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Abstract. We prove that the asymptotic cone of every complete, connected, non-compact
Riemannian manifold of roughly non-negative radial curvature exists, and it is isometric to the
Euclidean cone over their Tits ideal boundaries.

0. Introduction.

Throughout this paper, letM be a complete, connected and non-compact Riemannian man-
ifold with a base pointo∈ M. We say thatM has the asymptotic coneif the pointed Gromov-
Hausdorff limit of ((1/t)M,o) as t → ∞ exists, and it is isometric to a Euclidean cone. The
existence of asymptotic cones has been shown for manifolds with restricted sectional curvature,
and then we see that the cone is generated by the Tits ideal boundary. In the case whereM is
a Hadamard manifold, Gromov [5] has shown thatM has the asymptotic cone if its Tits ideal
boundary is compact. IfM is non-negatively curved, thenM has the asymptotic cone, and its Tits
ideal boundary is an Alexandrov space with curvature bounded below by1. On the other hand,
Gromov [11] and Abresch [1] have studied manifolds of asymptotically non-negative curvature,
and their topologies, and Kasue [17] has introduced the ideal boundary of such a manifold and
has given its compactification. However, Drees [10] pointed out a gap in the argument of [17]
(cf. 1 and the end of 4 in [10]). Without smoothing the gap, Kasue’s compactification is not
yet completed. The main purpose of the present paper is to show the existence of asymptotic
cones for a class of manifolds with restricted radial curvature. Our class includes the class of all
manifolds of asymptotically non-negative curvature.

Some notions are needed for the statements of our results. Amodel surface(M̃, õ) with
radial curvature function K: [0,∞)→ RRR atõ is a surface of revolution with the metric

ds2 = dt2 + f (t)2dθ 2 (0.1)

in the geodesic polar coordinates(t,θ) ∈ (0,∞)×S1 centered at̃o∈ M̃. Here f : [0,∞)→ [0,∞)
denotes the unique solution of the following:

f ′′(t)+K(t) f (t) = 0, f (0) = 0, f ′(0) = 1, f > 0 on(0,∞). (0.2)

Obviously, the Gaussian curvatureG(p̃) at p̃∈ M̃ is equal toK
(
dM̃(õ, p̃)

)
. We say that theradial

sectional curvature at o of M is bounded below by K: [0,∞) → RRR if along every minimizing
geodesicγ : [0,a)→M, a∈ [0,∞), emanating fromo, the sectional curvatureKM onM satisfies

KM
(
γ̇(t),v

)≥ K(t)
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for any t ∈ [0,a) and for any vectorv ∈ Tγ(t)M perpendicular to the tangent vectorγ̇(t). We

then assign toM a model surface(M̃, õ) whose radial curvature at̃o is K. If the functionK is
non-positive, we then say that(M,o) is dominated by the CH (Cartan-Hadamard)-model surface
(M̃, õ). The M is by definition amanifold of roughly non-negative radial curvatureif (M,o)
is dominated by a CH-model surface(M̃, õ). Here(M̃, õ) is assumed to admit the finite total
curvature

c(M̃) =
∫

M̃3p̃
G(p̃)dM̃ >−∞. (0.3)

With the notions above, we state our main theorem:

THEOREM 0.1. Every manifold M of roughly non-negative radial curvature has the
asymptotic cone.

In Section 2, we introduce the ideal boundaryM∞ of M as equivalence classes on rays inM,
and we then provide a way to equip the intrinsic distance intoM∞, called theTits distance. The
M∞ equipped with the Tits distance is called the Tits ideal boundary ofM, and the asymptotic
cone in Theorem 0.1 is generated by the Tits ideal boundaryM∞. We also state in Section 2 that
every connected component ofM∞ is a geodesic space whose Hausdorff dimension is not greater
thandimM−1.

The existence of the asymptotic cone itself imposes restrictions on the topology ofM. We
prove in Proposition 2.8 that the distance function from the base pointo is almost regular outside
a bounded set, and hence the set of all critical points of the distance function fromo is bounded.
Consequently,M has thefinite topological type, that is, there existsR> 0 such thatM \BM

o (R) is
homeomorphic to∂BM

o (R)× [0,∞), whereBM
o (R) is theR-distance ball centered ato and∂BM

o (R)
is the boundary ofBM

o (R).

COROLLARY 0.2. Let M be a manifold of roughly non-negative radial curvature dom-
inated by a CH-model surfacẽM. Then M has the finite topological type, and there exists a
universal upper bound N= N(c(M̃),dimM) for the number of ends of M.

REMARK 0.3. Machigashira [20] has proved the same results as described in Corollary
0.2. In the present paper, we give an alternative proof.

