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Abstract. In this paper, we study a new class of affine minimal hypersurfaces
as higher dimensional analogues of affine minimal ruled surfaces.

1. Introduction.

The study of ruled surfaces in R3 is an important classical subject in affine differen-
tial geometry. They are visualized by means of wire models and the study can often be
applied to architecture. For higher dimensions, an n-dimensional manifold immersed in
Rn+1 is ruled if the manifold admits a continuous foliation of codimension one such that
the immersion takes each leaf onto an open subset of an affine subspace of Rn+1 (see for
instance [1], [3]).

In this paper, we generalize affine minimal ruled surfaces to higher dimensions in a
manner different from those in [1] and [3]. Indeed, by introducing a new notion of ruled
hypersurfaces, we study some large family of affine minimal hypersurfaces. Especially
in the family, we find a class of minimal hypersurfaces with vanishing Pick invariant.
Another class of ruled hypersurfaces given by formula (20) will also be considered. In
particular, in Theorem 5.1 and 5.2, we give characterizations of affine hyperspheres and
hypersurfaces with parallel shape operator. Finally in Theorem 5.3, we study ruled
hypersurfaces in the class which are semiparallel, i.e., have shape operator with vanishing
curvature tensor.

We here give special thanks to Professor H. Urakawa for valuable suggestions and
encouragement.

2. Preliminaries.

Let Mn be a smooth manifold and f : M → Rn+1, a smooth immersion. We can
choose a smooth vector field ξ along f which is transversal to M , i.e. for all x ∈ M ,

Tf(x)R
n+1 = f∗(TxM)⊕Rξx.

Let X(M) be the set of all smooth vector fields on M . The canonical connection D on
Rn+1, induces the torsion free affine connection ∇ and the symmetric (0, 2)-tensor field
h on M with Gauss’ formula:
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DXf∗(Y ) = f∗(∇XY ) + h(X, Y )ξ,

and the (1, 1)-tensor field S and the 1-form τ on M with Weingarten’s formula:

DXξ = −f∗(SX) + τ(X)ξ,

for arbitrary X, Y ∈ X(M).
If h is non-degenerate, f is called a non-degenerate immersion. Then, there is a

transversal vector field ξ, which is unique up to sign, and satisfies τ = 0 and θ = ωh,
where ωh is the volume form of h and θ is the volume form on M defined by:

θ(X1, . . . , Xn) := det[f∗(X1), . . . , f∗(Xn), ξ].

In this case, ξ is called an affine normal vector field, f with ξ is called a Blaschke
immersion, h is called the affine metric, and (∇, h, S) is called the Blaschke structure
of f . S is called the affine shape operator for ξ. In Blaschke structure, it is known
that ∇S is always symmetric. And if S in Blaschke structure is a constant multiple of
the identity, f : M → Rn+1 is called an affine hypersphere. On a Blaschke immersion,
the function defined by H := 1

n trS is called the affine mean curvature. Clearly, on an
affine hypersphere, S = HI. And if H ≡ 0, f : M → Rn+1 is called an affine minimal
hypersurface.

On a Blaschke immersion, the (0, 3)-tensor field C on M defined by C(X, Y, Z) :=
(∇Xh)(Y, Z), called the cubic form, which is totally symmetric. It is known that if ∇C is
totally symmetric then M is an affine hypersphere. And Pick-Berwald’s theorem (cf. [6,
p. 53, Theorem 4.5]) says that C ≡ 0 (i.e. h is parallel with respect to ∇) if and only if
the immersion f : M → Rn+1 is a quadratic hypersurface.

The function J on M defined by J := 1
4n(n−1)h(C, C) is called the Pick invariant.

It is known that ρ̂ = H + J , where ρ̂ is the scalar curvature of the affine metric h (cf. [6,
p. 78, Proposition 9.3]). And in the case n = 2, the immersion f : M → R3 is a ruled
surface if and only if h is an indefinite metric and J ≡ 0 (cf. [6, pp. 89, 90, Definition
11.1, and Theorems 11.3, 11.4]). Hence the surface with J ≡ 0 is quadratic or ruled,
because definiteness of h and J ≡ 0 imply C ≡ 0.

In [2], we obtained the following.

