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Abstract. Restricting toK-invariant functions we prov&P boundedness of Fourier mul-
tipliers satisfying Hhrmander-Mihlin conditions on Non-Riemannian Symmetric Spaces using
Flensted-Jensen duality. We also show necessity of holomorphic extension for multipliers.

1. Introduction.

Multipliers for R" are now part of classical real harmonic analysis and we will only make
a brief introduction. For more details the interested reader may consult, for instance, Stein’s
book [1§].

Bounded translation invariant operators frbf{R") to itself can be viewed as convolutions
with tempered distributions. It is not difficult to show that the translation invariant operators
bounded orL?(R") are those that are given by convolution with a distribution whose Fourier
transform is a bounded function, called a multiplier. Furthermore, it is well-known that if a
translation invariant operator is bounded bAR"), then it will also be bounded ob?(R").
Thus, all translation invariant operators bounded.8(R") are given on the Fourier transform
side by multiplication with a bounded function. Except for the cpse2, there is no complete
characterization of the spaceldt- multipliers but there are some theorems giving good sufficient
conditions. One of the more familiar ones is thérkhander-Mihlin condition which says that a
function, m, is aLP-multiplier for all p, 1 < p < o, if it satisfies the condition

|95 m(&)| < Aalé|™7,

for all o such thaD < a < [(n+1)/2]. There is also ah? version of this.

On a non-compact Riemannian symmetric sp&&, translation invariant operators are
given by convolution withKK-invariant distributions and they correspond to bounded Weyl group
invariant functions, multipliers, on a maximal abelian subspagkthe orthogonal complement
in the Cartan decomposition. It has been shown by Clerc and Steirg|s#gef if the operator
is bounded o.P(G/K) then the multiplier will extend holomorphically to the tube

ﬂza*—s—iConv(W‘l—i‘p),

whereConvdenotes convex hulllvV the Weyl group ang is the half-sum of the positive roots.
In [1], Anker showed that iim is holomorphic inside the tubg and satisfies a trmander-
Mihlin type condition on the boundary of the tube, thars aLP-multiplier for G/K.
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We would like to generalize the setting to non-Riemannian symmetric spa@gék, In
accordance with the Riemannian case one could try to lobkiat/ariant convolutors but unfor-
tunately this does not work. The reason is tHas non-compact sbl-invariant functions cannot
belong to anyLP space. So if we apply the convolutor to a function with small support then the
resulting function will be almodti-invariant and hence not ioP.

Using Flensted-Jensen duality, which connects a non-Riemannian symmetric space with its
non-compact Riemannian form, van den Ban, Flensted-Jensen and Schlichtkrull defined a class
of operators, which they called multipliers, on the spack-diihite, ¥ functions with compact
support by taking convolution on the dual side. In this paper we conkfiboundedness for this
type of operators. We prove that under conditions similar to those of Anker for the Riemannian
case such operators are bounded 8tK\G/H). We also consider holomorphic extension of
this kind of multipliers. The main outline of the proof that multipliers extend holomorphically is
similar to that in the Riemannian case. But replacing spherical functions with Eisenstein integrals
a lot of complications arise.

| would like to thank Jean-Philippe Anker, Mogens Flensted-Jensen, Toshiyuki Kobayashi, Eric
Opdam, Toshio Oshima and Peted@jen for valuable comments and suggestions. This work
has been partially supported by the JSPS and the European TMR Network “Harmonic Analysis”
1998-2001(Contract ERBFMRX-CT 97-0159).

2. Notation.

For more details about the general theory of non-Riemannian symmetric spaces see for
example 10], [4] and [11] part Il. Let G be a non-compact semisimple connected Lie group
with finite center and an involutioa. LetH be an open subgroup &, the fixed point group
of 0. SoG/H is a semisimple symmetric space. Assume that we have a Cartan invofution
commuting withg and denote b the fixed point set fo8. Corresponding to the involutions
we have the following decompositions

g=hdqg=tDp. (1)
Sincecg o 8 = 800, we also have
g=hnedhnpeqgnetdqgny. (2)
This splits into eigenspaces foro 0
gr=bnt@gnp,
g-=hNpeqnt.
We can now define the non-compact Riemannian f@fyK?, of G/H. First we set
gd=hnea@i(hnp) @i(gne) e qnp. ©)