We now mention manifolds of asymptotically non-negative curvature (see [1]). We say that
M is amanifold of asymptotically non-negative curvatureif there exists a monotone increasing
and negative functionK : [0,∞)→ (−∞,0) with

∫ ∞

0
tK(t)dt >−∞ (0.4)

such that the sectional curvatures at everyp∈M are bounded below byK
(
dM(o, p)

)
for all plane

sections atp. Then the condition (0.4) induces a curvature decay condition

lim
t→∞

t2K(t) = 0 (0.5)

(see Remarks 1.2 in [1]). Furthermore, the integral condition (0.4) implies the condition (0.3)
for the CH-model surface. To see this, consider the solutionf : [0,∞)→ [0,∞) of (0.2) for the
function K above, and let(M̃, õ) be the CH-model surface with the metric (0.1). According to
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Zhu’s result (see Lemma 2.1 in [32]), f satisfiesf (t)≤ e−bt for b :=−∫ ∞
0 tK(t)dt, which means

c(M̃)≥ 2π(−b)e−b >−∞. Therefore, as a corollary to Theorem 0.1, we obtain the following:

COROLLARY 0.4. Every manifold M of asymptotically non-negative curvature has the
asymptotic cone.

REMARK 0.5. The sectional curvature ofM is said to befaster than quadratic decayif
there exist a constantC > 0 andδ > 0 such that the sectional curvatures atp∈M are bounded
below by−C/dM(o, p)2+δ for all plane sections atp (see [28]). Such a manifold is of asymp-
totically non-negative curvature. Petrunin and Tuschmann state in [24] without proof that every
manifold with the sectional curvature of faster than quadratic decay has the asymptotic cone.

We discuss the structure of the asymptotic cones of manifolds of asymptotically non-
negative curvature via the geometry of Alexandrov spaces with curvature bounded below (cf.
[2], [8], [7]). We see that the number of connected components ofM∞ is finite sinceM∞ is com-
pact (see Section 2). LetM∞,0 be a connected component ofM∞, and denote byConeM∞,0 the
Euclidean cone overM∞,0 with the vertexo∗. Since the sectional curvatureK(1/t)M on (1/t)M
satisfiesK(1/t)M = t2KM for all plane sections, the curvature decay condition (0.5) implies that
ConeM∞,0 \ {o∗} is an Alexandrov space with curvature bounded below by0. In particular,
dimH ConeM∞,0 is an integer not greater thanm = dimM, anddimH M∞,0 is an integer not
greater thanm−1. HeredimH denotes the Hausdorff dimension.

COROLLARY 0.6. Let M be as in Corollary0.4, and M∞,0 be a connected component of
the Tits ideal boundary of M. ThenConeM∞,0 \ {o∗} is an Alexandrov space with curvature
bounded below by0, anddimH M∞,0 is an integer not greater thandimM−1. More precisely,
the following hold:

(1) If dimH M∞,0 = 1 and if the diameter of M∞,0 is not greater thanπ, thenConeM∞,0 itself
and M∞,0 are Alexandrov spaces with curvature bounded below by0 and1, respectively.

(2) If dimH M∞,0 ≥ 2, then ConeM∞,0 and M∞,0 are Alexandrov spaces with curvature
bounded below by0 and1, respectively. In particular, the diameter of M∞,0 is not greater
thanπ.

We remark that there actually exists a complete, open surfaceM of asymptotically non-
negative curvature such that its asymptotic cone is isometric to a circle whose circumference is
greater than2π, and in particular, the cone is not an Alexandrov space with curvature bounded
below (see Example 1.6).

Furthermore, we observe the relation between the Hausdorff dimension ofM∞ and the vol-
ume growth of manifolds of asymptotically non-negative curvature:

COROLLARY 0.7. Let M be an m-dimensional one as in Corollary0.4. Then,dimH M∞ =
m−1 if and only if limt→∞ volBM

o (t)/tm is bounded away from0. Here,volBM
o (t) denotes the

volume of BMo (t).

In Section 3, we show Corollaries 0.6 and 0.7 stated above.

ACKNOWLEDGEMENT. The authors are grateful to Yoshiroh Machigashira and Katsuhiro
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1. Preliminaries and examples.

Throughout this paper, the following conventions are used in any geodesic space: (1) Every
geodesic is parameterized by arc-length. (2) For two geodesicsγ,σ emanating from the same
point x = γ(0) = σ(0), we denote by∠x(γ,σ) the angle atx betweenγ andσ . (3) We mean
by4(x1,x2,x3) a geodesic triangle whose vertices are three pointsx1,x2,x3 in the space, and by
xixi+1 the edge of4(x1,x2,x3) for i mod 3. All of the edges are minimizing geodesics unless
otherwise stated. We then denote by∠(xi−1xixi+1) the angle atxi between the edgesxixi+1 and
xixi−1 for i mod 3.

1.1. Generalized Toponogov comparison theorem.
Let (M,o) be a manifold whose radial sectional curvature ato is bounded below by

K : [0,∞)→ RRR, and(M̃, õ) the model surface with the metric (0.1) determined by the solutionf
of (0.2) for theK. Itokawa, Machigashira and Shiohama established the following comparison
theorem on such a manifold:

THEOREM 1.1 ([15], [16], [20]). Let (M,o) and(M̃, õ) be as above.
(I) For every geodesic triangle4(x,y,o) in M, there exists a geodesic triangle4(x̂, ŷ, õ) in M̃
(the edgêxŷ is not necessarily a minimizing geodesic) such that:

(1) dM̃

(
õ, x̂

)
= dM(o,x) and dM̃

(
õ, ŷ

)
= dM(o,y).

(2) The length of̂xŷ = dM
(
γ1(s),γ2(t)

)
.

