. We say that a subgroup G of Mod#ðRÞ is discrete if every sequence

fongHG satisfying limn!y onðpÞ ¼ q for some pair of points p; q in T #ðRÞ is

eventually a constant sequence, that is, there exists an N A N such that on ¼ oN for

every nbN.

3. Examples.

As we noted in the introduction, if R is a compact Riemann surface, then the

action of ModðRÞ on TðRÞ is discrete. Contrary to this case, there are various kinds of

examples which show non-discreteness of Mod#ðRÞ for a Riemann surface R of infinite

type.

Example 1. Suppose that R has a sequence fcng of distinct simple closed geodesics

that are not freely homotopic to a boundary component and that these hyperbolic

lengths tend to 0. Then the Dehn twist along each cn gives an element on of Mod#ðRÞ

such that the sequence fonðp0Þg converges to p0 as n ! y, where p0 ¼ ½R; id� is the

base point of T #ðRÞ. Hence Mod#ðRÞ is not discrete.

There exists a Riemann surface R such that it has no short geodesics but that

Mod#ðRÞ is not discrete.

Example 2. We construct a Riemann surface R such that it has no short geodesics

and but contains a point with arbitrarily large injectivity radius with respect to the

hyperbolic metric (in fact, R does not satisfy the second condition in Theorem 1, which

is stated in Section 4), and that Mod#ðRÞ is not discrete.
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Set

R ¼ C � 6
y

n¼1

6
m AZ

m

n
þ ð2nþ 1Þ

ffiffiffiffiffiffiffi

�1
pn o

:

To show that Mod#ðRÞ is not discrete, set

fnðzÞ ¼
x� ðy� 2n� 2Þ=nþ y

ffiffiffiffiffiffiffi

�1
p

ð2nþ 1a y < 2nþ 2Þ
xþ ðy� 2nÞ=nþ y

ffiffiffiffiffiffiffi

�1
p

ð2na y < 2nþ 1Þ
xþ y

ffiffiffiffiffiffiffi

�1
p

elsewhere.

8

>

<

>

:

Then fn are quasiconformal automorphisms of R and the maximal dilatations of f fng
tend to 1. Thus Mod#ðRÞ is not discrete.

Now, we see that R does not satisfy the second condition in Theorem 1. We put

An ¼ RV fz j Im z ¼ 2nþ 1g and am;n ¼ m=nþ ð2nþ 1Þ
ffiffiffiffiffiffiffi

�1
p

ðn A N ;m A ZÞ. Then we

shall prove that

dRðAn;Anþ1Þ ! y ðn ! yÞ:ð1Þ

To prove this, we show that the injectivity radii at bn ¼ 2n
ffiffiffiffiffiffiffi

�1
p

tend to y as n ! y.

The length of any non-trivial closed curve passing through bn is greater than dn ¼
infm dRðbn; Im;n U Im;nþ1Þ, where Im;n is the segment connecting am;n and amþ1;n. Set

jm;nðzÞ ¼ nðz� am;nÞ:

Then, jm;n is a conformal mapping from C � fam;n; amþ1;ng onto the Riemann surface

S ¼ Cnf0; 1g. From the decreasing property of the hyperbolic distance, we have

dRðbn; Im;nÞb dSðjm;nðbnÞ; jm;nðIm;nÞÞ

¼ dSð�m� n
ffiffiffiffiffiffiffi

�1
p

; ð0; 1ÞÞ:

Obviously, dSð�m� n
ffiffiffiffiffiffiffi

�1
p

; ð0; 1ÞÞ ! y as jmj þ jnj ! y. Therefore, limn!y dn ¼
y and the injectivity radii at bn tend to y as n ! y. Hence we see that, for any

M > 0, there exists n A Z such that An and Anþ1 belong to distinct components of RM

each other. This implies that R does not satisfy the second condition in Theorem 1.

Next, we show that R has no short geodesics. Suppose that there exists a sequence

fckg of simple closed geodesics on R such that limk!y lðckÞ ¼ 0. From (1) we may

assume that ck contains two distinct points am;n and am 0;n. By translation, we may also

assume that ck contains a0;n; am;n but does not contain a�m;n. From the decreasing

property of the hyperbolic metric as above, we see that the hyperbolic length of ck in R is

greater than the length in R 0, where R 0 ¼ ĈCnfy; a�m;n; a0;n; am;ng which is conformally

equivalent to R0 ¼ ĈCnfy;�1; 0; 1g. It is well known that the length of any closed

geodesic in R0 is greater than some positive constant L. Thus, we have lðckÞ > L > 0

and it is a contradiction.

We exhibit an example of a planar Riemann surface R without cusps but containing

a point with arbitrarily large injectivity radius with respect to the hyperbolic metric such

that Mod#ðRÞ is not discrete.
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Example 3. We construct a Riemann surface R without cusps such that it satisfies

the first condition in Theorem 1 but does not satisfy the second condition and that

Mod#ðRÞ is not discrete.

For each nb 2, we set

In ¼ ½�1; 1�U 6
y

k¼1

In;k;

where

In;k ¼ fxþ ð1� 1=nÞk
ffiffiffiffiffiffiffi

�1
p

j�1a xa 1g

U fxþ ð1þ ðk � 1Þ=nÞ
ffiffiffiffiffiffiffi

�1
p

j�1a xa 1g:

We take infinitely many copies fRng of C � fy
ffiffiffiffiffiffiffi

�1
p

j ya�1g and set R 0
n ¼ Rn � In

for each nb 2. We make a Riemann surface R by gluing the right hand side of

fy
ffiffiffiffiffiffiffi

�1
p

j y < �1g on R 0
n with the left hand side of fy

ffiffiffiffiffiffiffi

�1
p

j y < �1g on R 0
n�1

ðn ¼ 3; 4; . . .Þ along the imaginary axis. By using the same argument as that of Ex-

ample 2, we can show that the Riemann surface R satisfies the first condition in

Theorem 1 but does not satisfy the second condition in Theorem 1.

