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Abstract. Z.-J. Ruan has shown that several amenability conditions are all
equivalent in the case of discrete Kac algebras. In this paper, we extend this work
to the case of discrete quantum groups. That is, we show that a discrete quantum
group, where we do not assume its unimodularity, has an invariant mean if and only
if it is strongly Voiculescu amenable.

1. Introduction.

In this paper, we study amenability of non-Kac type discrete quantum groups. We
use notions of discrete quantum groups or its dual compact quantum groups introduced
n [7], [16], for example. Amenability is defined as a generalization of the group case,
that is, by the existence of an invariant mean. In a discrete group case, it is known
that amenability is characterized by several conditions (see [12] for its survey). The first
step to its generalization for discrete quantum groups has been made by Z.-J. Ruan [14)]
under the tracial condition of the Haar weight, that is, the Kac algebra condition. In
particular, he has shown that amenability is equivalent to strong Voiculescu amenability.
For general quantum groups, a generalization of Ruan’s theorem has been investigated
by E. Bédos, R. Conti, G. J. Murphy and L. Tuset in [2], [3], [4], [5]. They have shown
that strong Voiculescu amenability implies amenability. Our main theorem (Theorem
3.8) says that both the notions are equivalent for general discrete quantum groups. We
should mention that all the implications except for the above converse one in Theorem
3.8 have been already known in the pioneering works [2], [3], [4], [5], however we give
a proof in order to give another proof of nuclearity of dual compact quantum groups.
After this work was done, we learned from S. Vaes that E. Blanchard and he also have
proved equivalence between amenability and strong Voiculescu amenability.

ACKNOWLEDGEMENTS. The author is highly grateful to his supervisor Yasuyuki
Kawahigashi, Yoshiomi Nakagami and Stefaan Vaes for all the discussions and encour-
agement.

2. Notations for quantum groups.

On symbols of tensor products (minimal tensor product or tensor product von Neu-
mann algebra), the same notation ® is used throughout this paper. A flip unitary on
tensor product Hilbert spaces H® H is denoted by X. For an weight 6 on a von Neumann
algebra N, define the left ideal ny and *-subalgebra my by ng = {z € N | (z*z) < oo}
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and my = nyng. m('; means mg N N;.

2.1. locally compact quantum groups and their duals.
We adopt the definition of locally compact quantum groups advocated in [11] as
follows.

DEFINITION 2.1. A pair (M, A) is called a (von Neumann algebraic) locally com-
pact quantum group when it satisfies the following conditions.

(1) M is a von Neumann algebra and A : M — M ® M is a unital normal x*-
homomorphism satisfying the coassociativity relation: (A ® ¢)A = (+ ® A)A.

(2) There exist two faithful normal semifinite weights ¢ and v which satisfy ¢((w ®
VA(x)) = w(l)p(z) for all x € mf, w € M and ¢((t ® w)A(z)) = w(1)y(x) for
allz emj, we Mt

The von Neumann algebra M is realized in B(H) via the GNS representation asso-
ciated to ¢, {H, A} where A is a map from the left ideal n, = {x € M | p(z*z) < oo}
to the Hilbert space H. On the tensor product H ® H, the multiplicative unitary W is
defined as follows, for x,y € ny,

W*(A(z) @ A(y)) = (A® A)(A(y)(z @ 1)).

It satisfies the pentagonal equality WioWi3Was = WosWis. We often use a C*-
subalgebra A of M which is defined as the norm closure of the linear space {(id ®w)(W) |
w € B(H).}. It will be considered a continuous function part of M.

This unitary W also plays a role in defining the dual locally compact quantum group
(M,A). The von Neumann algebra M is the o-weak closure of {\w) | w € B(H),},
where A(w) = (w ®id)(W). Set W = YW*X and its coproduct is given by A(z) =
/V[7*(1 ® x)ﬁ/\ As above, a C*-subalgebra A of M is also defined by the norm closure of
the linear space {(id ®w)(/V[7) |w e B(H).}.

The left invariant weight ¢ on M is characterized by the following property. For
w € M., if a vector £ meets w(z*) = (£ | A(x)) for all z € n,, then P(A(w)*A(w)) = ||€]|2.
Note that H also becomes a GNS Hilbert space for ¢ via A(A(w)) = €. Denote the set
of such w by #, that is a dense subspace of M,.

Let J and J be the modular conjugation for ¢ and ¢. Then the following useful
equalities hold,

~ ~ AL~ A

Je)WUleJ) =W (Je)WJeJ) =W

The modular operator and the modular automorphism of ¢ are denoted by A, and o?,
respectively. The autopolar of ¢, nga is defined by the norm closure of {zJA(x) | = €
n,Nng,}. Then any normal state on M is of the form we with § € 95, and such a vector
is unique ([10]).

