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Discrete interpolating varieties in pseudoconvex open sets of Cn

By Bao Qin Li
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Abstract. We give a necessary and sufficient condition for a discrete variety
in a pseudoconvex open set Ω of Cn to be an interpolating variety for Hörmander’s
weighted algebras of holomorphic functions in Ω.

1. Introduction.

Let Ω be an open set in Cn and p a nonnegative function defined in Ω. We
shall denote by Ap(Ω) the algebra of all holomorphic functions f in Ω satisfying that
|f(z)| ≤ AeBp(z), z ∈ Ω, for some constants A,B > 0. This paper concerns the follow-
ing interpolation problem for Ap(Ω) when p is a Hörmander weight function in Ω (and
then Ω is necessarilly pseudoconvex. see Section 2): under what necessary and sufficient
conditions is a discrete set V = {ζk} ⊂ Ω an interpolating variety for Ap(Ω)? That is,
under what necessary and sufficient conditions is it true that for any sequence {ak} of
complex numbers satisfying that |ak| < A1e

B1p(ζk), k ∈ N , for some A1, B1 > 0 there
always exists a f ∈ Ap(Ω) such that f(ζk) = ak for all k ∈ N? We will then say that V

is an interpolating variety for Ap(Ω).
It is well-known that interpolation for the algebras Ap(Ω) is intrinsically related to

the idea theory for the rings Ap(Ω), systems of partial differential equations and convo-
lution equations, etc. Many questions in harmonic analysis, like finding all distribution
solutions or finding out whether there are any to a system of linear partial differential
equations with constant coefficients or, more generally, convolution equations in Rn, can
be translated into interpolation problems for Ap(Ω). Various interesting results have
been obtained by imposing conditions on the weight p, the domain Ω, and the variety
V in one and several complex variables. We refer to [BG], [BL], [BS], [BT], [E], [M],
[Oh], [Ou], [S], etc. and references therein for various results on interpolation and re-
lated problems. In [BL], Berenstein and the author, motivated by the previous work of
Berenstein and Taylor [BT], obtained a necessary and sufficient interpolation condition
for the case Ω = Cn in terms of the growth o f “directional derivatives” of an entire holo-
morphic mapping vanishing on the variety V , which yielded an interpolation condition
in terms of the Jacobian of the mapping (see [BL]). Since Jacobian is one of the most
important and convenient quantities associated to a mapping, the condition turns out to
be very useful. It, for example, plays an important role in the work of Taylor and the
author ([LT]) on the well-known transcendental Bézout problem for entire holomorphic
mappings in Cn. Other applications of the result and method can be found in recent
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papers [L], [M], [Oh], [Ou], etc. The analogous result for the case that Ω is the unit ball
in Cn and p(z) = log 1

1−|z| was given in [M]. Despite of various interpolation conditions
available in the literature, so far no both necessary and sufficient interpolation conditions
without extra conditions have been known for general Hörmander algebras Ap(Ω).

The aim of this paper is to obtain a necessary and sufficient interpolation condition
for general Hörmander algebras Ap(Ω), where p is an arbitrary Hörmander weight defined
in an open set Ω of Cn (see Section 2 for the definition). It turns out that a discrete
variety V in Ω is an interpolating variety for Ap(Ω) if and only if V is a subset of the
zero set of a holomorphic mapping f = (f1, f2, . . . , fn) : Ω → Cn, fj ∈ Ap(Ω), whose
Jacobian is bounded from below by εe−Cp(ζ), ζ ∈ V , for some constants ε, C > 0. Since
this characterization does not impose any extra conditions on the weight p, the domain
Ω, and the discrete variety V , it is probably a most general result one may obtain for
interpolation in the Hörmander algebras Ap(Ω) and would be of interests in studying
related problems and applications in general domains of Cn.

We will include some preliminaries and state the detailed results in Section 2, and
give the proofs of the results in Section 3.