Consider a quasiconformal map fn of R 0
n defined by

fnðzÞ ¼
xþ ð1� 1=nÞy

ffiffiffiffiffiffiffi

�1
p

ð0 < ya 1Þ
xþ ðy� 1=nÞ

ffiffiffiffiffiffiffi

�1
p

ðy > 1Þ
xþ y

ffiffiffiffiffiffiffi

�1
p

elsewhere.

8

>

<

>

:

It is easily seen that the maximal dilatations of fn converge to 1 as n ! y. Obviously,

fn is extended to a quasiconformal automorphism of R by setting it the identity on

R� R 0
n and we will write it by the same letter fn. Thus the quasiconformal map fn

gives an element ½ fn� of Mod#ðRÞ such that f½ fn�ðp0Þg converges to p0 as n ! y, where

p0 ¼ ½R; id� is the base point of T #ðRÞ. Hence we conclude that Mod#ðRÞ is not

discrete.

Even if a Riemann surface R has no short geodesics and no points with arbitrarily

large injectivity radius, Mod#ðRÞ may not be discrete.

Example 4. We construct a Riemann surface R such that it has no short geodesics

and no points with arbitrarily large injectivity radius but that Mod#ðRÞ is not discrete.

Consider a torus S with two geodesic borders with the same length one another. We

take infinity many copies fSngyn¼�y
of S. We denote the two geodesic borders of Sn by

ln;1 and ln;2. Construct a Riemann surface R by gluing the ln�1;2 with ln;1 and gluing

ln;2 with lnþ1;1 for each n. Let f be a conformal automorphism of R which sends Sn

to Snþ1, and we set fn :¼ f n. Then we see that ½ fn�0 id as an element of Mod#ðRÞ.
However, ½ fn�ðp0Þ ¼ p0 for all n, where p0 ¼ ½R; id� A T #ðRÞ because fn : R ! R is a

conformal mapping. Hence, Mod#ðRÞ is not discrete.

4. Main Results.

As Example 1 shows, for the discreteness of the mapping class group, it is necessary

that there exist no sequences of geodesics on the Riemann surface whose lengths
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converge to zero. Examples 2, 3 show that some conditions for the injectivity radius

are required for the discreteness.

Definition 4. For a given M > 0, we define RM to be the subset of points p A R

such that there exists a non-trivial simple closed curve passing through p whose

hyperbolic length is less than M. The set Re is called the e-thin part of R if e > 0 is

smaller than the Margulis constant. Further, a connected component of the e-thin part

that corresponds to a puncture is called the cusp neighborhood.

Now, we exhibit our main results.

Theorem 1. Let R be a Riemann surface with the non-abelian fundamental group.

Suppose that R satisfies the following two conditions:

(1) There exists a constant e > 0 such that the e-thin part of R consists only of cusp

neighborhoods.

(2) There exist a constant M > 0 and a connected component R�
M of RM such that

the homomorphism of p1ðR
�
MÞ to p1ðRÞ which is induced by the inclusion map of

R�
M to R is surjective.

Then Mod#
c ðRÞ is discrete for any simple closed geodesic c on R.

Remark 2. Example 1 shows that the first condition in Theorem 1 is necessary for

the discreteness. On the other hand, the Riemann surfaces in Examples 2 and 3 satisfy

the first condition but do not satisfy the second condition. Example 4 shows that there

exists a Riemann surface such that it satisfies both the conditions but Mod#ðRÞ is not

discrete.

Remark 3. If R satisfies the second condition in Theorem 1 for a constant M,

then it satisfies the condition for all M 0
bM.

Remark 4. The region RM is not necessarily connected for large M even if

the homomorphism: p1ðRMÞ ! p1ðRÞ is surjective. Moreover, in Example 7 of §6, we

give a Riemann surface R and divergent sequences fMng; fM
0
ng such that

0 Mn < M 0
n < Mnþ1 < M 0

nþ1 ðn ¼ 1; 2; . . .Þ;
0 RMn

is connected for all n and the homomorphism: p1ðRMn
Þ ! p1ðRÞ is

surjective;
0 RM 0

n
is not connected for all n but the homomorphism: p1ðR

�
M 0

n
Þ ! p1ðRÞ is

surjective for some component R�
M 0

n
of RM 0

n
.

For a hyperbolic Riemann surface R ¼ H=G , we consider the convex core CðGÞ of

the limit set of G , that is, the hyperbolic convex envelope of LðGÞHRU fyg in H .

Since the convex core CðGÞ is G-invariant, it determines a region CðRÞ in R and we call

the region the convex core of R.

Definition 5. We say that a Riemann surface R has e-uniform geometry if the

following two conditions are satisfied for some e > 0:

(1) The e-thin part of R consists of cusp neighborhoods.

(2) The injectivity radius on the convex core CðRÞ of R is less than e
�1.

Since CðRÞ is connected and it contains any closed geodesic on R, from Theorem 1

we have the following immediately.
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Corollary 1. Let R be a Riemann surface with e-uniform geometry for some

e > 0. Then Mod#
c ðRÞ is discrete for any simple closed geodesic c on R.

Remark 5. The conditions in Theorem 1 do not imply the uniform geometry.

For example, set R ¼ C � Z. Then R has a Fuchsian model of the first kind, and

hence the convex core CðRÞ coincides with R. By considering a sequence fzng in R

with jIm znj ! y as n ! y, we see that R has points with arbitrarily large injectivity

radius. Hence, R does not have e-uniform geometry for any e > 0. On the other hand,

it is easily seen that R satisfies the conditions in Theorem 1.

Remark 6. The conditions having uniform geometry were first stated as no

short geodesics and no large disk condition. Nakanishi and Yamamoto [11] shows that

under these conditions the outradius of the Teichmüller space is strictly less than 6.

