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Abstract. We consider local properties of zero sets dependent of time variable of analytic
solutions of linear second order parabolic equations with two spatial variables. Our aim is to give
several necessary conditions for the zero set at the present to be homeomorphic to those at the
recent past and at the recent future.

1. Introduction.

Let u be a real valued analytic solution of the following equation in a neighbourhood
(=T,T) x U of the origin inR®:
Jdu
It =A(t,x,y; d/0x,0/dy)u. (1.1)
Here A(t,x,y; d/0x,0/dy) is a linear second order partial differential operator with analytic
coefficients whose principal part at the origin is equal to the Laplabian 92/dx% + 92/9y>.
We consider local properties of its zero sets defined by

Z(u(t)) ={(xy) €U u(t,xy) =0}
and its singular part defined by
Su(t)) = {(xy) € Z(u(t)); ux(t,x,y) = uy(t,x,y) = 0}.

Watanabe 3] set about a study concerning changeZgéi(t)) in t and this study in the case of
space dimensiop 2 is yet to be investigated. When the space dimension is equal to one, such
problem for not necessarily analytic solutions is studied, for example, by Angetieand
Watanabe 4]. Their concern was the non-increasing property of number of zero points. By
other point of view the decreasing property states that the zei®(sft)) certainly is different
from Z(u(—t)) for sufficiently smallt > 0 whenu(0) has a singular point. But in our case it
does not necessarily occur. As a simple exampleijét, x,y) be solutions of (1.1) such that

Uy (6,X,Y) = Y2+ AX2 + (24 2A)t + O(t2 + |y|® + |x|3) as|t| +|y| + [X| — 0. When—1+# A <0,

for sufficiently smallt > 0 and for suitable small neighbourhodd, of the origin both
Z(u(t)) NUy andZ(u(—t)) NU, are one-dimensional smooth manifolds and have two connected
components. WheA = 0 andup(t,X,y) = Y2 +x3+ (24 6x)t + O(t? + |y|® + y?|x| + |y|x? + x*)
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aslt| +|y| + |x| — 0O, they are connected one-dimensional smooth manifolds.
We are concerned with the problem of deciding whei@r(+t)) NU, are homeomorphic
to Z(u(0)) NUo. In the section 3 we shall prove the following results. W&n(—t)) NU, is
homeomorphic t&Z(u(0)) NU, for sufficiently smalit > 0, Z(u(t)) NU, is also homeomorphic
to Z(u(0)) "U, (Theorem 3.1). Moreover, under some assumption the first non vanishing homo-
geneous term of Taylor expansionw(,-,-) in (x,y) at the origin, called the initial form and
denoted byp, is either harmonic ofx? 4 y?)q(x,y) for some harmonic polynominal(Theorem
3.4). If {6 €0, m); p(cosh, sinB) = 0} is a set ofm-points wherem is the degree of, the
converse statement of Theorem 3.1 holds piglharmonic (a corollary of Theorem 3.2).
We discuss this problem with the aid of properties of approximate polynominal solution
W(t,x,y) of uwhich is given by the following.
@szN in R,
ot (1.2)
W|,_,=p(xy) in R

Here p is the polynominal stated above. Then we define the Hermite polynoriraid its
conjugate Hermite polynomin&l* by the following.
H(Xay) :W(flaxay)v H*(Xay) :W(17X7y)' (13)

We shall use their properties of zero sets due to Watanalig in prder to examineZ(u(t)) N
{(%,y); X2 +y? < M|t|} for large constani.

2. General properties of zero sets.

In this section we recall the general properties of zero sets that are progdird[we give
the notation and some propositions in order to use in the next section.
Without loss of generality we always assume that

omu
Y™ (0.0,0)

Here and in the following we denote y f, P) the vanishing order of atP € R%.
For such solutiom we define the numbers(0), m(£0) as follows.

#0, m=v(u(0),(0,0)) >2. (2.1)

DEFINITION 2.1. If the origin is an isolated point d(u(0)), then we pum(0) = 0. If
this is not the case, then by virtue of Puiseux expansion the germ of set at the origin defined
by Z(u(0)) is the union of finite number, say(0), of curvesy;,1 < j < m(0), of the form
(&;x71, fj(x)) wherey; # w (j # k), &j = £1, gj > 1 are integers and wherfg are analytic near
the origin such thaf;(0) = 0. Here we take; so that it is not even imif o; is even. We denote
by v(y;) the vanishing order afi(0) on the germ at the origin given by \ {(0,0)}. We define
m(=+0) by the following.

m(0)
m(+0) = the number of j; v(y;) isodd}, m(—0) = Z v(yj)-
=1

PutU(8) = {(x,y); [X < &2, |y] < &} and taked > O sufficiently small and fix. Then the
following is proved in B].
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PROPOSITION2.2. Let|t| > 0 be sufficiently small. Then the following holds.

