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Abstract. Some further results about special Vietoris continuous selections
and totally disconnected spaces are obtained, also several applications are demon-
strated. In particular, it is demonstrated that a homogeneous separable metrizable
space has a continuous selection for its Vietoris hyperspace if and only if it is discrete,
or a discrete sum of copies of the Cantor set, or is the irrational numbers.

1. Introduction.

Let X be a topological space, and let F (X) be the set of all non-empty closed
subsets of X. A map f : F (X) → X is a selection for F (X) if f(S) ∈ S for every
S ∈ F (X). A selection f : F (X) → X is continuous if it is continuous with respect to
the Vietoris topology τV on F (X). Let us recall that τV is generated by all collections
of the form

〈V 〉 =
{

S ∈ F (X) : S ⊂
⋃

V and S ∩ V 6=∅, whenever V ∈ V
}

,

where V runs over the finite families of open subsets of X. Sometimes, for reasons of
convenience, we shall say that f is Vietoris continuous to stress the attention that f is
continuous with respect to the topology τV . Finally, for a space X, we let Se`(X) to be
the set of all Vietoris continuous selections for F (X).

In the sequel, all spaces are assumed to be at least Hausdorff. This paper was inspired
by the following two results about Vietoris continuous selections and disconnectedness-
like properties.

Theorem 1.1 ([7]). If X is a first countable space, with Se`(X) 6= ∅, then it is
zero-dimensional if and only if for every point x ∈ X there exists an fx ∈ Se`(X) such
that f−1

x (x) = {S ∈ F (X) : x ∈ S}.

Theorem 1.2 ([7]). If X is a space such that {f(X) : f ∈ Se`(X)} is dense in
X, then X is totally disconnected.

Here, X is zero-dimensional if it has a base of clopen sets (i.e., if ind(X) = 0), and
X is totally disconnected if any two points of X can be separated by clopen sets.

Theorem 1.1 was naturally generalized in [9]. On the other hand, it is still an open
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question if “totally disconnected” in the conclusion of Theorem 1.2 can be strengthen to
“zero-dimensional”, see [7], [8].

The purpose of this paper is to establish some further results about spaces X for
which {f(X) : f ∈ Se`(X)} is dense in X. In the first place, it is shown that {f(X) :
f ∈ Se`(X)} is dense in X if and only if X has a clopen π-base and Se`(X) 6= ∅,
see Theorem 2.1. Several applications follow by this characterization. For instance, if
X is metrizable and {f(X) : f ∈ Se`(X)} is dense in X, then the set of all points
at which X is zero-dimensional must be also dense in X, see Corollary 3.1. Another
natural situation to apply this characterization is for homogeneous spaces. Namely, a
metrizable homogeneous space X which has a continuous selection for F (X) must be
zero-dimensional, see Corollary 3.2. Finally, we characterize all separable metrizable
homogeneous spaces which have a Vietoris continuous selection (Corollary 3.3), also all
locally compact topological groups with this property (Corollary 3.4).

In the second place, it is provided another characterization of spaces X with the
property that D = {f(X) : f ∈ Se`(X)} is dense in X. It is based on special members
of the set D, which are called countably-approachable points, see Section 4. The idea of
this is somehow related to Theorem 1.1, and demonstrates that if there is a “countable
approach” to a point p ∈ X, then one can construct a continuous selection f ∈ Se`(X),
with f(X) = p, see Theorem 4.1. Such countably-approachable points can be useful
to show, for instance, that, for a regular first countable space X, the set {f(X) : f ∈
Se`(X)} is dense in X if and only if it coincides with X, see Corollary 4.5.

2. Selections and π-bases.

A π-base for a space X is a collection P of open subsets such that every non-empty
open subset U ⊂ X contains some non-empty V ∈ P.

Theorem 2.1. If X is a space, with Se`(X) 6= ∅, then {f(X) : f ∈ Se`(X)} is
dense in X if and only if X has a clopen π-base.

A part of the proof of Theorem 2.1 is based on the following simple observation.
This property was used for other hyperspace topologies in [3], [5], [6].

Proposition 2.2. Let X be a space, S ∈ F (X), f be a continuous selection for
F (X), and let G be a clopen neighbourhood of f(S). Then, there exists a clopen subset
H ⊂ X, with S ⊂ H and f(H) ∈ G.