Then letGY be the real form of3¢(the complexification of3) with Lie algebrag?. The sub-
groupK® = G N H¢ corresponding tdy N e @ i(hNp) is a maximal compact subgroup 6.
Hence the symmetric spa@¢ /K9 is Riemannian. We will also nedd® = GY N K¢ with Lie
algebrah? = hNe®i(qNt). By partial holomorphic extension we obtain a miap-> f mapping
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€ (K;G/H) into = (HY; G4 /K), i.e. it takesK-finite smooth functions o&/H to HY-finite
smooth functions oG4 /K9. Since we are only interested in the so called “most continuous
part” of the Plancherel decomposition, we take a maximal Spiitvariant Cartan subspasdeof

g, i.e. such that the intersectian= b Np is maximal Abelian ingNp. We have two root systems
2(a,g) andZ(a, g ) with Weyl groupsWV andWkn+, respectively. We will also use the quotient
W =W /Wknn. Setm =dimgq Ng. andm, = dimgg, Ng_, whereg, is the root space related
toa € X(a,g). If we define

" =bnp+i(bNe) (4)
thenb' is maximal split forg?. We have the generalized Cartan decompositions
G=KATTH, GY=HIATFKY.

HereA*™ corresponds to the positive rootsdifa, g ). We also have another generalized Cartan
decomposition

G = Upyey KATH,

whereAt is the positive Weyl chamber fdf(a, g).

3. Multipliers.

Let ¢ be a function ilPW* (be-)W(®"), i.e. aw/(b")-invariant entire function of exponential
type with slow growth, then by van den Ban, Flensted-Jensen and Schlich8triig function
has an operatdvly, : ¢5°(K;G/H) — ¢5°(K; G/H) associated to it. Such operators are special
cases of what they call multipliers, which are operators

M: €2 (K;G/H) — €2 (K;G/H) 5)

that are equivariant under the action gf K and D(G/H) and restricts continuously to
€ (G/H)H for all u in K. The connection to multipliers is that the Fourier transfornvigf( f)

is w(A)f(m) onv e ()" of typeA. Here (£, )" denotes the space bf-fixed distribu-
tion vectors for the irreducible unitary representationf G. To constructMy, they use partial
holomorphic extension defined by

My ) = f'+F, fe%2(K;G/H) 6)

whereF is the K-bi-invariant distribution with spherical transforgi. By the Paley-Wiener
theorem for Riemannian symmetric spaces, the assumptiogismplies thatF € &/ (K\G/K).
Hence the convolution is in the image @’ (K; G/H) under the isomorphisi)", soMy, is well
defined.

We shall be interested ihP-multipliers for K-invariant functions orG/H. Let ¢ be a
W(b")-invariant function on the support of the Plancherel measure. LE&K\G/H) be the
space ofK-invariantLP-functions onG/H. We can repeat the construction above, referring to
the isomorphisnLP(K\G/H) = LP(HY\G/KY) instead. That is if mapsLP(HI\GY/KY) to
itself, the operatoM, will be well defined and mahP(K\G/H) to itself. We also have to show
thatﬁw\fv: (M) fv, wherevis anH-fixed distribution of type\ . This may essentially be done
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as in B] by referring to a paper by Delorme and Flensted-Jenggmjhere a related result is
proved. We only have to take care that all the integrals are well-defined, this follows because
the representations are appearing tempered. For the convenience of the reader we will give the
proof, which in our case is simpler as we only look at the tritatype.

PrRopPoOsSITION1. The following relation holds
My (v =) f(mv,

here v is an H-fixed spherical distribution vector of typefor the representationt, and f €
LP(K\G/H).

