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Abstract. Existence of complex codimension-one transverse structure is stud-
ied using the complex dilatation. As an application, a version of quasiconformal
surgeries of foliations is considered.

1. Introduction.

In the study of foliations of codimension greater than one, it is natural to restrict
oneself to foliations which admit transverse geometric structures. In the present paper,
we consider transversely holomorphic foliations of complex codimension one, namely, fo-
liations whose holonomy pseudogroups are generated by biholomorphic local diffeomor-
phisms of C. Although the situation seems restrictive, there are many interesting exam-
ples. For example, if a holomorphic vector field on C2 with Poincaré type singularities
is given, then a transversely holomorphic foliation of S3 is naturally induced. Although
transversely holomorphic foliations of closed 3-manifolds are classified by Brunella [4],
Ghys [6] and Carrière [5], it seems difficult to tell if a given flow admits transverse holo-
morphic structures. In addition, if the ambient manifold is of dimension greater than
three, there are very complicated examples [7] so that it seems very hard to classify such
foliations. Thus it is important to find good criteria for foliations admitting transverse
holomorphic structures as well as to find methods to construct such foliations. On open
manifolds, a homotopy theoretic approach can be found for example in a work of Haefliger
[8]. In this paper, we introduce the notion of quasiconformal foliations, and show such
foliations are in fact transversely holomorphic. Quasiconformal foliations are foliation
version of quasiconformal groups. Indeed, the construction of holomorphic structure is
an application of Tukia’s method found in [13] and the proof of the main theorem pre-
sented in the third section is almost identical to Tukia’s one for group actions. However,
some additional considerations are needed for applying it to foliations and formulating
the boundary relative version which is needed for formulating a version of quasiconfor-
mal surgeries of foliations. This is almost equivalent to the extension problem of given
transverse holomorphic structures on the boundary. Under an additional but natural
condition, such an extension is possible if the foliation is quasiconformal. The surgery
considered here is closely related to the Julia sets for complex codimension one folia-
tions given by Ghys, Gomez-Mont and Saludes [7], and also to characteristic classes of
foliations.
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This paper is organized as follows. In Section 2, relevant definitions are given. In
Section 3, the main theorem is proved. As a corollary, it is shown that under a natural
condition, two transversely holomorphic foliations can be glued possibly after changing
the transverse structure on one piece. The relevant tools are complex dilatations and
the measurable Riemann mapping theorem (see [1] for details). Finally, relation with
characteristic classes is discussed in Section 4.

2. Definitions.

Let F be a transversely oriented, real codimension two foliation of a manifold M .
If the boundary of M is nonempty, then assume that F is transversal to the boundary.
Although we are interested in smooth foliations, we only assume that F is transversely
quasiconformal. Roughly speaking, F is said to be transversely quasiconformal if the
holonomy pseudogroup consists of quasiconformal local homeomorphisms of C whose
dilatations are uniformly bounded. A more precise definition will be given soon later.

Let {Ui} be a locally finite foliation chart so that each Ui is homeomorphic to Vi×Di,
where Vi is an open set of Rdim M−2 and Di is an open disc in R2 (if F is not smooth, we
assume that such a chart exists). Let ϕji be the transition function from Ui to Uj , then
every ϕji is of the form (ψji, γji), where γji is a function defined on an open subset of Di.
Fix now for each i an identification of Di with an open disc in C, then each γji is a local
homeomorphism of C. Let T be the disjoint union of Di’s, then T can be considered as
an open subset of C and also as a subset of M . We call this T a complete transversal.
When we need a measure class of T , we consider the restriction of the Lebesgue measure
of C to T . We may assume that this measure class coincides with the natural one induced
from M if every γji preserves the Lebesgue measure class. This is indeed the case if F
is smooth or every γji is a quasiconformal homeomorphism.

Definition 2.1. Let T =

Π

Di be a complete transversal and consider it as an
open subset of C. Set Γ1 = {γji}, where γji is as above. We denote by Γ the holonomy
pseudogroup associated with T , namely, let Γ be the pseudogroup generated by Γ1. If
we denote by Γn the set of local homeomorphisms of C obtained as the composition of
at most n elements of Γ1, then Γ =

⋃
Γn. For an element γ of Γ , the domain of γ is

denoted by dom γ and the range of γ is denoted by range γ.

In order to introduce transversely quasiconformal foliations, recall the notion of
complex dilatation.

