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Abstract. Two-by-two matrix functions, which are the lifts of the local solu-
tions of the matrix hypergeometric differential equation of SL type at 0, 1,∞ to the
upper half plane by the lambda function, are introduced. Each component of these
matrix functions is represented by a definite integral with a power product of theta
functions as integrand, which we call in this paper Wirtinger integral. Transforma-
tions of the matrix functions under some modular transformations are established by
exploiting classical formulas of theta functions. These are regarded as formulas of
monodromy or connection of the hypergeometric function of Gauss.

Introduction.

In this paper we consider 2×2 matrix functions analytic on the upper half plane as-
sociated to the hypergeometric function of Gauss, and establish transformations of these
matrix functions under some modular transformations. The matrix functions studied
here are obtained as the lifts of the local solutions of the matrix hypergeometric differ-
ential equation of SL type (i.e., whose image of monodromy representation is contained
in SL(2,C)) at 0, 1,∞ to the upper half plane by the lambda function (Section 2). Each
component of the matrix functions is represented by a definite integral with a power
product of theta functions as integrand. Such an integral was invented by Wirtinger in
order to uniformize the hypergeometric function of Gauss to the upper half plane ([5]).
In this paper we call it Wirtinger integral (cf. (1.3)). As a classical example in which the
Wirtinger integral is considered, we can cite Elliott’s paper [7] (see also Dixon [6]), where
a generalization of the Legendre relation in the theory of elliptic integrals was established.
One of the advantages of exploiting the matrix functions above in the study of the hyper-
geometric function is that the monodromy property and the connection relations of the
hypergeometric function are all translated as transformations of those matrix functions
under modular transformations of the independent variable (Section 3). Moreover we
can derive such transformations by exploiting classical formulas of theta functions with-
out need to use any monodromy property or connection formula of the hypergeometric
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function. That is to say, this gives another new derivation of the monodromy property
and the connection formulas of the hypergeometric function of Gauss.
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1. Wirtinger integral for the hypergeometric function of Gauss.

Following the notation of Chandrasekharan [1], we introduce the four theta functions
θ(u, τ), θi(u, τ) (i = 1, 2, 3) by

θ(u, τ) =
1
i

+∞∑
n=−∞

(−1)ne(n+ 1
2 )2πiτe(2n+1)πiu,

θ1(u, τ) =
+∞∑

n=−∞
e(n+ 1

2 )2πiτe(2n+1)πiu,

θ2(u, τ) =
+∞∑

n=−∞
(−1)nen2πiτe2nπiu,

θ3(u, τ) =
+∞∑

n=−∞
en2πiτe2nπiu,

which are defined for all (u, τ) ∈ C×H, where H denotes the upper half plane. Mumford
[2] (see also Umemura [3]) adopts the symbols θ00, θ01, θ10, θ11 to denote the theta func-
tions above. The relations between the two notations are as follows: θ(u, τ) = −θ11(u, τ),
θ1(u, τ) = θ10(u, τ), θ2(u, τ) = θ01(u, τ), θ3(u, τ) = θ00(u, τ). The lambda function λ(τ)
is defined by λ(τ) = θ1(0,τ)4

θ3(0,τ)4 . It defines a mapping of H to the open set U = P 1−{0, 1,∞}
of P 1 the complex projective line, and is invariant under the action of Γ (2) the principal
congruence subgroup of level 2: λ

(
aτ+b
cτ+d

)
= λ(τ) for

(
a b
c d

) ∈ Γ (2). So the mapping
defined by λ(τ) induces an isomorphism of H/Γ (2) onto U . We can choose the set
C = {τ ∈ H | −1 ≤ Re τ < 1, |τ + 1

2 | ≥ 1
2 , |τ − 1

2 | > 1
2} as a fundamental domain of H

for the group Γ (2). By the behaviour of λ(τ) near the cusps, the points τ = 0,±1,∞ cor-
respond to the points x = 1,∞, 0 of P 1, respectively. Moreover, by the mapping defined
by λ(τ), the positive imaginary axis of H maps to a curve of U with boundary points
x = 0, 1 homotopic to the real open interval (0, 1) in U , each of the upper semi-circles of
H centered at τ = ± 1

2 with radius 1
2 maps to a curve of U with boundary points x = 1,∞

homotopic to the real ray (1,+∞) in U , and each of the rays (−1,−1 + i∞), (1, 1 + i∞)
of H parallel to the positive imaginary axis maps to a curve of U with boundary points
x = −∞, 0 homotopic to the real ray (−∞, 0) in U .

Let F (α, β, γ, x) denote the hypergeometric series of Gauss or its analytic continu-
ation, and let E(α, β, γ) denote the hypergeometric differential equation of Gauss:

x(1− x)
d2y

dx2
+ {γ − (α + β + 1)x}dy

dx
− αβy = 0.