(3) ∠(xyo)≥∠(x̂ŷõ) and∠(yxo)≥∠(ŷx̂õ).

(II) Let γ : [0,a] → M and σ : [0,b] → M be two minimizing geodesics emanating from o=
γ(0) = σ(0). For any(t,s) ∈ (0,a]× (0,b], consider a geodesic triangle4(γ(t),σ(s),o) in M,
and take the corresponding geodesic triangle4(γ̂(t), σ̂(s), õ) to4(γ(t),σ(s),o) satisfying(1)–
(3) in (I). Then, if the edgêγ(t)σ̂(s) is a minimizing geodesic for every(t,s) ∈ (0,a]× (0,b],
the angle∠(γ̂(t)õσ̂(s)) is monotone non-increasing as t and s increase. In particular, we have
∠(γ(t)oσ(s))≥∠(γ̂(t)õσ̂(s)).

1.2. On the geometry of Hadamard surfaces.
Throughout this subsection, let(M̃, õ) be a Hadamard surface satisfying the condition (0.3).

We here recall the ideal boundary and its properties: Let us denote byM̃∞ the ideal boundary of
M̃, which is obtained as the asymptotic classes of rays inM̃, equipped with the angle distance

∠M̃
∞ .

We denote byRõ the set of all rays emanating from̃o (hence it consists of all geodesics
emanating fromõ). Remark that there exists a natural bijection betweenM̃∞ andRõ. Fix any
two raysγ̃, σ̃ ∈Rõ, and fort,s∈ (0,∞) consider the geodesic triangle4(γ̃(t), σ̃(s), õ) whose
vertices arẽγ(t), σ̃(s) andõ. We then take a corresponding Euclidean triangle4(γ̄(t), σ̄(s), ō)
to 4(γ̃(t), σ̃(s), õ) such thatdRRR2(γ̄(t), σ̄(s)) = dM̃(γ̃(t), σ̃(s)), dRRR2(σ̄(s), ō) = dM̃(σ̃(s), õ) and
dRRR2(γ̄(t), ō) = dM̃(γ̃(t), õ). Then it follows from the Cartan-Alexandrov-Toponogov theorem
that the angle∠(γ̄(t)ōσ̄(s)) at ō is monotone non-decreasing ast ands increase, and we have

∠M̃
∞ (γ̃, σ̃) = lim

t,s→∞
∠(γ̄(t)ōσ̄(s)). (1.1)

For anya,b> 0, by replacingt ands in (1.1) withat andbt, respectively, we obtain the following:
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lim
t→∞

dM̃

(
γ̃(at), σ̃(bt)

)

t
=

(
a2 +b2−2abcos∠M̃

∞ (γ̃, σ̃)
)1/2

. (1.2)

To see (1.2), we observe that ast → ∞ the(1/t)-scaled triangle of4(γ̄(at), σ̄(bt), ō) converges

to a Euclidean triangle whose two edges have lengthsa,b and makes the angle∠M̃
∞ (γ̃, σ̃) at ō (cf.

4.4 in [5], also II.4.4 in [4]).
The symbol∠M̃

Tits denotes theTits distanceon M̃∞, which is the intrinsic distance induced

from ∠M̃
∞ . The ideal boundarỹM∞ equipped with the distance∠M̃

Tits is called the Tits ideal bound-
ary of M̃ (see [5]). Sincec(M̃) is finite, we can show the following proposition (cf. [25]):

PROPOSITION1.2. If a sequence{γ̃i}i in Rõ converges tõγ as i→ ∞ in the standard

topology(the uniform convergence on bounded sets), then we havelim i→∞ ∠M̃
∞ (γ̃i , γ̃) = 0. In

particular, M̃∞ is compact with respect to∠M̃
∞ , and with respect to∠M̃

Tits.

In our case, the Tits ideal boundary(M̃∞,∠M̃
Tits) is isometric to a circle of length2π−c(M̃)

(cf. [26]). Once we establish the compactness of the Tits ideal boundaryM̃∞, it follows that

(M̃, õ) has the asymptotic cone over the Tits ideal boundary(M̃∞,∠M̃
Tits) (cf. Proposition 2.2 in

[30]). Therefore we summarize as follows:

PROPOSITION1.3. M̃ has the asymptotic cone over a circle of circumference2π−c(M̃).

REMARK 1.4. In more general situation, Shioya [25] has investigated the ideal boundaries
of open Riemannian surfaces admitting total curvatures.

Observing the cosine formula (1.2) combined with Propositions 1.2 and 1.3, we obtain the
following:

PROPOSITION1.5. Let{σ̃s}s≥0 be any convergent sequence inRõ such thatσ̃s→ σ̃∞ as
s→ ∞, andγ̃ any ray inRõ. Then

lim
t,s→∞

dM̃

(
γ̃(at), σ̃s(bt)

)

t
=

(
a2 +b2−2abcos∠M̃

∞ (γ̃, σ̃∞)
)1/2

holds for any a,b > 0.

1.3. Examples.
We here provide an example of a manifold of roughly non-negative radial curvature but not

of asymptotically non-negative curvature. This example also indicates that there exists a surface
of asymptotically non-negative curvature whose asymptotic cone is not an Alexandrov space
with curvature bounded below (recall Corollary 0.6).