PrOOF. We want to show that

(m(My F)v,V) = w(A)(m(f)v,V),

for v € 22 with trivial left K-action andv € (7, ®)H spherical of type\ . Bernstein has shown

that the representations that appear in the support of the Plancherel measure are all tempered,
see p]. Itis known, see for example Knapd3] VII.11, that theK-finite matrix-coefficients

of a tempered representation belong tolAlifor g > 2. Hence both sides of the identity above

are well-defined. AMy f is K-invariant we can rewrite the LH-side as, usiPgto denote the
projection to the trivial isotypic component,

/' (PLIEX)V, My £ (X)V)dlx,
JK\G/H
which by duality is, denoting(x) = (Pyrr(X)v, V)
' (X) "% F(x)dx
e @ 00T +F 00
As the integrand is righ9-invariant this equals
F(x) "% F(x)dx
s @ OO <F 0
We now write the convolution as a double integral and substitute this into the last expression
£ (y) @ (x / F(y~‘hx)dhdyd
L oo s VT 09 [ F O ey
which we rewrite using the lefd9-invariance ofy" as
Loveasres 700 [0/ OF (- 00bxcly
Hd\Gd/Kd G¢
After a change of variables, this becomes
‘ fr F(yX)F (x)dxd
Lo 1) o @ O 0ty

We now use the righ€-invariance of~ to obtain
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Fx/ £ (y) & (ykx)dkdydx
s P s o 1009 vho00Kly

Let
(X) He\Gd /Kkd Jkd (y) (y X) y

We then observe thap is bi-K9-invariant and it is also an eigenfunction fBy(GY/K9) with
eigenvaluer and hence it must be a constant multiple of the spherical fungiigpn Thus it
remains to prove that this constant is equalmof )v, v'). But this constant is just

OO = [ oo Joo 10N IO

which asg¢' is rightK9-invariant is

figops P00 0= [ 0000

Taking into account the lek-invariance off and¢ this completes the proof. d
Let .7 be the strip(6")* +i ConW(b")p), where Conv denotes the convex hull.

THEOREM1. Let ¢ be a holomorphic function in the stri” and continuous up to the
boundary, satisfying the following estimate

De@)l <ca+a)™, Aei<[g]+1, )

whereld is the gradient, theMy, is a bounded operator ar?(K\G/H) for 1 < p < c.

REMARK 1. Before the proof it may be useful to recall that Anké&t has proved that
this assumption impliekP-boundedness in the Riemannian case. In the Riemannian case it is
fairly easy to deduce from this the corresponding results also for smaller strips using a majorizing
principle. In the non-Riemannian case this is not so easy and we get problems for example with
the discrete series. See also example 1 in section 4.

REMARK 2. Inthe Riemannian case the analytic continuation is necessary since the spher-
ical functions are irLP for p > 2p/(ImA + p) andy is the spherical transform ofk-invariant
distribution, but in the non-Riemannian case the problem arises that although we can make a
similar construction as Eisenstein integrals of trikatype, these may have zeros and hence
may cause the functiogy to have poles. See section 4.

PrROOF. By construction the corresponding operator on the dual side is convolution with
the inverse spherical transform gfwhich is aK-biinvariant functiorF-. Anker shows thaff can
be divided into two partsy concentrated close to the origin alRgd= F — F, with the following
properties

* Jis2y IFo(y %) —Fo(x)|dx < C,
e F, € LY(GY/KY).

He also shows thdf is bounded o.?(GY/KY) but this we will not use. Lef be inLP(K\G/H)
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then by dualityf" will be in LP(H9\GY/K9). Hence, if we prove that” «F € LP(HI\GY/K9)
then the theorem follows from the following commutative diagram

LP(K\G/H) ——— LP(H%\GY/KY)

iy | |

LP(K\G/H) ——— LP(HN\GY/KY).

Thus we want to prove that’ « F € LP(H9\GY/K9). Considering the convolution askf'-
invariant function orH%\G%, we obtain by the second condition above:

r P v Myl P YP
(oo R 0170 = ([ o 00 Rt 02
r L\p P
< ' (xy )|Pdx / Feo(y)|d
< ([0 0P0x) [ty

. Up
gc(/ |f’(x)|pdx> .
JHA\GY

For the local part we first use a covering lemma to reduce to functions with support in the unit
ball of A, which is a space of homogeneous type and so we may use Hardy spaces. So assume
that f is an atom with support in a ball of raditisLetV; denote the part dfi9\GY where|a| > 2t

then withd(a) = Maes+(a,q) sinH“g(Ioga) cosh (loga) (see Flensted-Jensed])

/Vt\fr*Fo(x)|dx:/Vt
< [ 11" (@)I5(a)ad /M L

To be able to use our first condition & we need a lemma.