Theorem 2.1. (i) Every affine surface with constant Pick invariant in R3 satis-
fying the condition R(X, Y ) · S = 0 for any vector fields X and Y on M is either an
affine sphere with constant curvature metric or an affine minimal ruled surface.
(ii) Every affine minimal ruled surface can be written as z = yΨ(x)+Φ(x), where Ψ(x) is
a non-constant smooth function in x and Φ(x) is any smooth function in x. Conversely,
every surface which can be written as above is an affine minimal ruled surface.

Remark 2.2. The classification of affine spheres with constant curvature metrics
was shown by M. A. Magid and P. J. Ryan [5] and U. Simon [7]. Any such a sphere is
affinely congruent to one of the following surfaces.
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xyz = 1 (1)

(x2 + y2)z = 1 (2)

z = x2 + y2 (3)

z = xy + Φ(x) (4)

for some smooth function Φ(x) in x,

x2 + y2 + z2 = 1 (5)

x2 − y2 − z2 = 1 (6)

f(u, v) = uA(v) + A′(v) (7)

where A(v) is an R3-valued smooth function in v satisfying that det[A,A′, A′′] is a non-
zero constant. Furthermore, S is parallel with respect to ∇ (i.e. α := ∇S vanishes) if
and only if the immersion f : M → R3 is either an affine sphere, or can be written as
following (8) or (9) (cf. [4]).

z = yex + Φ(x) (8)

z = y tanx + Φ(x) (9)

for some smooth function Φ(x) in x.

3. Higher dimensional ruled hypersurfaces.

In this section, we introduce the notion of a higher dimensional ruled hypersurface.
It is well known that all ruled surfaces immersed in R3 can be written of the form

f(u, v) = vA(u) + B(u),

where A(u) and B(u) are R3-valued smooth functions in u. The curve B(u) in R3 is
called the base line of the surface. And this ruled surface can be regarded as the surface
formed of the family of lines, called the generators, passing through each points on B(u).

Definition 3.1. We call a hypersurface in Rn+1 a ruled hypersurface if it consists
of a family of (n −m)-dimensional hyperplanes passing through a fixed m-dimensional
hypersurface. Here, 1 ≤ m < n.

It is easy to see that any ruled hypersurface is written as

f(u, v) = A(u)v + B(u), u =




u1

...
um


 , v =




v1

...
vn−m


 , (10)

where B(u) is an Rn+1-valued smooth function in u and A(u) is an (n + 1) × (n −m)-
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matrix-valued smooth function in u.

We first show the necessary condition for our ruled hypersurfaces to be non-
degenerate.

Theorem 3.2. Assume that a hypersurface (10) is non-degenerate. Then, n and
m satisfy n ≤ 2m < 2n and the affine metric h is a non-degenerate indefinite metric.

Proof. For the hypersurface (10), we have

f∗

(
∂

∂ui

)
=

∂f

∂ui
(1 ≤ i ≤ m), f∗

(
∂

∂vj

)
= Aej (1 ≤ j ≤ n−m), (11)

where ej = t[0, . . . ,
j

1̆, . . . , 0] ∈ Rn−m for j = 1, . . . , n−m and A is an (n + 1)× (n−m)-
matrix-valued smooth function in u.

We designate
[

∂f
∂u1 , . . . , ∂f

∂um

]
by ∂f

∂u . We think about
[

∂f
∂u , A, XY f

]
which is an

(n+1)×(n+1)-matrix for X, Y ∈ X(M). For a transversal vector field ξ, its determinant
can be calculated as follows.

det
[
∂f

∂u
,A, XY f

]
= det

[
∂f

∂u
,A, DXf∗(Y )

]

= det
[
f∗

(
∂

∂u1

)
, . . . , f∗

(
∂

∂um

)
, f∗

(
∂

∂v1

)
, . . . , f∗

(
∂

∂vn−m

)
,

f∗(∇XY ) + h(X, Y )ξ
]

= h(X, Y ) det
[
∂f

∂u
,A, ξ

]
.

Then, we have

h(X, Y ) =
det

[
∂f
∂u , A, XY f

]

det
[

∂f
∂u , A, ξ

] .