(1) S(u(t))nU(d) is at most finite and for each point P in this set the initial form (f at
P is harmonic after a linear change of coordinates around P.

(2) Whent> 0, Z(u(t)) "U(d) is the union of H-0) regular curves in Yo) defined over
the interval(0O, 1) whose end points are on the boundary q@l.

(3) When t< 0, Z(u(t)) "U(J) is not empty and it is the union &f(t) and I¢(t) where
I (t) consists of -0) regular curves in UJ) defined ovel0, 1) whose end points are on the
boundary of Ud) and wherd¢(t) is either empty or the union of finite number of closed regular
curves in U 9) defined over the circle.

(4) When it > 0and|tk|, k= 1,2, are small enough, @(t1)) NU(J) is homeomorphic to
Z(u(t2))NU(9).

In the following we always denote by the initial form ofu(0) at the origin which can be
written in the following form.

d
p(X,y) = ﬂ(y—A;x)du Aj # M for j #k. (2.2)
=

We also define the numbeng p, 0), m(p, +0) for p in the same way as Definition 2.1. Namely,
m(p, 0) is the number of such tha#; is real. Ifm(p, 0) > O, by rearrangement we assume that
Aj, j=1,...,m(p,0), are real. We also denote by p,+0) the number of <m(p, 0) such that

dj is odd and byn(p, —0) the sum ofd; over j < m(p, 0). Note that

m(p, +0) <m(+0) <m(0) <m(-0) <m(p,—0). (2.3)

Setl (6,¢) = {(x,y) € R\ {(0,0)}; |argx+iy) — 8] < €} andA; = tanB;. Then we have the
following.

PROPOSITION2.3. For sufficiently smalk > 0 there is a constant M- 0 such that for
sufficiently smaljt| > O the following holds.

Z(u(t))NU(8) € {(xY): x> < M[t|}

U{ U {xy)er(6,8)ur (m+6;,2); x> Mt|}}-

j<m(p,0)
Moreover, if t< 0, then for each K m(p, 0) both
{(xy) € Z(ut)) T (8),€); x> =Mlt[}
and
{(xy) € Z(ut) NI (+ 6, €); x> = Mt}

consist of ¢ points. If t> 0, then they consist of one point in the case whegris@dd and they
are empty in the case where id even.

Using the polynominalsV, H, H* given by (1.2), (1.3) , we prove the following lemma in
order to use in a proof of Proposition 2.3.
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LEMMA 2.4. Let (p(s),y(s)) be an analytic curve irRRdefined near s= 0 such that
y(0) = (0,0), p(0) =0, p £ 0andlims_ov(u(p(s)), y(s)) = n > 1. Then the following holds.

(1) Suppose thaims .o|y(s)|/|p(s)|Y/? < c. If we putw = lims_. o y(S)/|p(s)|*/2, then
V(H,w) > n (resp. v(H*,w) > n) in the case wherp(s) < 0 (resp. p(s) > 0) for sufficiently
small s> 0.

(2) Suppose thalims .o |y(s)|/|p(s)|¥? = 0. If we putw’ = lims_ o y(s)/|y(s)|, then
v(p,w') >nand2n<m+2.

PROOF. (1) Suppose thai(s) > 0for sufficiently smalk > 0. Since we have by definition
thataslt| +[x|+|y| — 0

u(t, x, y) = W(t, x, y) + O({It|"/2+ x| + y[}™4), (2.4)

we obtain that as— +0

(S ™2u(p(s), 1(s) = H* (V(s)/1p(9)[V?) + O(lp(9)[*?)

and analogous relations for partial derivative$xyy) of u. So these imply the conclusion. When
p(s) < Ofor sufficiently smalls > 0, by usingH instead ofH* we have the desire result.
(2) At first we note that the solutioW of (1.2) can be written in the form:

th
Wt xy) =S —Ap(x,Y). 2.5
(t, %, y) kgo m p(x, ) (2.5)

By calculating the derivatives isof u(p(s), y(s)), we obtain thav(w(p(s)), y(s)) > n— 1 and
thatass— 0

V()| "™ 2w (p(s), ¥(9) = |y(s)| "™ BW(p(s), y(s)) + O(ly(s)])
=Ap(y(s)/|¥(s)]) + O(lp(s)[Y2/Iy(s)]) + O(|(3)])

and analogous relations for partial derivativestirx, y) of u. By the same arguments as that for
the assertion (1) we have thatA¥p, /') > n—k for eachk=0,...,n— 1.