Ohtake [12] uses these conditions to show that the norm of the Poincaré series is strictly

less than one which generalizes a result in McMullen [9].

It is important to give conditions for the mapping class group to be discrete. By

using the above results, we have the following.

Theorem 2. Let R be a Riemann surface satisfying the conditions in Theorem 1 or

Corollary 1. Suppose that either the genus, the number of cusps or the number of holes of

R is positive finite. Then Mod#ðRÞ is discrete.

5. Proofs of main results.

First of all, we note the geometry of a component of RM .

Proposition 1. For M > 0, let R�
M be a connected component of RM defined in

Definition 4 and Re the e-thin part of R for some small e < M. We assume that R�
M � Re

is not of type ð0; 3Þ. Then there exists a constant M1 > 0 depending only on M and e

such that for any point p A R�
M � Re there exists a simple closed curve cp passing through

p with lðcpÞ < M1 which does not surround a puncture of R.

Proof. Let G be a Fuchsian group representing R. Take an arbitrary point p in

R�
M � Re. From the definition, we may find a simple closed curve cp C p whose length

is less than M. If cp is not homotopic to a simple closed curve which surrounds a

puncture of R, then there is nothing to prove.

Thus, we suppose that cp surrounds a puncture of R. Then, a parabolic trans-

formation g A G represents cp. We may assume that gðzÞ ¼ zþ 1. For r > 0, we take

dðrÞ so that

dHðdðrÞ
ffiffiffiffiffiffiffi

�1
p

; dðrÞ
ffiffiffiffiffiffiffi

�1
p

þ 1Þ ¼ r;

It is easily seen that dðrÞ ¼ ð2 sinh ðr=2ÞÞ�1 for r > 0. We put

SðM; eÞ ¼ fz A H j dðMÞa Im za dðeÞ; 0aRe za 1g:

Since lðcpÞ < M and p B Re, a lift Cp of cp contains a point in SðM; eÞ.
Let Lz ðz A HÞ denote the geodesic arc from z to zþ 1. Suppose that there exists

a point z A SðM; eÞ such that the projection lz in R of Lz via the canonical projection

On the action of the mapping class group 1075



p : H ! R ¼ H=G is not simple. Then lz contains a non-trivial simple closed curve c 0z
with lðc 0zÞ < lðlzÞ < M.

If c 0z does not surround a puncture of R, then connect p and c 0z by a simple arc on

R. Then, we see that there exists a simple closed curve passing through p with length

less than M1 ¼ 2ðM þ dHðdðeÞ
ffiffiffiffiffiffiffi
�1

p
; dðMÞ

ffiffiffiffiffiffiffi
�1

p
ÞÞ which does not surround a puncture

of R.

Next, suppose that c 0z surrounds a puncture of R. Noting that lz is the projection

of the geodesic arc Lz, we verify that c 0z is not homotopic to cp. In other words, the

curve c 0z surrounds another puncture of R. Connecting c 0z and cp, we have a simple

closed curve passing through p with length less than M1. Since R�
M � Re is not of type

ð0; 3Þ, the curve does not surround a puncture of R.

Finally, we suppose that lz is simple for any z A SðM; eÞ. Let us consider a

geodesic Lz for z A gR�
MR�
M V fz A H j Im z ¼ dðMÞg, where gR�

MR�
M is a lift of R�

M with
gR�
MR�
M VSðM; eÞ0q. From the definition, lðLzÞ ¼ M. Therefore, there exists a simple

closed curve cz in R�
M passing through pðzÞ with lðczÞ < M ¼ lðLzÞ ¼ lðlzÞ. Obviously,

the curve cz is not homotopic to lz ¼ pðLzÞ because lz is the shortest simple closed curve

which passes through pðzÞ and surrounds the puncture. Therefore, by using the same

argument as above, we have a non-trivial simple closed curve passing through p with

length less than M1 which does not surround a puncture of R. r

To prove the main results, the following proposition on the hyperbolic geometry is

crucial.

Proposition 2. Let G be a Fuchsian model on the upper half-plane H of a Riemann

surface R. Assume that G is non-elementary. Let M and D be positive constants.

Then there is a constant A > 1 depending only on M and D that satisfies the following

property: for a quasiconformal automorphism f of H such that f � G � f �1 ¼ G , suppose

that there exist distinct hyperbolic elements g1; g2 and g3 in G such that

(1) translation lengths of gj ð j ¼ 1; 2; 3Þ are less than M,

(2) the projections of the axes lj of gj to R are simple closed geodesics,

(3) the distances between a point z1 on l1 and lj ð j ¼ 2; 3Þ are less than D, and

(4) an isomorphism w of G induced by f satisfies

wðg1Þ ¼ g1; wðg2Þ ¼ g2; wðg3Þ0 g3:

Then, Kð f ÞbA.

To prove this proposition, we prepare some known results.

Lemma 1 ([7], Theorem 1). Let f be a quasiconformal automorphism of C fixing 0

and 1, and suppose that there is a point z0 in C � f0; 1g such that

logM ¼ d1ðz0; f ðz0ÞÞ > 0:

Then Kð f ÞbM 2, where d1ð ; Þ is the hyperbolic distance on C � f0; 1g.

Lemma 2 ([13], Lemma 3.1). Let f be a quasiconformal mapping of a Riemann

surface R onto another Riemann surface S, and c be a simple closed geodesic on R with

hyperbolic length L. Then the hyperbolic length of a closed geodesic on S homotopic to

f ðcÞ is not greater than Kð f ÞL.
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Lemma 3 ([5]). For a given M > 0, let g and g 0 be arbitrary two distinct hyperbolic

elements of G with translation lengths less than M. Suppose that the projections of the

axes of g and g 0 to R are simple closed geodesics which are coincident or disjoint. Then

the axes have a distance greater than C > 0 depending only on M.

We also need a variant of the above lemma.