Definition 2.2. For an orientation preserving quasiconformal local homeomor-
phism f of C, we denote by µf (z) the complex dilatation (Beltrami coefficient) of f ,
namely, we set

µf (z) =
fz̄(z)
fz(z)

,

where fz̄ = ∂f
∂z̄ and fz = ∂f

∂z . Such an f is said to be K-quasiconformal for K ≥ 1 if
‖µf‖ ≤ 1−K

1+K , where ‖µf‖ denotes the essential supremum of |µf | on the domain of f .
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It is known that the partial derivatives are well-defined almost everywhere for qua-
siconformal local homeomorphisms. A quasiconformal local homeomorphism f is biholo-
morphic if and only if it is 1-quasiconformal, or equivalently, |µf (z)| = 0 a.e. z.

Definition 2.3. Let F be a real codimension two foliation of a manifold M . If
∂M 6= ∅, assume that F is transversal to ∂M . Let T be a complete transversal for
F and let Γ be the holonomy pseudogroup associated with T . Then, F is said to be
K-quasiconformal with respect to T if every element of Γ is K-quasiconformal.

Since the foliation is assumed to be transversely oriented, 1 > |µγ(z)| ≥ 0 for γ ∈ Γ .

Remark 2.4. The notion of K-quasiconformality depends on the choice of com-
plete transversals. However, provided that M is compact and F is smooth, if F is
K-quasiconformal for some choice, then F is K ′-quasiconformal for other choices with
some K ′ ≥ 1.

The notion of transversely quasiconformal foliations is a foliation version of quasi-
conformal groups. Let G be a group of quasiconformal self-homeomorphisms of an open
subset U of CP 1 and assume that the action is orientation preserving. The group G is
said to be a quasiconformal group if there is a constant k < 1 such that |µg(z)| ≤ k for any
g ∈ G and a.e. z. A theorem of Tukia [13] shows then that there is a K-quasiconformal
homeomorphism f : U → CP 1 such that the action of f ◦G◦f−1 on f(U) is holomorphic.
The main theorem in this paper is a foliation version of his theorem.

Definition 2.5. Let F be a transversely quasiconformal foliation of a manifold
M which is transversely orientable and of real codimension two. Let {Vi×Di, (ψji, γji)}
be a foliation chart as above. Set T =

Π

Di and consider T as an open subset of C, and
let Γ be the holonomy pseudogroup associated with T . Let f be a K-quasiconformal
homeomorphism from T to its image, then one can form a new foliation F ′ whose
foliation chart is given by {Vi × f(Di), (ψji, f ◦ γji ◦ f−1)}. The foliation F ′ is called a
K-quasiconformal conjugate of F . The complex dilatation µf of f is called the transverse
complex dilatation of the conjugacy.

Definition 2.5 is reduced to a more natural form for transversely holomorphic folia-
tions.

Definition 2.6. Let F be a transversely holomorphic foliation of M , of complex
codimension one. The transverse complex dilatation µtf of a foliation preserving diffeo-
morphism f of M into itself is defined to be the complex dilatation of f in the transverse
direction with respect to the transverse holomorphic structure of F . If

∥∥µtf
∥∥
∞ ≤ K−1

K+1 ,
f is said to be transversely K-quasiconformal.

Finally, we introduce the complex dilatation for germs of elements of Γ .

Definition 2.7. Let Γ be a topological groupoid acting on an open subset T of
C. Suppose that Γ is generated by orientation preserving quasiconformal local homeo-
morphisms of T . We denote by [γ]x the germ of element γ of Γ at x if x ∈ dom γ, and set
Γx = {[γ]x γ ∈ Γ, x ∈ dom γ}. For an element [γ]x in Γx, we choose its representative
γ ′ and set µ[γ]x(x) = µγ ′(x). By abuse of notation, µ[γ]x(x) is denoted again by µγ(x).
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Note that µγ(x) is well-defined for a.e. x and any γ. We have Γγx[γ]x =
{[γ ′γ]x γ ′ ∈ Γγx} = Γx if γ ∈ Γx. This property plays an important role in prov-
ing the main theorem. In what follows, we denote [γ]x simply by γ, because only the
germ of elements of Γ is relevant.

3. Main Theorem.

Definition 3.1. Let D be the Poincaré disc and let X be a subset of D bounded
in the Poincaré metric. Let P (X) be the center of the unique hyperbolic ball D(x, r)
with the properties that 1) D(x, r) ⊃ X and 2) if D(y, r′) ⊃ X and y 6= x, then r′ > r,
where D(x, r) denotes the hyperbolic ball centered at x and of radius r. We call P (X)
the hyperbolic mean of X.