Hence the necessary and sufficient condition that the hypersurface (10) is non-degenerate
is that

det




[
h
(

∂
∂ui ,

∂
∂uj

)]
1≤i,j≤m

[
h
(

∂
∂ui ,

∂
∂vj

)]
1≤i≤m

1≤j≤n−m[
h
(

∂
∂vi ,

∂
∂uj

)]
1≤i≤n−m
1≤j≤m

[
h
(

∂
∂vi ,

∂
∂vj

)]
1≤i,j≤n−m


 6= 0,

which is equivalent to that

det




[
det

[
∂f
∂u , A, ∂2f

∂ui∂uj

]]
1≤i,j≤m

[
det

[
∂f
∂u , A, ∂A

∂ui ej

]]
1≤i≤m

1≤j≤n−m[
det

[
∂f
∂u , A, ∂A

∂uj ei

]]
1≤i≤n−m
1≤j≤m

On−m,n−m


 6= 0, (12)
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where On−m,n−m is the (n−m)× (n−m)-zero matrix.
Clearly, if m < n − m, then the left hand side of (12) must vanish. So we obtain

that m ≥ n−m if (10) is non-degenerate. We have the first statement of Theorem 3.2.
The non-degeneracy of the hypersurface (10) means that there exists the affine metric

on it. Since h
(

∂
∂vi ,

∂
∂vi

)
= 0 for all i = 1, . . . , n −m, we have the second statement of

Theorem 3.2. ¤

Remark 3.3. Generally, n-dimensional ruled hypersurface in the sense of [1] and
[3] implies a hypersurface with a foliation by (n−1)-dimensional hyperplanes, namely, it
is our ruled hypersurface (10) in the case of m = 1. But it has no Blaschke structure in
the case n ≥ 3 due to Theorem 3.2. This is the main reason why we consider our ruled
hypersurface (10) is general.

4. New ruled hypersurfaces of the form of graphs.

In this section, we concentrate ourselves to consider special ruled hypersurfaces which
can be written as

z =
n−m∑

k=1

ykΨk(x1, . . . , xm) + Φ(x1, . . . , xm), (13)

with smooth (n−m + 1) functions Ψ1, . . . ,Ψn−m,Φ in (x1, . . . , xm). If we want to write
this hypersurface as the form of (10), it is the following:

f(x, y) =




x

y

z


 =




Om,n−m

In−m

Ψ1(x) . . . Ψn−m(x)


 y+




x

0
Φ(x)


, x =




x1

...
xm


, y =




y1

...
yn−m


,

where In−m is the identity matrix of degree n − m, Om,n−m is the m × (n − m)-zero
matrix and 0 = t[0, . . . , 0] ∈ Rn−m.

Remark 4.1. Clearly, the form of (13) is a natural generalization of the form of
affine minimal ruled surfaces given by Theorem 2.1 (ii). Furthermore, there is an advan-
tage of thinking the hypersurface (13), which is as follows. For calculation of Blaschke
structure of a hypersurface, at least one vector field ξ along f which is transversal to M

must be found. On the hypersurface (10), tangent vector spaces for each point of f(M)
is spanned by (11). So it is difficult in general to find a vector field ξ on Rn+1 which is
linearly independent to f∗

(
∂

∂ui

)
and f∗

(
∂

∂vj

)
for all i = 1, . . . , m and j = 1, . . . , n −m.

But on the hypersurface (13), the tangent vector space of f(M) at each point in it is
spanned by

f∗

(
∂

∂xi

)
=




ẽi

0∑n−m
k=1 yk ∂Ψk

∂xi + ∂Φ
∂xi


 , i = 1, . . . , m,
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f∗

(
∂

∂yj

)
=




0̃
ej

Ψj


 , j = 1, . . . , n−m,

where 0̃ = t[0, . . . , 0], ẽi = t[0, . . . ,
i

1̆, . . . , 0] ∈ Rm for i = 1, . . . , m. Thus, the vec-
tor t[0, . . . , 0, 1] ∈ Rn+1 does not belong to the hyperplanes generated by f∗

(
∂

∂xi

)
and

f∗
(

∂
∂yj

)
for all i = 1, . . . , m and j = 1, . . . , n−m. Therefore, we can easily describe the

Blaschke structure of the hypersurface (13).

We can easily show that the hypersurface (13) is non-degenerate if and only if

det




[
∂2z

∂xi∂xj

]
1≤i,j≤m

[∂Ψj

∂xi

]
1≤i≤m

1≤j≤n−m[
∂Ψi

∂xj

]
1≤i≤n−m
1≤j≤m

0


 6= 0.

Then, because of the second statement of Theorem 3.2, the affine metric h is indefinite.
But both the affine mean curvature H and the Pick invariant J do not always vanish.

Now we give a simple non-trivial example of 3-dimensional ruled hypersurface in
R4.