Lemma 4. For a given M > 0, let g and g 0 be arbitrary two hyperbolic elements of

G with translation lengths less than M. Suppose that the projections of the axes of g and

g 0 to R are simple closed geodesics which intersect one another. Then the axes make an

angle greater than C > 0 depending only on M.

Proof. Assume that the translation length of g 0 is not less than that of g. Then,

on R, the closed geodesic l induced by g can not round more than once in the collar of

the geodesic l
0 induced by g 0. Hence we have a desired lower bound for the inter-

section angle of l and l
0. r

Proof of Proposition 2. We may assume that the fixed points of g1 are 0 and y,

and that z1 ¼
ffiffiffiffiffiffiffi

�1
p

A H , hence dHð
ffiffiffiffiffiffiffi

�1
p

; ljÞaD for j ¼ 2; 3. We may also assume that

the maximal dilatation of f is less than 2. Then at least one of the fixed points

of gj ð j ¼ 2; 3Þ is not in U ¼ fx A R j jxj < d or jxj > 1=dg for su‰ciently small d > 0

which depends only on M and D. Indeed, if both fixed points of gj are in U1 ¼
fx A R j jxj < dg for small d > 0, then it contradicts dHð

ffiffiffiffiffiffiffi

�1
p

; ljÞaD. The same ar-

gument works when both fixed points are in U2 ¼ fx A R j jxj > 1=dg. If one fixed point

of gj is in U1 and the other is in U2, then it contradicts Lemma 3 if l1 V lj ¼ q and it

contradicts Lemma 4 if l1 V lj 0q ð j ¼ 2; 3Þ. Therefore, we verify that at least one of

the fixed points of gj ð j ¼ 2; 3Þ is not in U . By using the same argument, we see that

there exists a constant d 0 > 0 depending only on M and D such that all fixed points of

g2 and g3 are in fx A R j d 0 < jxj < 1=d 0g.
Then, since dHð

ffiffiffiffiffiffiffi

�1
p

; l3ÞaD, the Euclidean diameter diamðl3Þ of l3 is greater than

some r ¼ rðM;DÞ > 0 which depends only on M and D. Set g4 ¼ f � g3 � f �1. By

the assumption we have g4 0 g3. Then, we see that there exists a constant C ¼
CðM;DÞ > 0 depending only on M and D such that an inequality

jb� f ðbÞj > Cð2Þ

holds for at least one fixed point b of g3. Indeed, since Kð f Þ < 2, the translation length

of g4 is less than 2M by Lemma 2. Noting that diamðl3Þ > r, we see that if

l3 V l4 0q, then we have the assertion from Lemma 4, and that Lemma 3 yields the

assertion if l3 V l4 ¼ q.

Take a fixed point a of g2 with

d < jaj < 1=d:ð3Þ

Let f be a Möbius transformation with fð0Þ ¼ 0, fðaÞ ¼ 1 and fðyÞ ¼ y. As we

noted, d 0 < jbj < 1=d 0. Hence, (2) and (3) imply that

daðb; f ðbÞÞ > logL

On the action of the mapping class group 1077



holds for some constant L > 1 depending only on M and D, where dað ; Þ is the hy-

perbolic distance on C � f0; ag. Considering f0; a; bg instead of f0; 1; z0g for z0 ¼ fðbÞ

in Lemma 1, we verify that the assertion follows for A ¼ L2. r

Next, we show a fundamental property of Mod#
c ðRÞ.

Proposition 3. Let R be a Riemann surface. For an arbitrary simple closed

geodesic c on R, let f½ fn�g be a sequence of transformations of Mod#
c ðRÞ that satisfies

limn!y Kð fnÞ ¼ 1. Then there exists a subsequence f½ fnj �g of f½ fn�g such that f fnjg

locally uniformly converges to a conformal automorphism f of R which determines a

transformation ½ f � A Mod#
c ðRÞ.

Proof. First we suppose that c is not homotopic to a boundary component of

R. Then there exists a simple closed geodesic c 0 on R with cV c 0 0q. Hence Lemma

5 (with C ¼ c and K ¼ c 0) below shows the desired result.

Next suppose that c is homotopic to a boundary component of R. We may

assume that the Riemann surface R is not topologically finite. Consider the double R̂R

of R. Then, R̂R is still hyperbolic and the curve c is not homotopic to a boundary

component of R̂R. And it is easily seen that quasiconformal mappings fn : R ! R

ðn ¼ 1; 2; . . .Þ are extended to quasiconformal mappings f̂fn : R̂R ! R̂R with the same

maximal dilatations. Therefore, by the same argument as above, we have the desired

result. r

Lemma 5. Let f fng be a sequence of quasiconformal automorphisms of a hyperbolic

Riemann surface R that satisfies limn!y Kð fnÞ ¼ 1. Suppose that there exist compact

subsets C and K of R such that fnðCÞVK0q for all n. Then there exist a subsequence

f fnjg of f fng and a conformal automorphism f of R such that f fnjg converges to f locally

uniformly on R.

Proof. From the assumption, there exists a sequence fpng on C such that

fnðpnÞ A K . Since C and K are compact, there exist p A C and q A K such that pn ! p

and fnðpnÞ ! q as n ! y. Take lifts of pn; p and q in H , say ~ppn; ~pp and ~qq, respectively,

so that ~ppn ! ~pp as n ! y. We can take lifts ~ffn : H ! H of fn satisfying ~ffnð ~ppnÞ ! ~qq.

Since f ~ffng is a normal family, a subsequence f ~ffnjg of ~ffn converges locally uniformly,

and the limit function ~ff is either a quasiconformal automorphism of H or a constant

in RU fyg (see [8], Theorem 5.3). Since ~ff ð ~ppÞ ¼ ~qq is in H ; ~ff is not a constant. Thus,

it follows from limn!y Kð fnÞ ¼ 1 that ~ff is a conformal automorphism of H . Hence,

f fnjg converges locally uniformly to a conformal automorphism f of R which is the

projection of ~ff . r

Before proving our main theorems, we shall give a su‰cient condition for dis-

creteness of a sequence of Mod#ðRÞ under the conditions in Theorem 1.