2.2. Discrete and compact quantum groups.
A locally compact quantum group (M, A) is called discrete if $(1) < oo. Then
its dual (M,A) is called compact. In this case, the state condition ¢(1) = 1 is al-
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ways assumed. ¢ has the left and right invariance. About them, the basic references
are [7], [15] and [16]. Then M becomes a direct sum von Neumann algebra of ma-
trix algebras, say M = @4cr M, (C). Then its left invariant weight ¢ is decomposed
as @ Try ho, where Tr, are usual non-normalized traces. For «, fix a matrix unit
{e(a)i,;}i,jer which diagonalize hy as ho = >, v(a)ie(a);;. The positive affiliated
operator h' = Y . Tro(ha) 'he is group-like, ie. A(h') = b’ @ h'. Hence for the
modular automorphism ¢¥ and the coproduct A, we have for t € R,

Aoof = (of ®af)oA.
Note that the above equality does not hold for general cases.

3. Amenability of quantum groups.
We begin with the following well-known definition.

DEFINITION 3.1. Let (M, A) be a locally compact quantum group.

(1) A state m of M is called a left invariant mean if m((w ® ¢)(A(z))) = w(1)m(z) for
all we M, and x € M.

(2) A state m of M is called a right invariant mean if m((+ ® w)(A(z))) = w(1)m(x)
for all w € M, and =z € M.

(3) A state m of M is called an invariant mean if m is a left and right invariant mean.

REMARK 3.2. If (M, A) has a left invariant mean, it also has an invariant mean
(see [6, Proposition 3] for its proof).

The following definition is due to Z.-J. Ruan [14, Theorem 1.1].

DEFINITION 3.3. Let (M, A) be a locally compact quantum group. We say that it
is strongly Voiculescu amenable if there exists a net of unit vectors {{;};e 4 in H such
that for any vector n in H, |[W*(n®¢&;) —n ® &;|| converges to 0.

LEMMA 3.4. Let (M,A) be a locally compact quantum group. Then the following
conditions are equivalent.

(1) It is strongly Voiculescu amenable.

(2) There exists a net of unit vectors {§;}je ¢ in H with lim; [|AM(w)&; —w(1)&] =0
for any functional w € M,.

(3) There exists a net of normal states {w;}jc y on M such that {(1 ® wi)(W)}tje s
is a o-weakly approrimate unit of A.

(4) There exists a net of normal states {w;}je y on M such that id : A — A
18 pointwise:weakly approrimated byA the net of unital completely positive maps
{(id®wj) o Atje 4 and {(w; ®id) o A}je #.

(5) There exists a net of normal states {w;}je y on M such that id : A — A
is pointwise-norm approximated by the net of unital completely positive maps
{(id®wj) o Atje 4 and {(w; ®id) o A}je 7.
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PrOOF. (1) = (2). It suffices to prove the statement in the case that w is a normal
state on M by considering linear combinations. Since M is standardly represented, w is
written as w = w, with a unit vector n € H. For any vector ¢ € H, we have

[(Awy)&; = wn (VIO < lISImlIIW (n @ &) —n @ &ll,

s0 the inequality [[A(wy)&; —wn (D& || < [nll[W(n©&;) —n@E;l| holds. Hence [|A(wy)€; —
wy(1)&;|| converges to 0.

(2) = (3). Put w; = we, for any j in _#. Then for any operator a € A and normal
functional 8 € M,, we have

10(a(e ® w)) (W) — a)| = [(ABa)g; — 0(a)&;1&;)]
< INBa)E; — (9a)(1)g]).

Therefore, a(t ® w;)(W) — a converges to 0 o-weakly. Similarly we see (t @ w;)(W)a —a
converges to 0 o-weakly.

(3) = (4). Take a net of normal states {w;};ec 4 of M, which satisfies the third
condition. Let w be a normal functional on M. By applying Cohen’s factorization
theorem ([1, Theorem 10, p.61]) to the left A-module M., we get a in A and w’ in M,
such that w = aw’. Then for any functional 6 € 121*, we have

0((w; ®1d) 0 AAW))) = w((t ® O)(W) (e ® wj)(W))
= (@ (@) (W))((t ®w;)(W))a),

which converges to (A(w)). Since the linear subspace {A\(w);w € M.} is norm dense in
A and {#o (w; ®id) o A}]E/ is a norm bounded family, 6((w; ® id) o A(x)) converges to
0(z) for any operator € A. Similarly we can see that 6((id ®w;) o A(x)) converges to
0(z) for x € A.