Example 4.2. A hypersurface in R4 written of the form

z = y
(
a(x1)2 + 2bx1x2 + c(x2)2

)

with constants a, b, c ∈ R is the simplest higher dimensional hypersurface written of
the form (13). We can calculate H and J of this hypersurface explicitly, and give the
necessary and sufficient condition for the non-degeneracy.

The necessary and sufficient condition for this hypersurface to be non-degenerate is
that b2 − ac 6= 0 except only for the line x1 = x2 = 0 and the plane y = 0. Indeed, the
condition for the non-degeneracy is that

γ :=
(
8(b2 − ac)y

(
a(x1)2 + 2bx1x2 + c(x2)2

))1/5 6= 0.

The affine normal vector field of this hypersurface is

ξ =
t[
− 4

5
(b2 − ac)x1γ−4, −4

5
(b2 − ac)x2γ−4, −4

5
(b2 − ac)yγ−4,

7
10

γ

]
.

Then we obtain H = 4
25 (b2 − ac)γ−4 6= 0 and J = − 4

5 (b2 − ac)γ−4 6= 0.

From now on, we consider only the case n = 2m.

Theorem 4.3. Any ruled hypersurface which is written of the form
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z =
m∑

k=1

ykΨk(x1, . . . , xm) + Φ(x1, . . . , xm), (14)

with (m + 1) smooth functions Ψ1, . . . ,Ψm,Φ in (x1, . . . , xm), is always affine minimal
and the Pick invariant J always vanishes.

Proof. The necessary and sufficient condition for this hypersurface (14) to be
non-degenerate is

γ(x) :=
∣∣∣∣ det

[
∂Ψi

∂xj

]∣∣∣∣
1

m+1

6= 0.

Then, the affine normal vector field is

ξ =




0
...
0

γ(x)


− f∗

(
ϕ(x)

∂

∂y

)
,

where

ϕ(x) :=
[

∂γ

∂x1
, . . . ,

∂γ

∂xm

][
∂Ψi

∂xj

]−1

,
∂

∂y
:=




∂
∂y1

...
∂

∂ym


 .

Therefore we obtain following Blaschke structure:





∇ ∂

∂xi

∂

∂xj
=

1
γ(x)

∂2z

∂xi∂xj
ϕ(x)

∂

∂y
,

∇ ∂

∂xi

∂

∂yj
= ∇ ∂

∂yj

∂

∂xi
=

1
γ(x)

∂Ψj

∂xi
ϕ(x)

∂

∂y
,

∇ ∂

∂yi

∂

∂yj
= 0,

(15)

h

(
∂

∂xi
,

∂

∂xj

)
=

1
γ(x)

∂2z

∂xi∂xj
, h

(
∂

∂xi
,

∂

∂yj

)
=

1
γ(x)

∂Ψj

∂xi
, h

(
∂

∂yi
,

∂

∂yj

)
= 0, (16)

S

(
∂

∂xi

)
=

∂ϕ

∂xi

∂

∂y
, S

(
∂

∂yi

)
= 0, (17)

for i, j = 1, . . . , m. Clearly, because of (17), we obtain

H =
1

2m
trS = 0.

To see that J vanishes, we first see with using (15) and (16),
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



C

(
∂

∂xi
,

∂

∂xj
,

∂

∂xk

)
=

1
γ(x)

(
∂3z

∂xi∂xj∂xk
− ∂ log γ

∂xi

∂2z

∂xj∂xk

−∂ log γ

∂xj

∂2z

∂xk∂xi
− ∂ log γ

∂xk

∂2z

∂xi∂xj

)
,

C

(
∂

∂xi
,

∂

∂xj
,

∂

∂yk

)
=

1
γ(x)

(
∂2Ψk

∂xi∂xj
− ∂ log γ

∂xi

∂Ψk

∂xj
− ∂ log γ

∂xj

∂Ψk

∂xi

)
,

C

(
∂

∂xi
,

∂

∂yj
,

∂

∂yk

)
= C

(
∂

∂yi
,

∂

∂yj
,

∂

∂yk

)
= 0,

(18)

for i, j, k = 1, . . . , m where C is the cubic form of (14). For calculation of the Pick
invariants, we rewrite the local coordinate system as:

u1 := x1, . . . , um := xm, um+1 := y1, . . . , u2m := ym.

