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Algebraic structures on quasi-primary states in superconformal algebras
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Abstract. Operator Product Expansions give algebraic structures on subspaces of quasi-
primary vectors in superconformal algebras. The structures characterize the structures of super-
conformal algebras if they meet a criteria, while in some cases the spaces of quasi-primary vectors
are finite dimensional. As an application the complete list of simple physical conformal superal-
gebras is given by classifying the corresponding algebraic structures on finite dimensional vector
spaces. The list contains a one-parameter family of superconformal algebrassujtbrcharges
that is simple for general values.

1. Introduction.

For an infinite-dimensional Lie superalgel$faone often assumes that there exists a finite
set.# of generating functions of elements@fand that the Lie bracket is written in terms of the
OPE (Operator Product Expansion), i.e.,

a(2b(w) ~ 5 (ch(jj)j, (1.1)
J
where they is finite. It means
a(@.bw)] = 3 S oisz-w), a2)
= !
c/(w) = Resla(z),b(w)](z—w)!, (1.3)

for a,b € C[d].Z, where the5 is always finite. The finiteness is called locality. Many significant
infinite-dimensional Lie superalgebras, e.g., affine Lie algebras, the Virasoro algebra, the Neveu-
Schwarz algebra, have locality.

The notion of conformal superalgebra (vertex Lie superalgebra) is formulatéjdind [10]
independently, which is an axiomatic description of Lie superalgebras with OPE with respect to
the infinitely many operationa )b = ¢/ as above. Once a conformal superalgebra is given,
one can reconstruct the Lie superalgeltraWe shall require existence of conformal vector in
addition, which corresponds to a Virasoro subalgebra in the associated Lie superalgebra.

For a conformal superalgebRthe subspace of the quasi-primary vectors (see section 2 for
precise formulation) are identified wiR/(dR). For some kind of conformal superalgebras the
space of primary states generates the conformal superalgebra and the associated Lie superalgebra
([10)). On the other hand, it is well-known that a conformal superalg&yriglds a Lie superal-
gebra structure oR/(dR). We will study more detailed structures BA(JR) (section 3).
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The algebraic structures on the space of the primary vectors are descritig¢d\ivie[ will
study the algebraic structures on the space of the quasi-primary vectors, defininggheducts
on it by the projection of thén) products. We will show that one can reconstruct the entire
conformal superalgebra from tijg) products on the space of the quasi-primary vectors (section
4). For the normal product the structures given by the projection are discussd in [

The (n) products are (anti-)commutative, but may not be associative. We have some simple
cases of the algebraic structures on the subspace of the quasi-primary vectors. The most simple
one is the case of affine Lie superalgebras, for which all products b@theoduct vanish and
the (0) product yields a Lie superalgebra structure on the finite-dimensional vector space of the
guasi-primary vectors. The second case is physical conformal superalgebras, which corresponds
to the superconformal algebras, for example, the Virasoro algebra, the Neveu-Schwarz algebra
and theN = 4 superconformal algebra. In this case all products but@eroduct and theé1)
product vanish and they yield a left Clifford module structure on the finite-dimensional vector
space of the quasi-primary vectors. The action of Clifford algebra is describBH ibfestricts
the dimension of the space of the quasi-primary vectors of physical conformal superalgebras.

Examples of simple physical conformal superalgebras are gived,if9], [ 7], and [B]. The
list of known simple physical conformal superalgebras\dreKs, Ky, K3, S, Ws, CKg, Where
we have followed the notations o8][and [6]. Vir is the Virasoro algebraK; is known as the
N = j superconformal algebr& andW, are superconformal algebras w#tsuperchargess,
is known as thé\ = 4 superconformal algebr&Ks is discovered in3] and is the only known
superconformal algebra with more thésupercharges.

In [8] a list for the simple physical conformal superalgebras is given, however, we are
making another approach. As an application of the reconstruction theorem we will classify
simple physical conformal superalgebras by working on the space of the quasi-primary vec-
tors and the(n) products on it. We have found a simple physical conformal superalgebra
N; and a one-parameter family of physical conformal superalgeffathat is simple for all
a € (C/{£1})\ {[1]}, which imply a class of simple physical conformal algebras that is not in
the list of [8] exists;N4 andN{'s are counter examples to Lemma 4.1(b)3h The simple phys-
ical conformal superalgebrady andNJ coincide with the centerless conformal superalgebras of
the largeN = 4 superconformal algebras written down til]. The complete list of the simple
physical conformal superalgebrasvis, Ky, Kz, K3, S, Wo, N, Nf andCKs (section 8).
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2. Preliminaries.

LetK be a subfield o€. A K-vector spac® with a direct sum decompositidh =V ®V
is called aZ/2Z-graded-vector space. The homomorphismsZgRZ-graded vector spaces are
supposed to be compatible with the gradation. Zji@Z-gradation is callegarity. Vj is called
the subspace @venparity, andv; is of odd parity.

The Z/2Z-graded objects are calletiper-objects. Commutativity for the produeof a
superalgebra is defined to heb = (—1)P@P(®)p. a, wherea, b are supposed to be homogeneous
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with respect to the paritp.
Now let us state the axioms for conformal superalgebras, based on the descriptigns in [
and B]. We denoteAl)) = Al /j!, whereA is an operator.

DEFINITION 2.1. LetRbe aZ/2Z-graded-vector space equipped with countably many
products

(nN):R®R—R, (neN),

and a linear map : R— R. The triple(R {(n)}neN, L) satisfying the following conditions for
an even vectok € Rare called a&onformal superalgebra

(C) Foralla,b,ceR,
(CO) there exists some € N such that for alh € N satisfyingn > N

a(n)b: 0,
(C1) forallne N,
(0a>(n)b = _na(nfl)b7
(C2) forallne N,

[oe]

b= (—1)P@Pb) Z}(_l)j+n+la(j)b(n+j)a7
j=

3m (O c) = 3 < j> (ai)b) () €+ (=DP PPy (am))-
=
(V) L eRsatisfiesLgL=dL, Lj)L=2L, Li; L =0, L = 0 as operators oR, andLq is
(0) @ 2 () @
diagonalizable.

REMARK 2.2. They in (C3) is a finite sum because of (CO).

L is called theconformal vectoof R. A homomorphism of conformal superalgebras from
Rto R is aK[d]-module homomorphisnfi: R — R that is compatible with thén) products for
all ne N and map4. to the conformal vector oR. An ideal of a conformal superalgebra is a
K[d]-submodule that is closed under the left multiplication of theproducts for allh € N. A
conformal superalgebRwith no ideals other thafi0} andR itself is called asimpleconformal
superalgebra. The ide@t € Rjx; ¢ = 0,x € R n€ N} is called thecenterof R. If the center is
{0} then the conformal superalgebra is said tabsterless

REMARK 2.3. Rightideals are defined similarly, but they coincide with left ideals.

NOTE 2.4. The axiom (V) is not included in the definition of conformal superalgebras in
[7] and [8] nor of vertex Lie algebras in)], while existence of the conformal vector is assumed
for superconformal algebras. We set it into the axioms for conformal superalgebras.
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Suppose given an isomorphismkfd]-modulesf : R — R that is compatible with thén)
products wheréR, {(n) }nen, L) and(R, {(n) }nen,L’) are conformal superalgebras. We say that
(R {(n)}nen, L) and(R, {(n) }nen,L’) areequivalento each other.

NoTE2.5. In[7] and [8] the class with respect to the equivalence above is considered.
We will consider the isomorphism classes, which is stronger than to the equivalence classes.

The eigenvalue of ;) is denoted byA(x) for an eigenvectox and is called theonformal
weight ofx. DefineR = {x € RIL(3)x = kx}, Ar = {k € K|R¢ # {0} } andAj = Ar\ {0}

REMARK 2.6. We haveA(dx) = A(x) +1andA(Xy)y) = A(X) +A(y) —n—1. That s,
(n) : RP®RY — RPHA—N-1,

A conformal superalgebrR over C is called asuperconformal algebré there exists a
finite-dimensional subspac# such thatR = C[d].#, all conformal weights are non-negative
half-integers, the even subspagven= @nen R" and the odd subspaé®yq= Bnen+1/2R"
We call a superconformal algebRea physical conformal superalgebit.? c RRaRY/2aR o
RY2 and.Z NR? = CL, following the terminology in §].

