Combinatorial principles on ω_1 , cardinal invariants of the meager ideal and destructible gaps

By Teruyuki Yorioka

(Received Jan. 11, 2005)

Abstract. We show that (1) \uparrow plus $\operatorname{cov}(\mathscr{M}) > \aleph_1$ implies the existence of a destructible gap and (2) \clubsuit plus $\operatorname{cof}(\mathscr{M}) = \aleph_1$ implies the existence of a destructible gap.

Introduction.

In this paper, we deal with a pregap in the Boolean algebra $\mathscr{P}(\omega)/\text{fin}$. A pregap in $\mathscr{P}(\omega)/\text{fin}$ is a pair $(\mathscr{A}, \mathscr{B})$ of subsets of $\mathscr{P}(\omega)$ such that for all $a \in \mathscr{A}$ and $b \in \mathscr{B}$, the set $a \cap b$ is finite. For subsets a and b of ω , we say that a is almost contained in b (and denote $a \subseteq^* b$) if the set $a \setminus l$ is a subset of b for some $l \in \omega$. For a pregap $(\mathscr{A}, \mathscr{B})$, both ordered sets $\langle \mathscr{A}, \subseteq^* \rangle$ and $\langle \mathscr{B}, \subseteq^* \rangle$ are well ordered and these order types are κ and λ respectively, then we say that a pregap $(\mathscr{A}, \mathscr{B})$ has the type (κ, λ) or is a (κ, λ) -pregap. Moreover if $\kappa = \lambda$, we say that the pregap is symmetric. For a pregap $(\mathscr{A}, \mathscr{B})$, we say that $(\mathscr{A}, \mathscr{B})$ is separated if for some $c \in \mathscr{P}(\omega)$, $a \subseteq^* c$ and the set $c \cap b$ is finite for every $a \in \mathscr{A}$ and $b \in \mathscr{B}$. If a pregap is not separated, we say that it is a gap. Moreover if a gap has the type (κ, λ) , it is called a (κ, λ) -gap.

We note that being a pregap is absolute in any model having the pregap, but being a gap is not. In [9], Kunen has investigated an (ω_1, ω_1) -gap and has given a characterization of being a gap in the forcing extension and in [18, Chapter 9], Todorčević has introduced a notion of an open coloring and has given Ramsey theoretic characterization of being a gap in the forcing extension (see the theorem below). From their characterizations, we note that an (ω_1, ω_1) -gap constructed by Hausdorff is still a gap in any extension preserving cardinals. We say that such a gap is indestructible. If an (ω_1, ω_1) -gap is not indestructible, that is, it is not a gap in some forcing extension not collapsing cardinals, it is called destructible. (We note that every gap not having the type (ω_1, ω_1) , it can be separated by a ccc-forcing extension.) Kunen has proved that under Martin's Axiom for \aleph_1 many dense sets of ccc-forcing notions, all (ω_1, ω_1) -gap are indestructible. In [10], Laver has implied that a destructible gap consistently exists. Therefore it is not decided from ZFC that there exists a destructible gap.

A notion of a destructible gap can be considered an analogy of one of a Suslin tree ([1]). A Suslin tree is an ω_1 -tree having no uncountable chains and antichains. A

²⁰⁰⁰ Mathematics Subject Classification. 03E05, 03E35.

Key Words and Phrases. \clubsuit , \P , cardinal invariants of the meager ideal, destructible gaps.

Supported by JSPS Research Fellowship for Young Scientists and Grant-in-Aid for JSPS Fellow (No. 16.3977), Ministry of Education, Culture, Sports, Science and Technology.

destructible gap can be considered as a similar notion. For an (ω_1, ω_1) -pregap $(\mathscr{A}, \mathscr{B}) = \langle a_\alpha, b_\alpha; \alpha \in \omega_1 \rangle$ with the set $a_\alpha \cap b_\alpha$ empty for every $\alpha \in \omega_1$, we say here that α and β in ω_1 are compatible if

$$(a_{\alpha} \cap b_{\beta}) \cup (a_{\beta} \cap b_{\alpha}) = \emptyset.$$

Then by the characterization due to Kunen and Todorčević, we notice that an (ω_1, ω_1) pregap is a destructible gap iff it has no uncountable pairwise compatible and incompatible subsets of ω_1 . (We must notice that from results of Farah and Hirschorn [5], [7], the existence of a destructible gap is independent with the existence of a Suslin tree.)

Jensen has proved that if V = L, then there exists a Suslin tree. After that, he has introduced a combinatorial principle \diamond and has constructed a Suslin tree from \diamond . Shelah has proved that adding a Cohen real adds a Suslin tree. The same results for a destructible gap are also true and proved by Todorčević ([4, Proposition 2.5] and [18, Theorem 9.3]). In this paper, we construct a destructible gap by two ways.

One is a modification of the construction from adding a Cohen real. In [19], Velleman has modified a construction of a Suslin tree due to Shelah using a morass, and after that Miyamoto has modified a Velleman's construction using a connection of two models. The first version of Miyamoto's theorem also have a morass as a condition to build a Suslin tree, but in [3, §7], Brendle has modified again that situation and consequently, he constructed a Suslin tree from \P plus the covering number $\operatorname{cov}(\mathcal{M})$ of the meager ideal is larger than \aleph_1 . \P is a combinatorial principle on ω_1 , introduced in the paper [2], as follow: there is a sequence $\langle A_{\alpha}; \alpha \in \omega_1 \rangle$ of countable subsets of ω_1 such that for any uncountable subset B of ω_1 there is $\alpha \in \omega_1$ so that A_{α} is a subset of B. A destructible gap can be constructed under the same situation, that is, \P plus $\operatorname{cov}(\mathcal{M}) > \aleph_1$ implies the existence of a destructible gap (Theorem 1.1).

