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Continuous dependence on a parameter of exponential attractors
for chemotaxis-growth system

By MessoudEFENDIEV and AtsushiYAGI!

(Received Dec. 5, 2003)

Abstract. We study dependence on a parameter of exponential attractors. As known, ex-
ponetial attractors are not uniquely determined from a dissipative dynamical system even if they
exist. But we prove in this paper that one can construct an exponential attractor which depends
continuously on a parameter in the dynamical system. This resultis then applied to the chemotaxis-
growth system.

1. Introduction.

The study of the long time behavior of systems arising from physics, mechanics and biol-
ogy is a capital issue, as it is important, for practical purposes, to understand and predict the
asymptotic behavior of the system.

For many parabolic and weakly damped wave equations, one can prove the existence of the
finite dimensional (in the sense of the Hausdorff or the fractal dimension) global attractor, which
is a compact invariant set which attracts uniformly the bounded sets of the phase spa24](see [
and B0]). Since it is the smallest set enjoying these properties, it is a suitable set.

Now, the global attractor may present two major defaults for practical purposes. Indeed,
the rate of attraction of the trajectories may be small and (consequently) it may be sensible to
perturbations.

In order to overcome these difficulties, Foias, Sell and Temam proposeéptire[notion of
inertial manifold, which is a smooth finite dimensional hyperbolic (and thus robust) positively
invariant manifold which contains the global attractor and attracts exponentially the trajectories.
Unfortunately, all the known constructions of inertial manifolds are based on a restrictive con-
dition, the so-called spectral gap condition. Consequently, the existence of inertial manifolds is
not known for many physically important equations (e.g. Navier-Stokes equations, even in two
space dimensions). A non-existence result has even been obtained by Mallet-Paret and Sell for a
reaction-diffusion equation in higher space dimensions.

Thus, as an intermediate object between the two ideal objects that the global attractor and
an inertial manifold are, Eden, Foias, Nicolaenko and Temam proposétlithe notion of
exponential attractor, which is a compact positively invariant set which contains the global at-
tractor, has finite fractal dimension and attracts exponentially the trajectories. So, compared with
the global attractor, an exponential attractor is more robust under perturbations and numerical
approximations (see?f] for discussions on this subject). Another motivation for the study of
exponential attractors comes from the fact that the global attractor may be trivial (say, reduced
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to one point) and may thus fail to capture important transient behaviors. We note however that,
contrarily to the global attractor, an exponential attractor is not necessarily unique, so that ac-
tual/concrete choice of an exponential attractor is in a sense artificial.

Exponential attractors have been constructed for a large class of equationd]($26][

[13], [14], [15], [19], and the references therein). The known constructions of exponential at-
tractors (see for instancd][and [26]) make an essential use of orthogonal projectors with finite
rank (in order to prove the so-called squeezing property) and are thus valid in Hilbert spaces
only. Recently, Efendiev, Miranville and Zelik gave i] [a construction of exponential attrac-

tors that is no longer based on the squeezing property and that is thus valid in a Banach setting.
So, exponential attractors are as general as global attractors.

Let us come back to the robustness of the global attractor. Generally, global attractors are
only upper semicontinuous with respect to perturbations. The lower semicontinuity property is
much more delicate and can be established only for some particular cases (see for i2§lance [
[24] and [29)); for instance, it is true when the semigroup possesses a global Lyapunov function
and all the equilibria are hyperbolic. In this particular case, the corresponding global attractor
(the so-called regular attractor) is exponential and is robust under perturbations (i.e. it is upper
and lower semicontinuous with respect to perturbations). Moreovet; i§ the regular attractor
of a perturbed system anrg corresponds to the unperturbed one, then under natural assumptions
on the perturbations, we have

d(7, o) < CEX,

whered(-,-) denotes the symmetric distance between two sets (defined by @ .4))0,1) is

some exponent anglis the perturbation parameter (s@d]). As already mentioned, exponential
attractors are more robust objects. In particular, one can prove the continuity of exponential
attractors under perturbations (s@€J}, for the continuity for classical Galerkin approximations