(4) = (5). Take a net of normal states {w;};e y on M which satisfies the fourth
condition. Let .# be the set of finite subsets of A. Take F = {a1,az,...,ar} in F and n
in N. Consider the product Banach space Ap = loo=d pez Ax A and its dual Banach
space A% = ll—zmey(fl x A)*. Denote the following element of Ap by zp(w),

(weid)o A(ar) — ay, (id@w) o Alay) — a1,
(w®id) o Aag) — ag, (id ®@w) o A(az) — as,

(w®id) o Aag) — ag, (id ®w) o A(ag) — ak).
Then zp(w;) converges to 0 weakly. Hence the norm closure of the convex hull of

{zr(w;);j € /} contains O So there exists a normal state w(F,n) on M such that
H W(Fn) ®id) oA —aH < 7, and H 1d®w(pn))oA —a” < = for any element a € F.
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This new net {w(p,n)}(rn)ezxN is a desired one.

(5) = (4). Tt is trivial.

(4) = (3). Easy to prove by reversing the proof of (3) = (4).

(3) = (1). Take such a net of normal states {w;}jc » on M. Since M is standardly
represented, there exists a net of unit vectors {¢;};e » in H with w; = we,. Take a
vector 17 in H. Now by Cohen’s factorization theorem, there exist an operator a € A and
a vector ¢ € H with n = a(. Then we have

IW(n®&) —n®&l? = 2]al]* — 2Re((W(al ® &)|a¢ ® &)
= 2[la¢||* = 2Re({(¢ ® w;)(W)ac|ag)).

This converges to 0. O

LEMMA 3.5.  Let (M,A) be a locally compact quantum group. The following con-
ditions are equivalent.

(1) There exists a net of unit vectors {£;}je ¢ in H with lim; ||(7 ® t)(W)*(n ® §;) —
n®&;|| =0 for any representation {m, Hr} of A and n € H.

(2) There exists a net of unit vectors {&;}je ¢ in H with lim; ||(7 @ ¢)(W)*(n ® ;) —
(Mm@ ¢&;)| =0 for any cyclic representation {m,H,} of A and n € H.

(3) There exists a net of unit vectors {;}je ¢ in H with lim; [[AM(w)&; —w(1)§]] =0
for any functional w € A*.

(4) There exists a net of normal states {w;}jc 7 in M, such that {(t ® wi)(W)}je s
is a weakly approximate unit of A.

(5) There exists a net of normal states {w;}jec 7 in M, such that {(t ® wij)(W)tje s
is a norm approximate unit of A.

(6) There exists a net of normal states {w;}je ¢ in M, such that id : A — A is
approximated in the pointwise norm topology by the net of unital completely positive
maps {(id Qw;) o A}jef and {(w; ®id) o A}jej.

(7) There exists a character o on A with (1 ® o)(W) = 1.

(8) The C*-algebra A has a character.

(9) There exists a state o on M such that o is an A-linear map and satisfies t®
(W) = 1.

PROOF. (1) = (2). It is trivial.
(2) = (3). Take such a net of unit vectors {{;};e y in H. Let w be a state on A
and {H,, 7, &, } be its GNS representation. Then for any ¢ in H, we have

[(Aw)&; = wMEIO] < ICI (7w @ )W) (6w © &5) = & @ &

So we get [|A(w)&; — w(1)&]| < [[(mw @ 0)(W)(Ew @ &) — &u @ &l Hence for any w € A™,
[IMNw)€; — w(1)&;]| converges to 0.

(3) = (4). Put w; = we; for any j in #. Then for any operator a € A and any
functional § € A*,

6lale @ w))(W) = a)l = [{(MBa)g; = 6(a)t;[&5)] < [IA(Ba)e; = Ba) (1))
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Therefore, a(t ®w;)(W) —a converges to 0 weakly. Similarly, we can see (tQw;)(W)a—a
converges to 0 weakly.

(4) = (5). Take such a net of normal states {w;};c # of M.,. Let .Z be the set of
finite subsets of A. Take F = {ay,a1,...,a;} in F and n in N. Consider the product
Banach space Ap = loo‘zzgy A and its dual Banach space A}, = ll—zmegj A*. Denote
the following element in Ap by xp(w),

(@ w)(W)ar — a1, (0 © W) (W)as — as, .., (0 @ w)(W)ar, — ax).

Now the net of the elements in Ap, zp(w;) converges to 0 weakly. Hence the norm
closure of the convex hull of {zr(w;);j € _#} contains 0. So there exists a normal state
of M,, w(F,n) such that |[(t ® wp,))(W)a —a| < L for any a in F. Then we get a new
net of normal states of M,, {w(Fn) }(Fn)ezxn and it is easy to see this net is a desired
one.

(5) = (6). This is shown in a similar way to the proof of (3) = (4) = (5) in Lemma
3.4.