The other is the modification of the construction from \diamondsuit . \clubsuit is a combinatorial principle on ω_1 introduced by Ostaszewski ([12]. See also [14, I.§7].): There exists a sequence $\langle A_{\alpha}; \alpha \in \omega_1 \rangle$ of subsets of ω_1 such that for all $\alpha \in \omega_1$, A_{α} is a cofinal subset of α and for every uncountable subset A of ω_1 , the set { $\alpha \in \omega_1; A_{\alpha} \subseteq A$ } is stationary. We note that \diamondsuit implies \clubsuit and \clubsuit plus the Continuum Hypothesis implies \diamondsuit ([14, Chapter 1, 7.4 Theorem]). From the result of Baumgartner [8, Theorem IV. 4] (or the result [11, Corollary 6.14]), it is consistent with ZFC that \clubsuit , the cofinality $cof(\mathscr{M})$ of the meager ideal on the real line is equal to \aleph_1 and the continuum is larger than \aleph_1 , hence in this model, \diamondsuit does not hold. Brendle has proved that a Suslin tree exists in the model satisfying \clubsuit plus $cof(\mathscr{M}) = \aleph_1$ ([3, Theorem 6]). As same as a Suslin tree, we can show that \clubsuit and $cof(\mathscr{M}) = \aleph_1$ implies the existence of a destructible gap (Theorem 2.2).

Throughout this paper, we always deal with a symmetric pregap. For an ordinal α , if we say that $\langle a_{\xi}, b_{\xi}; \xi \in \alpha \rangle$ is a pregap, we always assume that if $\xi < \eta$ in α , $a_{\xi} \subseteq^* a_{\eta}$ and $b_{\xi} \subseteq^* b_{\eta}$, and for every $\xi \in \alpha$, the set $a_{\xi} \cap b_{\xi}$ is empty. We have the following characterizations of being a gap and indestructibility.

THEOREM (E.g. [9], [13], [16], [18]). Let $(\mathscr{A}, \mathscr{B}) = \langle a_{\alpha}, b_{\alpha}; \alpha \in \omega_1 \rangle$ be an (ω_1, ω_1) -pregap with the set $a_{\alpha} \cap b_{\alpha}$ empty for every $\alpha \in \omega_1$.

(1) $(\mathscr{A},\mathscr{B})$ forms a gap iff for any $X \in [\omega_1]^{\omega_1}$, there are $\alpha \neq \beta$ in X such that

$$(a_{\alpha} \cap b_{\beta}) \cup (a_{\beta} \cap b_{\alpha}) \neq \emptyset.$$

(2) $(\mathscr{A}, \mathscr{B})$ is destructible (may not be a gap) iff for any $X \in [\omega_1]^{\omega_1}$, there are $\alpha \neq \beta$ in X such that

$$(a_{\alpha} \cap b_{\beta}) \cup (a_{\beta} \cap b_{\alpha}) = \emptyset.$$

1. $\ \ \mathbf{plus}\ \mathbf{cov}(\mathscr{M}) > \aleph_1$.

Miyamoto has proved the existence of a Suslin tree under the assumptions in Theorem 1.1. This theorem says not only the existence of a Suslin tree but also the preservation of a Suslin tree constructed from a Cohen real between models with some properties. To prove Miyamoto's theorem, we use Todorčević's coding of Aronszajn trees. In the following proof, we just use a K_0 -homogeneous gap (see in the proof). To prove Theorem 1.1, we note that $\operatorname{cov}(\mathscr{M})$ is equal to the smallest number κ such that there is a family of dense subsets of C of size κ so that there are no filters which meets all members of the family.

THEOREM 1.1. (1) Assume $V \subseteq W$ are models of (fragments of) ZFC so that

- (a) $\aleph_1^{\boldsymbol{V}} = \aleph_1^{\boldsymbol{W}}$,
- (b) $\forall B \in [\omega_1]^{\omega_1} \cap \mathbf{W} \exists A \in [\omega_1]^{\omega} \cap \mathbf{V} \ (A \subseteq B), and$
- (c) there exists $c \in W$ which is Cohen over V.

Then there exists a destructible gap in \mathbf{W} . (2) \P plus $\operatorname{cov}(\mathscr{M}) > \aleph_1$ implies the existence of a destructible gap.

PROOF. We will prove only (2). (1) can be proved by the same way.

Let $\langle A_{\alpha}; \alpha \in \omega_1 \rangle \in ([\omega_1]^{\omega})^{\omega_1}$ be a \P sequence, i.e. for every $B \in [\omega_1]^{\omega_1}$ we can find $\alpha \in \omega_1$ so that $A_{\alpha} \subseteq B$. Let $\langle a_{\xi}, b_{\xi}; \xi \in \omega_1 \rangle$ be an (ω_1, ω_1) -pregap such that for all $\alpha \in \omega_1$ and $n \in \omega$, there exists $\xi \neq \eta$ in A_{α} such that

$$(a_{\xi} \cap b_{\eta} \cap n) \cup (a_{\eta} \cap b_{\xi} \cap n) = \emptyset$$
 and $((a_{\xi} \cap b_{\eta}) \cup (a_{\eta} \cap b_{\xi})) \setminus n \neq \emptyset$.

(We note that by \P , this pregap really forms a gap.) This pregap exists under ZFC. For example, let $\langle a_{\xi}, b_{\xi}; \xi \in \omega_1 \rangle$ is K_0 -homogeneous, i.e. the set $a_{\xi} \cap b_{\xi}$ is empty for every $\xi \in \omega_1$ and for every $\xi \neq \eta$ in ω_1 ,

$$(a_{\xi} \cap b_{\eta}) \cup (a_{\eta} \cap b_{\xi}) \neq \emptyset$$

(see [13, Lemma 12] or [16, 8.6.Theorem]). Then for any countable subset A of ω_1 and a natural number n, there are $\xi \neq \eta$ in A such that

$$(a_{\xi} \cap b_{\eta} \cap n) \cup (a_{\eta} \cap b_{\xi} \cap n) = \emptyset$$
 and $((a_{\xi} \cap b_{\eta}) \cup (a_{\eta} \cap b_{\xi})) \setminus n \neq \emptyset$.