2. Preliminaries and results.

We first recall the definitions of the weight p and weighted algebra Ap(Ω), introduced
by Hörmander ([H1]). Let Ω be an open set in Cn. A plurisubharmonic function
p : Ω → [0,∞) is called a Hörmander weight if it satisfies the following Hörmander’s
conditions:

(i) all polynomials belong to Ap(Ω);
(ii) there exist constants K1, . . . , K4 such that z ∈ Ω and |ζ−z| ≤ e−K1p(z)−K2 implies

that ζ ∈ Ω and

p(ζ) ≤ K3p(z) + K4. (2.1)

Let A(Ω) be the ring of holomorphic functions in Ω. The Hörmander algebra Ap(Ω) is
defined as

Ap(Ω) =
{
f ∈ A(Ω) : ∃A, B > 0 such that |f(z)| ≤ AeBp(z), z ∈ Ω

}
.

For the meaning of the above conditions and examples of the algebras, the reader is
referred to [H1] and [BT]. In particular, we note that under the above conditions, Ω is
necessarily pseudoconvex (see [H1]), and Ap(Ω) is closed under differentiation.

The Hörmander algebras include most classically studied algebras of entire functions
in Cn such as the algebra A|z|ρ(Cn) of all entire functions of order≤ ρ and finite type
(p(z) = |z|ρ, ρ > 0) and the algebra Ê ′(Rn) of Fourier transforms of distributions with
compact support in Rn (p(z) = |=z|+log(1+|z|2)), and algebras of holomorphic functions
in the unit ball such as A−∞

(
p(z) = log 1

1−|z|
)
. Many other Hörmander weights can be

given. Note, however, that the conditions exclude the algebra of bounded holomorphic
functions (p(z) ≡ 0), for which necessary and sufficient interpolation conditions and the
idea theory when Ω is the unit disk in C were studied by Carleson in [C].



Discrete interpolating varieties 1187

Let V = {ζk} ⊂ Ω be a discrete variety in Ω. The weighted space Ap(V ) of sequences
of complex numbers is defined as

Ap(V ) =
{{ak}k∈N : ∃A, B > 0 such that |ak| ≤ AeBp(ζk), k ∈ N

}
.

With the above definitions, the notion of interpolation stated in the introduction may
be phrased using the restriction mapping

ρ : ρ(f) = {f(ζk)}k∈N (2.2)

from Ap(Ω) to Ap(V ). Associated to the given discrete variety V = {ζk}, there is a
unique closed ideal in A(Ω),

I = I(V ) :=
{
f ∈ A(Ω) : f(ζk) = 0, ∀k}

.

Two holomorphic functions g, h in Ω can be identified modulo I if and only f(ζk) = g(ζk),
k ∈ N . The quotient space A(Ω)/I can be identified to the space A(V ), the space of all
sequences {ak}k∈N of complex numbers. The map ρ is the natural restriction map from
A(Ω) into A(V ). It is clear that ρ(Ap(Ω)) ⊆ Ap(V ); but, in general, Ap(V ) is too large.
The interpolation problem for Ap(Ω) is to determine when ρ is surjective from Ap(Ω) to
Ap(V ).

If the restriction map ρ is surjective from Ap(Ω) to Ap(V ), V is then called an
interpolating variety for Ap(Ω). This clearly means that for any {ak} ∈ Ap(V ) there
exists a f ∈ Ap(Ω) such that f(ζk) = ak, k ∈ N , i.e., f has prescribe values at each
ζk, k ∈ N .

In the following, we shall use f−1(0) to denote the zero set of a mapping f and use
df to denote the Jacobian of f . We will always assume that p is a Hörmander weight
defined in an open set Ω ⊆ Cn. As mentioned earlier, Ω is necessarily pseudoconvex.
We have the following

Theorem 2.1. Let p be a Hörmander weight defined in an open set Ω ⊆ Cn. Then
a discrete variety V = {ζk} in Ω is an interpolating variety for Ap(Ω) if and only if there
exists a holomorphic mapping f = (f1, f2, . . . , fn) : Ω → Cn with fj ∈ Ap(Ω) such that
V ⊆ f−1(0) and

|df(ζk)| ≥ εe−Cp(ζk), k ∈ N (2.3)

for some ε, C > 0.