(see P]), even when this property is violated or is hot known for the global attractor. However,

in so far known papers, the continuity is obtained only up to a time shift. In the present paper, we
give conditions on the semigroup which provide the continuity of exponential attractors without
such time shifts. Moreover, we obtain analogous (to the case of regular attractors) estimates for
symmetric distance between the perturbed exponential attragtand the unperturbed/o:

d(As, M) <C'EX,

without assuming that the system under consideration possesses a global Lyapunov functional
and that all the equilibria be hyperbolic. Note that, in contrast to the case of regular attractors,
our approach allows to compute the constaitandk’ in terms of the corresponding physical
parameters in specific applications.

In the second half of this paper, we apply our general result to the chemotaxis-growth model
and show continuous dependence of an exponential on the parameter of chemotaxis. In 1991,
E. O. Budrene and H. C. Berg found out &5] that Escherichia coli form remarkable aggregating
patterns by chemotaxis and growth. After this epoch-making result, mathematical biologists tried
to describe the process of pattern formation by mathematical modelsl&egl8] and [23].
Among others, Mimura and Tsujikawa presentediff] [a very simple model which is based
only on diffusion, chemotaxis and growth. We are here interested in their model. As a matter
of fact it is already known that one can construct exponential attractors for Mimura-Tsujikawa
model by the papers Osaki, Tsujikawa, Yagi and Mimu23] and Aida, Efendiev and Yagi
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[1]. Our result then shows that an exponential attractor varies continuously with the chemotactic
parameter in the model equation.

According to some numerical computations (s8edgnd [18]), it is also known that the
chemotaxis-growth model contains various types of pattern solutions which depend dramatically
on the chemotactic parameter and that the pattern formations are often performed for a long term
without any periodicity. So it is natural that one corresponds the pattern solutions to some trajec-
tories in (at least in neighborhoods of) exponential attractors rather than the global attractor. Our
result then shows that in the view point of exponential attractors, the structure of pattern solutions
changes continuously with a change of the chemotactic parameter even though its change may
be very dramatic.

NOTATIONS. LetX be a Banach space with noiim||x and. 2" be a subset oX. 2" is a
metric space with the induced distart@,V) = ||[U —V||x (U,V € Z). ForU € 2" and a set
Bc 27, d(U,B) is defined byd(U,B) = infycgd(U,V). For two set8;, B, C £, their distance
d(Bz1,By) is defined by

d(By,B2) = max{h(B1,B>), h(B2,B1)}, (1.1)
whereh(B1,B;) denotes the Hausdorff pseudodistance given by

h(B1,B2) = supd(U,B;) = sup inf d(U,V).
UeB; UeB, VEB2
Let X be a Banach space and ldie an interval#’(1; X) and%¢(1; X) denote the space of
X-valued continuous functions and continuously differentiable functions equipped with the usual
function norms, respectively.

2. Discrete dynamical systems.

Let X be a Banach space with norin ||x and letB be a compact subset &f, B being a
metric space equipped with the distae),V) = |[U —V||x for U,V € B.

LetSs, 0 <& < 1, be a family of continuous mappings fraginto itself. We then consider
a family of discrete dynamical syster(ﬁg, B, X), 0 < & <1, with uniform phase spadgin the
universal spac.

We assume that there exists a second Banach spafth norm || - ||z such thaZ is com-
pactly embedded iX and that allSs, 0 < § < 1, satisfy a Lipschitz condition of the form

ISU—-&V(z<LU-V|x, UVeB (2.1)

with some uniform constarit > 0. We assume also th& converges t asé — 0 with the
rate

sup||SsU —SU|x <K&, 0<&<1, (2.2)
UeB
K > 1 being some constant.
Then we obtain the following result.