The following formula of modified Pochhammer type holds (cf. [4]):
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F (α, β, γ, x) =
Γ (γ)

(1− e4πiα)(1− e4πi(γ−α))Γ (α)Γ (γ − α)

×
∫ (1++,0++,1−−,0−−)

tα−1(1− t)γ−α−1(1− xt)−βdt, (1.1)

where α 6= 1, 2, 3, . . ., γ 6= 0,−1,−2, . . ., γ−α 6= 1, 2, 3, . . ., and (1++, 0++, 1−−, 0−−)
denotes the cycle with base point t = 1

2 where arg t = arg(1− t) = 0 turning first around
t = 1 twice anticlockwisely, second around t = 0 twice anticlockwisely, third around t = 1
twice clockwisely and lastly around t = 0 twice clockwisely. Let us make the lift of the
function F (α, β, γ, x) or, strictly speaking, of the analytic continuation of F (α, β, γ, x) to
the upper half plane H. We set ω1 = πθ3(0, τ)2, ω2 = ω1τ , k2 = λ(τ). Jacobi’s elliptic
functions are defined by

sn v = sn(v, k) =
θ3(0, τ)θ

(
v

ω1
, τ

)

θ1(0, τ)θ2

(
v

ω1
, τ

) ,

cn v = cn(v, k) =
θ2(0, τ)θ1

(
v

ω1
, τ

)

θ1(0, τ)θ2

(
v

ω1
, τ

) ,

dn v = dn(v, k) =
θ2(0, τ)θ3

(
v

ω1
, τ

)

θ3(0, τ)θ2

(
v

ω1
, τ

) .

Substituting x = λ(τ) and t = sn2v into (1.1), we have

F (α, β, γ, λ(τ)) =
2Γ (γ)

(1− e4πiα)(1− e4πi(γ−α))Γ (α)Γ (γ − α)

×
∫ (

ω1
2 +,0+,

ω1
2 −,0−)

(sn v)2α−1(cn v)2γ−2α−1(dn v)−2β+1dv, (1.2)

where (ω1
2 +, 0+, ω1

2 −, 0−) denotes a usual Pochhammer cycle. This integral representa-
tion is obtained by Elliott [7] (see also [6]). Rewriting (1.2) with theta functions and
setting u = v/ω1, we have

F (α, β, γ, λ(τ))

=
2πΓ (γ)θ3(0, τ)2

(1− e4πiα)(1− e4πi(γ−α))Γ (α)Γ (γ − α)
λ(τ)

1−γ
2 (1− λ(τ))

γ−α−β
2

×
∫ ( 1

2+,0+, 1
2−,0−)

θ(u, τ)2α−1θ1(u, τ)2γ−2α−1θ2(u, τ)2β−2γ+1θ3(u, τ)−2β+1du.

(1.3)
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We call this representation Wirtinger integral for the hypergeometric function of Gauss
(see [5]). Note that the function F (α, β, γ, λ(τ)) of the variable τ is single-valued and
holomorphic on H.

2. Hypergeometric functions of matrix form and their lifts to the upper
half plane.

Let Y = Y (x) be a 2× 2 matrix-valued analytic function of the complex variable x,
and let A(x) denote the matrix-valued function given by

A(x) =
1

(α− β)x

[
α(β − γ + 1) α(γ − β − 1)

β(α− γ + 1) β(γ − α− 1)

]

+
1

(α− β)(x− 1)

[
α(γ − α− 1) α(β − γ + 1)

β(γ − α− 1) β(β − γ + 1)

]
,

where α, β, γ denote complex parameters. Let us consider the following differential equa-
tion of 2× 2 matrix form:

d

dx
Y = A(x)Y. (2.1)

This is a hypergeometric differential equation of matrix form. In fact, if we set

Y =

[
y11(x) y12(x)

y21(x) y22(x)

]
,

we see that the functions y11(x) and y12(x) satisfy the equation E(α, β + 1, γ), and the
functions y21(x) and y22(x) satisfy the equation E(α+1, β, γ). In what follows, we always
assume that the parameters α, β, γ satisfy the conditions

α /∈ Z, β /∈ Z, γ /∈ Z, γ − α /∈ Z, γ − β /∈ Z, γ − α− β /∈ Z, and α− β /∈ Z. (2.2)

Let Y0(x), Y1(x), Y∞(x) be the local solutions of (2.1) at x = 0, 1,∞, respectively, given
by

Y0(x) =

[
F (α, β + 1, γ, x) α(β − γ + 1)x1−γF (1 + α− γ, 2 + β − γ, 2− γ, x)

F (α + 1, β, γ, x) β(α− γ + 1)x1−γF (2 + α− γ, 1 + β − γ, 2− γ, x)

]
,

Y1(x) =

[
(β − γ + 1)F (α, β + 1, α + β − γ + 2, 1− x)

(α− γ + 1)F (α + 1, β, α + β − γ + 2, 1− x)

α(1− x)γ−α−β−1F (γ − α, γ − β − 1, γ − α− β, 1− x)

β(1− x)γ−α−β−1F (γ − α− 1, γ − β, γ − α− β, 1− x)

]
,
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Y∞(x) =

[
(α− β)(α− β + 1)(1− x)−αF (α, γ − β − 1, α− β, (1− x)−1)

β(γ − α− 1)(1− x)−α−1F (γ − β, α + 1, α− β + 2, (1− x)−1)

α(γ − β − 1)(1− x)−β−1F (γ − α, β + 1, β − α + 2, (1− x)−1)

(β − α)(β − α + 1)(1− x)−βF (β, γ − α− 1, β − α, (1− x)−1)

]
.