(6) = (7). Take such a net of normal states {w;};e s of M,. Let o be a weaks-
accumulating state in A* of the net. Then for any normal functional w on M, we have

(wj ®id) (A(x\(w))) =(w; @ LQw) (W§‘3Wf3)

= (L@ w) (W (w; ® ) (1)),

This converges to A(w) = (1 ® w)(W*(o ® 1)(W*)). Therefore we obtain (1 ® g)(W) = 1
and easily see ¢ is a character of A.

(7) = (8). It is trivial.

(8) = (7). Take a character g on A. Let u be a unitary (1 ® g)(W) in M. Then we
have

Alu) = (@@ (A ) (W)) = (@1 ® 0)(Wi3Was)

=u®u.
Therefore, for any normal functional w € M,, we get
Au'w)=(w@ ) (W' ®1)) = (we)(1u )W(l®u))
= u*A(w)u.
Then we obtain

W] = [(w*w)(u)| = le(A(uw))|
<A@ W) = uAw)ull
= [[AM@)I]-

Hence we can define the character y on A with y(Aw)) = w(1) for w € M,.
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(7) = (9). Take such a character o on A and extend it to the state on M. Denote
the extended state by 9. The A—linearity of o easily follows from Stinespring’s theorem.

(9) = (3). Take such a state o on M and let {w;j}je # be a net of normal states
on M which weakly* converges to o. Then for any functional § on A and for any
normal functional w on M, we have 6((t ® w;)(W)) = w;((§ ® ¢)(W)). This converges to
o((0 ® )(W)) = 0(1).

(3) = (2). Take a state w of A and let {H,,, 7., &, } be the GNS representation of
w. Take a vector n in H,. By Cohen’s factorization theorem, there exist an operator
a € A and a vector ¢ € H with n = m,(a)(. Then, we have

[(mo @ )(W)n® & — &l
= 2|y, (a)¢|]* — Re({(m @ 0)(W)mu(a)¢ @ &lmu(a)C @ &5))
= 2||my, (a)¢|I* — Re({my(a* (0 @ w;) (W)a)([()).

This converges to 0.

(2) = (1). Let {m, H;} be a representation of A. We may assume that this represen-
tation is nondegenerate. Then 7 is decomposed to the direct sum of cyclic representation.
This observation derives the statement of 1. O

By the previous two lemmas, we obtain the following result.

COROLLARY 3.6. Let (M, A) be a locally compact quantum group. Then the fol-
lowing statements are equivalent.

(1) It is strongly Voiculescu amenable.
(2) There exists a net of unit vectors {;}je ¢ in H satisfying lim; ||(7 @ ¢)(W)*(n ®
&) —n @&l =0 for any representation {m, Hx} of A and n € Hy.

PROOF. (2) = (1). It is trivial.

(1) = (2). The latter statement is equivalent to the statement (6) in Lemma 3.5 and
it is the same as the statement (5) in Lemma 3.4 which is equivalent to strong Voiculescu
amenability. O

The following results have been already known in various settings [3, Theorem 4.2].

COROLLARY 3.7.  Let (M, A) be a locally compact quantum group. Then the fol-
lowing statements are equivalent.

(1) It is strongly Voiculescu amenable.
(2) The C*-algebra A has a character o with (¢ ® o)(W) = 1.
(3) The C*-algebra A has a character.

We begin to treat the discrete quantum groups from now. The discreteness of (M, A)
is always assumed. The following theorem is the main result of this paper.

THEOREM 3.8. If (M,A) is a discrete quantum group, the following statements
are equivalent.



956 R. ToMATSU

(1) It has an invariant mean.

(2) It is strongly Voiculescu amenable.

(3) The C*-algebra A is nuclear and has a character.
(4)

We remark that the equivalence (2) < (3) < (4) have been already proved by the
combination of [2, Theorem 5.2], [3, Corollary 2.9], [4, Theorem 4.8], [5, Theorem 1.1,
Theorem 4.2, Corollary 4.3], however we give a different proof of deriving nuclearity
by using completely positive approximation property. Before proving it, we state the
following corollary, where a subgroup means a C*-algebraic compact quantum group
(C(K),Ak) with a compact group H which is an image space of x-homomorphism 7 :
A — C(K) with Agor = (r®@r)oA.

COROLLARY 3.9. Let (A,A) be a compact quantum group which has a subgroup.
Then the dual discrete quantum group (A, A) is amenable.

A character is constructed by the composition of the restriction map and a character
on continuous function algebra of the subgroup. Therefore, if a compact quantum group is
deformed by some parameters from a ordinary group and a subgroup (e.g. maximal torus)
becomes a non-deformed subgroup, then its dual discrete quantum group is amenable.
Let (M,A) = @aerMz, be a matrix decomposition as in Section 2, where Mz, =
M, (C). For a finite subset F' in I, let us denote zp = ) . p 2. Note that zpH =
A(Mzp) is finite dimensional subspace.