THEOREM2.1. Under(2.1)and(2.2), there exist exponential attracto%g for the dy-
namical systemesg, B, X), 0 <& <1, respectively for which the estimate
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d(#g,#5) <C&, 0<&<1 (2.3)
holds with some exponedik k < 1 and some constad.

PrROOF. We remember the method which has been employed@]ifof constructing an
exponential attractor for the discrete dynamical systgjnB, X).

Let Rbe the diameter of the compact 8etlet us define fon=0,1,2, ..., aR/2"-covering
of §B by a finite number of closed balls &f with centers belonging t&B. More precisely,

Pn
$BC UB (xniiR/2"Y),  ¥ni€ B, (2.4)
i=1

whereP is the minimal number of balls ok with radii 1/(4L) which cover the unit closed
ball EZ(O;l) of Z centered in the zero. In fact, when= 0, it suffices to fixxg € B = (S)°B
arbitrarily.

Assume that the covering (2.4) is defined for For eachi € {1,...,P"}, the Lipschitz
condition (2.1) implieﬁEX(xnyi;R/Z“) C EZ(Soxn,i;LR/Z“). By scaling it is deduced that this
ball of Z can be covered by the numiof R/ (4-2")-balls ofX. In this way we see th&) " 'Bis
covered by the numbd@"** of R/2"2-halls of X. Moreover, increasing the radii of balls twice
if necessary we may construct tRg2"1-covering with centers belonging @* B. Thus, we
have constructed the desired covering (2.4)xferl.

Let us now define a sequence of sefsby EQ = {0} and

EgM = (SEG) [ {Xne1is 1< i < PYL

It is easily observed that these sets enjoy the following propertids; & §B; 2. SE; C EQ”;
3. #EJ < P and 4.d(§B, Ef) < R/2". Furthermore, it is easily deduced that the set

My = U (= (closure in the topology oX)
n=0

is an exponential attractor ¢&j, B, X). For the detailed arguments, sé [

Our next goal is then to construct exponential attracM§ for (S‘E,B,X), 0<é&<1,
respectively in such a way that (2.3) will be satisfied. To this end we will essentially use the sets
Ep.

SinceE] C B, there exist set&]] C B so that#E]) = #EJ andSJE]} = EJJ. Fix a¢ so that
0<é<1 Forn=0,12,...,letus seE:f1 = Sgﬁg Here we notice the following lemma.

LEMMA 2.1. The condition(2.2)implies

sup |SfU —SU|Ix <K"§,  0<E&<1
UeB

for everyn = 0,1,2,. .. with some constari determined by, L andK alone.

PROOF OFLEMMA. We have

ggu _SnOU — rllz: (Srgfis')u _ g£7i71%+1U).
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Therefore, by||S;U — S V||x < ¢||S;U —&V|[z <cL||U —V||x forU,V € B,
n-1 1 ) .
ISPU-SUllx < 3 (L) HISSHU ~ U e
i=

< ni: (cL)™ 1K E = {(cL)"— 1} (cL—1)1KE.

U
From this lemma we have
d(§B,B) <K"& and d(SED,SER) <K"
and consequently
d(S$B,Ef) < d(S;B,SB) +d($B,Ef) +d %EO, D) < 2K"E +R/2". (2.5)

Note that usuallyK > 1, therefore the right-hand side of (2.5) tends to infinitynas>  and
consequently we cannot construct the exponential attra%tgjrusing only the setsEg. But
for n’s which are not so large, the estimate (2.5) gives us a reasonable covering ofﬂgB.set
Indeed, let

n<N(E) = ['”R/(ZE)} ,

In2K
then28K" < R/2"; therefore it follows from (2.5) that
d(S{B,Ef) <R/2"1

Moreover, for suchn’s, it is deduced that

d(Ep,Ef) = d(SIE], SES) <K"E <KNg <C1&¥, wherek := _ 2 (2.6)
In2+InK

with the constan€; = K(nR/2/(In2K)