Suppose tha@n —2 > m. If 2n—2 = m, by the factv(A"'p, ') > 1 the constant function
A" 1pis zero and hencA"1p always is identically zero. Take the minimun integier 1 such
thatA'p= 0 and putqg = A'~1p. Sincel < n— 1, this harmonic homogeneous polynomimgal
has a singular pointy # (0,0) and hence = 0. This is a contradiction against the choicd of

REMARK 2.5. If m(p,0) = m(p,—0) > 1, thenm(p,0) = m(p,+0) = m(—0) = m(0) =
m(+0) and for large constal > 0

Z(u(t))NZ(uy(t)) N{(xy) €U(9d); X >Mlt]} =@ (2.6)

Because, the assumption implies that= 1 for eachj = 1,...,m(p,0) and so by definition
m(p,0) = m(p,+0) and hence we obtain by (2.3) thatp, 0) = m(0) = m(+0) = m(—0). Since
Z(p)NZ(py) = {(0,0)}, the latter assertion can be proved by the same arguments as that in the
proof of Lemma 2.4.
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Using Lemma 2.4 and the notation for a polynomihan R?,
Z(f)={PeR; f(P) =0}, S(f)={PeZ(f); &(P) = fy(P) =0},
we show Proposition 2.3.

ProoF. It follows from the behavior at the infinity of Hermite and conjugated Hermite
polynominals proved ing] that for eache > 0 there is a constal > 0 such that the following
holds.

{ZH)UZHDIN{(E )18l >Myc | ){r(ej,;)ur(mej,;)}. 2.7)

j<m(p,0

Consider the geridd of semi analytic set g0, 0,0) defined by

V=[] {txy);xy)eZ(u(t)),

j<m(p,0)
X|? > 2M?|t| > 0, (x,y) & I (6},2¢) UT (11+ 6;,2¢)}.

Then we claim that this germ is empty. If this is not the case, by Curve Selection Lemma, (see, for
example, P]), there is an analytic curve(s) such thato(s) = (p(s),Q(s)) € V for sufficiently
smalls> 0ando(0) = (0,0,0).

Suppose thalims_.o|Q(s)|/[p(s)|*/? < . Putting (§,n) = lims_.0Q(s)/|p(s)[*2, we
obtain that|é| > M and from Lemma 2.4 thaH*(&§,n)H(&,n) = 0, which is a contra-
diction against (2.7). Nextly we suppose thiats .o |Q(s)|/|p(s)|? = w. Put(&’,n’) =
lims—10Q(s)/|Q(s)], then it follows from Lemma 2.4 thgi(¢’,n’) = 0 and scarg(§’ +in’) =
6;(modr) for somej < m(p, 0), which is a contradiction we seek. The assertion in the latter half
is a consequence of the behavior at the infnity of Hermite and conjugate Hermite polynominals
that is proved in%]. O

It is worth while to say that the germ of set at the origifRhgiven byu(t, x,y) = ux(t,x,y) =
uy(t,x,y) = O is at most one-dimensional. On the other hand the germ at the origth given
by ux(t,Xx,y) = uy(t,x,y) = 0 may be two-dimensional. It is proved jB| that a necessary and
sufficient condition for{ (x,y) € R?; Hx(X,y) = Hy(x,y) = 0} to be one-dimensional is thatis
a multiple of eithefax+by)™ for m> 2 or (x? +y?)™?2 for evenm > 4. Moreover, in this case
bothS(H) andS(H*) are empty. Using this result, we prove the following.

PROPOSITION2.6. Suppose that(®l) # @. Then the gern¥” of semi-analytic set at the
origin in R® defined by

{(t,%xy); [t] > 0, ux(t,x,y) = uy(t,x,y) = 0}

is either empty or the union of finite number of germs defined by analytic curves of the form
(et9,y(t)), wheree = +1, y(0) = (0,0) and 0 is an integer> 1.