SetR= Pz R andJ = Spar{(da) ) + nan_1)| a € R, n€ Z} whereRy, is a copy of

Rfor eachn € Z. The Lie superalgebr/J defined bylam), bm] = ¥ -0 <rjn) (@B nem-j) is

calledthe Lie superalgebra associated If the conformal superalgebRis not simple then
the Lie superalgebra associated®@s not simple.

3. d-decomposition.

For a conformal superalgeb(&, {(n)}nen, L), we shall call the subspade € R|Lz)x €
RO} thereduced subspace R and denote it byr. We call the elements of the reduced subspace
reduced vectorsDenoteR* = RNR¥, Ag = {k € K|R¥ # {0}} andAk = A\ {0}. Obviously we
haveR® = R°.

REMARK 3.1. If the Lie algebra(R", (0)) is perfect then we havie;a=0for all ae R
becausé ;agb = 0foralla,be R

We introduce the notion akgular conformal superalgebras. The superconformal algebras
are regular.

DEFINITION 3.2. A conformal superalgebrR is regular ifR° is the center and i\ N
(=N/2) c {0} and for eaclk € Ar there exists somkl € N such thak—m¢ Agforallme N
satisfyingm > M.

PROPOSITION3.3. Let (R {(n)}nen,L) be a regular conformal superalgebra amtithe
reduced subspace OR {(n) }nen,L). Then there exists a unique decomposition

m
x=Y 9Wxl (3.1)
2,

for anyx € R for somem e N wherex? € Randxi e Drcat R<for j>0.
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PrOOF.  SinceR? is the center oR, L acts onR/R? for all k € N. SoR/RC has the
sl,-module structure defined by

E—L),
Hio —2L), (32)
F— 7L(0).

Consider P = @yca, Spar{x € R/RO| Lgyx=kx, x¢ U, L2)x € U for some submoduld }.
Sincel ;)P C P, we have a basige) }yca of R/R® and a functionv : A — Ak satisfying
Liyer = v(A)e, forall A € A so that{e, },ca is a basis ofP for someA’ C A. Consider

the sl-module homomorphisni : @,/ Va — R/RC defined byf(v)) = e, whereV, is the
Verma module of the highest weigh®v (A ) with respect tdH andv, is the highest weight vec-

tor of V. SinceRis regularf is surjective and each Verma modMe,,,) is irreducible, hence

f is isomorphic. Thus we have a unique decompositieny ; d\))x! for anyx € R/R® where

xl e Pforall j. HenceP = ﬁ/RO, so we have the decomposition of the result. The uniqueness is
obvious. O

We shall call the decomposition of Proposition 3.3 thelecompositiorof x and xl the
j-part of x settingx! =0 for A(x) — j ¢ Ar.

COROLLARY 3.4. R=KJ[J]R
COROLLARY 3.5. Ris isomorphic taR/(dR) asK-vector spaces.

COROLLARY 3.6. A regular conformal superalgebr® over C is superconformal if
and only if the reduced subspace is finite-dimensional, all the conformal weights are half-
integers, the even subspace of the reduced subsRaeg= @,y R" and the odd subspace

Rodd = @neN+1/2 R

COROLLARY 3.7. LetRbe the reduced subspace of a conformal superalgBaad Ii(n)
a copy ofR for eachn € Z. The Lie superalgebra associatedRds DBz Fvem) with the product

w [m
[am), b)) = Yo (j)(a(j>b)(n+m-j)-

PropPoOsITION3.8. For a homomorphism of conformal superalgebras
f:(R{(N)}nen,L) — (R, {(N)}nen, L), (A) f(R) C R, (B) f(R) =R ifand only if f is surjec-
tive, and(C) f|y is injective if and only iff is injective.

PROOF. (A) Since0= f(L(ya) =L, f(a) forae R itis obviousf(R) C R.
(B) Assume thaf (R) = R. Consider thé-decomposition’ =y ; dx’ for X' € R. Then
we havex' € Rsuch thatf (x') = x" for alli € N, sof(3;0Vx') = x. Conversely assume théat
is surjective. Then for ang € R there existx € Rsuch thatf (x) = &, soa — 3 ;00 f (x)) = 0.
Since thed-decomposition is unique,(x°) = & for somex® € R. Hence we havé (R) = R.
(C) Assume thaf| is injective. Takex € Rsuch thatf (x) = 0. Theny ;91 f(x}) =0, so
we havef (x') =0for alli € N. Hencex' = Ofor all i € N, which impliesx = 0. The converse is

obvious. O
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DEFINITION 3.9. Define the(n) product onR for eachn € N by

(n):RxR—R
(a,b) — apmb = (anb)°,
where(a(y b)? is the0-part ofa, b.
The center of a regular conformal superalgeRia {v € R\ mX=0forall xe Rne N}.

REMARK 3.10. The (n) products vanish except for finite marip)s if R is finite-
dimensional.

Let us denotéx;y) =TI (x+Y)/I (X) wherey is a non-negative integer andg: C, and define

(2A(a) —n—j—1;j)
(2(A(a)+A(b) —n—j—1);])
C 1 (2@ -n-j-14K
Mo 2a@tam —n_j-1)+K
forA(a)+A(b)—n—j—1¢ —(1/2)N,
1, forA(a)+A(b)—n—-1=0,j=0,

0, otherwise

G(A(a)aA(b)vna J) =

PrROPOSITION3.11. For aregular conformal superalgebra
(amb)! = G(A(a),A(b),n, ))ay, jb (3.3)
wherea,b € R.

PROOF. If A(a)+A(b)—n—j—1=0the both sides are iR’ so the proposition is
obvious. Otherwise, applyga to the both sides ad,b =59 (anb)! and take th@-parts.
The left hand side is

nt+j—1

(Lipamb)® = (1)’ ( M (k+2<1A<a>>>> (8 j)b)°. (34)

k=n

Taking the0- partofL ZJ ( b)J we obtain

h k+2(A(a)+A(b) —n—j—1) — 1)(amb)’. (3.5)

Hence we have

! —n— k+2A( )—2
(I_L b>n11)>a<”“>b
G(A(a ( ) n, ]) ntjyb- (3.6)
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PROPOSITION3.12. A K-linear map f : R— R satisfying f(L) = L’ and f(ayb) =
f(a)n f(b) forall a,b e R, n € N uniquely extends to a homomorphism of conformal superal-
gebrasf : R— R, where(R {(n) }nen, L) and (R, {(n) }nen, L) are regular conformal superal-
gebras.

PrROOF. Define amap :R— R by f(x) = 3,90 f(x}) wherex e R Obviouslyf(dx) =
df(x) for all xe R. By (3.3) we havea b = leoG( (a),A(b),n, j)d an.j)b, by (C1) and
(€2) (0Ma)(n (0Vb) = (—1)kz'jzo(n!/(k!j!(n— k— j)!))d('*Ua(n,k,Dbfor allabeR k€
N. Hence thgn) products orR is written in terms of then) products and the operatdr; so
f(xmy) = f(X)m f(y) for all x,y € Randn € N, that is, f is an homomorphism of conformal
superalgebras.

Suppose given two extensiofisand f” of f. Thenf’(dWa) = M f(a) = f(dWa) holds
for all a e R. Hence the extension dfis unique by Corollary 3.4. d

COROLLARY 3.13. Two conformal superalgebrd®, {(n) }nen,L) and (R, {(n)}nen, L)
are isomorphic if and only if there exists a bijectiedinear mapf : R— R satisfyingf (L) = L’
and f (ayyb) = f(a)(n f(b) for all a,b € Randn € N.

We can reconstruct the ideals of a regular conformal superalgBbfén) }nen, L) from the
triple (R, {(N) }nen,L).