Proof. Let H ⊂ F (X) be a chain in f−1(G) which contains S, and which is
maximal with respect to the usual set-theoretical inclusion. Since f−1(G) is a τV -closed
set, by [5, Lemma 2.2] (see, also, [3], [6]), there exists H ∈ f−1(G), with

⋃
H ⊂ H,

and, therefore, H = max H . Since f−1(G) is also τV -open, there exists a finite family
W of non-empty open subsets of X such that H ∈ 〈W 〉 ⊂ f−1(G). Since H = max H ,
it now follows that H =

⋃
W , which completes the proof. ¤

Proof of Theorem 2.1. Suppose that g ∈ Se`(X), and that P is a clopen π-
base for X. Next, take a non-empty open subset U ⊂ X. Then, there exists a non-empty
clopen set V ∈ P such that V ⊂ U . Now, we can repeat some of the arguments in the
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proof of [7, Lemma 2.1]. Namely, we set

V0 = {S ∈ F (X) : S ∩ V =∅},

and

V1 = {S ∈ F (X) : S ∩ V 6=∅}.

Thus, we get a τV -clopen partition {V0,V1} of F (X). Then, we can define a selection f

for F (X) by letting f(S) = g(S) if S ∈ V0, and f(S) = g(S ∩V ) otherwise. Clearly, f is
τV -continuous and f(X) = g(X ∩ V ) ∈ V ⊂ U . So, {f(X) : f ∈ Se`(X)} is dense in X.

To prove the converse, suppose that {f(X) : f ∈ Se`(X)} is dense in X, and
take an open subset U ⊂ X such that U 6= ∅ 6= X \ U . Then, by hypothesis, there
exists a selection f ∈ Se`(X), with f(X) ∈ U . Let S = X \ U , and let us observe
that f(S) 6= f(X) because f(S) ∈ S = X \ U . However, by Theorem 1.2, X is totally
disconnected. Hence, there exists a clopen set G ⊂ X such that f(S) ∈ G and f(X) /∈ G.
According to Proposition 2.2, there now exists a clopen set H ⊂ X such that S ⊂ H and
f(H) ∈ G. Then, H 6= X because f(X) /∈ G, which implies that V = X \H is a non-
empty clopen subset of X. This completes the proof because V = X \H ⊂ X \ S = U .

¤

It should be mentioned that the proof of Theorem 2.1 relies on Theorem 1.2, hence
on the total-disconnectedness of X. Nevertheless, it seems justifiable to mention the
following immediate consequence of Theorems 2.1 and 1.2.

Corollary 2.3. Let X be a space with a clopen π-base and Se`(X) 6=∅. Then,
X is totally-disconnected.

3. Many selections and metrizable spaces.

Let us recall that a regular space X is Moore if there is a sequence {Wk : k < ω}
of open covers of X such that {St(x,Wk) : k < ω} is a local base at x for every x ∈ X.
Here, St(x,Wk) =

⋃{W ∈ Wk : x ∈ W}.
Also, for a space X and x ∈ X, we will write that indx(X) = 0 if X has a clopen

base at x, i.e. if it is zero-dimensional at x.

Corollary 3.1. If X is a Moore space, with Se`(X) 6= ∅, then the set {f(X) :
f ∈ Se`(X)} is dense in X if and only if the set {x ∈ X : indx(X) = 0} is dense in X.

Proof. According to Theorem 2.1, we have to show that {x ∈ X : indx(X) = 0}
is dense in X if and only if X has a clopen π-base. So, suppose that P is a clopen π-base
for X, and let {Wk : k < ω} be as in the definition of a Moore space. Then, for every
k < ω there exists a pairwise disjoint family Pk ⊂ P such that Pk refines Wk, and
Gk =

⋃
Pk is dense in X. By a result of [10], X is a Baire space because it is regular

and has a continuous selection. Then, G =
⋂{Gk : k < ω} is a dense Gδ-subset of X,

and clearly indx(X) = 0 for every x ∈ G. Thus {x ∈ X : indx(X) = 0} is dense in X

because it contains G. To show the converse, for every x ∈ X, with indx(X) = 0, take
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a clopen base Px at x. Then, P =
⋃{Px : indx(X) = 0} is a clopen π-base for X

because {x ∈ X : indx(X) = 0} is dense in X. ¤

Corollary 3.2. If X is a homogeneous Moore space, with Se`(X) 6= ∅, then it
is zero-dimensional.