The image of the monodromy representation of (2.1) is contained in the gerenal linear
group GL(2,C), but not in the special linear group SL(2,C). To obtain from (2.1) a
matrix differential equation whose image of the monodromy representation is contained
in SL(2,C), we introduce a new 2× 2 matrix unknown Ỹ by

Y = x
1−γ

2 (1− x)
γ−α−β−1

2 Ỹ . (2.3)

If we eliminate Y from (2.1) and (2.3), we have a new differential equation

d

dx
Ỹ = Ã(x)Ỹ , (2.4)

where Ã(x) is given by

Ã(x) =
1

(α−β)x




αβ − (α + β)(γ − 1)
2

α(γ − β − 1)

β(α− γ + 1) −αβ +
(α + β)(γ − 1)

2




+
1

(α−β)(x−1)




αβ − (α + β)(α + β − γ + 1)
2

α(β − γ + 1)

β(γ − α− 1) −αβ +
(α + β)(α + β − γ + 1)

2


.

From Y0(x), Y1(x), Y∞(x), we can obtain via (2.3) the local solutions Ỹ0(x), Ỹ1(x), Ỹ∞(x)
of Equation (2.4) at x = 0, 1,∞, respectively. In fact, we have

Ỹ0(x) =

[
x

γ−1
2 (1− x)

α+β−γ+1
2 F (α, β + 1, γ, x)

x
γ−1

2 (1− x)
α+β−γ+1

2 F (α + 1, β, γ, x)

α(β − γ + 1)x
1−γ

2 (1− x)
α+β−γ+1

2 F (1 + α− γ, 2 + β − γ, 2− γ, x)

β(α− γ + 1)x
1−γ

2 (1− x)
α+β−γ+1

2 F (2 + α− γ, 1 + β − γ, 2− γ, x)

]
,

Ỹ1(x) =

[
(β − γ + 1)x

γ−1
2 (1− x)

α+β−γ+1
2 F (α, β + 1, α + β − γ + 2, 1− x)

(α− γ + 1)x
γ−1

2 (1− x)
α+β−γ+1

2 F (α + 1, β, α + β − γ + 2, 1− x)

αx
γ−1

2 (1− x)
γ−α−β−1

2 F (γ − α, γ − β − 1, γ − α− β, 1− x)

βx
γ−1

2 (1− x)
γ−α−β−1

2 F (γ − α− 1, γ − β, γ − α− β, 1− x)

]
,
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Ỹ∞(x) =

[
(α− β)(α− β + 1)x

γ−1
2 (1− x)

−α+β−γ+1
2 F (α, γ − β − 1, α− β, (1− x)−1)

β(γ − α− 1)x
γ−1

2 (1− x)
−α+β−γ−1

2 F (γ − β, α + 1, α− β + 2, (1− x)−1)

α(γ − β − 1)x
γ−1

2 (1− x)
α−β−γ−1

2 F (γ − α, β + 1, β − α + 2, (1− x)−1)

(β − α)(β − α + 1)x
γ−1

2 (1− x)
α−β−γ+1

2 F (β, γ − α− 1, β − α, (1− x)−1)

]
.

It is easy to see that the local monodromy matrix of each function Ỹi(x) (i = 0, 1,∞)
has determinant one.

Let us make the lifts of the functions Ỹ0(x), Ỹ1(x), Ỹ∞(x) to the upper half plane
H, using the Wirtinger integral (1.3). Namely, we set τ ′ = −1/τ , τ ′′ = 1/(1 − τ),
Z0(τ) = Ỹ0(λ(τ)), Z1(τ ′) = Ỹ1(λ(τ)) and Z∞(τ ′′) = Ỹ∞(λ(τ)). Applying (1.3) to each
component of Ỹi(λ(τ)) (i = 0, 1,∞), we have

Z0(τ) =

2
6666666666664

2πΓ (γ)θ3(0, τ)2

(1− e4πiα)(1− e4πi(γ−α))Γ (α)Γ (γ − α)

×
Z ( 1

2+,0+, 1
2−,0−)

θ(u, τ)2α−1θ1(u, τ)2γ−2α−1θ2(u, τ)2β−2γ+3θ3(u, τ)−2β−1du

2πΓ (γ)θ3(0, τ)2

(1− e4πiβ)(1− e4πi(γ−β))Γ (β)Γ (γ − β)

×
Z ( 1

2+,0+, 1
2−,0−)

θ(u, τ)2β−1θ1(u, τ)2γ−2β−1θ2(u, τ)2α−2γ+3θ3(u, τ)−2α−1du

2παΓ (2− γ)θ3(0, τ)2

(1− e4πi(β−γ))(1− e−4πiβ)Γ (−β)Γ (1 + β − γ)