Proposition 4. Let R be a Riemann surface satisfying two conditions in Theorem 1,

and f fng be a sequence of quasiconformal automorphisms of R satisfying the following

conditions:
0 fð fnÞ�g converges to the identity, where ð fnÞ� : p1ðRÞ ! p1ðRÞ is an isomorphism

induced by fn.
0 limn!y Kð fnÞ ¼ 1.

Then, fn are homotopic to the identity for su‰ciently large n.
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Proof. Let G be a Fuchsian model of R, and ~ffn a lift of fn for each n. We may

take ~ffn so that the isomorphisms wn : G ! G induced by ~ffn converge to the identity.

Suppose that wn are not eventually the identity. Then the following lemma gives us

three hyperbolic elements g1;n; g2;n and g3;n in G for each n which satisfy the conditions

in Proposition 2 for some constants M 0 and D. Hence, we have

Kð fnÞbA ¼ AðM 0;DÞ > 1:

Since constants M 0 and D are independent of n, this contradicts limn!y Kð fnÞ ¼ 1.

Hence we have proved this proposition. r

Lemma 6. Let R be a Riemann surface satisfying the two conditions in Theorem 1,

and wn are isomorphisms of the Fuchsian model G of R such that wn ! id and that they

are not eventually the identity. Then, for each n, there exist hyperbolic elements gj;n
ð j ¼ 1; 2; 3Þ of G with axes lj;n such that they satisfy the following four conditions:

(1) the projections Lj;n of lj;n to R are simple closed geodesics,

(2) there is a constant M 0 independent of n such that the lengths of Lj;n are less than

M 0,

(3) there is a constant D independent of n such that the distances between a point on

l1;n and lj;n ð j ¼ 2; 3Þ are less than D, and

(4) wnðgj;nÞ ¼ gj;n for j ¼ 1; 2, and wnðg3;nÞ0 g3;n.

Proof. First, we observe a fundamental property of RM . For an arbitrary

point p0 in R�
M � Re, there exists a non-trivial simple closed curve Cp0 passing through

p0 such that it is not homotopic to a puncture and lðCp0Þ < M1, where M1 ¼ M1ðM; eÞ

is a constant in Proposition 1 depending only on M and e. Then there exists a simple

closed geodesic Lp0 which is homotopic to Cp0 . The length of Lp0 is greater than e and

we have

0 < e=M1a lðLp0Þ=lðCp0Þ:

Hence there exists a constant B ¼ BðM; eÞ depending only on e and M such that the

hyperbolic distance between p0 and Lp0 on R is less than B (Figure 1). This implies

that for every point z0 in a lift of R�
M , say gR�

MR�
M , if it is not projected to Re, then there is

an axis l0 of a hyperbolic element of G such that dHðz0; l0ÞaB and that the projection

to R is a simple closed geodesic with length less than M1.

Figure 1. L: a lift of Lp0 , C: a lift of Cp0 .
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By Remark 3, the homomorphism p1ðR
�
M 00Þ ! p1ðRÞ is surjective for all M 00

bM.

Thus, we take a constant M su‰ciently large so that there exist two disjoint simple

closed geodesics L0
1 and L0

2 on R�
M whose lengths are less than M. Let gj ð j ¼ 1; 2Þ be

hyperbolic elements of G which represent L0
j . Since wn ! id ðn ! yÞ, wnðg1Þ ¼ g1 and

wnðg2Þ ¼ g2 for su‰ciently large n. Since wn is not eventually the identity, we may find

a gn A G so that wnðgnÞ0 gn. The following lemma shows more, that is, we may take

better one as gn.

Lemma 7. Let g1; g2 and wn be the same ones as above. For su‰ciently large n,

there exists a hyperbolic element gn of G that satisfies the following two conditions:

(1) wnðgnÞ0 gn,

(2) the projection of the axis of gn on R is a simple closed geodesic with length less

than M,

Proof. Since wn 0 id, there exists an element an of G such that wnðanÞ0 an. We

will show that either an � g1 � a
�1
n or an � g2 � a

�1
n is a desired element. It is obvious that

both of them satisfy the second condition of the lemma. Hence, it su‰ces to show that

one of them satisfies the first condition.

Suppose that wn fixes an � gj � a
�1
n ð j ¼ 1; 2Þ. Then bn � gj � b

�1
n ¼ gj ð j ¼ 1; 2Þ,

where bn ¼ a�1
n � wnðanÞ. Thus, bn fixes all fixed points of g1 and g2. Since g1 and g2

are non-commutative, the Möbius transformation bn fixes four points and it must be the

identity map. This contradicts wnðanÞ0 an. r

Let gn be an element in Lemma 7. By the proof of Lemma 7, we may assume that

gn ¼ an � g1 � a
�1
n for some an A G . We denote by l

0
1 ; l

0
2 and ln the axes of g1; g2 and gn,

respectively. The projection of ln to R is the same as that of l
0
1 .

Fix a point z1 on l
0
1 . There exists the nearest point zn on ln from z1. Since z1

and zn belong to gR�
MR�
M and since gR�

MR�
M is connected by the second condition in Theorem 1,

there exists an oriented smooth curve Cn in gR�
MR�
M from zn to z1. Furthermore, we can

take the curve Cn so that the projection of Cn is in R�
M � Re.

Now, we shall show the statement for M 0 ¼ M1 and D ¼ maxð4ðBþM1 þ 1Þ;

dHðz1; l
0
2 ÞÞ; we consider the following two cases for dHðz1; lnÞ.

1: dHðz1; lnÞa 4ðBþM1 þ 1Þ.

In this case, we set g1;n ¼ g1, g2;n ¼ g2 and g3;n ¼ gn. Then the third condition of the

lemma holds for D. Other three conditions are trivial from the choice of these

transformations.

