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Abstract. We show that (1)
r

plus cov(M ) > ℵ1 implies the existence of a
destructible gap and (2) ♣ plus cof(M ) = ℵ1 implies the existence of a destructible
gap.

Introduction.

In this paper, we deal with a pregap in the Boolean algebra P(ω)/fin. A pregap in
P(ω)/fin is a pair (A ,B) of subsets of P(ω) such that for all a ∈ A and b ∈ B, the
set a ∩ b is finite. For subsets a and b of ω, we say that a is almost contained in b (and
denote a ⊆∗ b) if the set ar l is a subset of b for some l ∈ ω. For a pregap (A ,B), both
ordered sets 〈A ,⊆∗〉 and 〈B,⊆∗〉 are well ordered and these order types are κ and λ

respectively, then we say that a pregap (A ,B) has the type (κ, λ) or is a (κ, λ)-pregap.
Moreover if κ = λ, we say that the pregap is symmetric. For a pregap (A ,B), we say
that (A ,B) is separated if for some c ∈ P(ω), a ⊆∗ c and the set c∩ b is finite for every
a ∈ A and b ∈ B. If a pregap is not separated, we say that it is a gap. Moreover if a
gap has the type (κ, λ), it is called a (κ, λ)-gap.

We note that being a pregap is absolute in any model having the pregap, but being a
gap is not. In [9], Kunen has investigated an (ω1, ω1)-gap and has given a characterization
of being a gap in the forcing extension and in [18, Chapter 9], Todorčević has introduced
a notion of an open coloring and has given Ramsey theoretic characterization of being
a gap in the forcing extension (see the theorem below). From their characterizations,
we note that an (ω1, ω1)-gap constructed by Hausdorff is still a gap in any extension
preserving cardinals. We say that such a gap is indestructible. If an (ω1, ω1)-gap is not
indestructible, that is, it is not a gap in some forcing extension not collapsing cardinals,
it is called destructible. (We note that every gap not having the type (ω1, ω1), it can
be separated by a ccc-forcing extension.) Kunen has proved that under Martin’s Axiom
for ℵ1 many dense sets of ccc-forcing notions, all (ω1, ω1)-gap are indestructible. In [10],
Laver has implied that a destructible gap consistently exists. Therefore it is not decided
from ZFC that there exists a destructible gap.

A notion of a destructible gap can be considered an analogy of one of a Suslin
tree ([1]). A Suslin tree is an ω1-tree having no uncountable chains and antichains. A

2000 Mathematics Subject Classification. 03E05, 03E35.

Key Words and Phrases. ♣,
r
, cardinal invariants of the meager ideal, destructible gaps.

Supported by JSPS Research Fellowship for Young Scientists and Grant-in-Aid for JSPS Fellow

(No. 16·3977), Ministry of Education, Culture, Sports, Science and Technology.



1218 T. Yorioka

destructible gap can be considered as a similar notion. For an (ω1, ω1)-pregap (A ,B) =
〈aα, bα;α ∈ ω1〉 with the set aα ∩ bα empty for every α ∈ ω1, we say here that α and β

in ω1 are compatible if

(aα ∩ bβ) ∪ (aβ ∩ bα) =∅.

Then by the characterization due to Kunen and Todorčević, we notice that an (ω1, ω1)-
pregap is a destructible gap iff it has no uncountable pairwise compatible and incompat-
ible subsets of ω1. (We must notice that from results of Farah and Hirschorn [5], [7], the
existence of a destructible gap is independent with the existence of a Suslin tree.)

Jensen has proved that if V = L, then there exists a Suslin tree. After that, he
has introduced a combinatorial principle ♦ and has constructed a Suslin tree from ♦.
Shelah has proved that adding a Cohen real adds a Suslin tree. The same results for a
destructible gap are also true and proved by Todorčević ([4, Proposition 2.5] and [18,
Theorem 9.3]). In this paper, we construct a destructible gap by two ways.

One is a modification of the construction from adding a Cohen real. In [19], Velleman
has modified a construction of a Suslin tree due to Shelah using a morass, and after that
Miyamoto has modified a Velleman’s construction using a connection of two models.
The first version of Miyamoto’s theorem also have a morass as a condition to build a
Suslin tree, but in [3, §7], Brendle has modified again that situation and consequently,
he constructed a Suslin tree from s plus the covering number cov(M ) of the meager
ideal is larger than ℵ1.

s is a combinatorial principle on ω1, introduced in the paper [2],
as follow: there is a sequence 〈Aα;α ∈ ω1〉 of countable subsets of ω1 such that for any
uncountable subset B of ω1 there is α ∈ ω1 so that Aα is a subset of B. A destructible
gap can be constructed under the same situation, that is, s plus cov(M ) > ℵ1 implies
the existence of a destructible gap (Theorem 1.1).