EXAMPLE 1.6. Take a monotone increasing and negative functionK : [0,∞)→ (−∞,0),
and consider the unique solutionf : [0,∞)→ [0,∞) of the Jacobi equation (0.2) for theK above.
Here we assume

∫ ∞

0
f (t)K(t)dt >−∞. (1.3)

We then obtain ann-dimensional manifold(M̃n, õ) equipped with the metric
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ds2 = dt2 + f (t)2dΘ 2 (1.4)

in the geodesic polar coordinates(t,Θ) ∈ (0,∞)×Sn−1 centered at̃o. HeredΘ 2 indicates the
metric on the(n−1)-dimensional standard unit sphereSn−1. We call theM̃n ann-dimensional
model.

Let p̃ be a point withdM̃(õ, p̃) = t, and take any plane section atp̃ with an orthonormal
basisx+v andw. Herex is a horizontal (radial) direction andv,w are vertical directions (hence
‖x‖2 + ‖v‖2 = 1 holds for the norm‖ · ‖ determined by the metric (1.4)). Then by the Bishop-
O’Neill formula [6], the sectional curvatureKM̃(x+v,w) of the plane section is calculated as

KM̃(x+v,w) = K(t)‖x‖2 +
1− f ′(t)2

f (t)2 ‖v‖2.

Since
∫ ∞

0 f (t)K(t)dt = 1− limt→∞ f ′(t) >−∞, we havef ′(∞) := limt→∞ f ′(t) < ∞. Furthermore
it holds that1− f ′(∞) < 0 and

lim
t→∞

t2KM̃(v,w) = lim
t→∞

t2
(

1− f ′(t)2

f (t)2

)
=

1− f ′(∞)2

f ′(∞)2 < 0.

Hence the condition (0.5) in the Introduction is not satisfied, andM̃n is not a manifold of asymp-
totically non-negative curvature ifn≥ 3. It is obvious that the radial sectional curvature atõ
is the functionK. Thus then-dimensional modelM̃n is a manifold of roughly non-negative
radial curvature dominated by the2-dimensional model(M̃2, õ). Note that the total curvature
c(M̃2) is finite sincec(M̃2) = 2π

∫ ∞
0 f (t)K(t)dt >−∞. We see that the Tits ideal boundary ofM̃n

is isometric to the(n−1)-dimensional round sphere each of whose great circle has the length
2π−c(M̃2) (cf. Proposition 1.3).

On the other hand, the2-dimensional model̃M2 is a surface of asymptotically non-negative
curvature. Indeed, the comparison theorem of solutions of (0.2) impliesf (t)≥ t for anyt ∈ [0,∞),
and hence

∫ ∞
0 tK(t)dt > −∞ holds. Furthermore, the Tits ideal boundary ofM̃2 is a circle of

length2π−c(M̃2) > 2π.

2. The asymptotic cones of manifolds of roughly non-negative radial curvature.

Throughout this section let(M,o) be a manifold of roughly non-negative curvature domi-
nated by a CH-model surface(M̃, õ).

Hereafter, we use the following conventions: (1) Let(X,dX) be a metric space. We denote
by BX

x (R) the metric ball centered atx∈X with radiusR> 0, and denote bySX
x (R) theR-distance

sphere{y∈ X | dX(x,y) = R}. (2) The symbolϑα(ε) indicates a positive function inε such that
limε→0 ϑα(ε) = 0 for a fixedα.

2.1. The ideal boundaryM∞.
Let Ro denote the set of all rays inM emanating fromo. For any two raysγ,σ ∈Ro, by

using Theorem 1.1, we define the angle distance∠∞(γ,σ). Fix a rayγ̃ ∈Rõ in the CH-model
surface(M̃, õ). We observe from Theorem 1.1 that, for anyt,s∈ (0,∞), there exists a raỹσt,s in
Rõ such that:

(i) dM̃(γ̃(t), σ̃t,s(s)) = dM(γ(t),σ(s)).
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(ii) ∠õ(γ̃, σ̃t,s) is monotone non-increasing ast,s→ ∞, andσ̃t,s converges to a raỹσ∞ ∈Rõ

ast,s→ ∞.

We then define theangle distance∠∞(γ,σ) as

∠∞(γ,σ) := ∠M̃
∞ (γ̃, σ̃∞). (2.1)

The value in (2.1) does not depend on the choice ofγ̃, σ̃t,s andσ̃∞ sinceM̃ is rotationally sym-
metric around̃o.

The following is an immediate consequence of Proposition 1.5:

PROPOSITION2.1. For any γ,σ ∈Ro and for any positive numbers a,b > 0, we obtain
the following:

lim
t→∞

dM
(
γ(at),σ(bt)

)

t
=

(
a2 +b2−2abcos∠∞(γ,σ)

)1/2
. (2.2)

In particular, ∠∞ is a pseudo-distance onRo.

REMARK 2.2. (2.2) also implies that the value in (2.1) does not depend on the choice of
the CH-model surfacẽM.

We thus define theideal boundary M∞ of M as the metric spaceM∞ := Ro/∠∞=0 equipped
with the distance∠∞. The symbol[γ] ∈M∞ denotes the equivalence class containingγ ∈Ro.