We here redefine the sequence of st‘gtsby the following rule: 1. FEn En for0<n<

N(&); 2. forn> N(&), we forget the set’s‘” and construct the selfg‘ by the mductlve procedure

using the condition (2.1) (in the same Way as we have constructed tHE'”SIatB starting with
the initial covering, generated b&(f ). Then the sets thus constructed evidently satisfy
the following conditions: 1.F C §B; 2. §&F{' C Fn+1 3. #R < P™2; 4, d(SB,Fy) <

R/2"-L. Then, these condltlons |mply as before that the set

g =|JFf  (closure in the topology oX) (2.7)

is an exponential attractor fQBg, B, X). Moreover it is seen that the attraction property.igg
is uniform with respect td < [0,1], i.e.

d(S$B,.#;) <R/2" .
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Let us finally verify the convergence property (2.3). Indeed, for the firsk ¢etJ;,_oFf;
then,x € F for a certainn. If n < N(&), thenx € E¢ andd(x,.#g) < d(x,Eg) < C:&* due
to (2.6). Ifn> N(&), then, sincex € SgB C S?(E)B, there exists an elemegte B such that
X= Sg'('f)y. Letx = S')\'“)y. Then, by Lemma 2.1jx — X ||x < KN()&; therefore, by the same
calculation as for (2.6), we observe that— X'||x < C1&X. From the other side, it is already
known that

d(X,.45) < d(sl)\l@)% Egl(f)) < R/ZN(E) < R2L-(InR/(28))/(In2K) — CpEX

with the constan€, = 21~ (NR/2)/(NK)R Therefored(x,.4;) < (Cp +Co)EX. Sincex s arbi-
trary inUn_o F#\ it follows thath(Un_o Ff, #5) < (C1+Cp)&X. In view of (2.7),

h(g,.45) < (CL+Cp)&".
The opposite estimate
h(ag, 45 ) < Céx

can also be verified in a completely analogous way. Thus the theorem has been proved]

3. Continuous dynamical systems.

Let X be a Banach space and [2f be a subset oX. Let S(t), 0 <t < o, be a family of
continuous mappings fro?” into itself with the properties: i 0) = 1 (the identity mapping)
and ii) S(t)S(s) = S(t+ ), 0 <t,s < o (the semigroup property). Such a family is called a
(nonlinear) semigroup acting ofd". For eacHJy € 27, S(-)Up defines a function for € [0, )
with values in%"; this function is called a trajectory starting frasg. The space of all trajectories
is called a dynamical system with phase sp&ten the universal spack¥ and is denoted by
(St), 2", X).

In this section we consider a family of dynamical systé@t), 2, X) which are defined
for 0 < ¢ < 1 with compact phase spacé of X forall0 < ¢ < 1.

Assume that there exists a second Banach spaekich is compactly embedded ¥ and
that, for some* > 0, all the mappings$; (t*), 0 < & < 1, satisfy a compact Lipschitz condition

[[Se (1)U — S (t")V|z <LU-V]x, U,Ve 2 (3.1)

with some uniform constarit > 0. And assume also that &} (t), 0 < & < 1, satisfy a Lipschitz
condition

1S (HU =S (9)V|Ix <D(jt—s/+|U =V]x), 0<st<t*,U,VeZ; (3.2)

on the intervalO,t*] with some uniform constar > 0.
For the dynamical systems we assume that there exists a uniform absorbiBgCset
No<g<1Z¢ Which satisfies

St)2sCB for every t>t* (3.3)

forall0 < & <1, and that
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sup sup [|§(HU —S(t)U|[lx <K& (3.4)
UeB 0<t<t*
with some constari{ > 1forall 0 < & < 1. Itis easy to see that, if the conditions (3.3) and (3.4)
are satisfied by a s@, then they are satisfied B/also. So we can assume tiiis a closed set
of X without loss of generality.
Then we prove the following convergence result.

THEOREM3.1. Under(3.1), (3.2), (3.3)and(3.4), there exist exponential attractorg’s
for (S (t), 2, X), 0 < & < 1, respectively for which the estimate

d( A, Mp) < CEX, 0<&<1
holds with some exponedi k < 1 and constan€C > 0.