PROPOSITION3.14. For an ideall of a conformal superalgebr®, there exists an idedl
of the reduced subspaéewith respect to thén) products. Conversely= K[d]l is an ideal of
Rfor an ideall of R.

PrROOF. We may assume thats properW|thout loss of generallty Consider the prOJectlon
f:R— R/I We have a projectior : R — (R/I) with f(a mb) = f( a)(n f(b) foralla,bc R
Setl = kerf. We have<<n>l c I forall xe Randl = kerf = K[d]I. The converse is obvious]

COROLLARY 3.15. A regular conformal superalgebréR, {(n) }nen,L) is simple if and
only if any ideall of the reduced subspaé&is eitherR or {0}.

Consider the following properties of the triplB, {(n) }nen, L) for aZ/2Z-gradedK-vector
spaceP equipped with countably many produdt®) }nen 0NV wherel € P:

(PO) Fora,b € P there exists somi € N such that for alh € N satisfyingn > N,
a<n>b =0.

(P2) Fora,be Pandne N,
amb= _(_1)n+P(a)P(b)b<n>a.

(P3) Fora,b,ce Pandn,me N,
M /m
5 () eam).a.n ha oo e
=\ "
PO (j)em(a), ©).m, )by &me )€
=

mH-n ]
= Z)F(A(a),A(b),m,mj)(a<j>b)<m+n,j>c7
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where

F(A(a),A(b),mn,t)
— & m m+n+k—t ok )
_k§0<tk>( k )( 1)"G(A(a),A(b),t —k.K).

(PV) L is even and satisfidsga=0, LiyL =2L, Lpae PO for all ac P. The operatot.
is diagonalizable P is central,Ap N (—N/2) C {0}, and for allk € Ap there exists some
M € N such thak—m¢ Ap for all me N satisfyingm> M, wherePk = {ac P| Lipya=ka}

andAp = {k € K| PX £ {0}}.

PrROPOSITION3.16. The triple(P,{{(n)}nen, L) satisfiegP0), (P2), (P3), (PV), whereP
is the reduced subspace of a regular conformal superalgebra with the progimig.cn.

PrROOF.  Only (P3) is not obvious. We shall obtain (P3) by taking €apart of the both
sides of (C3). Apply Proposition 3.3 to the right hand side of (C3) and take-fizet. Then,

(ki) <T) (@kD) (i C) O
( ) ) )

k
( ><m+n k) 1)G(A(2), A(b) k. ) (8 ) D) men-k-) €

—Z)g( ) (M) 0@, ALk (D) e
B Zon F(A(a),A(b),mn.t) (agyb) min-t)C, (3.7)

which is the right hand side of (P3). On the other handXpart of the terna,, b, c of the left
hand side of (C3) is,

(a(m)b(n)c)o = Ji (T) G(A(b),A(c),n, j)am-jbnjC, (3.8)
and for the ternb, a(mc

(b(n)a(m)c)o = Ji (T) G(A(a),A(c),m, j)bp_jyamj)C. (3.9)
Thus we obtained the left hand side of (P3). O

EXAMPLE 3.17. Form=0andn=0, (P3)is

a<0> b<0> C— (— 1) P2)p(b) b<0> aC= (a<0> b) (0)C. (3 10)
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Form=1andn=0,

b+ 5 (b?ib)Azc)l 580y c— (-1)P@PPbgagc
A(b)—1
= (agb)we+ A(a)J(F)A(b)_Z (amb)oc (3.11)
Form=1landn=1,
2A(b) -3
bt 57 Er)A(C) —3%obaC
. 2A(a) -3
_(_1) p(a)p(b) (b<1>a<1>c+ Z(A (a) +a)A (C) — 3) b<o> a) C)
A(b)—A
= (apb)pc+ A(a() J)r A(b()a_ 5 (@b) e
(2A(a) —3)(24(b) —3)
~3(a(a)+ A(b) ~3)(2h(a) 1 24(0) —5) 22D @S (3.12)

2(A(b) 1
a<2>b<0>c+ A(b) —l—A(C) — 2a<1> b<1>C
2A(b) —3)(A(b) -1
N (24(b) —3)(A(b) - 1) a0, bz c— (—1)PEPOIh a5

(A(b) +A(c) —3)(2A(b) +24(c) —5)
2(A(b) — 1
= (a<0> )<2>C+A(a()—£A)(b))—2 (a<1> b) <1>C
(A(b) - 1)(28(b) — 3)
(A(a) T A(b)_3)(20(a) 1 2a(b) 5 AP oC (3.13)

4. Reconstruction of the conformal superalgebras.

We can reconstruct the entire regular conformal superalgéRre(n)}nen,L) from the
triple (R, {{(n) }nen,L).

THEOREM4.1. For a triple (P,{(n) }nen,L) satisfying(P0), (P2), (P3)and (PV), there
exists a regular conformal superalgeb{®p, {(n) }nen, L) whose reduced subspacelsind the
products satisfieg, b)? = apbforalla,be P, ne N. Furthermore the conformal superalge-
bra is unique up to isomorphisms.

PROOF.  Consider the lefK[d]-moduleRe = (K[9] ® (Bke(ap\(0}) P¥)) BP°, whered
is an indeterminate an®° is regarded as a lefK[d]-module by dP° = 0. We omit the
® for brevity. DefineA(dia) = A(a) + j for ac P. Eachx € Rp is uniquely written as
x=73;0Ux for somex’ € P andx € @y (ap (o)) P* for all j > 0. Define (n) products
on Re by anb = 37,G(A(a),A(b),n, [)0Vap, b and (0%a)q,(0Vb) = (~1)*3!_,
(nt/(KjH(n—k—})1))o"~Dan_,_jbwherea,b € P. Itis easy to check that th@) products
satisfy (C0) and (C1), and by direct calculatidiis a derivation with respect to th{e) products.
Now, fora,b € P,
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—(—1)P@p(b)+n %(_1)15(1) (bnyj)@)

= —(—1)P@Pb)}n ; (-1)10WG(A(b),Aa),n+j, k)W (b 1)
jk=o

© S
=55 (—1)S—k+p<a>p<b>+“+1<i> G(A(b),A(a),n+5—k k)9 (byn. 5 a)
s=0k=0
> e —s 2A(b)—-n—s—1

2r 2(

_ 1) o9
b+ 2 A(a)+A(b)—n—s—1)’ 1)0 (n:9b).

(4.1)

where za(ayﬁ X z, o(@ (B D)/ (XD, We have zFl(“yB;l) _

(ryyriy—a-p))/(r(y-a)r(y—p)) for y¢ —N and a € —N. If s> 1 and
A(@)+A(b)—n—s— 1:A( ansgb) € —=N/2thend® (a4 b) = 0, so we have

8

—(—1)P@p(b)+n %(fl)jd(j)(b(mj)a)

r2(A(a)+A(b)—n—s—1))r (2A(a)—n—1)

> ©
=20 2 Feia@ +A(b) —n—s- 1) +9r(2a@ -n-s-1° 5P
-5 G(A(a),A(b),n,s)0" (a4 b)
~anb (4.2)

Then, (C2) is checked for alh = d*x and b = d'y by induction onk and | where
xy € P. Indeed, assumgd¥x)q,(d'y) = (—1)POPY 5, (—1)HMIgU(aly) ., (9% for
all n. Applying d to the both sides we havéd**1x)q (d'y) + (0x)n (9'*ly) =
(—1)PHPY) 5 (1) /1)1 (0'y) (04§ (9%%). By (C1) we have

(0"%) ) (0" 1Y) = n(9*%) (1) (8') + (—=1)PYPY S (=1)"™ 0D (9y) 1 1) (0*%)
J

= (~1)PIPD) 5 ()R (1) o (04, (4.3)
J

which implies (C2) fora= d*x andb = d't1y. On the other hand

(07X) (1 (8"y) + (8%X) (ny (8" )

— (1P 5 (DI (0y) 0, (090 + (0'Y) e (04) . (44)
J

thus we have (C2) foa = d*"1x andb = d'y, which completes the induction.
For alla € P, we have