PROPOSITION2.3. M∞ is compact with respect to∠∞.

PROOF. For any sequence{[γi ]}i in M∞, by taking a suitable subsequence if necessary,
there exists a rayγ ∈ Ro such that∠o(γi ,γ) → 0 as i → ∞. Recall the definition of the angle
distance∠∞(γi ,γ): For a fixed rayγ̃ ∈Rõ and for anyt,s∈ (0,∞), let γ̃t,s be a ray inRõ such
that:

(i) dM̃(γ̃(t), γ̃t,s(s)) = dM(γ(t),γi(s)).
(ii) ∠õ(γ̃, γ̃t,s) is monotone non-increasing ast,s→ ∞, andγ̃t,s converges to a raỹγi,∞ in Rõ

ast,s→ ∞.

Then∠∞(γi ,γ) = ∠M̃
∞ (γ̃i,∞, γ̃) holds for eachi. Theorem 1.1 implies∠õ(γ̃i,∞, γ̃)≤∠o(γi ,γ), and

we have∠õ(γ̃i,∞, γ̃)→ 0 asi →∞. Hence Proposition 1.2 implies that∠∞(γi ,γ) = ∠M̃
∞ (γ̃i,∞, γ̃)→

0 asi → ∞. ¤

2.2. Convergence to the asymptotic cone.
In this subsection, we prove Theorem 0.1. For simplicity, letC denote the Euclidean cone

over (M∞,∠∞) with the vertexo∗. We first prove that the pointed Gromov-Hausdorff limit of
((1/t)M,o) ast → ∞ is isometric to(C,o∗), and at the end of this subsection, we introduce the
Tits distance onM∞.

A pointed metric space(Y,oY) is by definitiona pointed Gromov-Hausdorff limit of pointed
metric spaces(Xt ,ot) as t→ ∞ if for any fixedR> 0 and for givenε > 0, there existsϑR(ε)-
Hausdorff approximation ht : BXt

ot
(R)→ BY

oY
(R) (not necessary a continuous map) satisfying the

following (1)–(3) for any sufficiently larget > 0 (cf. [12], [13]):

(1)
∣∣dY

(
ht(x1),ht(x2)

)−dX(x1,x2)
∣∣ < ϑR(ε) for everyx1,x2 ∈ BXt

ot
(R).
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(2) BY
oY

(R) is contained in theϑR(ε)-neighborhood ofht(BXt
ot

(R)). In other words,ht(BXt
ot

(R))
is ϑR(ε)-dense inBY

oY
(R).

(3) ht(ot) = oY.

Let us begin the proof of Theorem 0.1. Fix anyε > 0. Then from Proposition 2.3, we can
take a finiteε-dense set{[γl ]}l=1,2,...,L in (M∞,∠∞). Define

Nε,t := {γl (kεt) ∈ (1/t)M | k = 0,1,2, . . . , [R/ε], 1≤ l ≤ L}.

We first prove the following:

CLAIM 2.4. Nε,t is a ϑR(ε)-dense set in B(1/t)M
o (R) for any sufficiently large t> 0.

Assume the validity of the claim. We then obtain a map

ht : B(1/t)M
o (R)→ BC

o∗(R)

defined byht(q) := (kε, [γl ]) ∈C = [0,∞)×M∞/{0}×M∞ , where the pair of numbers(k, l) corre-
sponds to the pointγl (kεt) ∈Nε,t which is a nearest point toq. It follows from Proposition 2.1
that the mapht satisfies properties (1)–(3) ofϑR(ε)-Hausdorff approximations.

PROOF OFCLAIM 2.4. Suppose that the claim is not true forϑR(ε) = 4ε + 4Rsin2ε +
4Rsin

[
(ε/4π)(2π − c(M̃))

]
. Then there are a sequence{x j} ⊂ M and a monotone divergent

sequence{t j} such that

(1) x j ∈ B
(1/t j )M
o (R),

(2) d(1/t j )M(x j ,γl (kεt j))≥ ϑR(ε) for anyγl (kεt j) ∈Nε,t j , and
(3) d(1/t j )M(o,x j) ∈ [kε,(k+1)ε) for somek≥ 1.

Let σ j be a minimizing geodesic joiningo andx j . From (3) above, we may assume thatσ j con-
verges to a rayσ ∈Ro in M as j →∞. Definesj := kεt j , y j := σ j(sj) andzj := σ(sj) for simplic-
ity. Obviously,d(1/t j )M(x j ,y j) < ε. Since{[γl ]}l is anε-dense set inM∞, we have∠∞(γl ,σ) < ε
for someγl in {[γl ]}l=1,2,...,L. This together with (2.2) yields thatd(1/t j )M(γl (sj),zj) ≤ 2Rsin2ε
for all sufficiently largej. By showing

d(1/t j )M(y j ,zj)≤ 2Rsin
[ ε

4π
(2π−c(M̃))

]
, (2.3)

we obtain a contradiction to (2):

d(1/t j )M(x j ,γl (sj))≤ 2ε +2Rsin2ε +2Rsin
[ ε

4π
(2π−c(M̃))

]
.