The existence of such a D(x, r) is shown in [13].
We adopt the following notations.

Notation 3.2. Let F be a transversely orientable, real codimension two foliation
of a manifold M . Let W be a codimension zero submanifold of M and suppose that
∂W is transversal to F . Denote by TW a complete transversal for F |W , and denote
by ΓW the holonomy pseudogroup of F |W associated with TW . Choose a complete
transversal T of F such that T contains TW and that T \ TW is a complete transversal
for F |M\W . Let Γ be the holonomy pseudogroup associated with T . Set then Γ̃W =
{γ ∈ Γ dom γ ⊂ TW , range γ ⊂ TW }.

Elements of Γ̃W represent holonomies along leaf paths connecting points of W but
not necessarily contained in W .

The main theorem is as follows.

Theorem 3.3.

1) Let F be a real codimension two foliation of a manifold M . If ∂M 6= ∅, then
assume that F is transversal to ∂M . If F is K-quasiconformal with respect to a
complete transversal T , then F admits a transverse holomorphic structure after
taking a transverse K-quasiconformal conjugate of F .

2) Let W be a codimension zero submanifold of M and assume that ∂W is transver-
sal to F . Assume that F is K-quasiconformal and that a transverse holomorphic
structure is given to F |W . Define TW , T , ΓW and Γ̃W as in Definition 3.2. Sup-
pose now that Γ̃W is an extension of ΓW by biholomorphic local diffeomorphisms
of TW , then the transverse holomorphic structure of F |W extends to a transverse
holomorphic structure of F on M after taking a transverse K-quasiconformal
conjugate of F which is transversely holomorphic on W .

Before giving a proof, we explain the condition assumed in 2). Suppose that the given
transverse holomorphic structure of F |W extends to the whole manifold by modifying T

by a quasiconformal homeomorphism f which is biholomorphic on TW . Then, f ◦Γ ◦f−1

is generated by biholomorphic local diffeomorphisms. Let γ be an element of Γ which
corresponds to a leaf path connecting points of W but not necessarily contained in W .
Then f ◦ γ ◦ f−1 is biholomorphic. Since f is biholomorphic when restricted to W , the
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mapping γ itself should be biholomorphic. Hence the assumption in 2) is indispensable.
The easiest case where the compatibility condition is satisfied is that F is in fact a flow
and that each orbit meets the boundary at most once.

If the compatibility condition is dropped in Theorem 3.3, there is a counterexample
as follows.

Example 3.4. Let F be the foliation of T 2 × [0, 1] by the intervals {p} × [0, 1],
p ∈ T 2. Give T 2 × {0} and T 2 × {1} two distinct complex structures, and extend them
trivially to W0 = T 2 × [0, ε) and W1 = T 2 × (1 − ε, 1], respectively, where ε is a small
positive real number. It is then obvious that the transverse holomorphic structure on
W0∪W1 cannot be extended to any transverse holomorphic structure of F on the whole
T 2 × [0, 1].

Proof of Theorem 3.3. First we show 1). This part is essentially due to Tukia.
We repeat his proof with necessary adaptations, basically following the notations in [13].

Denote by D ⊂ C the Poincaré disc. For x ∈ T and γ ∈ Γx, define a Möbius
transformation of D by the formula

Tγ(x)(z) =
γz̄(x) + γz(x)z
γz(x) + γz̄(x)z

,

where z ∈ D. If γ ′ ∈ Γγx is a quasiconformal homeomorphism with the complex
dilatation µγ ′ , then Tγ(x)(µγ ′(γx)) = µγ ′γ(x), where γ ∈ Γx. For x ∈ T , set Mx =
{µγ(x) γ ∈ Γx}, then we have

Tγ(x)(Mγx) = {Tγ(x)(µγ ′(γx)) γ ′ ∈ Γγx}
= {µγ ′γ(x) γ ′ ∈ Γγx}
= {µγ ′γ(x) (γ ′γ) ∈ Γx}
= Mx.