The following result allows the holomorphic mapping f to be “non-equidimensional.”
Note that both Theorem 2.1 and the following corollary apply to arbitrary discrete vari-
eties, which are, in particular, not required to be complete intersections.

Corollary 2.2. Let p be a Hörmander weight defined in an open set Ω ⊆ Cn and
m ≥ n an integer. Then a discrete variety V = {ζk} in Ω is an interpolating variety for
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Ap(Ω) if and only if there exists a holomorphic mapping f = (f1, f2, . . . , fm) : Ω → Cm

with fj ∈ Ap(Ω) such that V ⊆ f−1(0) and

∑
|Jn×n(ζk)| ≥ εe−Cp(ζk), k ∈ N

for some ε, C > 0, where the sum is taken over all the n×n minors Jn×n of the Jacobian
of f .

If Ω = Cn, the above theorem yields the results in [BL]. In [BL], we introduced
the “directional derivatives” sum

∑m
j=1 |Dufj | for every direction u in Cn, which was

used in both the statement and the proof of the theorem, so that certain one variable
results and arguments could be applied to the restrictions of the functions to complex
lines in Cn. The directional derivative condition involves every direction in Cn and is
fairly complicated. Unlike in [BL], directional derivatives will play no role in the present
paper.

3. Proofs of the results.

We now give the proofs of our results. In the proofs, we shall follow the usual prac-
tice, using A,B, C, ε to denote positive constants, which may depend on the dimension n

and the actual values of which may vary from one occurrence to the next. For complete-
ness and for the reader’s convenience, we keep careful track of the estimates required in
the proof of Theorem 2.1 to lead to the conclusions of the theorem.

Proof of Theorem 2.1. We first prove the sufficiency. Suppose that a = {ak} ∈
Ap(V ) is a sequence. We need to show that there is a function F in Ap(Ω) such that
F (ζk) = ak for each k ∈ N . From the given condition, we know that |f(z)| < A1e

B1p(z),
z ∈ Ω, for some constants A1, B1 > 0.

In the following, if (ai,j) is a matrix, we let ‖(ai,j)‖ = maxi,j |ai,j |. Note that for a
point z = (z1, z2, . . . , zn) ∈ Cn, we have that ‖z‖ ≤ |z| = (|z1|2 + |z2|2 + · · ·+ |zn|2) 1

2 ≤√
n‖z‖. Denote by Jf the Jacobian matrix of f and adj(Jf) the adjoint matrix of Jf .

Let ζk ∈ V be an arbitrary point. Set h(z) := e−K1p(z)−K2 , where K1 and K2 are the
numbers in (ii) in the definition of the weight (see (2.1)).

When |z − ζk| ≤ h(ζk), it follows from (2.1) that z ∈ Ω and

|f(z)| ≤ A1e
B1(K3p(ζk)+K4) ≤ AeBp(ζk), (3.1)

for some A,B > 0. Let, for 1 ≤ j ≤ n, gj(z) = fj

(
ζk + 1

2h(ζk)z
)
, z ∈ Ω. Then

w := ζk + 1
2h(ζk)z ∈ Ω. Thus, gj is a well-defined holomorphic function in Ω, and

max
|z|=1

{|gj(z)|} ≤ max
|z−ζk|≤h(ζk))

{|f(z)|} ≤ AeBp(ζk).

By the Cauchy formula in the unit ball (see e.g. [R, p. 39]) we have that
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gj(z) =
∫

S

gj(w)
(1− 〈w, z〉)n

dσ(w),

where σ is the normalized rotation-invariant positive Borel measure on the unit sphere
S and 〈w, z〉 is the usual inner product. Thus we have that

∂gj(z)
∂zi

= n

∫

S

wig(w)
(1− 〈z, w〉)n+1

dσ(w),

where w = (w1, . . . , wn) and 1 ≤ i ≤ n, from which we obtain that

∣∣∣∣
∂gj(0)

∂zi

∣∣∣∣ ≤ n

∫

S

|g(w)|dσ(w) ≤ neAp(ζk)+B

in view of the fact that
∫

S
dσ(w) = 1. We then have that

∣∣∣∣
∂fj(ζk)

∂zi

∣∣∣∣ =
2

h(ζk)

∣∣∣∣
∂g(0)
∂wi

∣∣∣∣ ≤
2n

h(ζk)
AeBp(ζk).