We next verify (2.3). Letσ̃ be a fixed ray in the CH-model surface(M̃, õ) starting fromõ.
Consider the comparison triangle4(ỹ j , z̃j , õ)⊂ M̃ such that̃zj = σ̃(sj), dM̃(ỹ j , z̃j) = dM(y j ,zj)
and ỹ j = σ̃ j(sj) for someσ̃ j ∈Rõ. Then Theorem 1.1 implies∠õ(σ̃ j , σ̃) ≤ ∠o(σ j ,σ) < ε for

all sufficiently largej. Hence we have∠M̃
∞ (σ̃ j , σ̃)≤ (ε/2π)(2π−c(M̃)

)
sinceM̃ is rotationally

symmetric (cf. Proposition 1.3). Therefore it follows from the Cartan-Alexandrov-Toponogov
theorem thatd(1/t j )M(y j ,zj) = d(1/t j )M̃

(ỹ j , z̃j)≤ 2Rsin
[
(ε/4π)(2π−c(M̃))

]
. This completes the

proof. ¤
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We have shown that the pointed Gromov-Hausdorff limit of((1/t)M,o) as t → ∞ is iso-
metric to (C,o∗). We denote by∠Tits the intrinsic distance, called theTits distance, induced
from ∠∞. For our last goal, we discuss a way to introduce the Tits distance intoM∞: Since
the Gromov-Hausdorff limit of geodesic spaces is again a geodesic space, the cone(C,o∗) is a
geodesic space, and so is any connected component ofM∞. More precisely, for any[γ], [σ ] ∈M∞
with ∠∞([γ], [σ ]) < π, there exists a∠∞-minimizing geodesic inM∞ joining [γ] and[σ ], and we
then have∠Tits([γ], [σ ]) = ∠∞([γ], [σ ]). In this way, we have completed the proof of Theorem
0.1. ¤

We here summarize the properties of the Tits ideal boundaryM∞:

THEOREM 2.5. The Tits ideal boundary(M∞,∠Tits) of M as in Theorem0.1 satisfies the
following:

(1) (M∞,∠Tits) is compact.
(2) Every connected component of M∞ is a geodesic space. In particular, if∠Tits([γ], [σ ])≤ π

for [γ], [σ ] ∈M∞, then we have∠Tits([γ], [σ ]) = ∠∞([γ], [σ ]).

2.3. Proof of Corollary 0.2.
In this subsection, we use then-dimensional model(M̃n, õ) with the metric (1.4). Note then

that the functionf in (1.4) is the solution of (0.2) for the radial curvature functionK of M.

THEOREM 2.6. Let M be an m-dimensional one. Then there exists an expanding map

Φ : (M∞,∠∞)→ (M̃m
∞ ,∠M̃

∞ ).

In particular, we haveH m−1(M∞) ≤H m−1(M̃m
∞ ) anddimH M∞ ≤ dimH M̃m

∞ = m−1, where
H k(·) denotes the k-dimensional Hausdorff measure.

REMARK 2.7. The authors do not know whether or not the connected component ofM∞
admits a locally uniform dimension (compare to Corollary 0.6).

PROOF OFTHEOREM 2.6. We here give an outline of the proof. Consider a composition
map

Φt := expõ◦I ◦ logo : (1/t)M → (1/t)M̃,

whereexpõ denotes the exponential map on the(1/t)-scaled space(1/t)M̃, I : ToM → TõM̃ is a
linear isometry identifyingToM with TõM̃, andlogo : (1/t)M → ToM is the map satisfying for
any p,q∈ (1/t)M

(i) expo(logo(p)) = p,
(ii) the norm‖ logo(p)‖ measured in(1/t)M equals tod(1/t)M(o, p), and

(iii) ∠(logo(p), logo(q)) = ∠(poq) for some minimizing geodesicsopandoq.

Then it follows from Theorem 1.1 (II) (the hinge comparison) thatΦt is an expanding map.

Denote by(C̃, õ∗) the Euclidean cone over(M̃∞,∠M̃
∞ ). We here denote bỹo∗ the vertex ofC̃. We

now know that((1/t)M,o) and((1/t)M̃, õ) converge ast → ∞ to the cones(C,o∗) and(C̃, õ∗),
respectively. HenceΦt converges ast →∞ to an expanding mapΦ∞ : BC

o∗(2)→ BC̃
õ∗(2) such that

Φ∞(o∗) = õ∗ anddC̃(Φ∞(o∗),Φ∞(u)) = dC(o∗,u) for everyu∈ BC
o∗(2). Thus the map
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Φ∞|SC
o∗ (1) : SC

o∗(1)→ SC̃
õ∗(1)

restricted on the1-distance sphereSC
o∗(1) gives the desired expanding mapΦ if we identify

SC
o∗(1) with M∞, andSC̃

õ∗(1) with M̃m
∞ .