PROOF. For0<¢§ <1 letS; = &(t). Then, since (3.3) implieS; B C B, ((S;)",B,X)
are discrete dynamical systems with the uniform phase sBaghkich is a compact set of.
Therefore we can apply Theorem 2.1 in the preceding section to conclude that there exist expo-
nential attractors#; for the systemﬁ(Sg)”, B, X) respectively which satisfy the estimate

d(ag, M5) < CrE" (3.5)

with some exponer@ < k < 1 and constant; > 0.
We now set for each < & <1, #; = uogtgt*S(t)%g. According to 6, Theorem 3.1],
these#; are then exponential attractors for the continuous syst&ats), 2z, X) respectively.
LetU; € .#; be any element. Theh); = S (t)U; with some0 <t <t* and somdJ; €
. From (3.5), there exists an eleméyy € .7 such thatd(U;,Ug) < 2C1&*. SetUp =
S(t)U§ € 4. Then, by (3.2) and (3.4),

d(Ug, #0) < d(Ug,Uo) = d(S¢ ()Ug, So(t)Ug) < d(S¢ (1)U, So(t)Ug)
+d(So (U5, So(t)Ug) < K& +2CDE".
Thus we obtain that
h(Ms, Mp) < (K +2C1D)EX.

By the same argument we can obtain di6e7, .#; ) < (K+42C;D)&*. Hence the theorem
has been proved. O

4. Application to chemotaxis-growth model.

We shall apply our abstract results obtained in the preceding section to the chemotaxis-
growth model due to Mimura and Tsujikawsy.
In this section we use the following notation® is a bounded domain in the plane. For
1< p< oo, LP(Q) is the Banach space of alP functions with norm| - ||.p. Form=1,2,3,...,
H™(Q) denotes the Sobolev space, its norm being denotdtl iym (see R7, Chapter 1] and
[31]). Form> 2, H{(Q) is a closed subspace Bf"(Q) which consists of the function €
H™(Q) satisfying the Neumann boundary conditiahg/dn = 0 on the boundary of2.



174 M. EFENDIEV and A. YAGI

4.1. Chemotaxis-growth system.
We consider the Cauchy problem for a nonlinear diffusion system

%:aAu—l]-{uD)((p)}Jrf(u) in Q x(0,),

op .

E_bAp—cerdu in Q% (0,00), (4.1)
ou o0p

%_%_o on JQ x(0,0),

u(x,0 =Uo(x), p(x,0)=po(X) in Q

in a bounded domai ¢ R? with ° boundary. Herey(x,t) andp(x,t) denote the population
density of biological individuals and the concentration of chemical substance at a pgsitiQn
and timet € [0, »), respectively. The chemotactic tefth {ulx (u)} shows thau flows under
the influence of the chemical substance by a sensitivity fungtign). The growth rate ofi is
given by a growth functiorf (u). a > 0 andb > O are the diffusion rates af andp respectively.
¢ > 0andd > 0 are the degradation and production ratep oéspectively.

The sensitivity functiory (p) is a real smooth function g € [0, o) which is assumed to
satisfy the condition
I
dX(p)‘ <D fori=1,2,3 (4.2)

sup dp

0<p<oo

with some constard > 0. Prototypes of (p) arep, log(p +1), p/(p + 1) and so on.
The growth functionf (u) is a real smooth function af € [0,c) with f(0) = 0 which is
assumed to satisfy the condition

f(u)=(—pu+vu for sufficiently largeu (4.3)

with somep > 0and—o < v < o,

For simplicity, we shall use a universal notatiomo denote constants which are determined
in each occurrence by the initial constaat®, c, d, D, y andv, and by the domai®.