Thus,

∥∥Jf(ζk)
∥∥ ≤ max

i,j

{∣∣∣∣
∂fj(ζk)

∂zi

∣∣∣∣
}
≤ A

h(ζk)
eBp(ζk) (3.2)

and also

∥∥adj(Jf)(ζk)
∥∥ ≤ A(

h(ζk)
)n−1 e(n−1)Bp(ζk), (3.3)

for some constants A,B > 0.
For convenience, we write a point in Cn as a column vector. Let g(z) = f(z) −

Jf(ζk)(z− ζk), z ∈ Ω. Then for |z− ζk| ≤ h(ζk), we have that, in view of (3.1) and (3.2),

|g(z)| ≤ |f(z)|+ ∣∣Jf(ζk)(z − ζk)
∣∣

≤ |f(z)|+√
n
∥∥Jf(ζk)(z − ζk)

∥∥

≤ |f(z)|+ n
√

n
∥∥Jf(ζk)

∥∥× ‖z − ζk‖ ≤ AeBp(ζk).

Also, Jg(ζk) = Jf(ζk)−Jf(ζk) = 0. Recall the following Schwarz Lemma (see e.g. [G]):
If f is holomorphic in an open neighborhood of a closed ball B̄(ζ, r) in Cn centered at
ζ and with radius r, |f(z)| ≤ M for z ∈ B(ζ, r), and ∂|I|f

∂zI (ζ) = 0 whenever |I| < m

for some m ∈ N , where I ∈ (Z+)n is a multi-index, then |f(z)| ≤ Mr−m|z − ζ|m for
z ∈ B̄(ζ, r). Applying the lemma with m = 2 to each component of our mapping g in
|z − ζk| < h(ζk), we have that
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|g(z)| ≤ AeBp(ζk)
(
h(ζk)

)−2|z − ζk|2. (3.4)

Also,

‖z − ζk‖ =
∥∥(Jf)−1(ζk)Jf(ζk)(z − ζk)

∥∥

≤ n
∥∥(Jf)−1(ζk)

∥∥× ∥∥Jf(ζk)(z − ζk)
∥∥.

Thus, by (2.3) and (3.3), we deduce that

∣∣Jf(ζk)(z − ζk)
∣∣ ≥ ∥∥Jf(ζk)(z − ζk)

∥∥

≥ 1
n
‖z − ζk‖ ×

∥∥(Jf)−1(ζk)
∥∥−1

=
1
n
‖z − ζk‖

∣∣ det Jf(ζk)
∣∣

∥∥adj(Jf)(ζk)
∥∥ ≥ ε|z − ζk|

(
h(ζk)

)n−1
e−Cp(ζk), (3.5)

for some ε, C > 0.
Suppose that ζj ∈ V is a zero of f in |z − ζk| < h(ζk) with ζj 6= ζk. Then

g(ζj) = f(ζj)− Jf(ζk)(ζj − ζk) = −Jf(ζk)(ζj − ζk).

Thus, it follows from (3.4) that

∣∣Jf(ζk)(ζj − ζk)
∣∣ =

∣∣g(ζj)
∣∣ ≤ AeBp(ζk)

(
h(ζk)

)−2∣∣ζj − ζk

∣∣2.