LEMMA 3.10. If F is a finite subset of I, then the linear subspace Kp =
{Mwzp);w € M.} C A is finite dimensional.

Proor. Take a normal functional w in .# as introduced in Section 2 and an
operator x in n,. Then we have

w(zpz®) = w((zpe)”)
= (A(w)|zrA(z))
= (zrA(w)&e|A()).

So wzp is in . and we obtain Awzp)és = 2rA(w)és € zpH. Since §y is a separating
vector for M and .# is norm dense in M,, the statement follows. O

We give a proof of Theorem 3.8 partly first.

PROOF OF THEOREM 3.8. ((2) = (3) = (4) = (1)). Fix a complete orthonormal
system {e,}pez of H.

(2) = (3). We show that A has completely positive approximation property. Set
T, = (t®w)oA for w € M,. By assumption, there exists a net of normal states {w; Yies
on M satisfying the statement (6) in Lemma 3.5, that is, T,,, converges to the identity
map of A in the pointwise norm topology. Since M is standardly represented, each w; is
a vector state defined by a unit vector {; € H. Take a finite subset £ of I. Then for any
operator x € /1, we have
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Torope, () = (6@ wapg, )(A(2))

= (@t ) W) (1 @ Wiy, e, ) (1@ )W)
peEP

= Z )‘((wep, &5 )ZF)A((L%*EP, €j)ZF)*~
peEP

Since A((we,,¢,;)2F)AN((Wa=e,,¢;)2r)" is in the finite dimensional linear subspace Kp K, =
span{ab*;a,b € Kp} C A, sois L.
finite rank. For n € N and j € _#, take an finite subset F'(n,j) of I with HTWZF( I

T, Il < 1. Then we get a new net of completely positive maps {Twznn e }ng)eNx #

(x). Hence the completely positive map T, g has

of finite rank. This net gives a completely positive approximation of the identity map of
A, hence A is a nuclear C*-algebra.

(3) = (4). Nuclearity A implies injectivity M. Extend the character on A to the
state on M. We can easily see the fl—linearity of this state by Stinespring’s theorem.

(4) = (1). Let o be an A-linear state on M. There exists a conditional expectation
E from B(H) onto M. We set a state m on M by m = g o E|p;. Then for any vector
& € H and for any operator x € M, we have

we *m(x) = m(

—~

we © 0)(A(2)))

S (we.e, ® (W) 2(we, o) © L><W>>

peEP

m((we,e, @ )W) z(we, e, @ 1) (W)

m

7 N\

I
=
M
Q

o((we,e, @ )W) E(z)(we,e, ® 0)(W))

3
m
R

=D o((we.e, ®)W)") o(E(x))o((we. e, ® 1)(W))
=D o((wee, ® )W) )o((we, e, @ 1)(W))e(E(x))

=D o((weee, ® )W) (we,e, @ 1) (W) o(E(2))

where we have used the norm convergence of > 5 (we e, ® 0) (W) 2(we, ¢, ® 1)(W) in
the third equality. Therefore, m is a left invariant mean on M. O

Now we are going to prove the implication (1) = (2) of Theorem 3.8 after proving
the several lemmas. As usual, L°°(R) means the von Neumann algebra which consists
of essentially bounded measurable functions with respect to the Lebesgue measure.
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LEMMA 3.11. Let mpg be an invariant mean of L (R). For any w in M, define
the o®-invariant functional W' by W'(z) = mr({t — w(of (x))}) for x in M. Then &' is
a normal functional with ||w'| < ||w]|.

PrROOF. For w in M, set f, ,(t) = {t — w(of(z))} in C°(R). For any finite
subset F'in I, [fu, o(t) = fuzp, ()] < [lw —wzpll]|z]], hence [lo” — (wzp)'|| < flw —wzp|.
By the normality of w, limp(wzp) = w’. Notice that Mzp is finite dimensional, so
(wzp)" = (wzp)'zF is a normal functional. O

Note that this averaging procedure can be also done by considering a conditional
expectation from M to M,. Recall that we have fixed a matrix unit {e(®)r 1<k, i<n, of
Mz, for each « in I, such that they are diagonalizing hz, as hze = Y12, v(a)ke(@) gk,
where v(a) denotes a positive real number.

LEMMA 3.12.  If (M,A) has an invariant mean m, there exists a net of normal
states {w;j}je ¢ on M, which satisfies the following two conditions.

(1) lim; ||w * w; — w(1)w;|| =0 for any w in M,.
(2) wjoof =wj foranyt € R.