For x ∈ T , we set µ(x) = P (Mx) if Mx is bounded, where P (Mx) is the hyperbolic
mean of Mx, and µ(x) = 0 if either Mx is unbounded or x 6∈ T . Although foliations are
considered, µ is still measurable. To see this, recall that Γ is generated by Γ1, which is
countable. We give an order to elements of Γ1 and denote by γi the i-th element. Set
Gi = {γ1, γ2, . . . , γi} and let Γ ′n be the subset of Γn which consists of the composition
of elements of Gn. Then clearly Γ ′n is finite and

⋃
Γ ′n = Γ . Let M ′

x be the subset of D

obtained by collecting µγ ′(x), where γ ′ ∈ Γ ′n ∩Γx. We set µn(x) = P (M ′
x), where P (∅)

is set to be 0. An elementary argument shows that the sequence {µn(x)} converges to
µ(x) if Mx is bounded. As µn(x) is the unique point determined in a measurable way as
in Definition 3.1, µn is a measurable function. Notice that the boundary of the domain
of each element is of Lebesgue measure zero, since quasiconformal maps preserve the
Lebesgue measure class. Hence µ is also a measurable function.

Finally let f be the quasiconformal mapping with µf (x) = µ(x) a.e. x given by the
measurable Riemann mapping theorem, then
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µf (x) = P (Mx)

= P (Tγ(x)(Mγx))

= Tγ(x)(P (Mγx))

= Tγ(x)(µf (γx))

= µfγ(x)

for a.e. x ∈ T and every γ ∈ Γx. This implies that f ◦ Γ ◦ f−1 acts as holomorphic
transformations on f(T ). The dilatation of f can be estimated exactly as in [13].

The second part is shown as follows. Let W̃ be the saturation of W in M and let TfW
be the corresponding subset of T , then TfW is open subset of T invariant under the action
of Γ . We define a measurable function µ′ on T instead of µ as follows. For x ∈ TfW , set
M ′

x = {µγ(x) γ ∈ Γx, γx ∈ TW }. If γ ∈ Γx, then we have

Tγ(x)(M ′
γx) = {Tγ(x)(µγ ′(γx)) γ ′ ∈ Γγx, γ ′γx ∈ TW }

= {µγ ′γ(x) γ ′ ∈ Γγx, γ ′γx ∈ TW }
= {µγ ′γ(x) (γ ′γ) ∈ Γx, γ ′γx ∈ TW }
= M ′

x.

The compatibility condition on ΓW and Γ̃W implies that M ′
x = {0} if x ∈ TW . Set now

µ′(x) =

{
P (M ′

x) if x ∈ TfW and M ′
x is bounded,

P (Mx) if x 6∈ TfW and Mx is bounded.

As in the case 1), µ′(x) is essentially bounded, measurable and invariant under the action
of Γ . Since µ′(x) = 0 for x ∈ TW , the conjugacy is transversely holomorphic on W . This
completes the proof. ¤

Remark 3.5. Sullivan also made a similar construction in [11] involving the
barycenter of Mx instead of the hyperbolic mean.

Remark 3.6. Even if the foliation is not transversely orientable, one can find an
invariant transverse conformal structure under the same condition. After conjugation,
the holonomy pseudogroup is generated by biholomorphic and bi-antiholomorphic local
diffeomorphisms of C.

A version of quasiconformal surgery is formulated as follows. Consider the following
situation: let M1 and M2 be manifolds with boundaries ∂M1 and ∂M2. Let Fi be a
transversely holomorphic foliation of Mi transversal to the boundary (i = 1, 2). Let
N1 and N2 be the union of several components of ∂M1 and ∂M2, respectively. Assume
that there is a foliation preserving, transversely quasiconformal homeomorphism ϕ from
(N1,F1|N1) to (N2,F2|N2). If one tries to glue M1 and M2 by ϕ, a situation as in the
part 2) of Theorem 3.3 occurs. Pulling back the structure by ϕ, F1 is given a transverse
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holomorphic structure on a collar neighborhood W of N1, because F1 is transversal to
the boundary. The problem is if this structure can be extended to the whole M1. Let
TW , ΓW and Γ̃W as in Definition 3.2. The latter should be an extension of ΓW by
biholomorphic local diffeomorphisms of TW . This is sufficient if one more condition is
fulfilled.

Corollary 3.7. Suppose that Γ̃W is an extension of ΓW by biholomorphic local
diffeomorphisms of TW and that ϕ is transversely K-quasiconformal. Then M1 ∪ϕ M2

admits a transversely holomorphic foliation which is the same as F2 on M2 and which
is transversely K-quasiconformal conjugate to F1 on M1.