In this proof, we let C be a partial order $(2^{<\omega}, \supseteq)$ and we identify a condition p in

C with a finite subset $\{i \in |p|; p(i) = 1\}$ of |p|. For each $\alpha \in \omega_1$, we define

$$D_{\alpha} = \left\{ p \in \boldsymbol{C}; \exists \xi \neq \eta \in A_{\alpha} \left((a_{\xi} \cap b_{\eta} \cap p) \cup (a_{\eta} \cap b_{\xi} \cap p) \neq \boldsymbol{\varnothing} \right) \right\}$$

and

$$E_{\alpha} = \left\{ p \in \mathbf{C}; \exists \xi < \eta \in A_{\alpha} \ (a_{\xi} \smallsetminus |p| \subseteq a_{\eta} \& b_{\xi} \smallsetminus |p| \subseteq b_{\eta} \\ \& \ (a_{\xi} \cap b_{\eta} \cap p) \cup (a_{\eta} \cap b_{\xi} \cap p) = \emptyset) \right\}.$$

CLAIM. All D_{α} and E_{α} are dense in C.

PROOF OF CLAIM. For each $\alpha \in \omega_1$ and $p \in C$, there exist $\xi < \eta$ in A_{α} such that

$$(a_{\xi} \cap b_{\eta} \cap |p|) \cup (a_{\eta} \cap b_{\xi} \cap |p|) = \emptyset$$
 and $((a_{\xi} \cap b_{\eta}) \cup (a_{\eta} \cap b_{\xi})) \setminus |p| \neq \emptyset$.

Let $k \ge |p|$ such that $k \in (a_{\xi} \cap b_{\eta}) \cup (a_{\eta} \cap b_{\xi})$ and let $q := p \cup (\mathbf{0} \upharpoonright (k \smallsetminus |p|)) \cup \{\langle k, 1 \rangle\}$. (**0** is a constant function with the value 0.) Then

$$q \Vdash_{\boldsymbol{C}} (\check{a}_{\xi} \cap \check{b}_{\eta} \cap \dot{c}) \cup (\check{a}_{\eta} \cap \check{b}_{\xi} \cap \dot{c}) \neq \emptyset ",$$

i.e. q is in D_{α} .

Let $l \ge |p|$ be so that $a_{\xi} \smallsetminus l \subseteq a_{\eta}, b_{\xi} \smallsetminus l \subseteq b_{\eta}$ and let $r := p \cup \mathbf{0} \upharpoonright (l \smallsetminus |p|)$. Then

$$r \Vdash_{\boldsymbol{C}} " (\check{a}_{\xi} \cap \check{b}_{\eta} \cap \dot{c}) \cup (\check{a}_{\eta} \cap \check{b}_{\xi} \cap \dot{c}) = \varnothing ",$$

 \dashv

i.e. r is in E_{α} .

Let $G \subseteq C$ be a filter which meets all D_{α} and E_{α} , and the dense subsets $\{p \in C; |p| \ge n\}$ of C for all $n \in \omega$. Let $c := \bigcup G$.

Since G meets all D_{α} , $\langle a_{\alpha} \cap c, b_{\alpha} \cap c; \alpha \in \omega_1 \rangle$ forms a gap: Assume not, then there is an uncountable subset B of ω_1 such that for every $\xi \neq \eta$ in B, the set $(a_{\xi} \cap b_{\eta} \cap c) \cup (a_{\eta} \cap b_{\xi} \cap c)$ is empty, i.e. there is $p \in G$ such that

$$p \Vdash_{\boldsymbol{C}} " \forall \xi \neq \eta \in \check{B} \big((\check{a}_{\xi} \cap \check{b}_{\eta} \cap \dot{c}) \cup (\check{a}_{\eta} \cap \check{b}_{\xi} \cap \dot{c}) = \varnothing \big) ".$$

(By the countability of C, we may assume that B is an object lying in the ground model by shrinking B if necessary.) We can find $\alpha \in \omega_1$ so that $A_{\alpha} \subseteq B$. Since G meets D_{α} , there is $q \in G \cap D_{\alpha}$, say ξ and η as witnesses for $q \in D_{\alpha}$. Then $p \cup q$ is in G (in fact, $p \cup q$ is just either p or q), both ξ and η are in B and

$$p \cup q \Vdash_{\boldsymbol{C}} (\check{a}_{\xi} \cap \check{b}_{\eta} \cap \dot{c}) \cup (\check{a}_{\eta} \cap \check{b}_{\xi} \cap \dot{c}) \neq \emptyset ",$$

which is a contradiction.

By the similar argument, we can show that $\langle a_{\alpha} \cap c, b_{\alpha} \cap c; \alpha \in \omega_1 \rangle$ is destructible using the dense sets E_{α} instead of D_{α} .

2. \clubsuit plus $cof(\mathscr{M}) = \aleph_1$.

In [4, Proposition 2.5], a destructible gap is constructed from \diamond . This proof uses the enumeration of the reals of length ω_1 to show the pregap constructed by recursion is really a gap. The following proof says that we do not need the enumeration to construct a destructible gap from \diamond also.

The following condition is a useful notion to construct a destructible gap. This is used in the proof of [4, Proposition 2.5]. (But we slightly modify the original one.)