×
Z ( 1

2+,0+, 1
2−,0−)

θ(u, τ)2β−2γ+3θ1(u, τ)−2β−1θ2(u, τ)2α−1θ3(u, τ)2γ−2α−1du

2πβΓ (2− γ)θ3(0, τ)2

(1− e4πi(α−γ))(1− e−4πiα)Γ (−α)Γ (1 + α− γ)

×
Z ( 1

2+,0+, 1
2−,0−)

θ(u, τ)2α−2γ+3θ1(u, τ)−2α−1θ2(u, τ)2β−1θ3(u, τ)2γ−2β−1du

3
7777777777775

,

Z1(τ
′) =

2
6666666666664

2πΓ (α + β − γ + 2)θ3(0, τ ′)2

(1− e4πiα)(1− e4πi(β−γ))Γ (α)Γ (β − γ + 1)

×
Z ( 1

2+,0+, 1
2−,0−)

θ(u, τ ′)2α−1θ1(u, τ ′)2β−2γ+3θ2(u, τ ′)2γ−2α−1θ3(u, τ ′)−2β−1du

2πΓ (α + β − γ + 2)θ3(0, τ ′)2

(1− e4πiβ)(1− e4πi(α−γ))Γ (β)Γ (α− γ + 1)

×
Z ( 1

2+,0+, 1
2−,0−)

θ(u, τ ′)2β−1θ1(u, τ ′)2α−2γ+3θ2(u, τ ′)2γ−2β−1θ3(u, τ ′)−2α−1du

2παΓ (γ − α− β)θ3(0, τ ′)2

(1− e4πi(γ−α))(1− e−4πiβ)Γ (−β)Γ (γ − α)

×
Z ( 1

2+,0+, 1
2−,0−)

θ(u, τ ′)2γ−2α−1θ1(u, τ ′)−2β−1θ2(u, τ ′)2α−1θ3(u, τ ′)2β−2γ+3du

2πβΓ (γ − α− β)θ3(0, τ ′)2

(1− e4πi(γ−β))(1− e−4πiα)Γ (−α)Γ (γ − β)

×
Z ( 1

2+,0+, 1
2−,0−)

θ(u, τ ′)2γ−2β−1θ1(u, τ ′)−2α−1θ2(u, τ ′)2β−1θ3(u, τ ′)2α−2γ+3du

3
7777777777775

,
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Z∞(τ ′′) =

2
6666666666664

2πe
1
2 πi(γ−1)Γ (α− β + 2)θ1(0, τ ′′)2

(1− e4πiα)(1− e−4πiβ)Γ (α)Γ (−β)

×
Z ( 1

2+,0+, 1
2−,0−)

θ(u, τ ′′)2α−1θ1(u, τ ′′)−2β−1θ2(u, τ ′′)2γ−2α−1θ3(u, τ ′′)2β−2γ+3du

−2πβe
1
2 πi(γ−1)Γ (α− β + 2)θ1(0, τ ′′)2

(1− e4πi(γ−β))(1− e4πi(α−γ))Γ (γ − β)Γ (α− γ + 1)

×
Z ( 1

2+,0+, 1
2−,0−)

θ(u, τ ′′)2γ−2β−1θ1(u, τ ′′)2α−2γ+3θ2(u, τ ′′)2β−1θ3(u, τ ′′)−2α−1du

−2παe
1
2 πi(γ−1)Γ (β − α + 2)θ1(0, τ ′′)2

(1− e4πi(β−γ))(1− e4πi(γ−α))Γ (γ − α)Γ (β − γ + 1)

×
Z ( 1

2+,0+, 1
2−,0−)

θ(u, τ ′′)2γ−2α−1θ1(u, τ ′′)2β−2γ+3θ2(u, τ ′′)2α−1θ3(u, τ ′′)−2β−1du

2πe
1
2 πi(γ−1)Γ (β − α + 2)θ1(0, τ ′′)2

(1− e4πiβ)(1− e−4πiα)Γ (−α)Γ (β)

×
Z ( 1

2+,0+, 1
2−,0−)

θ(u, τ ′′)2β−1θ1(u, τ ′′)−2α−1θ2(u, τ ′′)2γ−2β−1θ3(u, τ ′′)2α−2γ+3du

3
7777777777775

.

Note that the matrix functions Z0(τ), Z1(τ ′), Z∞(τ ′′) are single-valued and holomorphic
on H.