We should note the following: We first construct an expanding map from a finite subset
in BC

o∗(2) to BC̃
õ∗(2) in the same manner as above. Next, we make the finite subsets denser and

denser inBC
o∗(2), and as a result, we obtain an expanding map from a countable and dense subset

in BC
o∗(2) to BC̃

õ∗(2) (we then use the diagonal argument). The mapΦ∞ is then obtained as its
extension to the wholeBC

o∗(2). ¤

We denote byρo the distance function from the base pointo. A point p∈M is, by definition,
acritical point ofρo if for each unit vectorv∈TpM there is a minimizing geodesicγ : [0,ρo(p)]→
M joining p = γ(0) ando = γ(ρo(p)) such that∠(v, γ̇(0)) ≤ π/2. Let dρo be the directional
derivative of theρo. For p∈ M, we denote by∇ρo(p) the set of all unit vectorsv ∈ TpM such
thatdρo(v) = maxdρo, wheremaxis taken over all unit vectors inTpM. Forε > 0, the function
ρo is, by definition,ε-almost regular at p∈M if

∠(v, γ̇(0))≥ π− ε

holds for anyv ∈ ∇ρo(p) and for any minimizing geodesicγ : [0,ρo(p)]→M joining p = γ(0)
ando = γ(ρo(p)). We say that theρo is ε-almost regular on a subset A in Mif ρo is ε-almost
regular at each pointp∈ A. With these notions, we state:

PROPOSITION2.8. For givenε > 0, there exists R> 0 such thatρo is ε-almost regular
outside BMo (R).

PROOF. Let t > 0 be sufficiently large againstε > 0, and choose anyp∈ SM
o (t). Then by

Theorem 0.1, we can find a pointq∈ SM
o (2t) such that

∠(ōp̄q̄)≥ π− ε,

where ∠(ōp̄q̄) denote the angle at̄p of a corresponding Euclidean triangle4(ō, p̄, q̄) to a
geodesic triangle4(o, p,q) satisfyingdRRR2(ō, p̄) = dM(o, p), dRRR2(ō, q̄) = dM(o,q) anddRRR2(p̄, q̄) =
dM(p,q). For the4(o, p,q), we take the corresponding geodesic triangle4(õ, p̂, q̂) in M̃2 sat-
isfying the conditions in Theorem 1.1 (I). SincẽM2 is a Hadamard surface, we have∠(p̂õq̂) ≤
∠(p̄ōq̄)≤ ε. This means that4(õ, p̂, q̂) is contained entirely in a sectorS, which is bounded by
two rays inRõ and makes an angleε at õ. We then havec(4(õ, p̂, q̂)) ≥ c(S) = (ε/2π)c(M̃2),
wherec(4(õ, p̂, q̂)) andc(S) are the total curvatures of4(õ, p̂, q̂) andS, respectively. Moreover,
by a comparison theorem due to Alexandrov and Zalgaller (see Theorem 6 in Chapter II of [3]),
we have

∠(opq)≥∠(õp̂q̂)≥∠(ōp̄q̄)+c(4(õ, p̂, q̂))≥ π− ε
2π

(
2π−c(M̃2)

)
.

Hence this together with the first variation formula implies the almost-regularity ofρo. ¤

PROOF OFCOROLLARY 0.2. If ε > 0 is sufficiently small in Proposition 2.8, there exists
no critical point ofρo outside the ballBM

o (R). Hence by the isotopy lemma in [11], we conclude
that M has the finite topological type. Thus, the remainder of the proof is the estimate of the
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number of ends. Suppose that there exist two raysγ,σ ∈Ro tending to the distinct ends. Then

we have∠∞([γ], [σ ]) = π, and hence by Theorem 2.6, we have∠M̃
∞ (Φ([γ]),Φ([σ ])) = π and

∠M̃
Tits(Φ([γ]),Φ([σ ]))≥ π.

Consequently, the number of ends ofM is not greater than the largest possible number of pairwise
disjoint (π/2)-balls inM̃m

∞ . ¤

3. The structure of the asymptotic cones of manifolds of asymptotically non-negative
curvature.

Throughout this section, letM be a manifold of asymptotically non-negative curvature.

3.1. Alexandrov spaces with curvature bounded below.
We first recall the definition of Alexandrov spaces with curvature bounded below. Refer the

basic tools and facts of Alexandrov spaces with curvature bounded below to [2], [8], [7].
Let N2

κ be the simply connected, complete model surface with constant Gaussian curvature
κ. We say that a metric spaceN is anAlexandrov space with curvature bounded below byκ if
the following condition (A) holds (cf. Definition 2.5 in [8]):
(A): Every pointp∈ N has neighborhoodsUp ⊃Vp such that:

(1) Any two points inVp are joined by a minimizing geodesic inUp.
(2) For any4(x,y,z) with vertices inVp, every w on the edgeyz satisfies the inequality

dN(x,w) ≤ dN2
κ
(x̃, w̃). Herew̃ is the point on the edgẽy z̃ of the corresponding geodesic

triangle4(x̃, ỹ, z̃)⊂ N2
κ to4(x,y,z) such thatdN(y,w) = dN2

κ
(ỹ, w̃). If κ > 0, we need an

additional assumption: the perimeter of4(x,y,z) is < 2π/
√

κ.

If N is a1-dimensional manifold andκ > 0, then we assume in addition that the diameter
of N is not greater thanπ/

√
κ.

For example, complete Riemannian manifolds whose sectional curvatures are not smaller
thanκ are Alexandrov spaces with curvature bounded below byκ.