DEFINITION 2.1 ([20]). We say that a pregap $(\mathscr{A}, \mathscr{B}) = \langle a_{\alpha}, b_{\alpha}; \alpha \in \omega_1 \rangle$ admits finite changes if for all $\alpha \in \omega_1$, the set $a_{\alpha} \cap b_{\alpha}$ is empty and the set $\omega \setminus (a_{\alpha} \cup b_{\alpha})$ is infinite, and for any $\beta < \alpha$ with $\beta = \eta + k$ for some $\eta \in \text{Lim} \cap \alpha$ and $k \in \omega, H, J \in [\omega]^{<\omega}$ with $H \cap J = \emptyset$ and $i > \max(H \cup J)$ there exists $n \in \omega$ so that

$$a_{\eta+n} \cap i = H, \ a_{\eta+n} \smallsetminus i = a_{\beta} \smallsetminus i, \ b_{\eta+n} \cap i = J, \ \text{and} \ b_{\eta+n} \smallsetminus i = b_{\beta} \smallsetminus i.$$

THEOREM 2.2. \clubsuit and $cof(\mathscr{M}) = \aleph_1$ implies the existence of a destructible gap.

PROOF. At first, we give some notation in the proof to avoid using many symbols in formulae.

For each $\alpha \in \omega_1$ and a pregap $\langle a_{\xi}, b_{\xi}; \xi < \alpha \rangle$, let $g \in 2^{\alpha \times \omega \times 2}$ be a function such that for all $\xi \in \alpha$, $a_{\xi} = \{n \in \omega; g(\xi, n, 0) = 1\}$ and $b_{\xi} = \{n \in \omega; g(\xi, n, 1) = 1\}$, that is, g is a code of this pregap. Assume that α is a countable ordinal and g is a code of an (α, α) -pregap $\langle a_{\xi}, b_{\xi}; \xi \in \alpha \rangle$ which admits finite changes, and $a_{\xi} \cap b_{\xi} = \emptyset$ and $\omega \setminus (a_{\xi} \cup b_{\xi})$ is infinite for all $\xi \in \alpha$. Then we define a subset $\mathscr{X}(g)$ of α^{ω} which is a collection of members x in α^{ω} such that

$$\bigcup_{\xi \in \operatorname{ran}(x)} a_{\xi} \cap \bigcup_{\xi \in \operatorname{ran}(x)} b_{\xi} = \emptyset.$$

We can identify $\mathscr{X}(g)$ as the Baire space ω^{ω} . (By the admission of finite changes of g, any node in $\mathscr{X}(g)$ has infinitely many successors.) For each $s \in \alpha^{<\omega}$, we let $[s] := \{x \in \mathscr{X}(g); s \subseteq x\}$ and denote $\mathscr{X}^{<\omega}(g)$ as the set of $s \in \alpha^{<\omega}$ such that [s] is a basic open set in $\mathscr{X}(g)$, i.e.

$$\bigcup_{\xi \in \operatorname{ran}(s)} a_{\xi} \cap \bigcup_{\xi \in \operatorname{ran}(s)} b_{\xi} = \emptyset$$

Let O be a dense open subset of ω^{ω} . O is a union of countably many basic open sets, that is, O has a code as a countable sequence of members of $\omega^{<\omega}$. In this proof, we can consider O as a dense open subset of $\mathscr{X}(g)$ using its code. Moreover we define a space $\mathscr{Y}(g)$ such that

T. YORIOKA

 $\mathscr{Y}(q) := \{ y \in (\alpha \times \omega)^{\omega} ; \text{ the sequence of the first coordinates of } y \text{ is in } \mathscr{X}(q) \}$

and the second coordinates are strictly increasing}.

 $\mathscr{Y}(g)$ is also considered as the Baire space. For $y \in (\alpha \times \omega)^{\leq \omega}$ and l < |y|, we denote $y(l) = \langle y(l)(0), y(l)(1) \rangle$ and $\operatorname{ran}_0(y) := \{ y(l)(0); l < |y| \}$. As in the definition of $\mathscr{X}^{<\omega}(g)$, we denote $\mathscr{Y}^{<\omega}(g)$ as the set of $t \in (\alpha \times \omega)^{<\omega}$ such that [t] is a basic open set in $\mathscr{Y}(g)$.

Let $\langle A_{\alpha}; \alpha \in \omega_1 \rangle$ be a \clubsuit -sequence. Since $\operatorname{cof}(\mathscr{M})$ is equal to the cofinality of the collection of closed nowhere dense sets (e.g. [15, Lemma 3.7]) and now $\operatorname{cof}(\mathscr{M}) = \aleph_1$, there exists a family \mathscr{O} of open dense subsets of ω^{ω} of size \aleph_1 such that for any dense open subset O of ω^{ω} , there exists a member of \mathscr{O} which is a subset of O. We write Lim as a class of limit ordinals. Let $\langle P_{\beta}; \beta \in \omega_1 \cap \operatorname{Lim} \rangle$ be a partition and f a function from ω_1 onto \mathscr{O} such that for all $\beta \in \omega_1 \cap \operatorname{Lim}$,

- P_{β} is uncountable,
- the set $P_{\beta} \cap \beta$ is empty, and
- $f \upharpoonright P_{\beta}$ is surjective.