The other is the modification of the construction from ♦. ♣ is a combinatorial
principle on ω1 introduced by Ostaszewski ([12]. See also [14, I.§7].): There exists a
sequence 〈Aα;α ∈ ω1〉 of subsets of ω1 such that for all α ∈ ω1, Aα is a cofinal subset of
α and for every uncountable subset A of ω1, the set {α ∈ ω1;Aα ⊆ A} is stationary. We
note that ♦ implies ♣ and ♣ plus the Continuum Hypothesis implies ♦ ([14, Chapter
1, 7.4 Theorem]). From the result of Baumgartner [8, Theorem IV. 4] (or the result [11,
Corollary 6.14]), it is consistent with ZFC that ♣, the cofinality cof(M ) of the meager
ideal on the real line is equal to ℵ1 and the continuum is larger than ℵ1, hence in this
model, ♦ does not hold. Brendle has proved that a Suslin tree exists in the model
satisfying ♣ plus cof(M ) = ℵ1 ([3, Theorem 6]). As same as a Suslin tree, we can show
that ♣ and cof(M ) = ℵ1 implies the existence of a destructible gap (Theorem 2.2).

Throughout this paper, we always deal with a symmetric pregap. For an ordinal α,
if we say that 〈aξ, bξ; ξ ∈ α〉 is a pregap, we always assume that if ξ < η in α, aξ ⊆∗ aη

and bξ ⊆∗ bη, and for every ξ ∈ α, the set aξ ∩ bξ is empty. We have the following
characterizations of being a gap and indestructibility.

Theorem (E.g. [9], [13], [16], [18]). Let (A ,B) = 〈aα, bα;α ∈ ω1〉 be an (ω1, ω1)-
pregap with the set aα ∩ bα empty for every α ∈ ω1.

(1) (A ,B) forms a gap iff for any X ∈ [ω1]ω1 , there are α 6= β in X such that
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(aα ∩ bβ) ∪ (aβ ∩ bα) 6=∅.

(2) (A ,B) is destructible (may not be a gap) iff for any X ∈ [ω1]ω1 , there are α 6= β

in X such that

(aα ∩ bβ) ∪ (aβ ∩ bα) =∅.

1. |• plus cov(M ) > ℵ1.

Miyamoto has proved the existence of a Suslin tree under the assumptions in Theo-
rem 1.1. This theorem says not only the existence of a Suslin tree but also the preservation
of a Suslin tree constructed from a Cohen real between models with some properties. To
prove Miyamoto’s theorem, we use Todorčević’s coding of Aronszajn trees. In the fol-
lowing proof, we just use a K0-homogeneous gap (see in the proof). To prove Theorem
1.1, we note that cov(M ) is equal to the smallest number κ such that there is a family
of dense subsets of C of size κ so that there are no filters which meets all members of
the family.

Theorem 1.1. (1) Assume V ⊆ W are models of (fragments of ) ZFC so that

(a) ℵ1
V = ℵ1

W ,
(b) ∀B ∈ [ω1]ω1 ∩W ∃A ∈ [ω1]ω ∩ V (A ⊆ B), and
(c) there exists c ∈ W which is Cohen over V .

Then there exists a destructible gap in W .
(2) s plus cov(M ) > ℵ1 implies the existence of a destructible gap.

Proof. We will prove only (2). (1) can be proved by the same way.
Let 〈Aα;α ∈ ω1〉 ∈ ([ω1]ω)ω1 be a s sequence, i.e. for every B ∈ [ω1]ω1 we can find

α ∈ ω1 so that Aα ⊆ B. Let 〈aξ, bξ; ξ ∈ ω1〉 be an (ω1, ω1)-pregap such that for all α ∈ ω1

and n ∈ ω, there exists ξ 6= η in Aα such that

(aξ ∩ bη ∩ n) ∪ (aη ∩ bξ ∩ n) =∅ and
(
(aξ ∩ bη) ∪ (aη ∩ bξ)

)
r n 6=∅.

(We note that by s, this pregap really forms a gap.) This pregap exists under ZFC. For
example, let 〈aξ, bξ; ξ ∈ ω1〉 is K0-homogeneous, i.e. the set aξ ∩ bξ is empty for every
ξ ∈ ω1 and for every ξ 6= η in ω1,

(aξ ∩ bη) ∪ (aη ∩ bξ) 6=∅

(see [13, Lemma 12] or [16, 8.6.Theorem]). Then for any countable subset A of ω1 and
a natural number n, there are ξ 6= η in A such that

(aξ ∩ bη ∩ n) ∪ (aη ∩ bξ ∩ n) =∅ and
(
(aξ ∩ bη) ∪ (aη ∩ bξ)

)
r n 6=∅.