3. Transformations of Z0(τ ), Z1(τ ′), Z∞(τ ′′).

The translation of the local monodromies of the matrix functions Ỹ0(x), Ỹ1(x), Ỹ∞(x)
into Z0(τ), Z1(τ ′), Z∞(τ ′′) is as follows:

Z0(τ + 2) = Z0(τ)

[
eπi(γ−1) 0

0 eπi(1−γ)

]
; (3.1)

Z1(τ ′ + 2) = Z1(τ ′)

[
eπi(α+β−γ+1) 0

0 eπi(γ−α−β−1)

]
; (3.2)

Z∞(τ ′′ + 2) = Z∞(τ ′′)

[
eπi(α−β) 0

0 eπi(β−α)

]
. (3.3)

Without need to use any formula for Ỹ0(x), Ỹ1(x), Ỹ∞(x), we can easily verify these
formulas directly by transformation rules of theta functions. The translation of the
connection formulas of Ỹ0(x), Ỹ1(x), Ỹ∞(x) into Z0(τ), Z1(τ ′), Z∞(τ ′′) is as follows:

Theorem (Gauss-Riemann). Assume the conditions (2.2). Then we have

Z0(τ) = Z1(τ ′)




−Γ (γ)Γ (γ − α− β − 1)
Γ (γ − α)Γ (γ − β)

−Γ (2− γ)Γ (γ − α− β − 1)
Γ (−α)Γ (−β)

Γ (γ)Γ (α + β − γ + 1)
Γ (α + 1)Γ (β + 1)

Γ (2− γ)Γ (α + β − γ + 1)
Γ (α− γ + 1)Γ (β − γ + 1)


 ; (3.4)
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Z0(τ) = Z∞(τ ′′)




Γ (γ)Γ (β − α− 1)
Γ (γ − α)Γ (β + 1)

Γ (2− γ)Γ (β − α− 1)
Γ (−α)Γ (1 + β − γ)

e−πiγ

Γ (γ)Γ (α− β − 1)
Γ (α + 1)Γ (γ − β)

Γ (2− γ)Γ (α− β − 1)
Γ (1 + α− γ)Γ (−β)

e−πiγ


 . (3.5)

Our proof is given in the next section. Formulas (3.1)–(3.5) determine the mon-
odromy of the hypergeometric function of Gauss completely. For example, combining
(3.4) with (3.2), we have immediately

Corollary. We have

Z0

(
τ

−2τ + 1

)
= Z0(τ)




− cos π(α− β) + e−πiγ cos π(γ − α− β)
i sinπγ

2πiΓ (γ − 1)Γ (γ)
Γ (α + 1)Γ (β + 1)Γ (γ − α)Γ (γ − β)

2πiΓ (1− γ)Γ (2− γ)
Γ (−α)Γ (−β)Γ (1 + α− γ)Γ (1 + β − γ)

cos π(α− β)− eπiγ cos π(α + β − γ)
i sinπγ


 . (3.6)

This is the translation of the monodromy of Ỹ0(x) along a curve with base point
near x = 0 turning around x = 1 in the anticlockwise direction.

4. Proof of Theorem.

We set

Z0(τ) =

[
z11(τ) z12(τ)

z21(τ) z22(τ)

]
,

Z1(τ ′) =

[
ζ11(τ ′) ζ12(τ ′)

ζ21(τ ′) ζ22(τ ′)

]
,

Z∞(τ ′′) =

[
Z11(τ ′′) Z12(τ ′′)

Z21(τ ′′) Z22(τ ′′)

]
.

Let us first prove Formula (3.4) by exploiting transformation rules of theta functions.

Lemma 1. We have

z11(τ) =
Γ (γ)Γ (β − γ + 1)e−πiα

Γ (α + β − γ + 2)Γ (γ − α)
ζ11(τ ′) +

Γ (γ)Γ (−β)eπi(γ−α)

Γ (α + 1)Γ (γ − α− β)
ζ12(τ ′)

− Γ (γ)Γ (1 + β − γ)Γ (−β)eπi(γ−α−β)

Γ (α + 1)Γ (γ − α)Γ (2− γ)
z12(τ). (4.1)
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Proof. Applying Jacobi transformations of theta functions to the expression of
z11(τ), we have

z11(τ) =
2πΓ (γ)

(1− e4πiα)(1− e4πi(γ−α))Γ (α)Γ (γ − α)
i

τ
θ3

(
0,−1

τ

)2

(−i)eπiα

×
∫ ( 1

2+,0+, 1
2−,0−)

θ

(
u

τ
,−1

τ

)2α−1

θ1

(
u

τ
,−1

τ

)2β−2γ+3

× θ2

(
u

τ
,−1

τ

)2γ−2α−1

θ3

(
u

τ
,−1

τ

)−2β−1

du. (4.2)

Substituting v = −u/τ into the definite integral of (4.2), we have

z11(τ) =
2πe−πiαΓ (γ)θ3(0, τ ′)2

(1− e4πiα)(1− e4πi(γ−α))Γ (α)Γ (γ − α)

×
∫ ( τ′

2 +,0+, τ′
2 −,0−)

θ(v, τ ′)2α−1θ1(v, τ ′)2β−2γ+3

× θ2(v, τ ′)2γ−2α−1θ3(v, τ ′)−2β−1dv, (4.3)

where we chose in the integral of (4.3) the branch of θ(v, τ ′)2α−1 satisfying
θ(−v, τ ′)2α−1 = −e−2πiαθ(v, τ ′)2α−1. Applying Cauchy’s theorem to the integration of
the integrand of (4.3) along the parallelogram with vertices 0, 1