We construct a pregap $\langle a_{\alpha}, b_{\alpha}; \alpha \in \omega_1 \rangle$ with the following properties:

- (1) $a_0 = b_0 = \emptyset$, $a_\alpha \cap b_\alpha = \emptyset$ and the set $\omega \setminus (a_\alpha \cup b_\alpha)$ is infinite for all $\alpha \in \omega_1$.
- (2) If $\beta \leq \alpha < \omega_1$, then both $a_\beta \subseteq^* a_\alpha$ and $b_\beta \subseteq^* b_\alpha$.
- (3) $\langle a_{\alpha}, b_{\alpha}; \alpha \in \omega_1 \rangle$ admits finite changes.
- (4) For each $\alpha \in \omega_1 \cap \text{Lim}$, if for any $\gamma, \delta \in A_\alpha$ with $\gamma < \delta$, there is $\beta > \gamma$ such that $\delta \in P_\beta$, then there exists a strictly increasing sequence $\langle j_k^\alpha; k \in \omega \rangle$ of natural numbers such that for each $\beta \in \alpha \cap \text{Lim}$ and $\gamma \in P_\beta \cap A_\alpha$, there is an infinite subset S of ω so that for any $j \in \{j_k^\alpha; k \in S\}$ and $K \subseteq j$, there exists $s \in \mathscr{X}^{<\omega}(g_\beta)$ such that [s] is a subset of the dense open subset $f(\gamma)$ in $\mathscr{X}(g_\beta)$, and

$$\bigcup_{\xi \in \operatorname{ran}(s)} a_{\xi} \cap K = \emptyset, \quad \bigcup_{\xi \in \operatorname{ran}(s)} a_{\xi} \smallsetminus j \subseteq a_{\alpha},$$
$$\bigcup_{\xi \in \operatorname{ran}(s)} b_{\xi} \cap j \subseteq K \text{ and } \bigcup_{\xi \in \operatorname{ran}(s)} b_{\xi} \smallsetminus j \subseteq b_{\alpha}.$$

(5) For each $\alpha \in \omega_1 \cap \mathsf{Lim}$, if for any $\gamma, \delta \in A_\alpha$ with $\gamma < \delta$, there is $\beta > \gamma$ such that $\delta \in P_\beta$, then there exists a strictly increasing sequence $\langle i_k^\alpha : k \in \omega \rangle$ of natural numbers such that for each $\beta \in \alpha \cap \mathsf{Lim}$ and $\gamma \in P_\beta \cap A_\alpha$, there is an infinite subset T of ω so that for any $i \in \{i_k^\alpha; k \in T\}$, there exists $t \in \mathscr{Y}^{<\omega}(g_\beta)$ such that $t(0)(1) \geq i$, [t] is a subset of the dense open subset $f(\gamma)$ in $\mathscr{Y}(g_\beta)$, and

$$\bigcup_{\xi \in \operatorname{ran}_0(t)} a_{\xi} \cap \left[i, \ t(|t|-1)(1)\right) \subseteq a_{\alpha} \text{ and } \bigcup_{\xi \in \operatorname{ran}_0(t)} b_{\xi} \cap \left[i, \ t(|t|-1)(1)\right) \subseteq b_{\alpha}.$$

The construction at successor stages are trivial by the property 3. Assume that α is a limit ordinal. We enumerate the set $\{\langle \beta, \gamma \rangle; \beta \in \alpha \cap \text{Lim} \text{ and } \gamma \in P_{\beta} \cap A_{\alpha}\}$ by $\{\langle \beta_k, \gamma_k \rangle; k \in \omega\}$ such that each pair $\langle \beta, \gamma \rangle$ appears infinitely many often. (These sets

may be empty. If so, we let all $\langle \beta_k, \gamma_k \rangle$ not be defined.) In order to construct a_{α} and b_{α} , we construct an increasing cofinal sequence $\langle \zeta_k; k \in \omega \rangle$ of α and natural numbers $i_k^{\alpha} = i_k$, $j_k^{\alpha} = j_k$, with properties that

- $\langle \zeta_k; k \in \omega \rangle \in \mathscr{X}(g_\alpha),$
- $\beta_k < \zeta_{k-1}$ and $i_k < j_k < i_{k+1}$ for every $k \in \omega$, and
- $a_{\zeta_{k-1}} \cap j_{k-1} = a_{\zeta_k} \cap j_{k-1}$ and $b_{\zeta_{k-1}} \cap j_{k-1} = b_{\zeta_k} \cap j_{k-1}$ for every $k \in \omega$

as follows; then we define $a_{\alpha} := \bigcup_{k \in \omega} a_{\zeta_k}$ and $b_{\alpha} := \bigcup_{k \in \omega} b_{\zeta_k}$.

Assume that we have already constructed ζ_h , i_h and j_h , h < k, for some $k \in \omega$. (We put $i_{-1} = j_{-1} = 0$. If $\langle \beta_k, \gamma_k \rangle$'s are not defined, then we ignore the following construction and define a_α and b_α satisfying the properties 1 and 2 and for all $\mu \in \alpha$, both sets $a_\alpha \smallsetminus a_\mu$ and $b_\alpha \smallsetminus b_\mu$ are infinite.) Let $\{K_m; m < 2^{j_{k-1}}\}$ enumerate $\mathscr{P}(j_{k-1})$. By the inductive hypothesis of the property 3, we pick $\eta_m \in \beta_k$ for each $m \leq 2^{j_{k-1}}$ and $s_m \in \mathscr{X}^{<\omega}(g_{\beta_k})$ for each $m < 2^{j_{k-1}}$ such that

- $a_{\eta_m} \cap j_{k-1} = j_{k-1} \smallsetminus K_m$ and $b_{\eta_m} \cap j_{k-1} = K_m$,
- $\langle \eta_m \rangle \subseteq s_m$ (i.e. $s_m(0) = \eta_m$),
- $[s_m]$ is a subset of the dense open subset $f(\gamma_k)$ in $\mathscr{X}(g_{\beta_k})$,
- $\max(\eta_{m+1} \cap \mathsf{Lim}) = \max\{\max(\xi \cap \mathsf{Lim}); \xi \in \operatorname{ran}(s_m)\}, \text{ and }$
- $\bigcup_{\xi \in \operatorname{ran}(s_m)} a_{\xi} \setminus j_{k-1} = a_{\eta_{m+1}} \setminus j_{k-1} \text{ and } \bigcup_{\xi \in \operatorname{ran}(s_m)} b_{\xi} \setminus j_{k-1} = b_{\eta_{m+1}} \setminus j_{k-1}.$