We deduce that

∣∣ζj − ζk

∣∣2 ≥ ∣∣Jf(ζk)(ζj − ζk)
∣∣A−1e−Bp(ζk)

(
h(ζk)

)2
,

or, by virtue of (3.5), |ζj − ζk| ≥ ε0(h(ζk))n+1e−C0p(ζk), for some constants 0 < ε0 < 1
and C0 > 0. This inequality clearly also holds when |ζj − ζk| ≥ h(ζk). Thus, it holds for
each ζj ∈ V with ζj 6= ζk. Hence, we have that

dk := min
{
h(ζk),dist

{
ζk, V \ {ζk}

}} ≥ ε0
(
h(ζk)

)n+1
e−C0p(ζk). (3.6)

Also, by the definition of g, (3.5) and (3.4), we have that for |z − ζk| < h(ζk),

|f(z)| = ∣∣Jf(ζk)(z − ζk) + g(z)
∣∣

≥ ∣∣Jf(ζk)(z − ζk)
∣∣− |g(z)|

≥ ε|z − ζk|
(
h(ζk)

)n−1
e−Cp(ζk) −AeBp(ζk)

(
h(ζk)

)−2|z − ζk|2

= |z − ζk|
{
ε
(
h(ζk)

)n−1
e−Cp(ζk) −AeBp(ζk)

(
h(ζk)

)−2|z − ζk|
}
. (3.7)
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We may increase the value of A or decrease the value of ε in (3.7), if necessary, so that
(3.7) still holds and, meanwhile, ε

A < ε0, where ε0 is the number in (3.6). For the same
reason, we may increase the value C in (3.7) so that C ≥ C0, where C0 is the number in
(3.6). Let ηk = ε

2A (h(ζk))n+1e−(B+C)p(ζk). Then by virtue of (3.6), we have that

2ηk < ε0
(
h(ζk)

)n+1
e−C0p(ζk) ≤ dk ≤ h(ζk).

Thus, the ball B(ζk, ηk) does not contain any other points in the variety V and B(ζk, ηk)∩
B(ζj , ηj) = ∅. Furthermore, when 1

2ηk ≤ |z − ζk| ≤ ηk, it is easy to check, by virtue of
(3.7) and by the definition of h(z), that

|f(z)| ≥ 1
2
ηk

ε

2
(
h(ζk)

)n−1
e−Cp(ζk)

=
ε2

8A

(
h(ζk)

)2n
e−(B+2C)p(ζk) ≥ ε1e

−C1p(ζk) (3.8)

for some positive numbers ε1 and C1.
We next use the L2-estimate for ∂̄ operators ([H1], [H2]) to obtain our desired

function F mentioned in the beginning. Since {ak} ∈ Ap(V ), |ak| < A2e
B2p(ζk) for some

A2, B2 > 0. Denote U0 = ∪kB(ζk, ηk

2 ) and U = ∪kB(ζk, ηk). Then it is easy to verify, in
view of (2.1), that there exist ε, C > 0 such that d(z) := max{d(z, U0), d(z, U c)}, where
U c is the complement of U in Ω, satisfies that d(z) ≥ ηk

4 ≥ εe−Cp(z) for z ∈ U \ U0. By
the well-known Whitney’s theorem (see e.g. [BG1, p. 18]), there exists a cut-off function
χ ∈ C∞, 0 ≤ χ ≤ 1, such that

χ(z) = 1, z ∈ U0; χ(z) = 0, z ∈ U c

and

∣∣∂̄χ(z)
∣∣ ≤ C

d(z)
≤ AeBp(z), z ∈ U \ U0,

for some A,B, C > 0. Define a function φ0 ∈ Ω satisfying that φ0(z) = ak on each
B(ζk, ηk), k ∈ N (The values of φ0 in Ω \ U can be arbitrarily defined). Let φ = φ0∂̄χ.
Then the support of φ is contained in U \ U0 and φ is clearly a ∂̄− closed form. If
z ∈ U \ U0, then there exists a ζk ∈ V such that 1

2ηk ≤ |z − ζk| ≤ ηk and thus |f(z)| ≥
ε1e

−C1p(ζk) ≥ εe−Cp(z) for some ε, C > 0 by (3.8) and (2.1). Also by (2.1) again, when
|z− ζk| ≤ ηk < dk ≤ h(ζk), we have that |ak| < A2e