PrROOF. Without loss of generality we assume tfﬁLl djAj # 0. Then by Weierstrauss
preparation theorery anduy can be expressed in a small neigbourhood of the origin in the
following form.
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m-2
Ut X,Y) = Uo(t, X y) F(t,x;y), F(t,x;y)=y™ 1+ Z) U (t, %) ¥,
K=

m-2
Uy(tvwi = VO(t7va) g(t7X;y)7 g(t’X;y) = ym_l+ k;) Vk(tvx)yk'

Hereu,(0,0,0) v,(0,0,0) # 0 anduy, vk, k=1,...,m—1 are real analytic near the origin. Since
the result proved ing] ensures that the resultant as functioxiof polynominals iny of Hx(X,y)
andHy(x,y) does not identitically vanish, also is the resultant as functioft,ix), denoted by
o(t,x), of polynominals iny of f(t,x;y) andg(t,x;y). Hence the gern¥  is at most one-
dimensional. Moreover, by virtue of Puiseux expansion the equaiorx) = 0, |t| > O, can
be expressed by= h(tl/”) for several holomorphic functiortsand for integers > 0 and hence
by considering the equatiorf$t", h(t) ;y) = 0 we arrive at the conclusion. O

3. Necessary conditions foZ (u(t)) to be homeomorphic toZ(u(0)).

In this section we give several necessary conditionZfaft)) NU (J) to be homeomorphic
to Z(u(0)). For the sake of convenience we wrkex B whenA is homeomorphic t@®.

Before stating our results, we notice the following facts. (1) By virtue of maximum principle
there is no relatively compact (lth(d)) connected component bf(d) \ Z(u(t)) for sufficiently
smallt > 0. (2) If m(0) = 0, from Proposition 2.2 we have thZfu(t)) NU(d) is empty (resp.
the union of closed regular curves) for sufficiently smal O (resp. —t > 0). Namely, in the
case ofm(0) = 0 Z(u(t)) NU(J) is not homeomorphic t&(u(0)) NU () for sufficiently small
t| > 0.

We use several times an analytic cuvé&) defined neat = 0 such thatA (0) = (0,0),
v(u(t?), A(t)) = m(0) > 2 for sufficiently smallit| > 0 whereo > 0 is an odd integer. Such
curves play an important role in the proof mentioned below and we denote thémirbthis
section.

THEOREM3.1. When Zu(—t))NU () ~ Z(u(0))NU (9) for sufficiently small t> 0, then
Z(u(t))NU(d) ~ Z(u(0))NU(J).

PrROOF. By the assumption and Definition 2.1 we have théd) = m(—0) > 1andv(y;) =
1for eachj = 1,...,m(0), which impliesm(0) = m(+0).

Suppose than(0) = 1. If S(u(t)) NU (8) # D for sufficiently smalk > 0, by Proposition 2.2
there must be a relatively compact componerd 6) \ Z(u(t)), which is a contradiction against
the claim (1) stated in the begining of this section. HeAta(t)) "U (J) is a one-dimensional
connected manifold.

Suppose thain(0) > 1. By the assumption and Proposotion 2.2 there is a curve mentioned
aboveA (t) such thatS(u(t?)) NU () = {A(t)} for sufficiently small-t > 0. Hence we obtain
the following for sufficiently smalt > 0.

2m(+0) = N(U(8)\ Z(u(t)))
=1+ {v(u(t),P)—1;P € Su(t)) NU(8)} + m(+0) > 2m(+0).

Here we have denoted BY(A) the number of connected components of a sSUBSER?. As a re-
sult we have tha®(u(t?))NU (d) = {A (t)} for sufficiently smalk > 0. This fact and Proposition
2.2 thus complete the proof. O
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Concerning the converse statement of Theorem 3.1, we have the following.

THEOREM3.2. Suppose that@(t))NU () ~ Z(u(0))NU (d) for sufficiently small t> 0.
If m(0) = m, then Zu(—t))NU () =~ Z(u(0)) NU(d) and p is harmonic.