L(o)(9¥a) = 0" 'a, (4.5)
L) (0%a) = (A(a) +k)d*a, (4.6)
Lz (9%a) = k(k— 1+ 2A(a))d* 'a, (4.7)
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which imply (CV).
In order to show (C3), let

J(a,b,c,m n,k)

[

m
= a(m) b(n)dkC* (*1) P(a)p(b) b(m&(m)dkcf 20 < ] ) (a(j)b)(,mn_j)akc, (4.8)
J:

wherea, b,c € P. By (C1) and the Leibniz rule we have
dJ(a,b,c,m n k)
=—-mJ(a,b,c,;m—1,n,k) —nJ(a,b,c,mn—1k)+J(ab,c,mnk+1), (4.9)

where we understand{a,b,c,—1,n,k) = 0 andJ(a,b,c,m,—1,k) = 0 for all m;n,k € N. We
haveA (b, d9%c) — A(9%c) = A(b) —n—1, s0J(L,b,c,1,n,k) =0 for all n,k € N. By (P3) and
the definition ofL 1), J(L,b,c,2,n,0) = 0. Substituting them into (4.9) fom = 2 we obtain
J(L,b,c,2,n,k) = 0 for all n,k € N by induction onk. On the other hand taking thepart of
(4.9) we obtaird = —mJ(a,b,c,m—1,n,k)® —nJ(a,b,c,m n— 1, k)°+J(a,b,c,m n,k+1)°. By
induction onk we havel(a, b,c,m,n,k)° = 0 for anym,n,k € N.

Consider

[oe]

m
B(a,b,c,m,n) = aybync—(—1) p(a)p(b) by @m)C— ZO ( J > (a(j)b)(ern—j) C, (4.10)
J:

wherea,b,c € Re. By (C1) and (C2), it suffices to chedB(a,b,c,m;n) =0 for mn € N
whereab € P andc € Re. We haveB(a,b,c,mn)® = 0 for a,b e P and c € Rp be-
causeJ(a,b,c;mn,k)® = 0 for all k € N. If A(B(a,b,c,mn)) = 0 then B(a,b,c,m,n) =
B(a,b,c,m,n)® = 0, so we may assum(B(a,b,c,m,n)) # 0. By (4.7) we have

((Lz)*B(a,b,c,m, n))0 = (2(A(a)+A(b)+A(c) —m—n—2—k);k)(B(a,b,c,m,n))k. (4.11)
The coefficients on the right hand side never vanish becA(Béa, b,c,m,n)k) ¢ —N/2, hence
B*is proportional ta((L ))*B)°. SinceJ(L,b,c,2,n,k) =0,

L(Z) B(aa ba c,m, n) = _(n + 2(1 -4 (a)))B(aa b7 c,m+ 1) n)
—(m+2(1-A(b)))B(a,b,c,mn+1)+B(a,b,Lzc,mn), (4.12)

(L(Z))"B(a, b,c,m,n) is written by a linear combination of sons. Thus we havek = 0 for all
k € N, which implies (C3).

The reduced subspaceR$ coincides withP itself. The uniqueness follows from Corollary
3.13. O

The following lemma plays an important role in later sections.
LEMMA 4.2,

apbgC= 3 ribg-jyapjyc+sj(a;b) prg-j)C (4.13)
]

for somer;,sj € K wherea,b,c € R, p,q & N.
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ProOF. Denote (P3), for (P3) specifyingn,n. For p =0, (4.13) follows from (P3)4.
Suppose (4.13) holds for gl < k andq € N. (P3)1q implies (4.13) forp = k+ 1. O

PrROPOSITION4.3. Consider a regular conformal superalgeb(R, {(n)}nen,L). LetS
be a subset of the reduced subspBcand s the ideal generated b Then for a basi® with
an order< onB,

|Sﬂ§: Span{ul<n1>vz<n2>~~vr<nr>u’ vk €B,ueS neN, Ui < l)i+1}. (4.14)
PrROOF. Set
r_ 12 3 r k
FpIS_Span{u (M) )V (ng) "+ Wu’u ,ueSneN, r< p}. (4.15)

By Lemma 4.2,Ul<n1>vz<n2>03<n3>~ ~~ur<nr>u is written by a linear combination of these elements
with o' andv'*+1 swapped (buiys may differ) as an element OF; fs)/(l%_lfs). Hence we have

Fols= Span{v1<nl>v2<n2>- --vr<nr>u) MeB,ueSneN, r<p, v <ol } (4.16)

SincelsNR= ¥ ,Fyls, thus we have the result. O

Let & be the category of triple@ {(n)}, L) satisfying (P0O), (P2), (P3), (PV) wheReis a
vector space{(n)} is a set of products oR, andL is a vector inP, with the morphisms being
the linear maps that commute with all ti® products and preserte We can summarize this
section: the category of regular conformal superalgebras is equivalent to the catédiyryhe
functorF (R) = RandF (f) = f

fl'
5. Physical conformal superalgebra.

In this section we will study physical conformal superalgebras. One can reduce the axioms
for conformal superalgebras into some simple relations. We shall assuat® hereatfter.

A regular conformal superalgebRiis physical if and only if the reduced subspaeatis-
fies the following.

— Eigenvalues ot ;) on Rare2, 3/2, 1and1/2.
- RR=CL

— R¥2 andRY/2 are odd subspaces.

— R! andR? are even subspaces.

All the (n) products vanish except for t{8) product and thél) product for physical conformal
superalgebras.

Let R be a physical conformal superalgebra &hHe the reduced subspace. Consider the
products orR defined by,

__fab o a@tab) -240,
ach={ A(a)+A(b)-2
0, otherwise
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Obviously we have

(DO) Lca=a, L*a=0,
(D1) ach= (—1)P@POhog
(D2) ash=—(—1)P@P0OIheg

Rewriting the relations in Example 3.17 in terms of the produahd the product we obtain
(D3) (A(b) —1)acbec = (A(b) —1)(ach)°c,
(D4) (A(b)+A(c) —2)acboc— (—1)P@PO) (A(a) + A(c) — 2)beacc
= (A(b) - A(@) (a°b) °c,

(D5) (A(a)+A(b)+A(c)—3)achec+ (A(b)—1)ahec

—(—1)P@P0) (A(a) +A(c) —2)beacc

=(A(a)+A(b)+A(c)—3)(a*b) cc+ (A(b) — 1) (ach) *c,

(D6) ashec— (—1)P@PbIhegec = (ash) oc.

Let us denot&/ = R¥2, A=R!, F = RY/2 for a physical conformal superalgeliRafollow-
ing the notations in§]. That is,R is decomposed intR =CL®V ® A@ F. Define the inner
product(-,-) onV by a;g b= (a b)L. Consider the following properties:

(HO) Le =id, L* = 0as operators OR,

(H1) (R *)is a Lie superalgebra,

(H2) (R °) is an associative commutative superalgebra,
(H3) A- gives derivations with respect tq

(H4) ucvef = (ucv)ef+ (uev)ef,foruveVandf eF,
(H5) (ue +u*)?v = (u,u)p, foru,v eV,

(H6) (u° +u*)?a=(u,u)a forucV andac A,

PROPOSITION5.1. Forthe reduced subspaée=CL&V ¢ A& F of a physical conformal
superalgebra, the productsand ¢ have the propertie€H0)—(H6)

ProoF. (D2) and (D6) yield (H1). The product is commutative by (D1). We have
(A(b) — 1)achec = (—1)P@PE+POIPC) (A(h) — 1)ceach by (D1) and (D3). IfA(a) = A(b) =
A(c) = 1 then the both sides afebecausel(a) +A(b) +A(c) —4 = —1. So we may assume
A(b) # 1 without loss of generality, hen@boc = (—1)P@PC)+POIP(Ccogob, thusacboc =
(acb)°c, we have (H2). For the others, let

Qx%2) = (B() +A(Y) + A - 3)xey*z+ (A(y) - Dxey-z
—(—)PPO (A() + A(2) — 2y=xz— (A(Y) - D(xY) *2

—(A(X)+A(y)+4(2) —3)(x*y)°2, 6.1
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and
P(X,Y,2) = (A(X) — 1)xoysz+ (A(y) — D)xeyoz— (—1)PPPYV)(A(y) — 1)yoxez
—(=1)PPL) (A 1)yexez— (A(X) +A(y) — 2)(x*y)°z. (5.2)

(x) -
Itis easy to checkA (x) —1)Q(x,Y.2) +(A(y) — 1)(~1)P¥PYIQ(y,x,2) = (A(x) +A(y) +A(2) —
3)P(x,y,2). Since ifA(x)+A(y) +A(z) — 3= 0then the both sides afgso we havé(x,y,z) =0
for all x,y,z € R becauseQ(x,y,z) = 0 for all x,y,z € R by (D5). P(x,y,z) = 0 for A(z) = 1,
(A(x),A(y),A(2)) = (1/2,3/2,3/2), (3/2,3/2,3/2) and (3/2,3/2,1) imply (H3), (H4), (H5)
and (H6) respectively. O

(H4), (H5) and (H6) imply the following.