B2p(ζk) ≤ AeBp(z) for some A,B > 0,
from which it follows that |φ(z)| = |ak∂̄χ(z)| ≤ AeBp(z) for some A,B > 0. Therefore,
for each m > 0 there exist a α > 0 such that

∫

Ω

|φ(z)|2
|f(z)|2m

e−αp(z)dλ < ∞, (3.9)

in view of the fact that (1 + |z|)2n+1 ≤ AeBp(z) for some A,B > 0 by the condition
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(i) in the definition of the weight, where dλ denotes the Lebesgue measure in Cn.
By Theorem 2.6 in [KT], (3.9) with m ≥ 2n + 1 implies that there exist ∂̄ closed
(0, 1)-forms φ1, φ2, . . . , φn in Ω and some β > 0 such that φ = φ1f1 + · · · + φnfn and∫
Ω
|φj(z)|2e−βp(z)dλ < ∞. Thus by Hörmander’s theorem [H, Lemma 4], there exist

solutions ψj to the ∂̄ equations ∂̄ψj = φj in Ω satisfying the L2-estimates:

∫

Ω

∣∣ψj(z)
∣∣2e−βp(z)(1 + |z|2)−2dλ < ∞.

Define F = φ0χ−
∑n

j=1 ψjfj . Then

∂̄F = φo∂̄χ−
n∑

j=1

fj ∂̄ψj = φ−
n∑

j=1

fjφj = 0.

Thus, F is holomorphic in Ω. It is easy to verify that
∫
Ω
|F (z)|2e−Ap(z)dλ < ∞ for some

A > 0, which implies that F ∈ Ap(Ω) ([H, Lemma 3]). Clearly, F (ζk) = φ0(ζk)χ(ζk) = ak

for all k ∈ N . This shows that V is an interpolating variety for Ap(Ω).
Next, we prove the necessity. Let Al(V ) = {a = ρ(f) : f ∈ Al(Ω), ‖a‖ ≤ 1}, where

‖a‖ := supk∈N{|ak|e−p(ζk)} and Al(Ω) := {f ∈ Ap(Ω) : |f(z)| ≤ lelp(z), z ∈ Ω}. We
assert that there exist some l and 0 < ε < 1 such Al(V ) ⊃ Aε := {a = {ak}k∈N :
‖a‖ ≤ ε}. This may be proved by using the open mapping theorem for the restriction
map ρ : ρ(f) = {f(ζk)}∞k=1 in (2.2) with Ap(Ω) and Ap(V ) endowed with inductive limit
topology, or by using the Baire category theorem. For completeness, we include a proof
for this assertion.

In fact, it is easy to see that the space A := {a = {ak}k∈N ⊂ C : ‖a‖ ≤ 1}
is complete under the metric induced by the norm ‖a‖. Since V is an interpolating
variety for Ap(Ω), for any sequence a = {ak} ∈ A , there exists a f ∈ Al(Ω) for some
l such that ρ(f) = a. Hence, a ∈ Al(V ). This shows that A = ∪∞l=1Al(V ). Also, for
each l, Al(V ) is a closed subset of A . In fact, if {fj} is a sequence in Al(Ω) such that
aj := ρ(fj) → a ∈ A as j → ∞, then by (2.1), {fj} is uniformly bounded on each
compact subset of Ω, and thus, by the Montel theorem and Weierstrass theorem (see e.g.
[G]), we can assume, by passing to a subsequence, that fj → f , where f is holomorphic
in Ω. Clearly, f ∈ Al(Ω) and ρ(f) = {f(ζk)} = a. This shows that a ∈ Al(V ) and thus
that Al(V ) is closed. We can then apply the Baire-category theorem (see e.g. [Ho]) to
obtain a l such that Al(V ) has a non-empty interior, i.e., Al(V ) ⊃ Aε for some 0 < ε < 1.
This shows the above assertion.