As verified by P2, Theorem 4.4], for any pair of initial function® < up € H3(Q) and
0< po € H3(Q), the problem (4.1) possesses a unique global solution in the function space

{OSUG%([OM): HJ(Q)) N & ([0,%); L(Q)), “.4)
0< p € €(0,); H3(Q)) NF([0.%0); H(Q)).
Moreover by P2, Proposition 4.1], the solution satisfies the estimate

[u®) [z + (M) llws < P(l[Uollnz + lPollyz),  0<t<e (4.5)

with some continuous increasing functigyg-) which is determined by the initial constants
a, b, c,d,D, uandv, and by the domai.

In order to have this global existence of solutions, the condition (4.3 (on plays an
important role. In the case wheféu) = 0, the model (4.1) is called the Keller-Segel equations
which were presented by Keller and Segel 17][to describe the aggregation process of slime
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mold. In Keller-Segel equations the blowups of solutions can take place as verified by Gajewski,
Jager and Kosheled], Gajewski and Zacharia®8], [10], Herrero and Veéizquez 11], Nagai and
Senba 20], Nagai, Senba and Suzukt]], and so on. For a full list of Keller-Segel equations,
see [L2].

4.2. Dynamical system.
We set a universal spadeby

X = {(:) uel?(Q)andp e Hl(Q)}.

We set also a space of initial functioksby

K= {(;0); 0<upeHE(Q)and0o< py € Hﬁ,(g)}.
0

Since (4.1) possesses a unique global solution in the space (4.4) and since the solution is con-
tinuous with respect to the initial functions in the topologyXgfwe obtain a dynamical system
(S(t),K, X) which is determined from (4.1) with phase sp#ce
According to R2, Proposition 5.1], there exists a constBnt 0 which is determined by the
initial constants, b, ¢, d, D, u, andv and by the domai®, and the following statement is true.
The set

u .
B= {(p); uc H3(Q) andp € H3(Q) with ||ullyz + [|p]lps < R} (4.6)
is an absorbing set. That is, for a@y r < oo, there exists a timg > 0 such that the set
Kr = {(:0); 0 < up € H3(Q) and0 < pp € H3(Q) with ||uo|| 2 + || eollyz < r},
0

is absorbed by in the sense that
S(t)K; C Bfor everyt > t;. 4.7)

As B itself is absorbed b, S(t)B C B for everyt > tg.
We then set a phase spaggé by

2= stB= J St)B. (4.8)

0<t<oo 0<t<tg

ThenZ is such thatZ” D B, is a positively invariant set, i.&(t) 2" C 2" for everyt > 0, and is
seen without difficulty to be a compact setXf Thus(S(t), 2", X) defines a second dynamical
system. We may notice that every trajectory starting fibmnters taB C 2" in finite time.

We finally list some properties of the phase sp&tenhich are used in what follows.

(1) Z is acompact set of;

(2) BC 2" CKpry (dueto (4.5));

(3) S(t)2” C Bfor everyt > tyg) (due to (4.7)).
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4.3. Compact Lipschitz condition.
Let ug, po and o, po be two pairs of initial functions in2", and letu, p andd, p be the
corresponding solutions respectively. SingeC K ), it follows that

[ut)llhz + oMy < P(R), 0<t <o,
[U(t) [q2 +1P®)]I4s < P(R), 0<t < oo
Forw=u—0Uandn = p—p, we have

%V =adAw— - {wlx(p)} — O-[@0{x(p) — x(P) }] + f(u) — f(1),

(;—rt’:bAn—anrdw

(4.9)

Multiply the first equation byv and integrate the product i@. Then,

%%/szdwr a/Q | Ow{?dx
:/QWDW'D)((p)dXJr/QUDWD{X(p)fx(f))}dx+/g{f(u)ff(G)}wdx
< C{lIx(0)llnz+ Wl 2l BWl 2 + [[Tllase Ol 2 [ X (0) = X (P) 142
+H(u) = £ (@) Iz w2} < C{UIWlIL + 17 1)l Ewll2 + w2}
with an arbitrarily fixed exponerit < € < 1/2. Here we used42, (2.10) and (2.14)] and
1X(0) = X(B)lInr < C(llpllrse + [Bllree +1)p=Pllur, PP EHMH(Q)