PRrOOF. Firstly we show the existence of a net satisfying the first condition. Since
the convex hull of the vector states is weak+-dense in the state space of M, there exists
a net of normal states {x;}je ¢ in M, such that m = w*-lim; x;. Let .7 be the set
of finite subsets of M,. For F = {wj,ws,...,wi} € %, consider the Banach space
(M) p = 11->",cp M, and its dual Banach space Mp = lo-) . M. Set

rr(x) = (w1 x —wi(1)x, wexx —we(L)x; -5 wiex X = wr(1)X),

for x in M,. Then zr(x;) converges to 0 weakly. So the norm closure of the convex
hull of {xr(x;);j € Z} contains 0. Hence for any n in N, there exists x(p, ) such that
lw*X(r,n) —w(1)X(F )l < % for an w in F'. The new net {x(r,»)}(F, n)c#x N is a desired
one. Next we show existence of a net satisfying the both conditions. Let {w;};e # be
a net satisfying the first condition. By the previous Lemma, w;- is normal. We show
that the net {w}};c » satisfies the first condition. For w = wx(c(a)), Ale(a)mn)s W€ have

woo?, = vp(a)ty(a) vy, (a) "y, (a)"w. Then we obtain

|w W (z) — w(L)w(z)]
= ’mR({t — (w@w;oof)(Az)) — w(l)wj(af(m))}ﬂ
= |mr({t = (wo 0¥, ®w;)(A(of (2))) — w(0Z,(1))w; (0 (x))})|

fél}gﬂ(w 00%,) xw;(of () — w(ofy(1))w;(0e(2))] }

IN

IN

sup {|[(wo 0%) *wj —woa? (1) w;|}]
tER

= sup {|[vi(@)11(0) v (@) v ()" (0 2y — w(D)y) |}

< lw xwj = w(@wj]lf|2]]-
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So for this w, we have [|w*w} —w(1)w}|| < [lwkw;—w(1)w;| and therefore ||w*w' w(D)wr]|
converges to 0. By taking the linear combination for w, we see that [|w * w} — w(1)w '||
converges to 0 for any normal functional with w = wz,. Take a normal functlonal w and
a positive . Then there exist a finite subset F' of I and jo in _# such that ||wzp —w|| < &
and [|wzr * W) —wzp(1)w}|| < € for j > jo. Then we have

oo wj = w()u]
< lw = wzrp) * wj| + [lwar * wj —war (wj]| +[|wzr (1) —w(@)wf]]

<ete+e=3¢,

for j > jo. Therefore, ||w * w; — w(1)w’|| converges to 0. O

LEMMA 3.13.  If (M, A) has an invariant mean, there exists a net of unit vectors
{&}je s in H which satisfies the following four conditions.

(1) lim; |w * we;, —w(1)we, || = 0 for any w in M.,.

(2) ALEj =& for any t in R.

(3) For any j in Z, there exists a finite subset I of I with zp,&; = &;.
(4) For any j in Z, the vector &; is in the convex cone @5;.

PROOF. There exists a net of normal state {w;};c ¢ which satisfies the two con-
ditions of the previous lemma. If necessary, by cutting and normalizing, we may assume
that there exists a finite subset F; of I such that wjzp, = w; for any j in #. The
von Neumann algebra M is standardly represented, so there exists a unique net of unit
vectors {&;}je s in yﬁ, such that w; = we; and zp;§; = §;. From the assumption
wj=wjoo?, = wAirg; the uniqueness of ¢; implies Af’f{j =¢;. (]

Let {fj}je/ be a net of unit vectors in H in the previous Lemma. Since zp, H =
A(MzF;), there exists x; in M such that {; = A(z;). The operator z; = z;z, is in M,
and satisfies cp(xj zj)=1and z; = zj. We prepare some notations. For an operator X
in M®M, X («) means the operator X(za®1) in Mz,®M. An operator Y in Mz, ® M
is written as Y = ZZ:’lZl e(a) g ® Yii, where {Yy; }xi are operators in M.

LEMMA 3.14.  Let x = z* be in M, N M,,., where F is a finite subset of I, and o
be in I. Then the following inequality holds.

ijA(e(a)kl), JA(e(a)n) ¥ WA(@) T WiA(e(a)r), jA(e(a)H)(l)WA(r) H

1

> v(a); 2v(a)F ple(e)in)e(| X (@)ul),

where X = A(z?) — (1 ®@ 2?).