/ 1 (@)Fo(@~h~1x)5(a)dddh| dx
AJHd

Fo(@ *h1a) — Fo(h ta)| 5(a)dadh

LEMMA 1. If he HY anda € Athen the following inequality is true 6% /K9,
lha| > |a]. (8)

PROOF. Sincea € pNqitis orthogonal tahd. This implies that the orbita.o andHY.0 are
orthogonal at the origin i /K9, hence the result follows becausé/KY is a space of negative
curvature. U

For the second part we use thé&-boundedness of the operator and the assumption.
Thus by Schwartz’ inequality this part is bounded by some constant. O

REMARK 3. By the same argument we also obtain the same result for multipliers sat-
isfying L?-conditions instead, since by Anké&}the corresponding operator fulfills the same
conditions.

3.1. An Example.
(for more information about the material in this section sed)[Let G = SL(2,R) this
group has two involution8 : g — (¢" )t ando : g — Igl where
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- (; 01).

The first is associated with the hyperbolic plane and to the second we have two symmetric spaces
G/G? andG/H, whereG? = {diagonal matrices i} is the fix point set ofc andH is the

subset of all positive diagonal matrices. We will be interested in the SpAde Clearly6o o =

oo 0, hence we are in the situation of our earlier study. The generalized Cartan decomposition
in this case i$5 = KAH where

H= e 0 iseER,,
0 e*s

A C9Sh sinht teRY,
sinht cosh

KZ{(co.sqo Sm(p);q)eR}.
—sing cosp

In this case we can improve our result a little because instead of restricting our atterition to
invariant function we can look at functions of a fixkdtype. The reason is that this corresponds
to picking Fourier coefficients. Sindd is assumed to preser¥etypes we can take away tie
action and then after we have appligdwe may put it back, hence reducing to tkenvariant
case. We want to find the Riemannian non-compact ffnof X = G/H. For this we first
introduceg® which is

This implies thatG® = SU(1,1). We also obtairk® = U (1) x U(1)) and

Hd _ (fO?I’B isinhs seR\. ©)
—isinhs coshs

SoX"=SU(1,1)/S(U(1) xU (1)), i.e. the hyperbolic disc. As the maximal split Cartan subspace
we takea and we see thdt’ = a andac =2 C. To introduce the Fourier transform we need some
representation spaces. Rut = [t|°sgrft. LetD s, be the space o functionsg on R such
thatt — ¢(—1/t)t>"1¢ is also infinitely differentiable. Whesis a positive integer the case of
interest to us will be =s+1 (mod 2 and we will denote this spad®s. If we use the notation

_(a B
g(y 6)’ (10)

then we can define a representatiorGodn D s ) as follows
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T @00 =0 oy ) (B 87 2. 1)

The operator

00

Bioo9ll) = [ (-t o(t)dt

—o00

is an intertwining operator betwediy,) andT_s,). Fors pure imaginary the representation

is irreducible but fors a positive integer and = s+ 1 there are two invariant subspaces with

intersectionEs = KerBs,). Whens is imaginary this representation is unitary for the scalar
product

w.0)= [ woebd

Forsa positive integer we obtain a unitary representation by leing act on the factor space
Ds/Es equipped with the scalar product

((Ilv qB)S = (AS,*)Ua (p)7

where As = 27Si/2[" ((1—)/2)(d/dt)S. The H-invariant distribution vectors aré(s, ) =
t(5-1/2V_In our present situation the type of these vectors are determinedsinceD(G/H
is generated by the Laplacian

o 1\° (o 1\’
10 10

and
Tise) (D) = %(1—32) 1. (13)
The Fourier transform
Fsew) F(t) = /X f(x)(3t — y)(SV/2V) (Bt 4 a)(S-V/2v+e) gy (14)

maps%(X) to Dy or Ds/Es. SinceK = S' the K-types are functiong such thatf (kaH) =
€"?f(aH). Even if this is not directly related to the discrete series one can show that for functions
of a fixedK-type the discrete series is empty, see Appendix 8]inThis explains why it suffices

to look at the dual, which is only related to the (most) continuous part. If we integrate such
functions againse "¢ we obtain aK-invariant function to which we may apply Theorem 1.
Then we define a new function from the resultikginvariant function by defining it to be of

the sameK-type as the original function. As a result such a multiplewill map K-finite LP-
functions toK-finite functions with norm only depending on the numbeKeparts of the given
function. The Plancherel formula fof