Then we have

J =
1

8m(2m− 1)
h(C, C)

=
1

8m(2m− 1)

2m∑

i,j,k,p,q,r=1

hiphjqhkrC

(
∂

∂ui
,

∂

∂uj
,

∂

∂uk

)
C

(
∂

∂up
,

∂

∂uq
,

∂

∂ur

)
,

where

[hpq]1≤p,q≤2m :=
[
h

(
∂

∂up
,

∂

∂uq

)]−1

1≤p,q≤2m

=


 0 γ

[
∂Ψi

∂xj

]−1

γ
[∂Ψj

∂xi

]−1 −γ
[∂Ψj

∂xi

]−1[ ∂2z
∂xi∂xj

][
∂Ψi

∂xj

]−1


 . (19)

Because of (18), if C
(

∂
∂ui ,

∂
∂uj , ∂

∂uk

)
does not vanish, then at least two of {i, j, k} are

smaller than m+1. Therefore, if Ji,j,k,p,q,r := hiphjqhkrC
(

∂
∂ui ,

∂
∂uj , ∂

∂uk

)
C

(
∂

∂up , ∂
∂uq , ∂

∂ur

)
does not vanish for some i, j, k, p, q and r which belong to the set {1, . . . , 2m}, then at
least two of {i, j, k} are smaller than m + 1 and at least two of {p, q, r} are smaller than
m + 1, i.e. there exists at least one pair of {i, p}, {j, q} and {k, r} satisfy the condition
that both number in the pair are smaller than m + 1. But because of (19), if i and p are
smaller than m + 1, then hip vanishes, and so on. Therefore Ji,j,k,p,q,r vanishes for all
i, j, k, p, q and r. Hence J always vanishes. ¤

5. Examples of affine hyperspheres.

In this section, we consider the hypersurfaces (14) with Ψi(xi) which is a smooth
function in only one variable xi for each i = 1, . . . , m, i.e.
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z =
m∑

k=1

ykΨk(xk) + Φ(x1, . . . , xm). (20)

We have following Theorems 5.1, 5.2 and 5.3.

Theorem 5.1. The hypersurface (20) in R2m+1 is an affine hypersphere if and
only if it can be written as (21) or (22).

z =
m∑

k=1

ykxk + Φ(x1, . . . , xm). (21)

z = y1(x1)−
1
m +

m∑

k=2

ykxk + Φ(x1, . . . , xm). (22)

Theorem 5.2. Assume that the hypersurface (20) satisfies the condition that
∇S = 0. Then, it can be written as:

z = y1Ψ1(x1) +
m∑

k=2

ykxk + Φ(x1, . . . , xm), (23)

where Ψ1 satisfies |Ψ1
′(x1)| = µ(x1)−

m+1
m , where µ(x1) is a smooth function in x1 satis-

fying that µ′′(x1) = cµ(x1)
1
m for some constant c ∈ R. And the converse is also true.

Theorem 5.3. Assume that the hypersurface (20) is semiparallel, that is, it satis-
fies the condition that R(X, Y ) · S = 0 for any X, Y ∈ X(M). Then, it can be written as
one of the following four cases:

z =
s∑

k=1

yk log xk +
m∑

k=s+1

ykxk + Φ(x1, . . . , xm) (24)

with some s = 0, . . . , m,

z = y1Ψ1(x1) +
m∑

k=2

ykxk + Φ(x1, . . . , xm) (25)

where Ψ1(x1) is not a constant,

z = y1(x1)
c+1
c−m + y2(x2)

c+1
1−cm +

m∑

k=3

ykxk + Φ(x1, . . . , xm) (26)

where c ∈ R is a constant which is not either 0,−1,m or 1
m ,
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z = y1ex1
+ y2(x2)−

1
m−1 +

m∑

k=3

ykxk + Φ(x1, . . . , xm). (27)

And the converse is also true.

Remark 5.4. (i) In 2-dimensional case, i.e. m = 1, any surface which is an affine
minimal ruled surface and an affine sphere is (4). Since we can find (21) as a natural
generalization of (4), it may be called as a trivial affine minimal ruled affine hypersphere.
And (22) in 2-dimensional case is that

y1 = zx1 − x1Φ(x1),

so it is same as (4).
(ii) In 2-dimensional case, any affine minimal ruled surface which satisfies ∇S = 0

is (4), (8) or (9) (cf. [4]). And (23) in 2-dimensional case is same as (4) if c = 0, (8) if
c > 0, and (9) if c < 0.

(iii) In 2-dimensional case, all affine minimal ruled surfaces satisfy R(X, Y ) · S = 0
(cf. Theorem 2.1 (i)). Because any 2-dimensional affine minimal ruled surface is written
as (25).