2: dHðz1; lnÞ > 4ðBþM1 þ 1Þ.

In this case, there are points z2 and w2 on Cn such that zn; z2 and w2 are located in this

order with respect to the orientation of Cn and they satisfy

dHðzn; z2Þ ¼ dHðz2;w2Þ ¼ 2ðBþM1 þ 1Þ:

Since z2 and w2 are points on gR�
MR�
M which are not projected to Re, it follows from the

above observation that there exists an axis l
0
2 (resp. l 00

2 ) such that dHðz2; l
0
2ÞaB (resp.

dHðw2; l
00
2 ÞaB) and that the projections of l 0

2 and l
00
2 to R are simple closed geodesics

whose lengths are less than M1. Since dHðz2;w2Þ > 2ðBþM1Þ, we see that l
0
2 and l

00
2

are distinct. Let g 02 and g 002 be hyperbolic elements of G whose axes are l
0
2 and l

00
2

respectively. Take a point z2 A l
0
2 so that dHðz2; z2ÞaB (Figure 2).
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If wnðg
0
2Þ ¼ g 02 and wnðg

00
2 Þ ¼ g 002 , set g1;n ¼ g 02, g2;n ¼ g 002 and g3;n ¼ gn. Noting that

dHðz2; l
00
2 Þa 2ðBþM1 þ 1Þ þ 2B

and

dHðz2; lnÞa 2ðBþM1 þ 1Þ þ B;

we see that the third condition of the lemma holds for D > 4Bþ 2ðM1 þ 1Þ. Thus, we

obtain desired elements.

We consider the case where wnðg
0
2Þ0 g 02 or wnðg

00
2 Þ0 g 002 . We may assume that

wnðg
0
2Þ0 g 02 because the argument below works for the case where wnðg

00
2 Þ0 g 002 .

If wnðg
0
2Þ0 g 02 and dHðz1; l

0
2Þa 4ðBþM1 þ 1Þ, then we see that g1;n ¼ g1, g2;n ¼ g2

and g3;n ¼ g 02 are desired ones as in the first case.

If wnðg
0
2Þ0 g 02 and dHðz1; l

0
2Þ > 4ðBþM1 þ 1Þ, then we use the argument in the

second case and we have z3;w3 on Cn such that z2; z3 and w3 are located in this order

with respect to the orientation of Cn and dHðz2; z3Þ ¼ dHðz3;w3Þ ¼ 2ðBþM1 þ 1Þ.

Also, we have axes l
0
3; l

00
3 and g 03; g

00
3 A G as above. Repeating this argument, we get

desired elements since dHðz1; l
0
kÞa 4ðBþM1 þ 1ÞaD for some k A N . r

Proof of Theorem 1. Let p0 ¼ ½R; id� be the base point of T #ðRÞ. We first

suppose that there exists a sequence fgng of quasiconformal automorphisms of R which

determine distinct elements of Mod#
c ðRÞ such that limn!y gnðp0Þ ¼ p for some p in

T #ðRÞ. Consider the sequence f f 0
n ¼ g�1

nþ1 � gng. Then we see that f 0
n ðp0Þ converges

to p0. Thus there exist quasiconformal mappings fn : R ! R ðn ¼ 1; 2; . . .Þ such that fn
is RT-equivalent to f 0

n and that limn!y Kð fnÞ ¼ 1. From Proposition 3, there exists

a conformal automorphism f of R such that ½ fn � f � A Mod#
c ðRÞ and fn � f converge

to the identity on R locally uniformly. Since limn!y Kð fn � f Þ ¼ limn!y Kð fnÞ ¼ 1, it

follows from Proposition 4 that ½ fn � f � ¼ ½id� for su‰ciently large n. Hence ½ fn� ¼

½ f �1� for su‰ciently large n. This contradicts the assumption that all fn are distinct.

Finally, we see that the same argument as above is valid for an arbitrary point

q ¼ ½S; f � in T #ðRÞ. To see this, it su‰ces to show that the conditions of Theorem

1 are invariant under the quasiconformal deformation. Namely, the following lemma

concludes the theorem. r

Lemma 8. Let R and S be Riemann surfaces, and f : R ! S be a K-quasiconformal

map. If R satisfies the conditions in Theorem 1, then S also satisfies them.

Proof. Let ~ff : H ! H be a lift of K-quasiconformal map f . The quasicon-

formal map ~ff can be extended to H U R̂R with ~ff ðyÞ ¼ y and the restriction ~ff jR of ~ff to

R is a quasisymmetric function. The Douady-Earle extension Fð ~ff Þ of ~ff jR to H is a

quasiconformal and bilipschitz map, and the bilipschitz constant K 0 depends only on K

(cf. [2]). The projection ff : R ! S of Fð ~ff Þ satisfies

Figure 2.
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ð1=K 0ÞlðcÞa lðff ðcÞÞaK 0
lðcÞ

for an arbitrary curve c on R, and ½S; f � ¼ ½S; ff � in T #ðRÞ. Then for an arbitrary

point a in ff ðR
�
MÞ, there exists a non-trivial simple closed curve c0 containing a such

that lðc0ÞaK 0M. Thus, ff ðR
�
MÞHSK 0M . Therefore, we see that the Riemann surface

S satisfies the second condition in Theorem 1 for a connected component of SK 0M

containing ff ðR
�
MÞ.

The same argument also shows that S satisfies the first condition. r

Proof of Theorem 2. We may assume that R is a Riemann surface of infinite

type. Suppose that R is a Riemann surface of positive finite genus g and satisfies the

conditions in Theorem 1. Further suppose that Mod#ðRÞ is not discrete. Then there

exists a sequence f fng of quasiconformal automorphisms of R which determine distinct

elements of Mod#ðRÞ such that limn!y Kð fnÞ ¼ 1. Let l be a dividing simple closed

curve such that one of components of R� l is a Riemann surface S of genus g with only

one boundary component. Take a non-dividing simple closed geodesic c on S. Then

fnðcÞVS0q for all n. Indeed, if fnðcÞVS ¼ q, then fnðcÞ should be a dividing

curve. Since c is a non-dividing curve and fn is a homeomorphism, it can not occur.