2τ ′, 1
2 (1 + τ ′), 1

2 , we have

1
(1− e4πiα)(1− e4πi(γ−α))

×
∫ ( τ′

2 +,0+, τ′
2 −,0−)

θ(v, τ ′)2α−1θ1(v, τ ′)2β−2γ+3θ2(v, τ ′)2γ−2α−1θ3(v, τ ′)−2β−1dv

=
1

(1− e4πiα)(1− e4πi(β−γ))

×
∫ ( 1

2+,0+, 1
2−,0−)

θ(v, τ ′)2α−1θ1(v, τ ′)2β−2γ+3θ2(v, τ ′)2γ−2α−1θ3(v, τ ′)−2β−1dv

+
eπiγ

(1− e−4πiβ)(1− e4πi(γ−α))

×
∫ ( 1

2+,0+, 1
2−,0−)

θ(v, τ ′)2γ−2α−1θ1(v, τ ′)−2β−1θ2(v, τ ′)2α−1θ3(v, τ ′)2β−2γ+3dv

− e2πi(γ−β)

(1− e−4πiβ)(1− e4πi(β−γ))

×
∫ ( τ′

2 +,0+, τ′
2 −,0−)

θ(v, τ ′)2β−2γ+3θ1(v, τ ′)2α−1θ2(v, τ ′)−2β−1θ3(v, τ ′)2γ−2α−1dv,

(4.4)
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where we chose the branch of θ1(v, τ ′)2β−2γ+3 satisfying θ1(v + 1
2 , τ ′)2β−2γ+3 =

−e2πi(γ−β)θ(v, τ ′)2β−2γ+3. Substituting (4.4) into (4.3), we have the desired formula
(4.1), which proves Lemma 1. ¤

Lemma 2. We have

z12(τ) =
Γ (2− γ)Γ (α + 1)eπi(γ−β)

Γ (α + β − γ + 2)Γ (−β)
ζ11(τ ′) +

Γ (2− γ)Γ (γ − α)e−πiβ

Γ (1 + β − γ)Γ (γ − α− β)
ζ12(τ ′)

− Γ (2− γ)Γ (γ − α)Γ (α + 1)eπi(γ−α−β)

Γ (−β)Γ (1 + β − γ)Γ (γ)
z11(τ). (4.5)

The proof is similar to that of Lemma 1. We omit it.
The system of linear equations (4.1) and (4.5) is unified as the single matrix equation:

(z11(τ), z12(τ))




1
Γ (2−γ)Γ (γ−α)Γ (α+1)eπi(γ−α−β)

Γ (1 + β − γ)Γ (−β)Γ (γ)

Γ (γ)Γ (1+β−γ)Γ (−β)eπi(γ−α−β)

Γ (α + 1)Γ (γ − α)Γ (2− γ)
1




= (ζ11(τ ′), ζ12(τ ′))




Γ (γ)Γ (β − γ + 1)e−πiα

Γ (γ − α)Γ (α + β − γ + 2)
Γ (2− γ)Γ (α + 1)eπi(γ−β)

Γ (α + β − γ + 2)Γ (−β)

Γ (γ)Γ (−β)eπi(γ−α)

Γ (α + 1)Γ (γ − α− β)
Γ (2− γ)Γ (γ − α)e−πiβ

Γ (γ − α− β)Γ (β − γ + 1)


 ,

from which it follows that

(z11(τ), z12(τ))

= (ζ11(τ ′), ζ12(τ ′))




−Γ (γ)Γ (γ − α− β − 1)
Γ (γ − α)Γ (γ − β)

−Γ (2− γ)Γ (γ − α− β − 1)
Γ (−α)Γ (−β)

Γ (γ)Γ (α + β − γ + 1)
Γ (α + 1)Γ (β + 1)

Γ (2− γ)Γ (α + β − γ + 1)
Γ (α− γ + 1)Γ (β − γ + 1)


 . (4.6)

Exchanging the variables α and β in (4.6), we have immediately

(z21(τ), z22(τ))

= (ζ21(τ ′), ζ22(τ ′))




−Γ (γ)Γ (γ − α− β − 1)
Γ (γ − α)Γ (γ − β)

−Γ (2− γ)Γ (γ − α− β − 1)
Γ (−α)Γ (−β)

Γ (γ)Γ (α + β − γ + 1)
Γ (α + 1)Γ (β + 1)

Γ (2− γ)Γ (α + β − γ + 1)
Γ (α− γ + 1)Γ (β − γ + 1)


 . (4.7)

The system of equations (4.6) and (4.7) is equivalent to the matrix equality (3.4), which
proves the first half of the theorem.