ProOOF. We simply write ey, v and Xy for e(a) g, v(a)r and X () respectively.
Since X (a) = Zlgk,l'gna(ekl ® Xgy) is in (M ® M)y, and of (ex) = vitv; "eg, we
have of (Xg) = v, "vi* Xjy. Let Xy = vi| Xpi| be the polar decomposition of Xj;. Put
—it

ap = vy Then of (ag) = vjlv; "ag. Then we have
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(ij(ekl), JA(ern) FYA@) T YiA(er), jA(e“)(l)WA(w))(“kl)
= (A(ar)(JA(er1) ® Ax))|TA(en) @ A(x)) — (Alenn) | A(ex)) (arA (@) | A(x))
= (1@ a)W(J @ J)(A(exr) @ A(@)[W (] @ J)(Alen) @ A(x)))
— (Aen)[A(er)){amA(z)|A(z))
= (1@ Jag J)W*(Aen) ® A(@))|[W*Aexrr) © A(z))
= (Aenn)[A(er1))(Jag JA(2)|A(z))

(A& )(A@)(en @ (1@ iy Taw))I(h & AYA@)(er 1)) )

— (Aen)|ACer)) (Aow vy o) A=)

viv H{(p ® ) ((e1r ® DA@?)(en ® 1)(1® aj))

—(pee) (el (en @ 1)1 @an))}

11
viv, (e @p)(e1n ® Xpag)
1

1 _1
=vgv; *p(enn)p(Xgiag)
= vy, 2v  vp(enn)e(anXn)
= v, v elen)e(| Xul)-

Therefore, we obtain

_1 1
195 A(ers). FA(en) * “AG) = @iaer), Facen) Dwa || = vy 2 plen) (| Xuml). O

LEMMA 3.15. Let N be a von Neumann algebra and 6 be an n.s.f. weight on
N. Let M,(C) be a matriz algebra with the matriz unit {e;;}1<; j<n and x = Try
be an n.s.f. weight on M, (C) with h = 37" | Nieis, Ai > 0. If {A;}je s is a net in
(M, (C) ® N)ygo such that (|(A;j)m]) < oo and lim; O0(|(Aj)wm|) = 0 for any k,1 =
1,2,...,n, then lim; (|A4;|x) =0 for any k,1=1,2,...,n.

PRrROOF. Let A; = V;|A;| be the polar decomposition in (M, (C) ® Ny)yge. Then
for each k, 1, we obtain o (V;)r) = A “Ni(V;)w and of ((A;)m) = A “Nit(A;)p. Since
|Aj 1kt = 2o 1 (Vi ) km (Aj)mi and each (Vj)pp, is analytic, 0(|A;]x) is well-defined. Let
(Aj)mi = Vjm.i|(Aj)mi| be the polar decomposition. Then we have

10(1A;]k1)| < 0V ) kem (A)mt) |

M- 1M

(A0 (1A ) ml ) 26 (1A i 205 1 (Vi) )|

3
ﬂ‘
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iMS ngh

(A0 (10A )t ) o, (05 (Vi) oo (1(A ) 2))|

‘70 (U;ml )mik H9 i)mil)

IN

1 n
ST 0(1(A) o).

m=1

Il
>’
k\J\r—l

Hence lim; (| A;|x) = 0. O
LEMMA 3.16. Let x = x* be in M, N M,,, where F is a finite subset of I such
that o(x?) =1 and A(x) is in @5,. Let o be in I. Then the following inequality holds.
W (Ae(@)ia) © Aw)) - Alea)in) © AG)]*

<2 max {I/ (a)l}'80(204)%(90®‘p)(‘X(a)|)%7

1<k<ng

where X = A(z?) — 1 @ 2.

PROOF. We use the notations in Lemma 3.14. We have

W (Alers) @ Aw)) = Aler) @ A)||”
2p(e11) — 2Re (W*(Aler) © A(2))|A(er) © A(x))
= 2¢p(e11) — 2Re(p ® @) ((e1r ® 1) A(z)(ex1 ® 7))
= 2¢(en) — 2Rev (e ® o) (e @ 1)(1 @ 2)A(x))
=20, ' Refop(ern) — (v @ @) (e © 1) (1 @ 2*)A(2))}
=2, ' Re{(p @ @) (e @ 1) (1 @ ") (1 @z — A(x)))}

< 2 max {Vk Vl} ZRe{@(@(ﬂ((@kk@l‘ 1@z —Az)))}

1<k<ng
k=1

=2 max {1} Re{(p® ¢)((za @27) (102~ A@))

<2 max {r'n}-lpee)(Gel)1o2)1or - Al)

w A1
<2 max {v;'n} (9 ®¢)(sa ®a2)}

(o) ((a® (1o - A@) (1o - A)*?