Now, for each fixed k, we consider ak = (0, . . . , 0, 1, 0, . . . ) with all the entries in ak

being zero except the k−th entry, which is 1. Then εak ∈ Aε. Therefore, there exists
a sequence {hk}∞k=1 of functions hk ∈ Al(Ω) such that ρ(hk) = εak, i.e., hk(ζj) = 0 for
j 6= k but hk(ζk) = ε. Let gk = 1

ε hk. Then gk satisfies that

gk(ζj) = 0, j 6= k; gk(ζk) = 1; |gk(z)| < LeLp(z), z ∈ Ω, (3.10)

where L = l
ε , independent of k and z.
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Next, we fix a positive number N such that

∫

Ω

1
(1 + |z|)N

dλ ≤
∫

Cn

1
(1 + |z|)N

dλ < +∞. (3.11)

For each fixed integer j(1 ≤ j ≤ n), we define for z ∈ Ω,

fj(z) =
∞∑

k=1

(zj − ζk,j)g2
k(z)

1
(1 + |ζk|)N+1

exp
(− γp(ζk)

)
, (3.12)

where z = (z1, . . . , zn), ζk = (ζk,1, . . . , ζk,n), and γ is a (yet to be determined) positive
constant.

Let f = (f1, f2, . . . , fn). We will show that this is the desired mapping in the
theorem. To this end, we first prove that fj satisfies the right growth estimate required
in the theorem, i.e., fj ∈ Ap(Ω). For convenience, denote by fj,k the general term of the
series (3.12). We then have that, in view of (3.10),

|fj,k(z)| ≤ (|z|+ |ζk|
)
L2e2Lp(z) 1(

1 + |ζk|
)N+1

exp
(− γp(ζk)

)

≤ (1 + |z|)(1 + |ζk|
)
L2e2Lp(z) 1(

1 + |ζk|
)N+1

exp
(− γp(ζk)

)

= L2(1 + |z|)e2Lp(z) 1(
1 + |ζk|

)N
exp

(− γp(ζk)
)
. (3.13)

Let qk = min{δ(ζk), inf l 6=k{|ζl − ζk|}}, where δ(z) = e−|K1|p(z)−|K2| and K1,K2 are
constants in (2.1). Also, let Dk = B

(
ζk, qk

2

)
be the ball centered at ζk with radius qk

2 .
Then qk ≤ δ(ζk) ≤ 1 and Dk ∩ Dl = ∅ for k 6= l. For |z − ζk| ≤ qk, by (3.10) and (2.1)
we have that |gk(z)| ≤ LeLp(z) ≤ AeBp(ζk) for some A,B > 0. If qk < δ(ζk), then there
is a ζl ∈ V ∩ B(ζk, δ(ζk)) such that ζl 6= ζk and qk = |ζl − ζk|. Applying the Schwarz
lemma to gk(z)− gk(ζk) in the ball |z − ζk| < δ(ζk), we obtain that

∣∣gk(z)− gk(ζk)
∣∣ ≤ 2AeBp(ζk) 1

δ(ζk)
|z − ζk|

and, in particular, at z = ζl, we have that, in view of (3.10),

1 = gk(ζk) ≤ 2AeBp(ζk) 1
δ(ζk)

|ζl − ζk|

or qk = |ζl−ζk| ≥ εe−Cp(ζk) for some constants ε, C > 0. We may assume that ε < e−|K2|

and C > |K1|. The above inequality is then also true if qk = δ(ζk). Therefore in any
case, we have that qk ≥ εe−Cp(ζk) and so that the volume of the ball Dk satisfies that
volDk = πn

n!