1 2 1 o p+ie
F(x)2dx= s S sig IRt 2+ s / tanh( T2 18 ) e f2
JT00Pdx= 65 3 SRR+ gurs 3 [ ptanh(nE o ) [y T,
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whereis = 25T Y/2 (145)/2) (cogem/2) + 1), should be compared with the Plancherel for-
mula forX", see 2] Introduction Theorem 4.2

'/Xr\f(x)\z 2n// F(A, kM) 2Atanh( )d/\dkM (15)

When we neglect the discrete part we observe that the formulas are of the same kind and hence
it is not so surprising that the behaviour of the multipliers should be similar. (Observe, however,
that there are four copies 8, in the first case.)

Two examples of multipliers arg(s) = e t(1+¢~ )2 , Where( is some small number, and
Y'(s) = 4/((3/2) — &), the first one is almost the spherical transform of the Poisson Kernel for
the Riemannian form and the second one is the invers&/@&)| + A. They clearly satisfies the
conditions of Theorem 1. The reason we are not considering the invehsiseff is that then the
function would have a pole at= +1, also to avoid poles when we differentiate we include the
¢ shift in the first example. Another example of a multiplier connected to the first example is the
spherical transform of the Heat kernel for the Riemannian fapfs) = e t1-5) , this satisfies
the conditions of theorem 1 and is entire, but it does not belong to the E}Wé(&bc) asitis
not of exponential type.

4. Necessity of holomorphic extension.
We shall now prove that the multipliers extend holomorphically as in the Riemannian case.
Let{ay,...,a} and{@x,..., 0y} be the sets of simple roots Ba)™ andZ(6")* respectively.
We will assume that the root systexifb") satisfies the condition
If @ € Z(b")" andd|, #0, thenooB(a) € Z(b")*
and that the systems are compatible, i.e.

Z(a)" ={@la;@ € Z(b")" andd|q # 0}

We will denote the dual bases Kyoi,...,w } and{dx,...,Q}. Leta, be a maximal abelian
subspace af andm the centralizer of, in €. Let

o= e s (32 o).
Re<w(A_pm)+<;_ ;>p m>) (—00,0)' forauwevv(bf)},

wherepn, is thep-function for the root-system (m, b N ¢) andp’ the dual index that is

and set
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THEOREM2. If My is aLP-multiplier theny(A) has a partial holomorphic extension to
the seU,,.

PrROOF. The idea of the proof is the same as in the Riemannian setting. Askdnpe< 2.
First we prove that if the operator is boundedldhthen it is also bounded doP', then we show
that there is a function ib”, which is holomorphic in the given strip and such that the operator
acts by multiplication withyy on it. For Riemannian symmetric spaces we can use spherical
functions, in the present situation we use Eisenstein integrals.

Let N be thew-component of) € C”". Using this we define a function o by setting

. a?r=Pny if xe HWP
M (x) = .
0 if X ¢ Uwey HWP

WhereP is the parabolic subgroup corresponding to the positive rodf$dng). TheK-invariant
Eisenstein integral is now defined by

E(1.2)00 = [ fn(x Hodic
The normalized Eisenstein integral is obtained by a transformatign of
E°(n,A) =E(C(L,A)"'n,A),

whereC: W x a* — End(CW) is a certain meromorphic transformation corresponding to Harish-
Chandra’ss-function. It is normalized by its asymptotic behaviour

E%(n,A)(aw ) ~ a* Py,

wherea € A" (corresponding t& " (a,g)),w € # and R\ is strictly dominant. The normalized
Eisenstein integrals are regular along the imaginary axes but might have singularities outside.
To get rid of the singularities in a neighborhood of the imaginary axes one can multiply with a
suitable product of linear factors. Lemma 14 # §hows that we can choose a prodp¢a )
such that the functiok® := P(A)E%(n,A) becomes holomorphic in a tube around the imaginary
axes containingjp and is also a joint eigenfunction Bf(G/H) with the same eigenvalue &5.

The last step of the proof will be to show that we can solveyfon a holomorphic way. In
the Riemannian case this is easy because the spherical functions take the value one at the origin,
in our case the space of eigenfunctions is not in general one-dimensional so it is not simple. Let
us begin with the first step, to show duality.