(instead of P2, (2.15)]). Therefore we obtain that
d
g [ovPdxra | OwPdx< Clin|F: + i), (4.10)
tJ/a Q

Multiply next the second equation of (4.9) Ity — An) and integrate the product i@d.
Then,

1d
2dt
= d/QW(n —An)dx<dwl|2([nllz + 14N ]l.2)-

[ (2180 dx [ {blanf + (b )[0n -+ cn?}dx

Therefore,

d

5t |- 2+ 100 ax+ [ {blan P+ (b+0)|0n 2 +cn?) dx < Clwi.
This inequality jointed with (4.10) then provides that

%(I\W(t)Ilfﬁ In1B) + S [F2 + 11 (©)152) < CUWR)IF2 + 17 @©)1]F)
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with some constard > 0. Solving this differential inequality, we conclude that

W12 + I (O[5 < € IWO)IE+n(0)[F2),  0<t<o.

Furthermore,

t
5./0 (IW(S)[1Z2 + 1IN (91F2)ds < [WO) [E2 + [ (0) |
t
+C/O(\IW(S)I\Ez+IIU(S)Hfu)dSSCeC‘(HW(O)IIEerIIH(O)Hﬁl), 0<t<o. (4.11)

We next establish energy estimates of higher order. Multiply the first equation of (4.9) by
—Aw and integrate the product i@. Then,

2dt/ |Dw\2dx+a/ |Aw|2dx

— [ (9 (wOx(p)} + 0- [O{x(p) ~ X(P)})Bwexr [ {F(w)~ f (@)} Awelx
< (10 (WX (@)} 2 + |- @O{x () = X ()2 + (1) — H(@) ) w2
< O Wlse X(0) e + 1 Tlssse X () = X (Bl + [ Wlz) [ Aw]z

< C([Wllwz +[[nll2) [Awll 2
with an arbitrarily fixed0 < € < 1/2. Here we usedd?, (2.11), (2.14) and (2.15)]. Therefore,
d 2 2 2 2
it - Iowaxcra | jawPdx< ol + Inl3).
Multiply next the second equation of (4.9) l#n and integrate the product @. Then,
2dt/ |An|2dx+/ (blDAR[2+clan?)d :—d/Q Ow- 04N dx < d|wi. | 047 | 2.
Consequently,
d
a/Q A0 2dx+ b/Q I0AR[2dx < Clwi2,.
In this way we obtain that
d
a(IIW(t)IIﬁl +IN®)1IZ2) + 3w 152+ 1n117s) < CUW®) 71+ I 1)11F2)
with some constand > 0. Solving this, we conclude that
W) 51+ [N O)1IE2 < CE(WO)[Z + 1N (0)]IF2),  0<t <o,
We now notice that this estimate is valid for any paisef t. In other words, it is true that

IWO)[Ze+ In(O1F2 < CEI(IWS) G2 +IInG)IFz),  0<s<t<e.
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Integrating this inequality is € (0,t), we observe by (4.11) that

t
t(Iw)[[Z: + N ®)1152) SC‘/O I (w9131 + [In(9)lI32)ds
<CE(IWO)[IZ2+1n(O)IF),  0<t<o.

Thus we have arrived at the estimate

Ju(t) — ) lys + 0(6) — B 2
< C(/V)(|u(0) —T(O) o + 0(0) ~ B(O) ), O<t < oo,

Therefore if we set a second Hilbert space by

Z= { (;) ue HY(Q)andp e HZ(Q)},
then the semigrouf§(t) satisfies the compact Lipschitz condition

IS(t)Uo — S(t)Uollz < C(€™/vH)[lUo~Uollx, ~ Uo, Uo€ 2.