(This can be done by the property 3.) Let $i_k > j_{k-1}$ be such that

$$a_{\eta_{2^{j_{k-1}}}} \smallsetminus i_k \subseteq a_{\zeta_{k-1}} \text{ and } b_{\eta_{2^{j_{k-1}}}} \smallsetminus i_k \subseteq b_{\zeta_{k-1}},$$

and then we take $\zeta'_{k-1} \in \alpha$ (by the inductive hypothesis of the property 3) so that

$$\begin{aligned} a_{\zeta'_{k-1}} \cap j_{k-1} &= a_{\zeta_{k-1}} \cap j_{k-1}, \quad a_{\zeta'_{k-1}} \cap \left[j_{k-1}, \ i_k\right) = a_{\eta_{2^{j_{k-1}}}} \cap \left[j_{k-1}, \ i_k\right) \\ a_{\zeta'_{k-1}} \smallsetminus i_k &= a_{\zeta_{k-1}} \smallsetminus i_k, \quad b_{\zeta'_{k-1}} \cap j_{k-1} = b_{\zeta_{k-1}} \cap j_{k-1}, \\ b_{\zeta'_{k-1}} \cap \left[j_{k-1}, \ i_k\right) &= b_{\eta_{2^{j_{k-1}}}} \cap \left[j_{k-1}, \ i_k\right) \text{ and } b_{\zeta'_{k-1}} \smallsetminus i_k = b_{\zeta_{k-1}} \smallsetminus i_k. \end{aligned}$$

The construction up to here is for the property 4. For the property 5, we pick $t \in \mathscr{Y}^{<\omega}(g_{\beta_k})$ such that $t(0)(1) \geq i_k$, [t] is a subset of the dense open subset $f(\gamma_k)$ in $\mathscr{Y}(g_{\beta_k})$. (This can be done by the density of $f(\gamma_k)$. For the sequence $\langle\!\langle 0, i \rangle\!\rangle \in \mathscr{Y}(g_{\beta_k})^{<\omega}$, there is $t \in \mathscr{Y}(g_{\beta_k})^{<\omega}$ so that $\langle\!\langle 0, i \rangle\!\rangle \subseteq t$ and [t] is a subset of $f(\gamma_k)$.) We let

$$\zeta_{k-1}'' > \max\left(\operatorname{ran}_0(t) \cup \left\{\zeta_{k-1}'\right\}\right)$$

be a large enough ordinal less than α and $j_k > t(|t| - 1)(1) (\geq i_k)$ be such that for all $\xi \in \operatorname{ran}_0(t) \cup \{\zeta'_{k-1}\},\$

$$a_{\xi} \smallsetminus j_k \subseteq a_{\zeta_{k-1}''}, \quad b_{\xi} \smallsetminus j_k \subseteq b_{\zeta_{k-1}''} \text{ and } \left| j_k \smallsetminus \left(a_{\zeta_{k-1}''} \cup b_{\zeta_{k-1}''} \right) \right| \ge k$$

and find $\zeta_k < \alpha$ (by the inductive hypothesis of the property 3) so that

$$\begin{aligned} a_{\zeta_k} \cap i_k &= a_{\zeta'_{k-1}} \cap i_k, \quad a_{\zeta_k} \cap \left[i_k, \ j_k\right) = \left(\bigcup_{\xi \in \operatorname{ran}_0(t)} a_\xi \cup a_{\zeta'_{k-1}}\right) \cap \left[i_k, \ j_k\right), \\ a_{\zeta_k} &\smallsetminus j_k = a_{\zeta''_{k-1}} \smallsetminus j_k, \quad b_{\zeta_k} \cap i_k = b_{\zeta'_{k-1}} \cap i_k, \\ b_{\zeta_k} \cap \left[i_k, \ j_k\right) = \left(\bigcup_{\xi \in \operatorname{ran}_0(t)} b_\xi \cup b_{\zeta'_{k-1}}\right) \cap \left[i_k, \ j_k\right) \text{ and } b_{\zeta_k} \smallsetminus j_k = b_{\zeta''_{k-1}} \lor j_k, \end{aligned}$$

which completes the construction.

We check that $\langle a_{\alpha}, b_{\alpha}; \alpha \in \omega_1 \rangle$ is a destructible gap, i.e. we will prove the following two statements:

(a) $\forall X \in [\omega_1]^{\omega_1} \exists \alpha \neq \beta \in X \ ((a_\alpha \cap b_\beta) \cup (a_\beta \cap b_\alpha) = \varnothing).$ (b) $\forall X \in [\omega_1]^{\omega_1} \exists \alpha \neq \beta \in X \ ((a_\alpha \cap b_\beta) \cup (a_\beta \cap b_\alpha) \neq \varnothing).$

(We recall that (a) means that the pregap is destructible, and (b) means that the pregap is a gap.)

For a proof of (a), assume that there exists an uncountable subset X of ω_1 such that for all $\gamma \neq \delta \in X$,

$$(a_{\gamma} \cap b_{\delta}) \cup (a_{\delta} \cap b_{\gamma}) \neq \emptyset.$$

Without loss of generality, we may moreover assume that for all $\gamma \in \omega_1$, there exists $\delta \in X$ such that

$$(a_{\gamma} \cap b_{\delta}) \cup (a_{\delta} \cap b_{\gamma}) = \emptyset.$$

We note that the set

$$C := \{ \alpha \in \mathsf{Lim} \cap \omega_1; \forall \gamma \in \alpha \ \exists \delta \in X \cap \alpha \ ((a_\gamma \cap b_\delta) \cup (a_\delta \cap b_\gamma) = \varnothing) \}$$

is club on ω_1 . We construct an uncountable subset A of ω_1 as follows. Assume that we have already constructed A up to δ for some countable ordinal δ . Then there is $\beta \in C \smallsetminus (\delta + 1)$. We notice that the set

$$D_{\beta} := \{ x \in \mathscr{X}(g_{\beta}); \operatorname{ran}(x) \cap X \neq \emptyset \}$$

is dense open in $\mathscr{X}(g_{\beta})$. So there exists $\gamma \in P_{\beta}$ such that $f(\gamma)$ is contained in D_{β} and let $A \cap (\gamma + 1) := (A \cap \delta) \cup \{\gamma\}$ which completes the construction of A.