Remark 5.5. The hypersurface (23) is an affine hypersphere if and only if c = 0.
In fact, µ′′ vanishes if and only if µ is either a constant or a linear expression. If
µ = |Ψ1

′|− m
m+1 is a constant then Ψ1(x1) is a linear expression, so the hypersurface is

(21). The converse is true. And if µ = |Ψ1
′|− m

m+1 is a linear expression, then Ψ1(x1) can
be written as Ψ1(x1) = (x1)−

1
m with affine transformation, so the hypersurface is (22).

The converse is true.

Proof of Theorem 5.1. The necessary and sufficient condition for this hyper-
surface (20) to be non-degenerate is

γ(x) :=
m∏

k=1

|Ψk
′| 1

m+1 6= 0,

where Ψk
′ := dΨk

dxk . It implies that all Ψk are non-constant functions. From now on, if
we write ± or ∓ then we choose + or − such that ±Ψk

′ > 0, i.e. |Ψk
′| = ±Ψk

′.
Then, the affine normal vector field is given by

ξ =




0
...
0

γ(x)


− f∗

(
ϕ(x)

∂

∂y

)
,

where

ϕ(x) = − γ(x)
m + 1

[(
1

Ψ1
′

)′
, . . . ,

(
1

Ψm
′

)′]
.

Because of (17), the necessary and sufficient condition for the surface to be an affine
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sphere is that

∂ϕ

∂xi
=

[
− γ

m + 1
g1i, . . . ,− γ

m + 1
gmi

]
= 0

for all i = 1, . . . , m, i.e. gpq = 0 for all p, q = 1, . . . , m, where

gpq := δpq

(
1

Ψp
′

)′′
+

1
m + 1

(
1

Ψp
′

)′
(log |Ψq

′|)′. (28)

If p 6= q, because of (28), either Ψp
′ or Ψq

′ is a constant. Therefore, Ψk is a linear
expression, i.e. it can be written as Ψk(xk) = xk with affine transformation, except for
at most one of k = 1, . . . , m. Then we assume that

Ψ2(x2) = x2, . . . ,Ψm(xm) = xm.

Clearly, the cases p = q = 2, . . . , m always satisfy (28). So we consider only the case
p = q = 1. Then, we have

0 = g11 = ±m + 1
m

(
(±Ψ1

′)−
m

m+1
)′′(±Ψ1

′)−
1

m+1 ,

so we have the condition
(|Ψ1

′|− m
m+1

)′′ = 0. If
(|Ψ1

′|− m
m+1

)′ vanishes, then we have
Ψ1(x1) = x1, so we obtain (21). And if it does not vanish, then we have Ψ1(x1) = (x1)−

1
m

with affine transformation, so we obtain (22). Hence we obtain Theorem 5.1. ¤

Proof of Theorem 5.2. Since (15) and (17), we obtain

(∇ ∂
∂xp

S
) ∂

∂yq
=

(∇ ∂
∂yp

S
) ∂

∂xq
=

(∇ ∂
∂yp

S
) ∂

∂yq
= 0,

(∇ ∂
∂xp

S
) ∂

∂xq
= − γ

m + 1

m∑
r=1

αr
pq

∂

∂yr

for p, q = 1, . . . , m, where

αr
pq = δr

pδr
q

(
1

Ψr
′

)′′′
+

1
m + 1

(
δr
p(log |Ψq

′|)′ + δr
q(log |Ψp

′|)′)
(

1
Ψr

′

)′′

+
1

m + 1
δpq

(
2
Ψp

′′′

Ψp
′ − 3

(
(log |Ψp

′|)′)2
)(

1
Ψr

′

)′
(29)

+
2

(m + 1)2
(log |Ψp

′|)′(log |Ψq
′|)′

(
1

Ψr
′

)′
.

Then we should find the condition αr
pq = 0 for all p, q, r = 1, . . . , m.

If p, q and r differ each other, because of (29), at least one of Ψp
′, Ψq

′ and Ψr
′ is a
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constant. Therefore, Ψk is a linear expression, i.e. it can be written as Ψk(xk) = xk with
affine transformations, except for at most two of k = 1, . . . , m. Then we assume that

Ψ3(x3) = x3, . . . ,Ψm(xm) = xm.