3.2. Proofs of the corollaries.
Let M∞,0 be any connected component ofM∞ with respect to the Tits distance∠Tits, and

defineC0 := ConeM∞,0. As is stated in the Introduction,C0 \{o∗} is an Alexandrov space with
curvature bounded below by0. In particular,dimH C0 \ {o∗} is an integer not greater than
m= dimM, anddimH M∞,0 is an integer not greater thanm−1 (see §6, §8 in [8]).

PROOF OFCOROLLARY 0.6. First, note thatM∞,0 satisfies the condition (A) if its cone
itself is not a ray. This is obtained by the same argument as the one that appeared in the proof
of Proposition 4.2.3 in [8] sinceC0\{o∗} is an Alexandrov space with curvature bounded below
by 0.

If dimH C0\{o∗}= 2, thenC0\{o∗} is a2-dimensional topological manifold possibly with
boundary, andM∞,0 is a1-dimensional topological manifold possibly with boundary (12.9.3 in
[8]). Hence if the diameter ofM∞,0 is not greater thanπ, thenM∞,0 is an Alexandrov space with
curvature bounded below by1.

If dimH C0 \ {o∗} ≥ 3, thenM∞,0 is not a1-dimensional manifold. Furthermore,M∞,0 is
an Alexandrov space with curvature bounded below by1. In particular, from Theorem 3.6 and
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Proposition 4.2.3 in [8], we see that the diameter ofM∞,0 is not greater thanπ, and thatC0 is an
Alexandrov space with curvature bounded below by0. ¤

Next, we show Corollary 0.7. We explain some notations needed in the proof: Let(X,dX)
be a metric space. (1) Forx ∈ X, R1 > R2 > 0, we define the metric annulusAX

x (R1,R2) :=
BX

x (R1)\BX
x (R2). (2) LetA be a bounded set inX. Therough dimensiondimr A of A is defined

as

dimr A := inf{α | limsup
ε→0

εα βA(ε) = 0}= sup{α | limsup
ε→0

εα βA(ε) = ∞},

whereβA(ε) is the largest possible number of pointsxi ∈ A satisfyingdX(xi ,x j)≥ ε for i 6= j.

PROOF OFCOROLLARY 0.7. We here assume thatM∞ has the unique connected com-
ponent. For the more general case whereM∞ does not necessarily have the unique connected
component, we can similarly prove the corollary.

Let us take sufficiently large numbers0 < R¿ T so thatT2K(T) ≥ T2K(R) ≥ −1. Then,

A(1/T)M
o (1,R/T) converges toBC0

o∗ (1) asT → ∞ with respect to the Gromov-Hausdorff distance
preserving the lower curvature bound−1. We also note that

lim
T→∞

volTB(1/T)M
o (R/T) = lim

T→∞

volBM
o (R)

Tm = 0, (3.1)

wherevolT denotes the volume measured in(1/T)M.
First, we assume thatdimH M∞ = m−1, or equivalently,dimH C0 = m. Then, it is inde-

pendently known by [8], [27], and [29] that

lim
T→∞

volTA(1/T)M
o (1,R/T) = H m(

BC0
o∗ (1)

)
> 0.

This together with (3.1) implies

lim
T→∞

volBM
o (T)

Tm = lim
T→∞

volTB(1/T)M
o (1) = H m(

BC0
o∗ (1)

)
> 0.

We next assumedimH C0 < m andlimT→∞(volBM
o (T)/Tm) > 0. We lead a contradiction

from the estimate of the rough dimensiondimr A(1/T)M
o (1,R/T).

For simplicity, defineAo := A(1/T)M
o (1,R/T). Note then that theT andR in Ao vary satis-

fying the conditions stated at the beginning of the proof. From (3.1), we find a positive constant
V > 0 such thatvolTAo ≥V. For a given sufficiently smallε > 0, let

{pi}βAo(ε)
i=1 ⊂ Ao

be a maximal set of points inAo satisfyingd(1/T)M(pi , p j)≥ ε for i 6= j. Note that the points{pi}
is a (2ε)-net ofAo, that is,Ao ⊂ ⋃βAo(ε)

i=1 B(1/T)M
pi (2ε). Then, by the Bishop volume comparison

theorem, we have

V ≤ volTAo ≤
βAo(ε)

∑
i=1

volTB(1/T)M
pi (2ε)

≤
βAo(ε)

∑
i=1

ωm
−1(2ε)≤ constm · εmβAo(ε),
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whereωm
−1(2ε) denotes the volume of a ball of radius2ε in the m-dimensional model space

of constant curvature−1, and constm is a positive constant depending only onm. Let

hε/10: B(1/T)M
o (1)→ BC0

o∗ (1) be an (ε/10)-Hausdorff approximation. Then,

{
hε/10(pi)

}βAo(ε)
i=1

is anε-discrete set in2BC0
o∗ (1) = BC0

o∗ (2). Hence, we have

V ≤ constm · εmβ
B

C0
o∗ (2)

(ε).

Since C0 \ {o∗} is an Alexandrov space with curvature bounded below, we have
dimr BC0

o∗ (2) = dimH BC0
o∗ (2) = dimH C0 < m (see 6.4 in [8]). Hence, we obtain

lim
ε→0

εmβ
B

C0
o∗ (2)

(ε) = 0,

which yields a contradiction.
In this way, we conclude Corollary 0.7. ¤
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