By the \clubsuit -sequence, we can find $\alpha \in C$ such that $A_{\alpha} \subseteq A$. By the construction of A, A_{α} satisfies the first assumption of the property 4. We take any $\eta \in X \setminus \alpha$. Then there is a natural number m such that

Combinatorial principles, invariants of \mathscr{M} and destructible gaps

$$a_{\alpha} \smallsetminus m \subseteq a_{\eta} \text{ and } b_{\alpha} \smallsetminus m \subseteq b_{\eta}.$$

We fix any $\gamma \in A_{\alpha}$. Then by the construction of A, for some $\beta \in \alpha$, $\gamma \in P_{\beta}$ and $f(\gamma)$ is a subset of D_{β} . Applying the property 4 for $\langle \alpha, \beta, \gamma \rangle$, we can find $j \geq m$ which satisfies the conclusion of the property 4. Then we can find $s \in \mathscr{X}^{<\omega}(g_{\beta})$ such that [s] is a subset of $f(\gamma)$ and

$$\bigcup_{\xi \in \operatorname{ran}(s)} a_{\xi} \cap b_{\eta} \cap j = \emptyset, \quad \bigcup_{\xi \in \operatorname{ran}(s)} a_{\xi} \setminus j \subseteq a_{\alpha},$$
$$\bigcup_{\xi \in \operatorname{ran}(s)} b_{\xi} \cap j \subseteq b_{\eta} \cap j \text{ and } \bigcup_{\xi \in \operatorname{ran}(s)} b_{\xi} \setminus j \subseteq b_{\alpha}.$$

By the definition of D_{β} , there exists $\xi \in \operatorname{ran}(s) \cap X$. (Because if $\operatorname{ran}(s) \cap X = \emptyset$, then let $\zeta \in \operatorname{ran}(s)$ and $x \in \beta^{\omega}$ such that $s \subseteq x$ and $x(i) = \zeta$ for all $i \ge |s|$, and then $x \in ([s] \cap \mathscr{K}(g_{\beta})) \setminus D_{\beta}$, which contradicts an assumption of s. The point is that for any $s_0, s_1 \in \alpha^{<\omega}$, the intersection $[s_0] \cap [s_1]$ is empty if s_0 and s_1 are incomparable, otherwise $[s_0] \cap [s_1]$ is either $[s_0]$ or $[s_1]$.) But then

$$(a_{\xi} \cap b_{\eta}) \cup (a_{\eta} \cap b_{\xi}) = \emptyset$$

which is a contradiction and completes the proof of (a).

A proof of (b) is similar to one of (a), but we will use the property 5 instead of 4. We assume that there exists an uncountable subset Y of ω_1 such that for all $\gamma \neq \delta \in Y$,

$$(a_{\gamma} \cap b_{\delta}) \cup (a_{\delta} \cap b_{\gamma}) = \emptyset.$$

Without loss of generality, we may moreover assume that for all $\gamma \in \omega_1$, there exists $\delta \in Y$ such that

$$(a_{\gamma} \cap b_{\delta}) \cup (a_{\delta} \cap b_{\gamma}) \neq \emptyset.$$

We note again that the set

$$C' := \{ \alpha \in \mathsf{Lim} \cap \omega_1; \forall \gamma \in \alpha \; \exists \delta \in Y \cap \alpha \; ((a_\gamma \cap b_\delta) \cup (a_\delta \cap b_\gamma) \neq \varnothing) \}$$

is club on ω_1 . We construct an uncountable subset B of ω_1 as follows. Assume that we have already constructed B up to δ for some countable ordinal δ . Then there is $\beta \in C' \setminus (\delta + 1)$. We define the subset E_β of $\mathscr{Y}(g_\beta)$ such that $y \in E_\beta$ if there exists $\xi \in Y$ so that for some $l \in \omega$, either

$$a_{\xi} \cap \left(\bigcup_{\zeta \in \operatorname{ran}_{0}(y)} b_{\zeta}\right) \cap \left[y(l), y(l+1)\right) \neq \emptyset$$

or

$$\left(\bigcup_{\zeta\in\operatorname{ran}_0(y)}a_\zeta\right)\cap b_\xi\cap\left[y(l),y(l+1)\right)\neq\varnothing.$$

We note that E_{β} is dense open in $\mathscr{Y}(g_{\beta})$, hence there exists $\gamma \in P_{\beta}$ such that $f(\gamma)$ is contained in E_{β} and let

$$B \cap (\gamma + 1) := (B \cap \delta) \cup \{\gamma\}$$

which completes the construction of B.