LEMMA 2. If a multiplier My is bounded or.P then it is also bounded on the dual space

LP.

PROOF. We want to show that the dual ofF is ((.0 8) «F) o 8. The result then follows
becausd o8 € LP < f € LP.

/Hd\Gd f *F(X)g(x)dxz/Gd/Af(a)':(a_lx)g(x)é(a)dadx

Here we have written the convolution as an integral s¥&andA. This in turn is equal to
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/ /F g(ax)dxd(a)da= /f (g0 8)+F)(6(a))5(a)da

This equality follows easily usina = a~1. Finally as the convolution is righ€-invariant this
is just (aK is @ invariant)

o 109920 < F) (B0 ax -
The next step is to prove thity acts on the normalized Eisenstein integrals as multiplica-
tion by y.
LEMMA 3. My(E®(n,2)) = Y(A — pm)E®(n.A)

PROOF. By definition this is the same d&°(n,A))" «F = @(A — pm)(E%(n,A))". W
write the convolution as

X) = / (E%) (xkb 1)F (b)dbdk
Kd Jgr

The K-invariant Eisenstein integrals are joint eigenfunction®¢6/H) and hence by duality
we see thatE®)" is a joint eigenfunction oD(G®/KY) with the same eigenvalueyq(D A) =
y(D; A — pm), Wherey is the Harish-Chandra isomorphigmD(GY/K9) — S(6")W(*") andy is
the corresponding algebra homomorphism fidiG/H) to S(a)V, see Part Il, lecture 4 irlfl].
Using this fact we obtain, by Proposition IV.2.4 it]],

0= [ @ pu(0F (D)IN(E) (1),
which is what we wanted to show. O

LEMMA 4. For A € U, the regularized normalized Eisenstein integral®, are LP-
functions.

PROOF.  As the Eisenstein integrals are eigenfunctionsDgfG/H) with eigenvalue
¥(D; A — pm) the same is true for the regularized version and it follows from OshiffiaCorol-
lary 4.3, that forA in the given set they belong 10”, because witfd in that set condition 2 of
that Corollary is trivially satisfied. d

REMARK 4. The corresponding set for spherical functions on the non-compact Rieman-

nian form is
1 1 1 1
=<A Mx A - = o), ... A - = 0
{ < (0 (Re<w +(p p’>p’wl>’ ’RE<W +(p d)p’m»

€ (—,0)' for all weW(b’)}.

This clearly poses more conditions on the sefd&, but in the definition o, we only take
A € ag. Even so, forp = « the seJ, is contained inv/p. This explains why Theorem 1 is valid.
For other values op the Riemannian se¥, will not contain the setl, unless we havgm, = 0,
which happens for example®/H = SL(3,C)/SL(3,R).
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L S

ExamMpPLE 1. An example where the sets differ is the sp&&4,1)/SQ(2) x SO 2,1).
In the figure below the dotted polygon indicates the boundary of thesand the horizontal
line segment represents the Bt So, we can e C Ve butUy is not contained ivs. The
problem is that the shifpy, does not vary witlp.

If we differentiateE° with respect taA it is clear from the definition that this will only
give some additional polynomial factor which does not affect the exponential decay. Hence, the
derivative will also belong td." and asMy is continuous we find thdt/lw(lio(n,)\)) too is
holomorphic. If we use lemma 3 it follows that to finish the proof of the theorem we would like
to divide byE®, at least evaluated at some point. The problem is that we ﬁ@@rﬂ,.) to be
non-zero in a neighborhood of the point we are interested in.

ExAMPLE 2. To illustrate the problem let us consider a simple example, the real hyper-
boloidsSQ(p,q)/SAp—1,q), with g > 1. TheK-invariant Eisenstein integrals are joint eigen-
functions ofD(G/H), especially of the Laplace-Beltrami operator. Hence, the restrictié to
is also an eigenfunction of the radial part of the Laplace-Beltrami operator. This eigenequation
might be transformed into a hypergeometric equation by a change of variables and this, together
with the normalization, can be used to determine the normalized Eisenstein integralkl]see [
example 8.1. The resultis

o)) - AR PITCAA D01 pp (B2 228 ginte).