PROOF. By assumption we have tham(0) = m(+0) = m and that there is a curve
A(t) such thatS(u(t)) NU(d) = {A(t)} for sufficiently smallt > 0. It follows from the as-
sertion (2) in Lemma 2.4 thdim .o |A (t)|/|t|°/? < e and thatv(H*,w*) = m where w* =
lim;_ oA (t)/|t|°/2. Using the following fact

2m(p,+0) > N(RP\ Z(H"))
=1+ {v(H",P)—1;Pe S(H")} +m(p,+0), 3.1
we have tham(p,+0) = mandSH*) = {w*}. SinceH*(x,y) is even (resp. odd) ifx,y) in
the case wheren is even (resp. odd)w* is the origin. By virtue of (2.5) we conclude that

H* = p, namelyp is harmonic. Using Weierstrauss preparation theorem, we havefta(tf’),
A(t)) = mthat in a small neigbourhood of the origircan be written in the form.

ut?,A (M) +(&,n)) = vo(t,&,n) {n"‘+ § vk(t,f)f"nm"}-
k=1

Here v5(0,0,0) =1 andvj, j = 1,...,m, are real analytic near the origin. Sinpeé,n) =
nm+ M w(0,0)EXn™ X is harmonic, there exish analytic functionsf;(t, &) near the origin
such thatf;(0,0), j = 1,...,m, are mutually distinct and

{n_fj(tvf)f}»

—1s

U(taa)\(t)+(5,’7)) = VO(t»Ear')

k=1

which completes the proof. d

Nextly we consider a necessary condition on the conjugate Hermite polynorhihasd
on the initial formp for Z(u(t)) "U () to be homeomorphic td(u(0)) NU (J).

THEOREM3.3. Suppose that @(t)) U (J) ~ Z(u(0)) NU(d) for sufficiently small t>
0. Then ZH*) is either homeomorphic to(Z(0)) NU(J) or a one-dimensional, connected,
analytic manifold or empty.

PROOF.  Suppose thamn(0) = 1. By Proposition 2.3 we have(p,+0) = 1 and hence
Z(H*) is a one-dimensional, connected, analytic manifold.

Nextly we suppose thanh(0) > 2. Then there is a curv&(t) such thatS(u(t)) NU(d) =
{A(t)} for sufficiently smallt > 0. Whenlim;_o|A (t)|/|t|%/? < o, it follows from Lemma 2.4
thatv(H*, @) > m(0) wherew = lim;_, ;A (t)/|t|°/2. Using (2.3) and (3.1), we obtain

m(+0) =m(0) < v(H*, w) < m(p,+0) < m(+0),

and sov(H*,w) = m(p,+0) = m(0), S(H*) = {w} = {(0,0)}. As a result Proposition 2.2
completes the proof in this case.
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Finally we consider the case wheim_.o|A (t)|/|t|°/? = «. It follows from Proposition
2.3 that for somg < m(p,0) and for sufficiently smafl > 0

At) € {r (65, &)UT (+6;, &)} N{(xY); x> M[t|°}.

Whend; is even,Z(u(t)) NU (&) is contained in eithef (6}, £) N {(x,y); |x|> > M|t|} or I (T +

6, &) N{(x,y); X2 > M[t|}, namelym(p, +0) = 0. This means thaZ(H*) is empty. When

d; is odd, we obtairm(p,+0) = 1 and hence we have the same conclusion as that of the case
m(0) = 1. In this cas&Z(H*) is not homeomorphic t&(u(0)) NU (9). O

THEOREM3.4. Suppose that @(—t)) NU(d) =~ Z(u(0)) NU(9) for sufficiently small
t > 0. If m(0) > m—2 > 4, then x,y) is either harmonic ofx? +y?) q(x,y) for some harmonic
polynominal q.

In order to prove this Theorem we study the singular points of biharmonic homogeneous
polynominals. Consider the functions in the following form.

F(8) =Csin(mf +a) +sin{(m—2)0 + B}. (3.2)
HereC # 0, a andp are real constants. Put
A ={0 € R;sin(mf + a) =sin{(m—2)6+ B} =0}. (3.3)

LEMMA 3.5. Letm> 3. (1) F satisfies one of the following conditions.
(1-1) F has exactly m simple zeros|[ii, ).
(1-2) F has exactly botlim— 2) simple zeros and one double zerd @ r).
(1-3) F has exactlym— 3) simple zeros and one triple zero|i, ).
(1-4) F has exactlym— 2) simple zeros ifi0, ).
(2) When.# is not empty, it consists of one poinésp. two pointd, k = 1,2, such that
|61 — 62| = 11/2) in the case where m is odtesp. evep
(3) Foreach6* € .# we have F6* —0) = —F(0* +0).