And we have

α1
22 =

1
(m + 1)2

(
1

Ψ1
′

)′(
2(m + 1)

Ψ2
′′′

Ψ2
′ − (3m + 1)

(
(log |Ψ2

′|)′)2
)

,

α2
12 =

1
(m + 1)2

(log |Ψ1
′|)′

(
2m

(
(log |Ψ2

′|)′)2 − (m + 1)
Ψ2

′′′

Ψ2
′

)
1

Ψ2
′ .

So at least one of Ψ1
′ and Ψ2

′ is a constant. Therefore, we may assume that Ψ2(x2) = x2.
Clearly, if at least one of p, q and r is larger than 1, then αr

pq vanishes. So we consider
only the case that p = q = r = 1. Then, we have

α1
11 = ±m + 1

m
(±Ψ1

′)−
2

m+1

((
(±Ψ1

′)−
m

m+1
)′′(±Ψ1

′)
1

m+1

)′
.

So α1
11 = 0 if and only if

(|Ψ1
′|− m

m+1
)′′|Ψ1

′| 1
m+1 is a constant. By taking a function µ(x1)

in x1 as µ(x1) = |Ψ1
′|− m

m+1 , we obtain (23). Hence we obtain Theorem 5.2. ¤

Proof of Theorem 5.3. To see the condition R(X, Y ) ·S = 0, by (15) and (17),
we obtain

R

(
∂

∂xp
,

∂

∂yq

)
· S = R

(
∂

∂yp
,

∂

∂yq

)
· S = 0,

(
R

(
∂

∂xp
,

∂

∂xq

)
· S

)
∂

∂yr
= 0,

(
R

(
∂

∂xp
,

∂

∂xq

)
· S

)
∂

∂xr
=

γ

(m + 1)3

m∑
s=1

βs
pq,r

∂

∂ys

for p, q, r = 1, . . . , m, where

βs
pq,r =

(
δqr(log |Ψp

′|)′ − δpr(log |Ψq
′|)′)Ψr

′
(

1
Ψr

′

)′′( 1
Ψs

′

)′
, (s 6= p, q, r)

βp
pq,r = −βp

qp,r = −(1− δpr)
(

1
Ψp

′

)′′
(log |Ψq

′|)′(log |Ψr
′|)′

+ δqr

(
(2m + 1)

(Ψp
′′)2

(Ψp
′)3

− (m + 1)
Ψp

′′′

(Ψp
′)2

)
Ψr

′
(

1
Ψr

′

)′′
(30)

+ δpq

(
1

Ψp
′

)′′(
(log |Ψp

′|)′(log |Ψr
′|)′ − (m + 1)δprΨr

′
(

1
Ψr

′

)′′)
,

βr
pq,r = 0.
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Then we should find the condition βs
pq,r = 0 for all p, q, r, s = 1, . . . , m.

Clearly in (30), βs
pp,r vanishes and βs

qp,r equals to −βs
pq,r for all p, q, r, s = 1, . . . , m,

and βs
pq,r vanishes for p, q, r, s which differ each other. And because of

βr
pq,q = (log |Ψp

′|)′Ψq
′
(

1
Ψq

′

)′′( 1
Ψr

′

)′
,

βp
pq,r = −

(
1

Ψp
′

)′′
(log |Ψq

′|)′(log |Ψr
′|)′

for p, q, r which differ each other, we should find only the condition for

Bp,qr :=
(

1
Ψp

′

)′′
Ψq

′′Ψr
′′ = 0

and

βp
pq,q =

(
(2m + 1)

(Ψp
′′)2

(Ψp
′)3

− (m + 1)
Ψp

′′′

(Ψp
′)2

)
Ψq

′
(

1
Ψq

′

)′′
−

(
1

Ψp
′

)′′(
(log |Ψq

′|)′)2 = 0

for all p, q, r which differ each other.
Ψk

′′ vanishes if and only if Ψk can be written as Ψk(xk) = xk with some affine
transformations. And

(
1

Ψk
′
)′′ vanishes if and only if Ψk can be written as Ψk(xk) = log xk

or xk with some affine transformations. Because of Bp,qr = 0 for any p, q, r which differ
each other, the number of k = 1, . . . , m satisfying

(
1

Ψk
′
)′′ 6= 0 is less than three.

(i) The case that the number of k satisfying
(

1
Ψk

′
)′′ 6= 0 is zero.

In this case,
(

1
Ψk

′
)′′ vanishes for all k = 1, . . . , m. Therefore, always Bp,qr and βp

pq,q

vanish for any p, q, r. Then, by taking s as the number of k which satisfies Ψk(xk) =
log xk, we obtain (24).