Proof. Since X is homogeneous, X = {f(X) : f ∈ Se`(X)}. Hence, by Corollary
3.1, {x ∈ X : indx(X) = 0} is dense in X, and, in particular, non-empty. So, X has at
least one point at which it is zero-dimensional, hence it is zero-dimensional because it is
homogeneous. ¤

Corollary 3.3. Let X be a homogeneous separable metrizable space such that
Se`(X) 6=∅. Then, one of the following holds:

(a) X is a discrete space,
(b) X is a discrete sum of copies of the Cantor set,
(c) X is the irrational line.

Proof. If X contains an isolated point, then all points of X must be isolated
because it is homogeneous. Hence, in this case, X is discrete. Suppose that X contains
a non-isolated point, then X must be dense in itself because it is homogeneous. We
distinguish the following two cases. If X contains a clopen compact subset, then it
has a discrete cover C of clopen compact sets. Note that X is separable, hence its
covering dimension is zero because, by Corollary 3.2, it is zero-dimensional. Further, let
us observe that each C ∈ C is a zero-dimensional compact metric space, which is dense
in itself because X is dense in itself. Hence, by a result of [4], C is homeomorphic to
the Cantor set. Thus, (b) holds in this case. Finally, let us suppose that X doesn’t
contain any non-empty compact open subset. According to a result of [11], X must be
completely metrizable because it has a Vietoris continuous selection, while, by Corollary
3.2, it is zero-dimensional. So, by a result of [1], X is homeomorphic to the irrational
numbers. ¤

A space X is orderable (or, linearly orderable) if there exists a linear order ≤ on X

such that the sets {y ∈ Y : x < y} and {y ∈ X : y < x} constitute a subbase for the
topology of X. A topological group G is called topologically orderable if it is an orderable
topological space (no relation between the group operations and the order is assumed).

Corollary 3.4. A locally compact topological group G is totally disconnected and
topologically orderable if and only if Se`(G) 6=∅.

Proof. Suppose that G is totally disconnected and orderable. Then, by [14,
Theorem 5.5] (see, also, [13, Theorem 9]), G is either discrete or it contains a clopen
subgroup homeomorphic to the Cantor set. In both cases, G is represented as a discrete
sum of spaces Gα, with Se`(Gα) 6= ∅. Hence, G itself has a continuous selection
f : F (G) → G.

Suppose now that Se`(G) 6= ∅. Then, G = {f(G) : f ∈ Se`(G)} because G is
homogeneous, so, by Theorem 1.2, G is totally disconnected. Then, G has a basis of
neigbourhoods at the identity consisting of compact open subgroups, see [12]. Hence, G
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contains a compact open subgroup H. Then, either H is finite or it is infinite. Also, let
us observe that Se`(H) 6=∅ because H ∈ F (G). In case H is infinite, by [9, Corollary
5.6] (see, also, [2, Corollary 1.27]), H is homeomorphic to the Cantor set. Thus, H is
either finite or homeomorphic to the Cantor set. Hence, by [14, Theorem 5.5], G is
topologically orderable. ¤

4. Countably-approachable points.

In the present section we provide a possible variant of Corollary 3.1 for arbitrary
spaces. To this end, let us say that a point p ∈ X is 0-approachable if p is an isolated
point of X, and that p is ω-approachable if there exists an open subset U ⊂ X \ {p} such
that U = U ∪ {p}, and p has a countable clopen base in U . Let us observe that if p is
ω-approachable, and if {Wn : n < ω} is a strictly decreasing clopen base at p in U , then
Sn = Wn \Wn+1, n < ω, is a disjoint family of non-empty clopen subset of X such that
p /∈ Sn for every n < ω, and {Sn : n < ω} is τV -convergent to p. One can easily see that
the converse is also true, so, in the sequel, we will mainly rely on this characterization of
ω-approachable points.

In what follows, we say that p ∈ X is countably-approachable if p is either 0-
approachable or it is ω-approachable.