Next, let us prove Formula (3.5).
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Lemma 3. We have

z11(τ) =
Γ (γ)Γ (β − α− 1)
Γ (1 + β)Γ (γ − α)

Z11(τ ′′) +
Γ (γ)Γ (α− β − 1)
Γ (α + 1)Γ (γ − β)

Z12(τ ′′). (4.8)

Proof. By transformation rules of theta functions, we have

z11(τ) =
2πe

1
2 πi(γ−1)Γ (γ)θ2(0, τ − 1)2

(1− e4πiα)(1− e4πi(γ−α))Γ (α)Γ (γ − α)

×
∫ ( 1

2+,0+, 1
2−,0−)

θ(u, τ − 1)2α−1θ1(u, τ − 1)2γ−2α−1

× θ2(u, τ − 1)−2β−1θ3(u, τ − 1)2β−2γ+3du. (4.9)

Applying Jacobi transformation formulas to (4.9), we have

z11(τ) =
2πe

1
2 πi(γ−1)e

1
2 πi(2α−1)Γ (γ)

(1− e4πiα)(1− e4πi(γ−α))Γ (α)Γ (γ − α)
i

τ − 1
θ1

(
0,

1
1− τ

)2

×
∫ ( 1

2+,0+, 1
2−,0−)

θ

(
u

τ − 1
,

1
1− τ

)2α−1

θ1

(
u

τ − 1
,

1
1− τ

)−2β−1

× θ2

(
u

τ − 1
,

1
1− τ

)2γ−2α−1

θ3

(
u

τ − 1
,

1
1− τ

)2β−2γ+3

du. (4.10)

Substituting v = u/(1− τ) into the integral of (4.10), we have

z11(τ) =
2πe

1
2 πi(γ−1)e−πiαΓ (γ)θ1(0, τ ′′)2

(1− e4πiα)(1− e4πi(γ−α))Γ (α)Γ (γ − α)

×
∫ ( τ′′

2 +,0+, τ′′
2 −,0−)

θ(v, τ ′′)2α−1θ1(v, τ ′′)−2β−1

× θ2(v, τ ′′)2γ−2α−1θ3(v, τ ′′)2β−2γ+3dv, (4.11)

where we chose in the integral of (4.11) the branch of θ(v, τ ′′)2α−1 satisfying
θ(−v, τ ′′)2α−1 = −e−2πiαθ(v, τ ′′)2α−1. Applying Cauchy’s theorem to the integration
of the integrand of (4.11) along the parallelogram with vertices 0, 1

2τ ′′, 1
2 (1 + τ ′′), 1

2 , we
have

1
(1− e4πiα)(1− e4πi(γ−α))

×
∫ (0+, τ′′

2 +,0−, τ′′
2 −)

θ(v, τ ′′)2α−1θ1(v, τ ′′)−2β−1θ2(v, τ ′′)2γ−2α−1θ3(v, τ ′′)2β−2γ+3dv
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+
1

(1− e4πiα)(1− e−4πiβ)

×
∫ ( 1

2+,0+, 1
2−,0−)

θ(v, τ ′′)2α−1θ1(v, τ ′′)−2β−1θ2(v, τ ′′)2γ−2α−1θ3(v, τ ′′)2β−2γ+3dv

− e2πiβ

(1− e−4πiβ)(1− e4πi(β−γ))

×
∫ ( τ′′

2 +,0+, τ′′
2 −,0−)

θ(v, τ ′′)−2β−1θ1(v, τ ′′)2α−1θ2(v, τ ′′)2β−2γ+3θ3(v, τ ′′)2γ−2α−1dv

− eπiγ

(1− e4πi(γ−α))(1− e4πi(β−γ))

×
∫ (0+, 1

2+,0−, 1
2−)

θ(v, τ ′′)2γ−2α−1θ1(v, τ ′′)2β−2γ+3θ2(v, τ ′′)2α−1θ3(v, τ ′′)−2β−1dv

= 0, (4.12)

where we chose the branch of θ1(v, τ ′′)−2β−1 satisfying θ1(v + 1
2 , τ ′′)−2β−1 =

−e2πiβθ(v, τ ′′)−2β−1. Moreover, applying Cauchy’s theorem to the integration of the
function θ(v, τ ′′)−2β−1θ1(v, τ ′′)2α−1θ2(v, τ ′′)2β−2γ+3θ3(v, τ ′′)2γ−2α−1 along the same par-
allelogram, we have

1
(1− e−4πiβ)(1− e4πi(β−γ))

×
∫ (0+, τ′′

2 +,0−, τ′′
2 −)

θ(v, τ ′′)−2β−1θ1(v, τ ′′)2α−1θ2(v, τ ′′)2β−2γ+3θ3(v, τ ′′)2γ−2α−1dv

+
1

(1− e4πiα)(1− e−4πiβ)

×
∫ ( 1

2+,0+, 1
2−,0−)

θ(v, τ ′′)−2β−1θ1(v, τ ′′)2α−1θ2(v, τ ′′)2β−2γ+3θ3(v, τ ′′)2γ−2α−1dv

− e−2πiα

(1− e4πiα)(1− e4πi(γ−α))

×
∫ ( τ′′

2 +,0+, τ′′
2 −,0−)

θ(v, τ ′′)2α−1θ1(v, τ ′′)−2β−1θ2(v, τ ′′)2γ−2α−1θ3(v, τ ′′)2β−2γ+3dv

− e−πiγ

(1− e4πi(γ−α))(1− e4πi(β−γ))