PROPOSITION5.2. The reduced subspadeof a physical conformal superalgebra is a
left CI(V, (-, -))-module by the actiomx = vex+veX, wherev € V andx € R.

Thus we have obtained the action of the Clifford algebr@/Gl,-)) on the associated Lie
superalgebra, wheié is the space of the reduced vectors with the conformal wedght The
action is discussed irb].

COROLLARY 5.3. The Clifford algebraCl(V, (-,-)) acts on the associated Lie superal-
gebra of a physical conformal superalgebra, wh¥fds the space of reduced vectors of the
conformal weigh8/2 with the inner product defined ky, v)L = ug)v.

Furthermore we have the converse of Proposition 5.1.

PROPOSITION5.4. Suppose given a finite-dimensio@a2Z-graded vector spacR with
the decompositioR=CL®V & Aa F with respect to a weight, whereA (V) = 3/2, A(A) =1,
andA(F) = 1/2 with the parityp(CL) = p(A) = 0and p(V) = p(F) = 1, and two products
and * with the weightd (xey) = A(X) + A(y) — 1, A(xey) = A(X) + A(y) — 2. If (R, *, °) have the
properties(HO)—(H6)then the triple(li, {(n)},L) is a physical conformal superalgebra where we
setagb=asb, ayb=(A(a)+A(b) —2)acbandayb=0forn> 2.

PrRooFr.  (P0), (P2) and (PV) are obvious. It is easy to check that?ﬁ?{:ﬁ equivalent
to (P3ﬁ%, hence (D0)—(D6) are sufficient to (P3). Only (D5) is not obvious since (DO0) is (HO)
itself, (D1) and (D6) follow from (H1), and (D2), (D3) and (D4) follow from (H2). LR&andQ
be asin (5.1) and (5.2). Then, (H1) and (H2) imply

_(_1)p(y)p(2)p(x7z7y)+(_1)p()p(y)+p() P@p P(Y,zX) = (— 1)p(y)p(2)Q(X,Z7y)7 (5.3)

hence ifP(x,y,z) = O for all x,y,z € R then we haveQ(x,y,z) = 0 for all x,y,z € R, which
implies (D5). Let us showP(x,y,z) = 0 for all x,y,ze R SinceP satisfiesP(x,y,z) =
—(=1)PXPYIP(y,x,2) and (—1)PWPY)(A(2) — 1)P(X,y,2) — (—1)PHIPY)+PHIPE (A (y) — 1)x
P(x,2y) = —(—1)PMP@(A(x) — 1)P(y,z x), we have (1)P(x,y,2) = 0 < P(y,x,z) = 0 and
(2) if A(x) # 1, P(x,y,2) = 0AP(x,2y) = 0= P(y,zx) = 0. So it suffices to consider the
following cases: (A(x),A(y),A(2)) = (3/2,3/2,3/2), (3/2,1,3/2), (3/2,1,1), (3/2,3/2,1),
(1/2,3/2,3/2). (H3) gives (3/2,1,3/2) and (3/2,1,1). (H5), (H6) and (H4) imply
(3/2,3/2,3/2), (3/2,3/2,1) and (1/2,3/2,3/2) respectively. Hence (D5) is shown for all
XY, Ze R O
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6. Simple physical conformal superalgebra.

In this section we will describe some properties of simple physical conformal superalgebra.
A criterion for simplicity is given. LetR be a simple physical conformal superalgebitehe
reduced subspacé,= R¥2, A= R! andF = RY2,

The following result is stated irv] and [8]:

PROPOSITION6.1. LetR be the reduced subspace of a simple physical conformal super-
algebra. Then the inner produét -) onV is nondegenerate.

PROOF. SetV?= {vcV|forallueV (uv) =0} and consider the ided}o generated
by V0. Fix a basisB of R and take an order oB such thata < b if A(a) < A(b). Setij_
Span{x ;)X iy X iv0 [X €B, vo € VO, X <Xt k< p}. ObV|oustL ¢ FoJ. Take any
uveV, eVl X e B Sincevevy = 0, we havex1<1> xp-1 fip_)v*vo = 0'in Fod/Fp_1J.
By (D5) we have

1

X (i) xP—2

_ 1
lip-2)0* U0 = X"iy) X ) (_2“°”°”0>

_ 1
:Xl<il>...xp 2<ip—2> (4U'UOU0>
=0, (6.1)

in FpJ/Fp-1J. By (D3) we haved,,--xP~2; - 2)U°Uovo = 01 Fod/Fp-1J. A(Xnyy) > A(Y)
occurs only wheix € V, thus we have. ¢ ¥ ,F,J. By Proposition 4.3 ,F,J = o NR, hence
lyo is proper unlesy® = {0}. O

Now, letF3 = {f € F o} /0v?(g0% ) f = Oforall ok € V}.

PROPOSITIONG.2. A physical conformal superalgebRwith V £ {0} is simple if and
only if F3 = 0 and the inner product is nondegenerate.

PROOF. Suppose that the inner productdr# {0} is nondegenerate amlis not simple.
Takel a proper ideal of the reduced subsp&d is decomposed intb= (I'NCL) @ (INV) @
(I'NA) @ (I'NF) by the action of_ 1. TNCL = {0} becausé # R. In particular NV = {0} since
the inner product oV is nondegeneratd. is a C(V, (-,-))-module becauskis an ideal. The
Clifford action of a unit vector iV yields an isomorphism of vector spaces betwe(CL® A)
andi'N(V @F), soif NF = {0} thenl = {0}. SinceL ¢ I we havel NF c F3 while | # {0},
thusF3 # {0}.

Conversely assumi® # {0}. Let| be the ideal generated 7. Apply Proposition 4.3
for S= F3 taking an order such that< yif A(x) < A(y). Takef € F3,4' €V, (i = 1,2,3), and
ac A Then,

vter?erBeas f =acpter?erde f —(acvt)sr?erBe f —ple(ass?)ere f —plep2e(aes®)ef

=0, (6.2)

so A*F3 c F3. Applying (D5) for anya,b € V andc € F3, we haveacbec = (a*b)°c+
(a°b)scec F34A*F3 = F3 henceF® =1 NF. Thus we havé ¢ I, sol is proper. O
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PROPOSITIONG.3. LetRbe a simple physical conformal superalgebra. Then the map
1:CIV, () = R,
V102 vr — (01° +01°)(v2° +02%) -+ (0 ° +or o)L,
is surjective unlesy °V oV = 0 with vV # {0}.

PROOF. Supposé&/ = {0} and the map is neither zero nor surjective. Then the subspace
A@F is closed under th¢0) product and th€1) product, S)AA+ F generates a proper ideal.
Otherwise suppos¢cV oV £ {0}. Takel the ideal of the reduced subspatgenerated b =
VeVeV. We haveA*SC Sby (H3).V oV ¢SC A*S+ SC Sbecause of (H4). Apply Proposition
4.3 taking an order so that< y if A(x) > A(y). Then we havd NF = S, soS= F because
Ris simple andS+# {0}. Take a unit vectoe of V. Ris a C[V, (-,-))-module and the Clifford
action ofe yields an isomorphism betwe@L & A andV & F. SinceV &F =V &ScC Imi, so
CL& A C Imi, thus the map is surjective. O

We shall denote the conformal sub-superalgebra generatedidyIR) .