Theorem 4.1. For a space X, with Se`(X) 6=∅, the following are equivalent :

(a) The set {f(X) : f ∈ Se`(X)} is dense in X.
(b) The set of all countably-approachable points of X is dense in X.

The proof of Theorem 4.1 consists of the following separate observations.

Lemma 4.2. Let X be a space, with Se`(X) 6= ∅, and let p ∈ X be a countably-
approachable point of X. Then, there exists an f ∈ Se`(X), with f(X) = p.

Proof. If p is an isolated point of X, then this follows by [7, Lemma 2.1]. So,
suppose that p is an ω-approachable point of X, and let {Sn : n < ω} be a disjoint family
of non-empty clopen subsets of X such that p /∈ Sn for every n < ω, and {Sn : n < ω} is
τV -convergent to p. Following [7, Lemma 2.3], we let

V0 = {F ∈ F (X) : F ∩ S0 =∅},

and

V1 = {F ∈ F (X) : F ∩ S0 6=∅}.

Thus, we get a τV -clopen partition of F (X) because S0 is a clopen set. Then, consider
the sets

V 0
1 = {F ∈ V1 : Sn ∩ F =∅ for some n < ω},

and
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V 1
1 = {F ∈ V1 : Sn ∩ F 6=∅ for every n < ω}.

For later use, let us observe that F ∈ V 1
1 implies p ∈ F .

Now, for every F ∈ V 0
1 , let n(F ) = min{n < ω : Sn+1 ∩ F = ∅}. Next, take

a selection g ∈ Se`(X), and then define another selection f : F (X) → X by letting
f ¹ V0 = g ¹ V0, while f(F ) = g(Sn(F ) ∩ F ) if F ∈ V 0

1 , and f(F ) = p otherwise. Since
X ∈ V 1

1 , we have that f(X) = p, hence it only remains to show that f is continuous. Since
V0 is τV -clopen and g is continuous, it now suffices to show that f ¹ V1 is continuous, so
take an F ∈ V1. We distinguish the following two cases. If F ∈ V 0

1 , then F ∩Sk 6=∅ for
every k ≤ n(F ), and F ∩Sn(F )+1 =∅. On the other hand, f(F ) = g(Sn(F )∩F ) ∈ Sn(F ),
while Sn(F ) is clopen. Then, consider the τV -clopen set 〈U 〉, where

U = {Sk : k ≤ n(F )} ∪ {X \ Sn(F )+1}.

Note that F ∈ 〈U 〉 ⊂ V 0
1 , while the map ϕ : 〈U 〉 → F (Sn(F )), defined by ϕ(T ) =

T ∩Sn(F ), is τV -continuous. Also, T ∈ 〈U 〉 implies n(T ) = n(F ), hence f ¹ 〈U 〉 = g ◦ϕ.
Thus, f is continuous at F because so are g and ϕ. Finally, let us consider the case
when F ∈ V 1

1 . By definition, f(F ) = p, while F ∩ Sk 6= ∅ for every k < ω. Take a
neighbourhood V of p in X. Then, there exists an m < ω, with Sn ⊂ V for every n ≥ m.
In this case, let

U = {Sk : k ≤ m} ∪ {X}.

Thus, we get a τV -neighbourhood of F such that f(〈U 〉) ⊂ V . Indeed, take a T ∈ 〈U 〉,
and then observe that T ∈ V1 because T ∩ S0 6=∅. If T ∩ Sk 6=∅ for every k < ω, then
f(T ) = p ∈ V . If T ∩ Sk =∅ for some k < ω, then n(T ) ≥ m, so f(T ) = g(Sn(T ) ∩ T ) ∈
Sn(T ) ⊂ V . ¤

Proposition 4.3. Let p ∈ X be a non-isolated point of X, and let f ∈ Se`(X)
be such that f(X) = p. Then, for every closed subset F ⊂ X, with p /∈ F , there exists a
closed subset T ⊂ X such that F ⊂ T , p /∈ T , and f(T ∪ {x}) = x for some x ∈ X \ T .