Proof. Let ` be a leaf path, then we may assume that ` is transversal to ∂W . If
` comes into a component of W and goes out of W , then by pushing ` slightly into the
interior int(M \W ) of M \W , ` can be modified so that ` stays in int(M \W ) because W

is a collar. Hence we may assume that ` satisfies one of the following conditions; 1) ` stays
in int(M \W ), 2) ` connects a point in W and a point in int(M \W ) meeting ∂W once,
or 3) ` connects two points in W . Now by assumption, F1 is transversely holomorphic
when restricted respectively to W and to int(M \ W ), and Γ̃W is an extension of ΓW

by biholomorphic local diffeomorphisms of TW . It follows that the holonomy along ` is
holomorphic in the cases 1) and 3), and that the distortion of the holonomy along ` is
bounded by the distortion of ϕ, which is bounded by assumption in the case 2). Hence
2) of Theorem 3.3 can be applied so that one can find a transverse complex structure on
M1. ¤

Remark 3.8.

1) The gluing map ϕ is a priori transversely K-quasiconformal for some K if N1 is
compact and ϕ is smooth.

2) If F is a flow, then N1 and N2 are complex lines and ϕ|N1 is seen to be a mapping
between these lines. The transverse complex dilatation of ϕ is then equal to the
complex dilatation of the mapping ϕ|N1 .

3) As easily seen, the surgery given by Corollary 3.7 need not produce a new folia-
tion.

Remark 3.9. This kind of surgeries of transversely holomorphic foliations are
considered in [8] when the gluing mappings are transversely holomorphic. Corollary 3.7
shows that these mappings need not be transversely holomorphic if one is allowed to
modify the transverse holomorphic structure on one piece.

4. Remarks from the viewpoint of characteristic classes.

The above results can be explained in terms of the classifying spaces as follows. Let
ΓC

1 and Γ qc
2 be the pseudogroups generated by local biholomorphic diffeomorphisms of C

and by orientation preserving local quasiconformal homeomorphisms of R2, respectively.
Let BΓC

1 and BΓ qc
2 be the classifying spaces for ΓC

1 -structures and Γ qc
2 -structures, re-

spectively. Denote by π the natural mapping from BΓC
1 to BΓ qc

2 .

Definition 4.1. A mapping f :M→BΓ qc
2 is said to be bounded if there is a real
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number K ≥ 1 such that the corresponding pseudogroup consists of K-quasiconformal
mappings.

Note that if the mapping f as above admits a lift to BΓC
1 , it is bounded. Given

a transversely (K-)quasiconformal foliation of a manifold M , there is a classifying map
from M to BΓ qc

2 . Such a classifying mapping is also bounded. In considering classifying
spaces, the homotopy classes of mappings are relevant. However, we do not know any
good criteria for mappings to BΓ qc

2 being homotopic to bounded ones.
In this line, we have the following

Theorem 4.2.

1) A mapping f : M → BΓ qc
2 admits a lift to BΓC

1 if the mapping f is bounded.
The lift is not unique in general.

2) The image of the mapping π∗ : H3(BΓ qc
2 ;C/Z) → H3(BΓC

1 ;C/Z) is {0}.
3) The imaginary part of the Bott class is neither invariant under transversely qua-

siconformal homeomorphisms, nor well-defined in the category of transversely
quasiconformal foliations.

Proof. The first part of 1) is a reformulation of Theorem 3.3, 1). In order to show
2), let BΓ 1

2 and BΓ 1
2 be the classifying spaces for real codimension-two transversely ori-

ented C1-foliations and for real codimension-two transversely oriented C1-foliations with
trivialized normal bundles, respectively. The mapping BΓC

1 → BΓ qc
2 is then decom-

posed as BΓC
1 → BΓ 1

2 → BΓ qc
2 . Hence the above mapping π∗ is also decomposed as

H3(BΓ qc
2 ;C/Z) → H3(BΓ 1

2 ;C/Z) → H3(BΓC
1 ;C/Z). On the other hand, it is shown

in [12] that BΓ 1
2 is contractible, which implies that H3(BΓ 1

2 ;C/Z) = {0}. The second
part of 1) and 3) follow from the following Example 4.4. ¤

Remark 4.3. The part 2) of Theorem 4.2 implies that the Bott class is not well-
defined in the category of foliations whose holonomy pseudogroup is generated by quasi-
conformal local homeomorphisms. The first part of 3) is stronger than this. The second
claim in 3) do not necessarily imply the first part. For example, it is known that the
Godbillon-Vey class is invariant under foliation preserving diffeomorphisms of class C1

even though it is not well-defined in the category of foliations of class C1 [10], [12], [2].