7. Invariants.

Let Rbe a physical conformal superalgebiRethe reduced subspadé = R¥2, A= R! and
F = RY2. Consider the trilinear map defined by

n:VxVxV-V
(u,v,W) — u*vow,

and the bilinear fornt-,-)yav onV AV defined by(uA v,wA Z)yavL = u*n(v,w,z). The form
is well-defined o’V AV becaus@ievewez= —uevezewand

uevewez= (U*v)*Wez—v*uswez
= —veuswez (7.1)
The form(-,-)vav is symmetric because
UeyeWeZ= —U*W*p°Z— U*voW*Z— U*W°p*Z+ 2Uu* (veW)°Z
= —weuezev— (u,v)(W,z)L — (u,w)(v,Z)L +2(u,z) (v,w)L
~2(w,0) (U, 2L~ (U,0)(W 2L — (U, W)(0, 2L+ 2(u, 2) (0, W)L
=Wweze*u°u. (7.2)
The form(-,-)vav is invariant under isomorphisms of physical conformal superalgebras.

PrRoPoOsITION7.1. Letf:R— R be an isomorphism of physical conformal superalge-
bras. f induces an isometric transformatidm f : (V AV, (-, )vav) — (V' AV, (-, )y v ) Where
V' =R%2
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PrROOF. For an isomorphisnf we have
(Uno,wAZf(L) = F((uno,wAZ)L)
= f(usvowe2)
— f(W)*f(o)* Fw)°f(2)
— (F(U) A F(0), (W) A F(@)F(L). (7.3)
(]

Furthermore we can reconstruct the productand ¢ on ((CI(V,(-,-))) from the form
(-, )vav for simple physical conformal superalgebras.

PROPOSITION7.2. LetR be a physical conformal superalgebra aRdhe reduced sub-
space. Consider the mapof Proposition6.3 and the map). Thenx,)y is uniquely determined
by the pair(1,n) for all n € N wherex,y € R,.

PROOF. The actiond/° andV ¢ are uniquely determined hyandn, since

Uop — %,(UU_UU), (7.4)

e vow = 1 (Uow) — 1 (1 (u,0,)) — (0, W)y 1 (), (7.5)
usvowoz= 1 (Uow2) — 1 (un (o,w.2)) — (W, 2y (W), (7.6)
uey = %l(uwvu), (7.7)
Uevow =1 (1 (u,0,W)), (7.8)

Lo Do WEXOY = (U 0) *WoXoY + (U*D) o Wo X°Y
= —N(W,u,v) o Xy —Wern (X, u,v) oy —wexen(y,u,v)
= —1(N(W,u,0)xy) — 1 (Wn (X, u,0)y) — 1 (WX (Y, U,0))
F1(n(n(w,u,0),xy)) +1(n (W1 (X,U,0),y)) +1(n (WX, N (Y, U,0)))
F YV (N (W,U,0)) + (1 (%, U,0),Y)v (W) + (%, 0 (Y U 0)vi (W), (7.9)
Usvewexey = I (Uowxy) — I (uwn (W,X,y)) — (X, y)v 1 (Uow)
(N (W, U, 0)xy) + 1 (W (X, U, 0)y) + 1 (Wxn] (Y, U, )
—1(n(n(w,u,0),%y)) —1(n(W,n(X,u,0),y)) — 1 (N (WX, N (y,u,0)))
—(%YVI(N(Wu,0)) = (7 (% U,0),y)vI (W) = (%0 (Y, u,0)vi (W), (7.10)

By Lemma 4.2 we havebC)pa =3 jribqj)Cip+jj@+SjCiprq-j)b(jya for somerj,sj € K,
hence all(v® x)® are written in some®s andx®s wherev € V, x € Imi and® denotes any of
cande. Sincelm =CL&V & ((VoV)+ (VeVeVeV))@d (VeoVeV), we have the results. O
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Denote CH(V, (+,-)) = Spar{vivz---wk|vi €V, k< n}. (7.4), (7.5) and (7.6) imply the fol-
lowing.

PROPOSITION7.3. LetRbe a simple physical conformal superalgebra &hithe reduced
subspace. For the map of Proposition6.3, we haveR, = 1(CI*(V,(-,-))). Furthermore if
VoVeV = {0} thenR, = 1 (CI?(V,(-,-))).

8. Classification of simple physical conformal superalgebras.

We start classification of simple physical conformal superalgebras. We will follow the no-
tationsVir, Ky, Ka, K3, $, Wy, andCKg given in [3] and [6]. By the results of the preceding
sections all that we have to do is listing up the leff\C(-, -))-submodules of GV, (-, -)) and the
symmetric forms oV AV appropriate to reconstruct simple physical conformal superalgebras.

Fix a vector spac&/ with the nondegenerate inner produet-) and consider an or-
thonormal basige;, e, --,en} of V. SetD? = Dy = (ex_1 +iex)/Vv2, Di = Dy = Dy =
(exx_1—i€x)/V2, andD" = D} D52 - .- Dl Wheren_ IN/2|,w e (Z/2Z)" andw; denotes the
ith binary digit ofw. We have the following theorem for the decomposition of lefMGtmodule

CI(V) ([4)-

THEOREM8.1. The leftCl(V)-moduleCI(V) is completely reducible. The irreducible
decomposition is given as follows.Nf= 2n then

CiVi= € M(w), (8.1)

we(zZ/2z)n
whereM(w) = CI(V)D". If N = 2n+ 1 then

ClVi= @ MfwaM (W), (8.2)

we(z/2Z)n

whereM*(w) = CI(V)D¥(1+ey).

PROPOSITION8.2. LetR be a simple physical conformal superalgebra wdimVv < 3.
ThenRis isomorphic to one of ViK1, Kz, Ks.

PrROOF. If dimV = 0 then the map is surjective, sdR is isomorphic toVir. Otherwise
by Proposition 6.2limF < dlr;‘IV for a simple physical conformal superalgeRgoR=R,
for V # {0} unlessdimV = 3 with VoV oV = {0}. If dimV = 1 then we hav&/ AV = {0},
so the conformal superalgebRe= R, is unique, which iKj. If dimV = 2 thendimV AV =
1. SinceD;*D;*D;°D; = L by (D5), so the only possible forrfi, )y v is (D1 A D1,D1 A
D1)vav = 1. Hencekeri = {0} because otherwise the for(n-)yv = 0, thus the conformal
superalgebr& = R, with dimV = 2is unique, which i&y. If dimV = 3thenD1 Die D1 D=
L,Di*e3*Dyoe3 =0, D1 e3-D1 es=0andD;*e3*Di°e3 = —L by (D5). So the possible form
(-, )vav is uniquely determined, which is nondegenerate. Héwmece= {0} because otherwise
the form(-,-)yv is degenerate. Thus the conformal superalg&bnaith dimV = 3 is unique,
which isKs. VoV eV £ {0} for K3, SOR= K. O
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Consider the polynomial ring" = C[x1, X2, -+ ,%n] of Grassmann indeterminateX" is
decomposed intX" = @4.zn X by the multidegree of polynomials. Define the action of\QI
onX" by Dif = v2x f andD;f = /24 f for f € X" whered denotesd/dx. If N = 2n then
the actionp : CI(V) — End(X") is an isomorphism, so for a left ideal of @) we have an
isomorphism of vector spacgs : CI(V)/I = Hom(Nyew kerp(DV),X"), whereW C (Z/2Z)"
andl = @cwM(W). Hence C[V)/I is decomposed into

cv)/i= @ (ClV)/, (8:3)

te{-1,0,1}"

where(CI(V)/1) = {u € (CI(V)/1)| pr(u)(Nwew kerp(DY) N XJ) € XZ,; forall se Z"}. De-
note the projectionst : CI(V)/l — (CI(V)/I). If N=2n+1 then we have a decomposi-
tion as left C[V)-modules C{V) = CI(V/Ceny)(1+en) @ CI(V/Cey)(1—en). So we have an
isomorphisnp; : CI(V) /I = Hom(Nyew+ kerp(DV),X") @ Hom(Ny,cw- kerp(DY),X"), where
W* C (Z2/2Z)" andl = (Dyew+ MT(W)) & (Byew- M~ (W)). Hence the decomposition is

V)= P ©Cv)/)ie @ (Civ)/Iy. (8.4)

te{—1,0,1}" te{-1,0,1}"

Denote the projections = : CI(V)/l — (CI(V)/D)E.
Consideraq;j j € C defined bya; jL = Di*Dj*Dj°Dj fori,j € {1,2,--- ,n} andf jk1 € C
by B, kL = Di*Dj*Dy°D; fori, j, k| € {1,1,2,2,---,n,n}. We have

Dj*Di*Di°Dj = (1+ajj)L,Dj*Dj*Dj°Dj = (1—ajj)L anda j = aj;.