PROOF. (1) ConsidelF (t,6) = e '™ sin(m6 + a) + e M2 sin{ (m— 2)6 + B} which
satisfiesdF /dt = d°F /362. Then it follows from the non increasing property of number of zero
points that there is a constaptsuch that for each< t, (resp.t > to) F(t) satisfies (1—1) (resp.
(1-4)) andF (t,) has the unique singular point j@, 77) at which it vanishes at most of order 3.
In the last case either (1—2) or (1—3) holds.

(2) Putting.# ={A >0;mA, (Mm—2)A € IZ}, A* =min4" andmA* = arm, (m—2)A* =
brr, we have2 > 2A* /im= (a—b) and soa— b =2 (resp. 1) impliesA* = 11 (resp. 11/2). Itis
easy to see that” = A*N and that# = 6* + {4 U {0}} for each6* € .# .

(3) Putg(8) = F(6* + 8) + F(6* — 8). Then we have fron* € .# thatg(?”(0) = 0 for
eachn > 0 and hence from the fact that"~% (0) = 0 we obtaing(6) = 0. O

New we prove Theorem 3.4,

ProOOF. We divide the proof into several steps.

Step (1). By the assumption and by Theorem 3.1 there is a cAifte such that
Su(t?))NU(d) = {A(t)} for sufficiently smalllt|. Since2m(0) —2>2(m—2)—2>m, we
obtain from Lemma 2.4 thdim; .o |A (t)|/[t|/2 < . As we have mentioned in the proof of
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Theorem 3.3, we have thatH*) ~ Z(u(0)) NU(5), S(H*) = {(0,0)}, lim;_o|A (t)|/[t|]°/?=0
andv(H*,(0,0)) > m(0) > m— 2. It follows from the last fact and (2.5) that(0) is eitherm or
m— 2. Whenm(0) = m, we have from Theorems 3.1 and 3.2 tpas harmonic.

Suppose than(0) = m— 2 and thatp is neither harmonic naix? +y?)q(x,y) for every har-
monic polynominaby. Thenp is biharmonic, namelp?p = 0, and so without loss of generality
we assume th& (60) :=r™p(r cosb, r sind) is given by (3.2). IfF(0) satisfies (1-1) in Lemma
3.5, we obtain by Remark 2.5 thai0) = m.

Step (2). We claim tha®(H) = {(0,0)}. Putgh = (hnmt— B)/(m—2) for n € Z. We notice
from the assertion (3) in Lemma 3.5 thidtis odd with respect to the linargx+iy) = 6*,
i+ 6* for each8* € .# and that for > 0,6 # @, the solutions oH (r cosd,rsin8) = 0 (resp.
H*(r cosf,rsin8) = 0) are given by the following.

4(m-1) F(8) (resp 4(m—1) —F(6) >

r2 sin{(m-2)6+B}’ r2 sin{(m-2)0+pB}

Suppose tha§(H) # {(0,0)}. Then from (3.4) there igy € .# such that'(@) # 0, namely
r (¢n)(cosgn, singn) € S(H) for somer (¢n) > 0. Put

(3.4)

‘o { /(m-2) it F(6) #0in (gh, gha). @5)

min{o > 0;F (¢ + @) =0} if otherwise

Wheng* = ri/(m—2), from Lemma 3.5 we haveh, 1 ¢ .# and soF (gn,1) # 0. HenceR?\
Z(H) has a compact component contained™ifgh, ¢*) and henceJ(d) \ Z(u(t)) has also a
compact component. Whest < 1r/(m— 2), from the fact thaZ(H) N I" (¢h, ¢*) is the union of
two unbounded regular curves intersecting at the poilh) we arrive at one of the following
two cases. One is th&{u(t)) NU(J) has at least two components. The other is tl{gt has a
singular point different fromi (t). This is a contradiction we seek.