*21<H,52§ {vitn} - o(za)? H(A@A)(za@x)7(A®A)((za®1)A(x))||.
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From the assumption: A(z) = zpA(z) € ﬂfo, there exists a sequence {yntnen € Mzp
with lim, y, JA(yn) = A(z). Then we obtain

(A A)((z0 ® DA(z) = WA ® A)(z4 @ )
= m W (A ® A) (20 © yuo (4))
= lim(A ® A) (A(yn) (05 © 07) (A(ya))" (20 @ 1))
= lim A(ya) (20 @ 1)(J @ J)(A © A)(A(yn) (20 ® 1)).

Therefore, we see (AQA)((zo®1)A(x)) € '@5’&0' By using the Powers-Stgrmer inequality
(see, for example, [10], [13]), we obtain

(A @ A)(za @) = (A A)((z0 @ 1)A(2))]|

N|= ~—

< wre)zase) — WasA)(zae1)A@) |
= (p 9 ¢)(|7a @ 2% — (20 @ )A(2?)|)?

= (p®@)(|X(Q)])?. 0

PROOF OF (1) = (2) oF THEOREM 3.8. By the assumption, we can pick up a net
{z;}j. s in M, which satisfies the conditions of Lemma 3.13. Now we apply the Lemma
3.14 to this net for fixed o € I, then (| X;(a)|) converges to 0 for any k,1 = 1,2, ..., na,
where X; = A(z?) — 1 ® 3. By Lemma 3.15, it implies that ¢(|X;()[x) converges to
0 for any k,l =1,2,...,n,. Since we have

o) (Xj@) = > ele(@u)p(X;(@)n),

1<k, <nq

we see (p®¢)(|X;(a)]) converges to 0. By Lemma 3.16, we see ||[W*(A(e(a)g1) ®A(z;))—
A(e(a)r1) @ A(z;)| converges to 0 for any k =1,2,...,n,. Then we have

[W*(Ale(@)r) @ Azz)) — Ale(a)u) @ Alz;)]|
= || (Ja‘g(e(a)u)*J @ 1) (W*(Ae(a)r1) ® Az;)) — Ale(a)r) @ A(ac]))H

< (Jog(e(a)u)*J @ 1)||[[W*(Ae(a)r) @ Alz;)) — Ale(a)r1) @ Az;)]|-
This implies that ||[W*(A(e(a)r) @ A(z;)) — Ale(a)r) ® A(z;)|| converges to 0 for any
k,l =1,2,...,n,. By taking a linear combination, |W*(zan ® A(z;)) — 2zan @ A(z;)||
converges to 0 for any vector n € H. Take a vector n € H. For any € > 0, there exists
a finite subset F' of I such that ||} 2am — 1|l < &. By the above arguments, we can
take jo in _# such that ) o [[W* (241 @ A(x5)) — 2am @ A(xy)|| < € for j > jo. Then
we have
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[W*(n @ Ax;)) —n @ Az;)

_ HW(<,7 S M) ®A(:z:j)> _ (n - zan) © Az;)

acF acF
U DEVEINEH) B SERTERYESI
a€EF acl
Z ZaM — 77” + Z HW*(zan Q@ A(xj)) — 2an ® A(mj)H
acF aEF

< 2+ e =3¢,

for j > jo. Therefore, |[W*n® A(z;) —n ® A(x;)|| converges to 0 for any vector n € H.
This completes the proof of Theorem 3.8. O

Upon ending this paper, we mention a part of Ruan’s Theorem [14, Theorem4.5] as
a corollary of Theorem 3.8 for Kac algebras, i.e. the invariant weight ¢ of (M,A) is a
normal tracial state. In this case, ¢ is also a trace ([9]).

COROLLARY 3.17.  Let (M, A) be a discrete Kac algebra. Then the following state-
ments are equivalent.

(1) It has an invariant mean.
2) It is strongly Voiculescu amenable.

(2)
(3) The C*-algebra A is nuclear.
(4) The von Newmann algebra M is injective.

PRrROOF. (1) = (2) = (3). This has been already proved in Theorem 3.8.
(3) = (4). Tt is trivial.
(4) = (1). Let E be a conditional expectation from B(H) onto M. Note that ¢ is

a normal trace on M. Take a complete orthonormal system {e,}pec. Then for any
operator x € M and for any vector £ € H, we have

sexm(e) = ¢(B( X (we,e, © 009 alue 0, 92)W)) )

pEP

= Z (we,e, @ L)(W)*E(z)(we, e, ® t)(W))
pEP

=" ((we.e, ® )W) (we, e, @ )W) E(x))

peEP

- Z (Wig, je, ® W) (wse g, ©(W)E(2))

pEP
= wje(1)p(E(x))

= we(1)m(x).
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Therefore, m is a left invariant mean on M. O

As we have seen, nuclearity of a compact Kac algebra leads amenability of the dual

discrete Kac algebra, however, it is now open whether it holds in the case of a compact

quantum group or not.
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