(ii) The case that the number of k satisfying
(

1
Ψk

′
)′′ 6= 0 is one.

We assume that
(

1
Ψ1

′
)′′ 6= 0. Then, because of

B1,qr =
(

1
Ψ1

′

)′′
Ψq

′′Ψr
′′ = 0

for all q, r = 2, . . . , m, the number of k which satisfies Ψk(xk) = log xk is at most one.
Now, we assume that Ψ2(x2) = log x2. Then, we have

0 = β1
12,2 = −

(
1

Ψ1
′

)′′ 1
(x2)2

.

But it contradicts the assumption
(

1
Ψ1

′
)′′ 6= 0. Therefore we have Ψ2(x2) = x2. Then

we obtain (25).



882 M. Katou

(iii) The case that the number of k satisfying
(

1
Ψk

′
)′′ 6= 0 is two.

We assume that
(

1
Ψ1

′
)′′ 6= 0 and

(
1

Ψ2
′
)′′ 6= 0. Then, because of

B1,2r =
(

1
Ψ1

′

)′′
Ψ2

′′Ψr
′′ = 0,

we have Ψr(xr) = xr for all r = 3, . . . , m. And because of

0 = β1
12,2

=
1

(m + 1)Ψ1
′
(
(log |Ψ1

′|)′)2((log |Ψ2
′|)′)2

×
(((

m + 1
(log |Ψ1

′|)′
)′

+ m

)((
m + 1

(log |Ψ2
′|)′

)′
+ m

)
− 1

)
,

we have
((

m+1
(log |Ψ1

′|)′
)′ + m

)((
m+1

(log |Ψ2
′|)′

)′ + m
)

= 1. Now, we take a non-zero function c

defined by

c =
(

m + 1
(log |Ψ1

′|)′
)′

+ m (31)

and

1
c

=
(

m + 1
(log |Ψ2

′|)′
)′

+ m. (32)

Since the right hand side of (31) is a function in x1 and the right hand side of the (32)
is a function in x2, c is a constant. Now, we should solve (31) and (32). We have

c−m

m + 1
=

(
1

(log |Ψ1
′|)′

)′
and

1
c −m

m + 1
=

(
1

(log |Ψ2
′|)′

)′
.

If c 6= m, 1
m , we may assume the condition that

(log |Ψ1
′|)′ =

m + 1
(c−m)x1

and (log |Ψ2
′|)′ =

c(m + 1)
(1− cm)x2

with some affine transformations. Then we have Ψ1
′ = (x1)

m+1
c−m and Ψ2

′ = (x2)
cm+c
1−cm .

If c = −1, we have Ψ1(x1) = log x1 and Ψ2(x2) = log x2. So we obtain (24).
If c 6= −1, with some affine transformations, we have Ψ1(x1) = (x1)

c+1
c−m and

Ψ2(x2) = (x2)
c+1

1−cm . So we obtain (26).

And if c = m, we may assume the condition that

(log |Ψ1
′|)′ = 1.
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Then we have Ψ1(x1) = ex1
. And with calculation same as above, we have Ψ2(x2) =

(x2)−
1

m−1 . So we obtain (27). Obviously, if c = 1
m then we have Ψ1(x1) = (x1)−

1
m−1 and

Ψ2(x2) = ex2
, so we obtain (27) by exchanging x1 and x2. Hence we obtain Theorem

5.3. ¤
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[ 3 ] V. Hájková and O. Kowalski, Intrinsic characterization of completely ruled hypersurfaces, Publ.

Math. Debrecen, 54 (1999), 55–62.

[ 4 ] W. Jelonek, Affine surfaces with parallel shape operators, Ann. Polon. Math., 56 (1992), 179–186.

[ 5 ] M. A. Magid and P. J. Ryan, Flat affine spheres in R3, Geom. Dedicata, 33 (1990), 277–288.

[ 6 ] K. Nomizu and T. Sasaki, Affine Differential Geometry: Geometry of Affine Immersions, Cam-

bridge University Press, 1994.

[ 7 ] U. Simon, Local classification of twodimensional affine spheres with constant curvature metric,

Differ. Geom. Appl., 1 (1991), 123–132.

Masao Katou

Division of Mathematics

Graduate School of Information Sciences

Tohoku University

Aoba, Sendai, 980-8579

Japan

E-mail: katou@ims.is.tohoku.ac.jp