By the \clubsuit -sequence, we can find $\alpha \in C'$ such that $A_{\alpha} \subseteq B$. By the construction of B, A_{α} satisfies the first assumption of the property 4. We take any $\eta \in Y \setminus \alpha$. Then there is a natural number m such that

$$a_{\alpha} \smallsetminus m \subseteq a_{\eta} \text{ and } b_{\alpha} \smallsetminus m \subseteq b_{\eta}.$$

We take any $\gamma \in A_{\alpha}$, then by the construction of B, for some $\beta \in \alpha, \gamma \in P_{\beta}$ and $f(\gamma)$ is a subset of E_{β} . Applying the property 5 for $\langle \alpha, \beta, \gamma \rangle$, we can find $i \geq m$ which satisfies the conclusion of the property 5. Then we can find $t \in \mathscr{Y}^{<\omega}(g_{\beta})$ such that $t(0)(1) \geq i$, [t] is a subset of $f(\gamma)$ and

$$\left(\bigcup_{\zeta\in\operatorname{ran}_0(t)}a_\zeta\right)\cap\left[i,\ t(|t|-1)(1)\right)\subseteq a_\alpha$$

and

$$\left(\bigcup_{\zeta\in\operatorname{ran}_0(t)}b_\zeta\right)\cap\left[i,\ t(|t|-1)(1)\right)\subseteq b_\alpha.$$

By the definition of E_{β} , there exists $\xi \in Y$ such that for some l < |t| - 1, either

$$a_{\xi} \cap \left(\bigcup_{\zeta \in \operatorname{ran}_{0}(t)} b_{\zeta}\right) \cap [t(l)(1), t(l+1)(1)) \neq \emptyset$$

or

$$\left(\bigcup_{\zeta\in\operatorname{ran}_0(t)}a_\zeta\right)\cap b_\xi\cap\left[t(l)(1),\ t(l+1)(1)\right)\neq\varnothing.$$

But then, since $t(l)(1) \ge i$,

$$(a_{\xi} \cap b_{\eta}) \cup (a_{\eta} \cap b_{\xi}) \neq \emptyset$$

1227

 \Box

which is a contradiction and completes the proof of (b).

3. Remarks.

Since we can show that the Lévy collapse of ω_1 to ω adds a destructible gap, there exists a destructible gap in Shelah' model of $\clubsuit + \neg CH$ [14, Chapter 1, 7.4 Theorem]. As a corollary of Theorem 1.1, in the model of [6, Theorem 3.8], there exists a destructible gap as for a Suslin tree. Moreover as a corollary of Theorem 2.2, in the extension with the countable support iteration of Sacks forcing of length ω_2 ([11, Corollary 6.14]), and in the extension with the countable support product of Sacks forcing over \diamondsuit ([8, Theorem IV. 4]), \clubsuit holds and there exist a Suslin tree and a destructible gap. So it seems to be the following question still open.

QUESTION 3.1. Is it consistent with ZFC that \clubsuit holds and there are no destructible gaps?

As a corollary of two theorems, if \clubsuit holds and all gaps are indestructible, then the inequality

$$\mathsf{cov}(\mathscr{M}) = \aleph_1 < \mathsf{cof}(\mathscr{M})$$

holds. This is as same as the case of the existence of a Suslin tree.

References

- [1] U. Abraham and S. Todorčević, Partition properties of ω_1 compatible with CH, Fund. Math., **152** (1997), 165–180.
- [2] S. Broverman, J. Ginsburg, K. Kunen and F. Tall, Topologies determined by σ-ideals on ω₁, Canad. J. Math., **30** (1978), 1360–1312.
- [3] J. Brendle, Cardinal invariants of the continuum and combinatorics on uncountable cardinals, Ann. Pure Appl. Logic, to appear.
- [4] A. Dow, More set-theory for topologists, Topology Appl., 64 (1995), 243–300.
- [5] I. Farah, OCA and towers in 𝒫(N)/fin, Comment. Math. Univ. Carolin., 37 (1996), 861–866.
- [6] S. Fuchino, S. Shelah and L. Soukup, Sticks and clubs, Ann. Pure Appl. Logic, 90 (1997), 57–77.
- [7] J. Hirschorn, Summable gaps, Ann. Pure Appl. Logic, 120 (2003), 1–63.
- [8] M. Hrušák, Life in Sacks model, Acta Univ. Carolin. Math. Phys., 42 (2001), 43–58.
- [9] K. Kunen, (κ, λ^*) -gaps under *MA*, handwritten note, 1976.
- [10] R. Laver, Linear orders in $(\omega)^{\omega}$ under eventual dominance, Logic Colloquium '78, North-Holland, 1979, 299–302.
- J. Moore, M. Hrušák and M. Džamonja, Parametrized ◊ principles, Trans. Amer. Math. Soc., 356 (2004), 2281–2306.
- [12] A. Ostaszewski, On countably compact, perfectly normal spaces, J. London Math. Soc., 14 (1976), 505–516.
- [13] M. Scheepers, Gaps in ω^ω, In: Set Theory of the Reals, Proceedings of Israel Mathematical Conference, 6, 1993, 439–561.
- [14] S. Shelah, Proper and improper forcing, 2nd edition, Springer, 1998.
- [15] S. Shelah and J. Zapletal, Canonical models for ℵ₁-combinatorics, Ann. Pure Appl. Logic, 98 (1999), 217–259.
- [16] S. Todorčević, Partition Problems in Topology, Contemporary mathematics, 84, American Mathematical Society, Providence, Rhode Island, 1989.
- [17] S. Todorčvić, Coherent Sequences, to appear in the Handbook of Set Theory.

T. YORIOKA

- [18] S. Todorčević and I. Farah, Some Applications of the Method of Forcing, Mathematical Institute, Belgrade and Yenisei, Moscow, 1995.
- [19] D. Velleman, Souslin trees constructed from morasses, Axiomatic set theory (Boulder, Colo., 1983), Contemp. Math., **31** (1984), 219–241.
- [20] T. Yorioka, The diamond principle for the uniformity of the meager ideal implies the existence of a destructible gap, Arch. Math. Logic, 44 (2005), 677–683.

Teruyuki Yorioka

Graduate School of Science and Technology Kobe University Rokkodai, Nada-ku, Kobe, 657-8501 Japan E-mail: yorioka@kurt.scitec.kobe-u.ac.jp