Proof. Let F ⊂ X be as in this statement. Then, U = X \F is a neighbourhood
of p, so there exists a finite open cover W of X such that X ∈ 〈W 〉 and f(〈W 〉) ⊂ U .
Since p is a non-isolated point of U , there now exists a finite set S ⊂ U \ {p} such that
F ∪ S ∈ 〈W 〉. Then, we can take T = (F ∪ S) \ {f(F ∪ S)}, which works because
f(F ∪ S) ∈ S. ¤

We finalize the proof of Theorem 4.4 with the following lemma.

Lemma 4.4. Let X be a space such that {f(X) : f ∈ Se`(X)} is dense in X.
Then, every non-empty open subset of X contains a countably-approachable point.

Proof. Let U ⊂ X be a non-empty clopen set. If U contains some isolated point,
then clearly U contains a countably-approachable point as well. So, suppose that U has
no isolated points, and then set F0 = X \ U . Also, take an f ∈ Se`(X) such that
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p = f(X) ∈ U . According to Proposition 4.3, there now exists a closed subset T0 ⊂ X

such that F0 ⊂ T0, p /∈ T0, and f(T0 ∪ {x}) = x for some x /∈ T0. Since f is continuous,
we may find an open set U0 ⊂ X \ T0 ⊂ U such that f(T0 ∪ {x}) = x for every x ∈ U0.
Then, |U0| > 1 because U does not have any isolated point, so, by Theorem 2.1, U0 \ {p}
contains a non-empty clopen subset S0. Thus, in fact, we have constructed a closed set
T0 ⊂ X, with p /∈ T0, and a non-empty clopen subset S0 ⊂ X such that F0 ⊂ T0 ⊂ X\S0,
p /∈ S0, and f(T0 ∪ {x}) = x for every x ∈ S0. Now, we can set F1 = T0 ∪ S0, and we
can repeat the same arguments. Hence, by induction, we get an increasing sequence
{Tn : n < ω} of closed subsets, and a disjoint family {Sn : n < ω} of non-empty clopen
subsets such that, for every n < ω,

(a) Tn ∪ Sn ⊂ Tn+1 ⊂ X \ (Sn+1 ∪ {p}),
(b) f(Tn ∪ {x}) = x, for every x ∈ Sn.

Set T =
⋃{Tn : n < ω}, S =

⋃{Sn : n < ω}, and q = f(T ). We are going to show
that q is an ω-approachable point. Towards this end, let us observe that if yn ∈ Sn

for every n < ω, then q = limn→∞ yn. Indeed, in this case, by (a), we have that
Tn ⊂ Tn ∪ {yn} ⊂ Tn+1, so, by (b),

q = lim
n→∞

f(Tn+1) = lim
n→∞

f(Tn ∪ {yn}) = lim
n→∞

yn. (4.1)

In particular, this implies that q /∈ S because {Sn : n < ω} is a disjoint open family.
Also, {Sn : n < ω} is τV -convergent to q. Indeed, if this fails, then there should be some
neighbourhood W of q in X so that Sn \ W 6= ∅ for infinitely many n < ω. Hence,
we can find a strictly increasing sequence {nk : k < ω} ⊂ ω, and a sequence of points
{yk : k < ω} so that yk ∈ Snk

\W for every k < ω. According to (4.1), this will imply
that q = limk→∞ yk ∈ X \ W , which is clearly impossible. Thus, q ∈ U = U is an ω-
approachable point of X. Since, by Theorem 2.1, X has a clopen π-base, this completes
the proof. ¤

The following is now an immediate consequence of Lemma 4.2.

Corollary 4.5. If X is a regular first countable space and {f(X) : f ∈ Se`(X)}
is dense in X, then X = {f(X) : f ∈ Se`(X)}.

Proof. Take a non-isolated point p ∈ X, and let {Wn : n < ω} be an open local
base at p such that Wn+1 ⊂ Wn and Cn = Wn \Wn+1 6= ∅ for every n < ω. According
to Theorem 2.1, every Cn contains a non-empty clopen subset Sn ⊂ Cn. Then, the
sequence {Sn : n < ω} is τV -convergent to p, so p is an ω-approachable point. ¤

Acknowledgement. The author would like to express his best gratitude to the
referee for several valuable remarks. Also, he would like to thank to Jiang Nan and
Professor Tsugunori Nogura for their valuable remarks about the proof of Theorem 2.1.

References
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