Step (3). We prove tha&t(0) does not satisfy (1-3) in Lemma 3.5. Suppose that there is its
triple zeroy. Then it is easy to see thgt= ¢, € .# for somen. Using the notation (3.5), we
have by Propostion 2.3, (3.4) and the claim in Step (2) ZBt*) NI (¢gh, ©*) = {(X,y); argx+
iy) =@} andZ(H)NT (g, ¢*) has three unbounded components. For lavge 0, smalle,

p > 0 and for sufficiently small-t > 0 we have thus thaf(x,y) € Z(u(t))NU(d)NT (¢gh, ¢* +
€); plt| < x> < M|t|} has three componentg, k = 1,2, 3, which satisfy the following. One end
point of eachoy is on{(x,y) € I (¢, €); x> = M|t|}. Wheng* = 11/(m— 2), the other end point
of eachay is on{(x,y); X* = p|t|}. Wheng* < 1i/(m—2), the other end point afi, (resp.ds) is
on{(x,y) € (gh+@*,€); x> =Mt} (resp.{(x,y) €I (¢h— @*,€); x> =M[t|}). It follows from
Proposition 2.3 that for eagh= 1,...,m—2, {(x,y) € Z(u(t))NU(8) NI (6j,€); x> > Mt} isa
regular curve over (0, 1) and thus we have the following. Wigea- 7/ (m—2), Z(u(t)) NU(9d)
has either a compact component or a singular point. Witen 7/ (m— 2), Z(u(t)) NU () has
either has two component or a singular point. This is a contradiction.

Step (4). We claim tha” = @. If @, € .#, thenF (@) = F"(@) = 0 and it follows from
(3.4) andS(H) = S(H*) = {(0,0)} thatF’(¢@,) = 0. This is a contradiction against the claim of
Step (3).

Step (5). For each we claim thatF has one and only one simple zero(igh, ¢h+1). It
follows from Lemma 3.5 and the claim (4) that zerosFofire at most of order two and that

F (@) # 0for everyn. If F(8) #0in (¢h, ¢hr1), then{Z(H*)UZH)} Nn{(X,y); @ < arg(X+
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iy) < @hi1} is bounded and sB?\ Z(H) has a compact component contained (R, y); ¢h <
argx+1iy) < gh+1} and hencéJ () \ Z(u(t)) has also a compact component.

Suppose that there exist two simple zegasy, of F in (¢, ¢h+1) such that it has no simple
zeroin(Yi, gr). WhenF(6) £0in (Y, gr), {Z(H)UZ(H*)IN{(xY); Y < argx+iy) < @}
is an unbounded regular curve over (0,1) and it does not contain the origin. We have thus that
eitherZ(u(t)) NU () or Z(u(—t)) NU () has a components that does not confaft). When
F has a double zergyg in (1, Y2), then it follows from (3.4) thaZ (H) N {(x,y); Y1 < argx+
iy) < gr} has two unbounded components which do not contain the origin and from Lemma 3.5
we can find othem— 4 simple zerosl, k=3,...,m—2,in [0, 7). By Proposition 2.3 we obtain
foreachk = 1,...,m—2, thatZ(u(t)) N {(x,y) € U () NT (Y, €); x> > M|t|} is a regular curve
over (0, 1) for smalk > 0 and for largeM > 0. This means that

Z(u(t)) N {U(8) \U(8/2)} T (o.€) = B. (36)

HenceZ(u(t)) NU(d) contains a regular cuves over (0, 1) such that it does not cohtajrand
one of its end points is it (Y, €) and the other il ({5, &). This is a contradiction.

Finally we consider the case where the double zgy& the unique zero df in (@, @h+1)-
ThenZ(H) N {(x,y); ¢h < argx+1y) < ¢ght1} has two unbounded componerdg, k = 1,2,
such that their closures contain the origin dd U g2} N {(x,y); x> > M} C I (Y, €). Hence
it follows from (3.6) thatJ (d) \ Z(u(t)) has a compact component.

Final step. From the claim in Step (5) we have that for each

CZsin(mgh + a) sin(Mgh, 1+ a) = F(@)F (¢hy1) <O

and hence we can find an intedesuch that the equatiasin(mé + o) = 0 has at least 3 zeros in
(@, @+1), which implies thatl/(m—2) > 2/m. This completes the proof of Theorem 3.40

Finally we give an example(t, x,y) of polynominal solution of the heat equation (1.2) with
initial valueu(0, x,y) = récos 4 —r?sin 129 in terms of polar coordinates, that is, it is given by
the following.

u(t,x,y) = {r®+20tr*} cos M —r'?sin 129

By parameterizing its zeros b§ it can be shown that this solution satisfies the assumption in
Theorem 3.4 and that(u(t)) ~ Z(u(0)) for eacht.
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