Then from Lemma 5, there exists a subsequence of f fng which converges to a conformal

automorphism f of R locally uniformly on R. Hence we can apply Proposition 4, and

we conclude a contradiction.

Next suppose that R has finite positive number of cusps and satisfies the conditions

in Theorem 1. If Mod#ðRÞ is not discrete, then there exists a sequence f fng as above.

Let V be a cusp neighborhood of a puncture of R. Since R has only finitely many

cusps, we may assume that fnðVÞVV 0q for all n by taking a subsequence of f fng.

Let S be a pair of pants in R such that it contains V and the boundary of S consists of

the puncture and two dividing simple closed geodesics, say c1 and c2. We may assume

that two geodesics c1 and c2 are not homotopic to a boundary component of R. If

fnðc1Þ is homotopic to c1 for infinity many n, then they determine elements

of Mod#
c1
ðRÞ. Hence, they must be discrete from Theorem 1. Assume that fnðc1Þ is

not homotopic to c1 for all n. Since fnðVÞVV 0q and fnðSÞ is still a pair of pants

for each n, we see that fnðc1ÞV ðSnVÞ0q or fnðc2ÞV ðSnVÞ0q. We may assume

that fnðc1ÞV ðSnVÞ0q. Then from Lemma 5 and Proposition 4, we conclude a

contradiction.

Finally, suppose that R has finite positive number of borders and satisfies the

conditions in Theorem 1. If Mod#ðRÞ is not discrete, then there exists a sequence f fng

as before. Let B be a one of borders of R. Since R has only finite number of borders,

we may assume that fnðBÞ ¼ B for all n. Let c be a simple closed geodesic which

is homotopic to B. Then fnðcÞ is homotopic to c. Thus fn A Mod#
c ðRÞ, and f fng

is discrete by Theorem 1. This contradicts limn!y Kð fnÞ ¼ 1. Hence Mod#ðRÞ is

discrete. r

6. Further examples.

In Example 4, we showed that there exists a Riemann surface R that satisfies the

two conditions in Theorem 1, but that Mod#ðRÞ is not discrete. In this case, there
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exists a sequence fong of distinct elements of Mod#ðRÞ such that onðp0Þ ¼ p0 for any

n, where p0 ¼ ½R; id� A T #ðRÞ. By modifying this example, we exhibit another kind of

examples of Riemann surfaces R which also show that Mod#ðRÞ are not discrete.

Example 5. We construct a Riemann surface R such that there exists a sequence

fong of distinct elements of Mod#ðRÞ such that limn!y dTðonðpÞ; pÞ ¼ 0 for some

p A T #ðRÞ and onðpÞ0 p for any n.

First, we consider a torus A0 with two geodesic borders of the same length. Let B0

be another torus obtained via the ð1þ e0Þ quasiconformal deformation of A0 for some

e0 > 0. Attach two copies of B0 to A0 along the borders suitably, and we obtain a

Riemann surface A1. Hence, it is a Riemann surface of genus 3 with two geodesic

borders.

Next we take a Riemann surface B1 which is the ð1þ e1Þ quasiconformal defor-

mation of A1 for some e1 > 0. Attach two copies of B1 to A1 along the borders

suitably, and we obtain a Riemann surface A2 which is a Riemann surface of genus 9

with two geodesic borders. Repeating this process for some sequence feng of positive

numbers, we have a sequence of Riemann surfaces fAng. More precisely, Anþ1 is a

Riemann surface consisting of An and two copies of Bn which is ð1þ enÞ quasiconformal

deformation of An. Thus, An is obtained by gluing 3n surfaces homeomorphic to A0,

say S�aðnÞ;S�aðnÞþ1; . . . ;S�1;S0;S1; . . . ;SaðnÞ�1;SaðnÞ for aðnÞ ¼ ð3n � 1Þ=2. We construct

a Riemann surface R as the inductive limit of these An. Namely, R is a Riemann

surface obtained by gluing Sk and Skþ1 ðk ¼ 0;G1;G2; . . .Þ. If the sequence feng is

bounded, then we see that R satisfies the above conditions on the injectivity radius.

Let gn be a quasiconformal automorphism of R which sends a part corresponding

to Sk to a part corresponding to Skþ3 n ðk ¼ 0;G1;G2; . . .Þ. We shall show that there

exists a quasiconformal automorphism fn homotopic to gn such that the maximal

dilatations of fn ðn ¼ 1; 2; . . .Þ converge to one as n ! y.

We construct such maps inductively. If 0a jkja aðnÞ, then we set fnjSk
¼ hn,

where hn : An ! Bn is the ð1þ enÞ-quasiconformal mapping as above. If aðnÞ < jkja

aðnþ 1Þ, then we may set fnjSk
¼ hnþ1 � hn � h

�1
nþ1 and the maximal dilatation of fnjSk

is less than ð1þ enÞð1þ enþ1Þ
2
. Similarly, if aðm� 1Þ < jkja aðmÞ for mð> nÞ

and h�1
m ðSkÞ ¼ Sl for some l with jlj < aðpÞ, then we may take fnjSk

¼ hm � hl � h
�1
m

on Sk. Therefore, we see that the maximal dilatation of fn is less than

ð1þ enÞ
Q

y

k¼nþ1ð1þ ekÞ
2
.

If we take a sequence feng converges to zero rapidly so that
P

y

n¼1 en < y, then

we verify that the maximal dilatations of fn converge to 1 as n ! y. Thus, the

quasiconformal automorphism fn induces an element of Mod#ðRÞ whose orbits of

p0 ¼ ½R; id� converge to p0 in T #ðRÞ.

Figure 3.
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The following example shows that Theorem 2 does not necessarily hold for a planar

Riemann surface.