PrROPOSITION8.3. LetR be a simple physical conformal superalgebra wdimV > 4.
ThendimV is one of4, 6, 8. Furthermore itV °V oV = {0} thendimV = 4.

PROOF. Suppose given a simple physical conformal superalgBlwéih dimV = 2n+1
wheren > 2. For an arbitraryu € Z/2Z we have

0= —(exn+1°D;)*(D;°DY) — (Dj°DY)* (€2n1°Di)
= (Di*€zn+1°Di)°DY + Dj° (DY *€xn:1°Di)
+(ezn1°Di°DY) °Dj + €zny1°(Dj * D DY). (8.5)

Apply ¥+ + " ~ to the both sides where all digits blre0 except fortj = (—~1)“. Then
we have((—1)"aj j + 2)e2n+10D§‘ =0.If e2n+1°D‘jJ =0then0= e2n+1°e2n+1<>D‘jJ = D‘j‘, sSo we
havea; j = —(—1)"2 for an arbitraryu € Z/2Z wherei, j = 1,2,--- ,n. HenceR does not exist.

Suppose given a simple physical conformal superalgebradiitV = 2n andn > 4. Con-
siderSc (Z/2Z)" such thakeri = | = @s.gM(s). By Proposition 7.3 GV)/I = CI*(V)/I,
so we haverd = 0 if #{k € N| tx # 0} > 4. Hence! (D) = ¢ (1(D%)) = O for an arbitrary
w e (Z/2Z)" wheret; = (—1)™, soS= (Z/2Z)", that is, the map is the0 map, thus we have
the result.

If VoV oV = {0} then we havelimV = 4 in the same way by ¢V)/I = CI*(V)/I. O

PrOPOSITIONS8.4. A simple physical conformal superalgetdRawith dimV = 6 is iso-
morphic toCKg
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PROOF. Suppose given a simple physical conformal superalgBlwéh dimV = 6. The
map! is surjective. For all, j,k € N satisfying{i, j,k} = {1,2,3} we have

0= (B1°0))* (BDi) + (B D))+ (By°D))
= (Dj*D;i°Dj)°Dk+ Dj° (Dk*D; °Dj) + (D * Dj °Dx) °Dj + D; °(D; * D ° D)
= (aiJ —|—ai’|<)|5j Q|5|<-|---- . (8.6)

Applying 77" to the both sides where all trial digit ofis O except for theith and thejth,

t =tj = —1, we have(q; j + ai x)D; °Dx = 0. Hence we havéa; | + a; k) (ajx+ 1) = 0 applying
Dj*Dye to the both sides. Similarly fdr= (D °Dj)e (Dk°Dj)+ (Dy°Dy)* (D; °Dj) and the term
D;°Dx we have(ai ; — aix)(ajx — 1) = 0. Itis easily checked that the solutions of the above
equations are = (012,023,a31) = (0,0,0), a =(—-1,-1,-1),a =(-1,1,1), a = (1,-1,1),
a=(1,1,-1). If a = (—1,—1,—1) then we hav®;°D; = 0andD;°D; = Ofor alli, j = 1,2,3,
which impliesD;" ° D2 e Dy® = 0 for all w = (w1, W,,w3) € (Z/2Z)® where{i, j, k} = {1,2,3},
soR= 0. In the same waR = 0 for eacha = (—-1,1,1), a = (1,-1,1), a = (1,1,-1). If

a = (0,0,0) then the se{D;" °D2|i # j, w e (Z/2Z)?} is linearly independent. Considering

the relation® = (D;"* °Dj?)* (D‘Q/lOD:MZ) + (D}MKOD‘Q/Z)' (D" °D}?) for all ww € (Z/2Z)? and

i,J,k I € {1,2,3} in the same way, we hav@ ji =0 if {i,],k I} # {s,st,t} for anys;t €
{1,2,3}. Consider the map for this case. By Proposition 7.3 we may assubi®,Ds € keri.

If we haveD}*°D32°D3® # 0 for somew € {(1,0,0),(0,1,0),(0,0,1)} thenR is not simple

by Proposition 6.2. HencB}" °D}?°Dj3* = 0 for all w € {(1,1,1),(1,0,0),(0,1,0), (0,0,1)}.

Thus the simple physical conformal superalgebra structure on this space is uniquely determined,
which isCKg. O

PROPOSITION8.5. Simple physical conformal superalgebras wdtmV = 8 do not exist.

PROOF. Suppose given a simple physical conformal superalgBlwih dimV = 8. The
maplt is surjective. Then we haver j + a; ) (aik+1) = 0and(a; j — aj x)(aix — 1) = Ofor all
distincti, j,k. It is easily checked that the set of solutiams= (a12, 013,014,023, 024,03.4) iS
{(0,0,0,0,0,0), (1,2,1,—-1,-1,-1),(1,1,-1,-1,1)1), (1,-1,1,1,-1,1), (1,—1,-1,1,1,1),
(-1,1,-1,1,-1,1), (-1,1,1,1,1,-1), (-1,-1,1,-1,1,1), (-1,-1,-1,-1,—1,—-1)}. For
the non-zero solutions we ha®"D;?D,*D" = 0 for all w € (Z/22)* where{i, j,k, I} =
{1,2,3,4}, henceR= 0. If a = 0 then the se{D;" °Di?|i # j, w € (Z/2Z)?} is linearly
independent, s@ jx = 0 if {i,j,kI} # {s,§t,t} for any s;t € {1,2,3,4}, which implies
[(D{"*D}?D,*D}") = 0if and only if D" * D} ° D%~ D}"* = 0. Suppose (D;"D}?D,*D}*) = 0
for somew ¢ (2/22)* where{i, j,k,1} = {1,2,3,4}. Then0 = D}NﬁlOD}Nl-D‘J”ZOD‘Q’%D}N“ =
D}"2°D*° D" because of (H4), so we havéD"*'D}?Dy*D}"*) = 0. Sinceker: # {0} by
Proposition 7.3, thuR = 0. O

PROPOSITION8.6. Forasimple physical conformal superalgebra wlithV = 4 the form
(,-)vav is as given on table 1 for sontec C.

PROOF. The table 1 is obtained by using the following formulae:

D3eD%°DY =0, (8.7)
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Table 1. The forn{(-,-)yv for dimV = 4.

(-,-)\O/'/\V 51/\D1 52/\D2 D1 AD2 51/\D2 Dl/\|52 51/\52

D; AD;y 1 a 0 0 0 0

Do AD> a 1 0 0 0 0

DiAD, | 0O 0 0 0 0  —(1+a)
DiAD; | 0O 0 0 0 ~(1—a) 0

DiAD | O 0 0 -(1-a) 0 0

DiADs| O 0 —(1+a) 0 0 0
D3+D3°D? =0, (8.8)

D}+D3*1+D§ — ~Df+D}- D}

~ D}+D§+D} "+ D§D3-D}*1 4 D-DF+D} L - 2(D3+DY) D3

= D3+ (~1)*"aD}, (8.9)
D3+D3*1oD? = D + (—1)3*PaD?, (8.10)
wherea,b e Z/2Z. O

REMARK 8.7. The form(-,-)vv of Proposition 8.6 is given by
(e Nej, &N )vav = —AEjk + Ojkdi — kIji, (8.11)
wheregjji is antisymmetric witheypz4= 1.
On the other hand we have the following proposition.