2 7 2

The hypergeometric functioR takes the value 1 at the origin, just like the spherical functions
in the Riemannian case. But tliefactors in the numerator might give poles and théactor
in the denominator might give zeroes. The point is that both the poles and the zeroes might be
cancelled in a neighborhood of the origin by multiplying with a suitable factor only depending
onA.

The reason that we restrict ourselvesjto 1 above is that in those cases the relative Weyl
group is trivial,#” = {e}. Whenq = 1 we obtain’?’ = {+1} and the hypergeometric equation
has a two dimensional set of regular solutions at the origin given by

pP+A p—A.q . P+A p—A 4-q _
aF (2 oy sml‘?t>+c23mhtF( 5 sinkt ).
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If c; = Othe function will be zero at the origin hence it is important to have the full basis.

In general rank the equation for the radial part of the Laplacian-Beltrami is no longer a
classical hypergeometric equation but following the recipe in Part lll, Sect 2,1pf¢ change
the root-system it can be turned into a subsystem of a generalized hypergeometric system. It
shows that Eisenstein integrals become linear combinations of generalized hypergeometric
functions for that system. At least for generic valuesiofusing Corollary 4.1.8 inJ1] Part
[, this would give an alternative proof, but the argument following this example is simpler. The
situation is particularly simple i##" = {e} and the symmetric space is basic in the sense of
Oshima & Sekiguchi, seelf] definition 6.4, i.e. tham, > m, for anyA € (a,g) such that
(1/2)A ¢ Z(a,g). Inthat case the Eisenstein integral will be given by a constant(dependiig on
times the generalized hypergeometric function and, as the spherical function in the Riemannian
case, this function takes the value one at the origin, 58e]Jorollary 4.4.6. Thus, the situation
would be as in the case with> 1 above.

Arguing as in the first part of the proof of Proposition 4.2 i1§]} we see that for generic
values ofA (more precisely fot’s such tha2(A, a) is not an integer multiple ofa,a)) the
Eisenstein integrals, for the standard basi€%f, are linearly independent as functions®yH.

For singular values of it is possible to modify the functions, to make them linearly independent
as functions ors/H and holomorphic as functions @f, by taking suitable linear combinations
with meromorphic coefficients as in the proof of proposition 3.9 in the same paper, see also
the example above. Thus we might assume that we are in the situation that we have a function
f(A,x) holomorphic inA, real-analytic inx and not identically zero as a function wfor any

fixed A, that satisfies the identity in lemma 3. (For gendrione could use the boundary values
instead, as in the example above.) Giveywe want to show that there is a poixt such that

for A in a neighbourhood of g, we havef (A, xo) # 0. Because we could then divide IbyA , xo)

and conclude thap(A) is holomorphic in a neighbourhood a§. As the functiorx — f(Ag,X)

is real-analytic and not identically zero, it cannot be identically zero in a neighbourhood of the
origin e. (For genericA’s the argument in the example gives a precise characterization of the set
of such points.) Leky be such thaf (Ag,xg) # 0. Sincef is continuous as a function af, the

set ofA’s such thatf (A, Xg) # 0, is open. Hence, there is an open neighbourhooth&uch that
f(A,Xo) # Ofor A’s in that neighbourhood as claimed. This concludes the proof. O

REMARK 5. We have seen that for geneii¢s the Eisenstein integrals corresponding to
the standard basis @” are linearly independent and they all satisfies the identity in lemma 3.
Thus it would be natural to consider diagonal matrix multipliers that would act in the different
directions independently.

REMARK 6. In lemma 4 we only used Corollary 4.3 id] in a trivial way. Oshima’s
result shows that the Eisenstein integrals might belorlg’tfor other values as well. Of course,
the multiplier has to be defined also at those points. There is the discrete series for example. By
Flensted-Jense8] we can determine the discrete series in the case when the rank is one. Set
a=(mg—1)/2andB = (m_ —1)/2. The discrete series consists of the poifitg|n = |B| —
(a+142m) > 0,me N}. Hence it is nonempty if and only ifi. > p + 1. This shows that for
symmetric spaces of that kind, there exigisp)-multipliers forG /K9 which are not multipliers
for G/H, if 2> p> p/B. For example we have the hyperbolic spa8€(r,1)/SQy(r — 1,1)
withr > 3.
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