(
qk

2

)2n ≥ ε2e
−C2p(ζk) for some ε2, C2 > 0. Also, by (2.1), for z ∈ Dk we have
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that p(z) ≤ K3p(ζk) + K4. We deduce, by (3.13), that

|fj,k(z)| ≤ L2(1 + |z|)e2Lp(z) 1
vol(Dk)

∫

Dk

1(
1 + |ζk|

)N
e(−γp(ζk))dλ

≤ A(1 + |z|)e2Lp(z)

∫

Dk

1(
1 + |ζk|

)N
e(C2− γ

K3
)p(z)dλ

for some constant A > 0.
We thus take γ = C2K3 so that

|fj,k(z)| ≤ A(1 + |z|)e2Lp(z)

∫

Dk

1(
1 + |ζk|

)N
dλ. (3.14)

Note that if z ∈ Dk, we have that |z − ζk| < qk

2 < δ(ζk) ≤ 1 and so that

1 + |z| < 1 + |z − ζk|+ |ζk| < 2 + |ζk| < 2
(
1 + |ζk|

)
.

Therefore, in view of the fact that Dk ∩Dl =∅ for k 6= l, we have that

∞∑

k=1

∫

Dk

1(
1 + |ζk|

)N
dλ ≤

∞∑

k=1

∫

Dk

2N

(1 + |z|)N
dλ

≤ 2N

∫

Ω

1
(1 + |z|)N

dλ := Q < +∞ (3.15)

by (3.11). In view of the property (2.1) we thus have showed that the series fj =∑∞
k=1 fj,k converges uniformly in compact sets in Ω and so that fj is a holomorphic

function in Ω. Moreover, by virtue of (3.14) and (3.15), we have that

|fj(z)| ≤ AQ(1 + |z|)e2Lp(z). (3.16)

But (1+ |z|)e2p(z) = elog(1+|z|)+2p(z) = eO{p(z)} in view of the condition (i) for the weight.
We thus conclude that fj ∈ Ap(Ω).

It is obvious that V ⊆ f−1(0) by the construction of each fj (see (3.12) and (3.10)).
Next we show that the mapping f satisfies the estimate on its Jacobian in the theorem.
By (3.10) and (3.12) one can check that fj , 1 ≤ j ≤ n, can be expanded into the following
power series at each ζk,

fj(z) = ck(zj − ζk,j) +
∞∑

i1+···+in=2

Ci1,...,in
(z1 − ζk,1)i1 . . . (zj − ζk,j)ij . . . (zn − ζk,n)in ,

where
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ck =
1(

1 + |ζk|
)N+1

exp
(− γp(ζk)

)
, (3.17)

and Ci1,...,in
’s are complex numbers. It is clear that ck ≥ εe−Cp(ζk) for some ε, C > 0, by

virtue of the condition (i) for the weight. We also see that

(
∂fj

∂z1
(ζk), . . . ,

∂fj

∂zj
(ζk), . . . ,

∂fj

∂zn
(ζk)

)
= (0, . . . , 0, ck, 0, . . . , 0)

with the j−th entry being ck. Hence the Jacobian df satisfies that |df(ζk)| = (ck)n ≥
εne−Cnp(ζk), which is the desired estimate in the theorem. This completes the proof. ¤

Proof of Corollary 2.2. For the necessity, using Theorem 2.1, we obtain a
holomorphic mapping f = (f1, f2, . . . , fn) with fj ∈ Ap(Ω) such that V ⊆ f−1(0) and
|df(ζk)| ≥ εe−Cp(ζk), k ∈ N for some ε, C > 0. If m > n, we can easily add m − n

holomorphic functions fn+1, . . . , fm ∈ Ap(Ω) satisfying that V ⊆ f−1
j (0), n+1 ≤ j ≤ m.

Let F = (f1, f2, . . . , fm). Then F clearly satisfies the conclusion of Corollary 2.2.
For the sufficiency, note that at each ζk ∈ V there exists a n×n minor Jn×n of the Ja-

cobian of f such that |Jn×n(ζk)| ≥ ε1e
−C1p(ζk) for some ε1, C1 > 0. This minor is the Ja-

cobian of a mapping G := (fi1 , fi2 , . . . , fin
), where {fi1 , fi2 , . . . , fin

} ⊆ {f1, f2, . . . , fm}.
Thus, the proof is identical to the one of Theorem 2.1 by simply replacing f and the
Jacobian in the proof of Theorem 2.1 by G and Jn×n(ζk), respectively. ¤
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