Example 4.4. Let α ∈ C and define a mapping f : C → C by setting fα(z) =
e2π

√−1αz. Note that α and α + 1 give the same mapping. Assume that α, β ∈ C \R,
and define a homeomorphism ϕ of C to itself by setting ϕ(z) = z |z|−

√−1 β−α
Im α . We also

assume that (Im β)/(Im α) > 0 so that ϕ is orientation preserving. The homeomorphism
ϕ is in fact a quasiconformal homeomorphism and ϕ◦fα = fβ ◦ϕ. The complex dilatation
of ϕ is given by ϕz̄

ϕz
(z) = α−β

ᾱ−β
z
z̄ . Note that ᾱ− β 6= 0 because (Im β)/(Im α) > 0.

Let R =
{
(t, z) ∈ R×C |z| ≤ e2πIm αt

}
and set Hα = R/(t + 1, z) ∼ (t, fα(z)).

The foliation of R×C by the lines R×{z} naturally induces a transversely holomorphic
foliation of Hα and the orientation of the leaves. Since α ∈ C \ R, this foliation is
transversal to the boundary. Hence ∂Hα is naturally a complex torus. According to
Corollary 3.7, a new transversely holomorphic structure will be defined if we modify
the complex structure of ∂Hα. For example, if we construct ∂Hβ in a parallel way and
replace the complex structure of ∂Hα with that of ∂Hβ , the corresponding deformation
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is given by the mapping ϕ̃ : Hα → Hβ defined by ϕ̃(t, z) = (t, ϕ(z)).
As firstly remarked, Hα = Hα+1. The value α modulo Z can be detected by the

residue of the Bott class [3] (see also [9]). In this case it is equal to α ∈ H1(S1;C/Z) ∼=
C/Z, where S1 is the unique closed orbit in the torus.

One can obtain S3 by gluing Hα and H1/α in the standard way, and the induced
transversely holomorphic flow (or its complex conjugate) is given by the holomorphic
vector field X = z ∂

∂z + αw ∂
∂w of C2, where S3 is considered as the unit sphere. By

varying α, one obtains a family of transversely holomorphic flows on S3. The Bott class
of this flow is well-known to be α + (1/α) ∈ H3(S3;C/Z) ∼= C/Z. On the other hand,
the quasiconformal deformation on Hα as above naturally extends to a quasiconformal
deformation on S3. Hence desired deformations are obtained. The quasiconformal defor-
mations obtained in this way always fix the two closed orbits, and the complex dilatations
of these deformations have singularities there. It is closely related with the fact that the
Julia set defined in [7] is also the union of two closed orbits.

Remark 4.5. By considering the glueing of Hα as above, one can obtain trans-
versely holomorphic flows on the Lens spaces and calculate their Bott classes.

Remark 4.6. As in Example 4.4, transversely holomorphic flows on S3 can be
obtained from holomorphic vector fields of C2 having a Poincaré type singularity at the
origin. Note that the orbits are naturally oriented. Assume that there are two closed
orbits, then it is easy to see that these orbits are positively linked. On the other hand,
taking the complex conjugate of Example 4.4 in the transverse direction, one can obtain
a transversely holomorphic flow on S3 which has two closed orbits which are negatively
linked. This flow can be obtained by using the vector field z ∂

∂z + αw̄ ∂
∂w̄ on C2, or by

gluing Hα and H1/α also in a standard way by Corollary 3.7 but after turning H1/α so
that the direction of the longitude is reversed.
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(Grenoble), 38 (1988), 205–213.

[11] D. Sullivan, On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions,

Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference, State

Univ. New York, Stony Brook, N.Y., 1978, Ann. of Math. Stud., 97, Princeton Univ. Press,

Princeton, N.J., 1981, 465–496.

[12] T. Tsuboi, On the foliated products of class C1, Ann. Math., 130 (1989), 227–271.

[13] P. Tukia, On two-dimensional quasiconformal groups, Ann. Acad. Sci. Fenn. Ser. A I Math., 5

(1980), 73–78.

Taro Asuke

Department of Mathematical Sciences

University of Tokyo

Komaba 3-8-1, Meguro-ku, Tokyo 153-8914

Japan

E-mail: asuke@ms.u-tokyo.ac.jp