Example 6. Set R ¼ C � Z, which is a planar Riemann surface satisfying the

conditions in Theorem 1, and set fnðzÞ ¼ zþ n ðn ¼ 1; 2; 3; . . .Þ. Since fnðzÞ is a

conformal automorphism of R, we see that ½ fn�ðp0Þ ¼ p0 for all n, where p0 ¼
½R; id� A T #ðRÞ. Hence Mod#ðRÞ is not discrete (cf. Example 4).

Further we see that there exists a point p in T #ðRÞ such that the set of the orbit

of p under the action of Mod#ðRÞ is not discrete. To show this, consider a following

Riemann surface S: Set

zn ¼
nþ

ffiffiffiffiffiffiffi

�1
p

jðnÞ þ 1
ðn0 0Þ

0 ðn ¼ 0Þ;

8

>

<

>

:

where jðnÞ is the power of the factor 2 when we decompose jnj to the product of primes,

and set S ¼ C �6y

n¼�y
fzng. Since there exists a quasiconformal automorphism h of

C such that hðnÞ ¼ zn ðn A ZÞ, S is a quasiconformal deformation of R.

For every positive m, we take a locally a‰ne quasiconformal automorphism gm of S

such that Re gmðzÞ ¼ Re zþ 2m (and hence gmðznÞ ¼ zðnþ2mÞ). Then, since jðnþ 2mÞ ¼
jðnÞ for jðnÞ < m and jðnþ 2mÞ ¼ m for jðnÞbm, we may take the locally a‰ne maps

gm so that the maximal dilatations of gm tend to 1. Hence we see that the set of the

orbit of p ¼ ½S; h� A T #ðRÞ under the action of Mod#ðRÞ is not discrete.

We shall construct a Riemann surface R and sequences fMng; fM 0
ng having the

properties referred in Remark 3 in §4.

Example 7. We consider right-angled hexagons Hn ðn ¼ 1; 2; . . .Þ in the hyperbolic

plain H . The sides of the hexagon Hn are labelled aj;n ð j ¼ 1; 2; . . . ; 6Þ counter-

clockwise. We construct the hexagon so that lða2;nÞ ¼ lða6;nÞ, lða3;nÞ ¼ lða5;nÞ ¼ 1 and

lða1;nÞ ¼ ð2nÞ�1. Then fHng converges to a pentagon with one cusp as n ! y. Thus,

we see that

dHðPn; a2;nÞ ¼ dHðPn; a6;nÞaM < yð4Þ

holds for some M independent of n, where Pn is the midpoint of a4;n. Take the

perpendicular line Lj;n ð j ¼ 2; 6Þ from Pn to aj;n. Since dHðPn; a1;nÞ ! y as n ! y, it

follows from (4) that dHða1;n;L2;nÞ ¼ dHða1;n;L6;nÞ ! y (Figure 4).

Figure 4. A hexagon close to a pentagon with one cusp.
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Now, we take kðnÞ copies of Hn, say H 1
n ; . . . ;H

kðnÞ
n , so that

1

3
dHða1;n;L2;nÞa 2kðnÞlða1;nÞ ¼

1

n
kðnÞa

1

2
dHða1;n;L2;nÞ:ð5Þ

Obviously, kðnÞ=n ! y as n ! y. Let a i
j;n ði ¼ 1; 2; . . . kðnÞ; j ¼ 1; 2; . . . ; 6Þ denote

the sides of H i
n corresponding to aj;n. Glue H i

n and H iþ1
n along a i

6;n and a iþ1
2;n . Then,

we have a right-angled ð2kðnÞ þ 4Þ-gon Dn in H . Label the side of Dn formed by

a11;n U � � �U a
kðnÞ
1;n as b1;n and the rest of sides as b2;n; . . . ; b2kðnÞþ4;n counterclockwise.

We take a copy of D 0
n of Dn with sides b 0

j;n ð j ¼ 1; 2; . . . ; 2kðnÞ þ 4Þ corresponding

to bj;n of Dn. We glue Dn and D 0
n along bj;n and b 0

2kðnÞþ6�j;n for j ¼ 2; 4; . . . ; 2kðnÞ þ 2

and 2kðnÞ þ 4. Then we have a hyperbolic bordered surface Sn of type ð0; kðnÞ þ 1Þ.

The boundary qSn consists of one long curve c1;n and kðnÞ short curves c2;n; . . . ; ckðnÞ;n.

It follows from the construction that

lðc1;nÞ ¼
kðnÞ

n
;

lðc2;nÞ ¼ lðckðnÞ;nÞ ¼ 2;

and

lðc3;nÞ ¼ � � � ¼ lðckðnÞ�1;nÞ ¼ 4:

From (4), we verify that ðSnÞ4M is connected and the natural map of p1ððSnÞ4MÞ to

p1ðSnÞ is surjective. On the other hand, it follows from (5) that ðSnÞkðnÞ=n is not

connected while both ðSnÞkðnÞ=2n and ðSnÞ2kðnÞ=nþ4M are connected.

We take a sequence f jng so that

4M <
kð jnÞ

jn
<

kð jnþ1Þ

10jnþ1
: ðn ¼ 1; 2; . . .Þ

We glue Sjn and Sjnþ1
along ckð jnÞ; jn of qSjn and c2; jnþ1

of qSjnþ1
. Then we have a

bordered Riemann surface S, and a Riemann surface R whose convex core is S. From

the construction we verify that RMn
is connected for Mn ¼ kð jnÞ=2jn but RM 0

n
is not

connected for M 0
n ¼ kð jnÞ=jn. Since Mn;M

0
n > 4M, the natural maps of p1ðRMn

Þ and

p1ðR
�
M 0

n
Þ to p1ðRÞ are surjective, where R�

M 0
n
is the ‘‘core component’’ of RM 0

n
. Thus,

R; fMng and fM 0
ng are our desired ones.
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