In addition it is easily verified tha(t)Uy satisfies the Lipschitz condition (3.2), cf23,
p. 142]. Hence, as mentioned in Theorem 3.1, an exponential attrattmr (S(t), 27, X) can
be constructed by employing the method presentef]in |

4.4. Estimate of convergence of semigroup.

We consider a family of sensitivity functiong () depending on a parameter< & < 1.
They are assumed to satisfy the condition (4.2) with some uniform cori3taim addition we
assume that forany < r < oo,

sup [xz(P)—Xo(P)| <Di&,  0<E<1, (4.12)
0<p<r
with some constard, > 0.
By (4.1),0 < ¢ < 1, we denote the Cauchy problem for the chemotaxis-growth system

including the sensitivity functiorx; (-). As shown in the preceding subsection, for efch
& <1, a dynamical systeniS;(t), 25, X) is determined from (4.}) As x;(-) satisfies (4.2)
uniformly, we can take a uniform continuous functip() in (4.5), a uniform constan® in
(4.6), and also a uniform absorbing &eih (4.7). Therefore, in view of (4.8),

BC ﬂ ‘%EC U '%ECKp(R) (4.13)
0<é<1 0<é<1

and
S (1) Zs C Bfor everyt > typ).

The purpose of this subsection is to derive the condition (3.4) from (4.12)vgl ép be a
pair of initial functions fromB, and letug, ps be the solutionto (4.}) 0 < & < 1, with the initial
functionsvy, {p. From (4.13) it follows that

U (®)llwz + log (M) lwe < P(R), 0<t <o, 0<E <1
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We setw = ug —up andn = pg — po. Then,

W _ asw— 0 (WOg ()} — 0 W00 X (0e) ~ Xe (00))]
—0-[uo0{Xs (Po) — Xo(po) }] + f(ug) — f (o), (4.14)
%—'Z =bAn —cn+dw

Multiply the first equation byv and integrate the product i@. Then, by the same calcula-
tions as above,

1d ,
Ea/gvvzdera/Q\DM dx

— [ wow- Oxe (pe) i+ [ uoCw-C{xe(pe) — Xe (Po)} dx
+ [ uobw- O{xe (o) — xolo) x| {1 () = T(uo) jwelx
< CllXe (Pe) v W 2 Wl 2 + ol | Ol 2 [ Xe () = Xe (P0) s
ol 0wl 2| 3 xe (Po) — Xolo) ez + [ (g) = F(uo)l w2
< C{(E + Wiz + 17 o) | Ol 2 + w22}
Here we used a fact that (4.12) implies that
|5{Xe (Po) — Xo(P0)} 2 < X} (P0) = X3(P0)l =]l Dol > < CE

due tol|po|[L= < C||po]|y2 < Cp(R). Therefore,
d
&/Q""zd”a/g |OwZdx < C(%+ [N [Z2 + Wi[f2)- (4.15)

Multiply next the second equation of (4.14) by — An) and integrate the product if2.
Then, by the same calculations as above,

id
2dt /o
:d/QW(n—AU)dXS diiwllz(Inlle2 + 1An|[2),

(n?+|0n ) dx+ [ {blanf-+ (b+0)On[>+cn?}dx

and
d
gt |- (02 +10nP)cber [ {blan - (b+)On[2+cn?}dx < CfwZ.

This jointed with (4.15) then yields that

d
ai

Solving this differential inequality, we conclude that

W12+ 1I11F2) < CE2 + [WO)Ez + 17 ©)llFa)-
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t
Iw(t)[[Z+ [N (V)][Z: < € (Iw(0) |22+ In(0)[|Z2) +CEZ/O 79 < cee,
0<t <oo.

Therefore,
1S (s — So(t)Ugllx <CEEL,  0<t <o Up= <Z°) eB
0

In this way we have verified that the semigrogpst) satisfy (3.3) and (3.4) with" =tg).
Consequently, there exist exponential attractefsfor (Ss(t), 2,X),0< & < 1, for which the
estimate

d(g,.M0) <CEX, 0<E<1

holds with some exponeft< kK < 1.
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