×
∫ (0+, 1

2+,0−, 1
2−)

θ(v, τ ′′)2β−2γ+3θ1(v, τ ′′)2γ−2α−1θ2(v, τ ′′)−2β−1θ3(v, τ ′′)2α−1dv

= 0, (4.13)

where we chose the branch of θ1(v, τ ′′)2α−1 satisfying θ1(v + 1
2 , τ ′′)2α−1 =
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−e−2πiαθ(v, τ ′′)2α−1. From (4.12) and (4.13) it follows that

1− e2πi(β−α)

(1− e4πiα)(1− e4πi(γ−α))

×
∫ ( τ′′

2 +,0+, τ′′
2 −,0−)

θ(v, τ ′′)2α−1θ1(v, τ ′′)−2β−1θ2(v, τ ′′)2γ−2α−1θ3(v, τ ′′)2β−2γ+3dv

=
1− e2πiβ

(1− e4πiα)(1− e−4πiβ)

×
∫ ( 1

2+,0+, 1
2−,0−)

θ(v, τ ′′)2α−1θ1(v, τ ′′)−2β−1θ2(v, τ ′′)2γ−2α−1θ3(v, τ ′′)2β−2γ+3dv

+
eπiγ − e2πiβe−πiγ

(1− e4πi(γ−α))(1− e4πi(β−γ))

×
∫ ( 1

2+,0+, 1
2−,0−)

θ(v, τ ′′)2γ−2α−1θ1(v, τ ′′)2β−2γ+3θ2(v, τ ′′)2α−1θ3(v, τ ′′)−2β−1dv,

(4.14)

1− e2πi(β−α)

(1− e−4πiβ)(1− e4πi(β−γ))

×
∫ ( τ′′

2 +,0+, τ′′
2 −,0−)

θ(v, τ ′′)−2β−1θ1(v, τ ′′)2α−1θ2(v, τ ′′)2β−2γ+3θ3(v, τ ′′)2γ−2α−1dv

=
1− e−2πiα

(1− e4πiα)(1− e−4πiβ)

×
∫ ( 1

2+,0+, 1
2−,0−)

θ(v, τ ′′)2α−1θ1(v, τ ′′)−2β−1θ2(v, τ ′′)2γ−2α−1θ3(v, τ ′′)2β−2γ+3dv

− e−2πiαeπiγ + e−πiγ

(1− e4πi(γ−α))(1− e4πi(β−γ))

×
∫ ( 1

2+,0+, 1
2−,0−)

θ(v, τ ′′)2γ−2α−1θ1(v, τ ′′)2β−2γ+3θ2(v, τ ′′)2α−1θ3(v, τ ′′)−2β−1dv.

(4.15)

Substituting (4.14) into (4.11), we have the desired formula (4.8), which proves Lemma
3. ¤

Lemma 4. We have

z12(τ) =
Γ (2− γ)Γ (β − α− 1)e−πiγ

Γ (1 + β − γ)Γ (−α)
Z11(τ ′′) +

Γ (2− γ)Γ (α− β − 1)e−πiγ

Γ (−β)Γ (α− γ + 1)
Z12(τ ′′).

(4.16)

The proof is similar to that of Lemma 3. We omit it.
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Exchanging α and β in (4.8) and (4.16), we have immediately

z21(τ) =
Γ (γ)Γ (β − α− 1)
Γ (1 + β)Γ (γ − α)

Z21(τ ′′) +
Γ (γ)Γ (α− β − 1)
Γ (α + 1)Γ (γ − β)

Z22(τ ′′), (4.17)

z22(τ) =
Γ (2− γ)Γ (β − α− 1)e−πiγ

Γ (1 + β − γ)Γ (−α)
Z21(τ ′′) +

Γ (2− γ)Γ (α− β − 1)e−πiγ

Γ (−β)Γ (α− γ + 1)
Z22(τ ′′).

(4.18)

Formulas (4.8), (4.16)–(4.18) are unified to the single matrix equality (3.5), which proves
the second half of the theorem.
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[ 4 ] H. Watanabe, Sur la dégénérescence de quelques formules de connexion pour les fonctions hy-

pergéométriques de Gauss, to appear in Aequationes Math.

[ 5 ] W. Wirtinger, Zur Darstellung der hypergeometrischen Function durch bestimmte Integrale,

Akad. Wiss. Wien. S.-B. IIa, III (1902), 894–900.

[ 6 ] A. L. Dixon, Generalisations of Legendre’s formula KE′− (K−E)K′ = 1
2
π, Proc. London Math.

Soc. Ser. 2, 3 (1905), 206–224.

[ 7 ] E. B. Elliott, A formula including Legendre’s EK′ + KE′ −KK′ = 1
2
π, Messenger of Math., 33

(1904), 31–32.

Humihiko Watanabe

Kitami Institute of Technology

165, Koencho, Kitami

Hokkaido, 090-8507, Japan

E-mail: hwatanab@cs.kitami-it.ac.jp