PROPOSITION8.8. A physical conformal superalgebra structure existsGifV) where
dimV = 4 with the form(-,-)y v described in Tabléd for an eacha € C.

PROOF. By Proposition 7.2 the fornf,-)y v determines the productsand* on CI(V)
for an arbitrarya € C. It is easily checked that they have all properties (H0)—(H6). By Proposi-
tion 5.4 a conformal superalgebra structure is determined @n)@r eacha € C. O

We shall denote thus obtained family of physical conformal superalgebrd$by,cc. N
is equivalent td\lff changing the conformal vectarto Ly, =L — (a/2)de; *e;°e3°e4 except for
a? = 1. Fora? = 1 we shall denoté\, = (Ng, (n),L1), which is isomorphic tgN?, (n),L_1).

NOTE 8.9. The conformal superalgebig is written down in B]. The physical conformal
superalgebra\I‘? is isomorphic to the subalgebra Kf, generated by the primary vectors other
thané;§2¢3¢a.

PROPOSITIONS.10. NZ andN? are isomorphic if and only ier2 = B2.

PBOOF._ SetE; = 51/\ D1, Ex = 52/\ Dy, E3=D1ADy, E4 = 51/\ Do, E5=D1A 52,
E¢ = D1 AD2. The characteristic polynomial of the mati4 ; = (Ei,Ej)vav is ((t+1) —
a?)((t —1)2— a?)2, which is invariant under automorphisms by Proposition 7.1. Henb if
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andN4 are isomorphic then? = 32. Conversely suppogg= —a. Consider the map:V —V
defined byf (e1) = &, f(e2) = e, f(&x) = e for all k > 2. Becausderi = {0}, f extends to an
automorphism of conformal superalgebra, which mape —a. O

For their simplicity we have the following.
ProPOsITION8.11. Nf is simple if and only itr? £ 1.

PrROOF.  Consider the bilinear forng-,-) onV AV AV defined by(ul AUz AUz, v1 Avp A
v3)L = Uz * Uz * Uy *v1 °v2°03. Denotef; j =D; AD; AD; andf. = D.AD.ADJ and take the basis
{fij. fijl {i.i} = {1.2}} of VAV AV. Then we havéf; j, fi;) = (fi}, fit) = (1— a?)§ 5,1,
(fi,j, f)) = (fi,j, fky) = 0. So the form(-,-) is symmetric, and is nondegenerate if and only if
a? # 1. By Proposition 6.2N§ is simple if and only ifa? # 1. a

In particulaerl’ is simple, so we have the following corollary.
COROLLARY 8.12. Ngis simple.

NoTE8.13. A one-parameter family of superconformal algebras that is called the large
N = 4 superconformal algebra is written down itd]. In (2), (3), (4) of L1 sety= (3 +1)/2
and replace the central terms By Fix the conformal vectok(z) = $penLnz "2, If B2 #£ 1
then the centerless lar@e= 4 superconformal algebra is isomorphid\ﬂﬁ by

Ga = V26,

ARl — 2(1il3) (e2°e3terey),
Aﬂzz(lilim(eloeﬂezoe‘t),
K g (et erey). (8.12)

U= 1778261'6‘2063084,

where{a, by, by, b3} ={1,2,3,4} andb; < by < bz. Forf3 = +1the largeN = 4 superconformal
algebra is isomorphic this.

NoTE8.14. The action of the Lie algebrgA,(0)) onV is not faithful for Nf since
e;*exoe30oe acts onV trivially. The ideal generated bgi e eyce3cey is Ritself. As is dis-
cussed in (4.12) of], for a unit vectoru € V one has aW\,-module isomorphismc : A, = F
with the inverse mapi® : F = A, whereA, = {a € A| a*u = 0} in our terminology. Ae, is
spanned bAtl + A-1 At2 _A-2 A3 _ A3 andU, so the condition thef is isomorphic to
A, asA,-modules is also satisfied here.

PROPOSITION8.15. A simple physical conformal superalgetRawith dimV = 4 is iso-
morphic to one 0&, Ws, N; andNy' for somea € C wherea € (C/{+1})\ {[1]}.
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PrRooOF.  Since the Clifford action of a unit vector W yields an isomorphism between the
even subspace of Inand the odd subspace of imwe havedimimi > 2dimV, sodimIimi is
one of8, 12and16.

If dimImi = 16then the map is injective, soR, is isomorphic taNg' for somea € C. So
I is surjective becausécV oV # {0} for all Nf's. N{' is simple if and only ifa? # 1, henceRis
isomorphic toNg for somea? # 1.

If dimlmi = 12 thendimken = 4, so we may assumkeri = M(00), which implies
D9°DJ = 0. a = —1 by Proposition 8.6, hencB, is uniquely determined, which is neither
simple nor withV °V oV = {0}. So simple physical conformal superalgebras wlithimi = 12
do not exist.

If dimIimi = 8 thendimker: = 8. We may assumb1(00) C ker:, which impliesD9° D3 =
0. a = —1 by Proposition 8.6, s&ert = M(00) & M(11). HenceR, is uniquely determined,
which is . In particular the Lie algebréV cV, *) and its action oV by the producte is
uniquely determined. Consider the pairihgV AV AV x F — C defined byd(v* Av? Av3, f)L =
vtep?ep3e f. By (D6) we havel(a- w, f)+J(w,a-f)=0forallac A, f ¢ F andw eV AV AV
whereV andF are supposed to b@\, *)-modules by the product and so isV AV AV by
derivation. Oncd is determinedyeve f is uniquely determined for all,v €V andf € F, so the
action ofA=Ve°V +V ¢F onV by the produce is uniquely determined. The pairidgs (A, *)-
invariantand if)(cw, f) =0forall weV AV AV thenf =0, so the action oA onF by the product
* is uniquely determined by the action AfonV AV AV, which determines the produdte A
because of (H4). By Lemma 4.2 we hail®gC)a= 3 ;rjbq_j)Cip+jya+ SjCipsq—j)Pyjya for
alla,b,c e Rfor somerj,s; € C, so the simple physical conformal superalgebra structuf@isn
uniquely determined by the pairidg Consider am-submodulel® = {w eV AV AV| J(w, f) =
Oforall f € F}. J°#V AV AV becauseR is simple. The(VeV,*)-moduleV AV AV is
decomposed into tw2-dimensional irreducible modules, dinJ® is either0 or 2. If dimJ° =0
thenR s isomorphic toN,. If dimJ° = 2 then we can choose a bagid, Dy, 51, 52} of V that
satisfiegDj, D) = (Dj,D;) = &; and(Dj, D) = 0so thatl® = Spa{D; AD; AD2,D1 AD2AD,}
andkeri = M(00) ® M(11), henceRis unique if exists, which i8\. O

Hence we have the complete list of simple physical conformal superalgebras.

THEOREM8.16. A simple physical conformal superalgebras is isomorphic to one of Vir,
K1, K2, K3, S, Ws, Na, Nf andCKs, wherea € (C/{£1})\ {[1]}.

If conformal superalgebra® andR are equivalent then the Lie superalgeb{@gdR, (0))
and(R /R, (0)) are isomorphic. Any pair of Lie superalgebi@ér /dVir, (0)), (K1/dKs,(0)),
(K2/9K2,(0)), (K3/9Ks,(0)), ($/0%,(0)), (We/dWk, (0)) and (N$/INY, (0)) is not isomor-
phic, whileN4 andN{'s are equivalent tN2 except fora? = 1. Hence we have the following
corollary.

COROLLARY 8.17. A simple physical conformal superalgebra is equivalent to one of Vir,
K1, K2, K3, S, W, N andCKs.
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