In this proof, we let C be a partial order 〈2<ω,⊇〉 and we identify a condition p in
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C with a finite subset {i ∈ |p| ; p(i) = 1} of |p|. For each α ∈ ω1, we define

Dα =
{
p ∈ C;∃ξ 6= η ∈ Aα

(
(aξ ∩ bη ∩ p) ∪ (aη ∩ bξ ∩ p) 6=∅)}

and

Eα =
{
p ∈ C;∃ξ < η ∈ Aα (aξ r |p| ⊆ aη & bξ r |p| ⊆ bη

& (aξ ∩ bη ∩ p) ∪ (aη ∩ bξ ∩ p) =∅)
}
.

Claim. All Dα and Eα are dense in C.

Proof of Claim. For each α ∈ ω1 and p ∈ C, there exist ξ < η in Aα such that

(aξ ∩ bη ∩ |p|) ∪ (aη ∩ bξ ∩ |p|) =∅ and
(
(aξ ∩ bη) ∪ (aη ∩ bξ)

)
r |p| 6=∅.

Let k ≥ |p| such that k ∈ (aξ∩bη)∪ (aη∩bξ) and let q := p∪ (0 ¹ (kr |p|))∪{〈k, 1〉}.
(0 is a constant function with the value 0.) Then

q °C“ (ǎξ ∩ b̌η ∩ ċ) ∪ (ǎη ∩ b̌ξ ∩ ċ) 6=∅ ”,

i.e. q is in Dα.
Let l ≥ |p| be so that aξ r l ⊆ aη, bξ r l ⊆ bη and let r := p ∪ 0 ¹ (l r |p|). Then

r °C“ (ǎξ ∩ b̌η ∩ ċ) ∪ (ǎη ∩ b̌ξ ∩ ċ) =∅ ”,

i.e. r is in Eα. a
Let G ⊆ C be a filter which meets all Dα and Eα, and the dense subsets {p ∈ C; |p| ≥ n}
of C for all n ∈ ω. Let c :=

⋃
G.

Since G meets all Dα, 〈aα ∩ c, bα ∩ c;α ∈ ω1〉 forms a gap: Assume not, then there
is an uncountable subset B of ω1 such that for every ξ 6= η in B, the set (aξ ∩ bη ∩ c) ∪
(aη ∩ bξ ∩ c) is empty, i.e. there is p ∈ G such that

p °C“ ∀ξ 6= η ∈ B̌
(
(ǎξ ∩ b̌η ∩ ċ) ∪ (ǎη ∩ b̌ξ ∩ ċ) =∅

)
”.

(By the countability of C, we may assume that B is an object lying in the ground model
by shrinking B if necessary.) We can find α ∈ ω1 so that Aα ⊆ B. Since G meets Dα,
there is q ∈ G ∩ Dα, say ξ and η as witnesses for q ∈ Dα. Then p ∪ q is in G (in fact,
p ∪ q is just either p or q), both ξ and η are in B and

p ∪ q °C“ (ǎξ ∩ b̌η ∩ ċ) ∪ (ǎη ∩ b̌ξ ∩ ċ) 6=∅ ”,

which is a contradiction.
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By the similar argument, we can show that 〈aα ∩ c, bα ∩ c;α ∈ ω1〉 is destructible
using the dense sets Eα instead of Dα. ¤

2. ♣ plus cof(M ) = ℵ1.

In [4, Proposition 2.5], a destructible gap is constructed from ♦. This proof uses
the enumeration of the reals of length ω1 to show the pregap constructed by recursion is
really a gap. The following proof says that we do not need the enumeration to construct
a destructible gap from ♦ also.

The following condition is a useful notion to construct a destructible gap. This is
used in the proof of [4, Proposition 2.5]. (But we slightly modify the original one.)

Definition 2.1 ([20]). We say that a pregap (A ,B) = 〈aα, bα;α ∈ ω1〉 admits
finite changes if for all α ∈ ω1, the set aα ∩ bα is empty and the set ω r (aα ∪ bα) is
infinite, and for any β < α with β = η + k for some η ∈ Lim∩α and k ∈ ω, H, J ∈ [ω]<ω

with H ∩ J =∅ and i > max(H ∪ J) there exists n ∈ ω so that

aη+n ∩ i = H, aη+n r i = aβ r i, bη+n ∩ i = J, and bη+n r i = bβ r i.

Theorem 2.2. ♣ and cof(M ) = ℵ1 implies the existence of a destructible gap.

Proof. At first, we give some notation in the proof to avoid using many symbols
in formulae.

For each α ∈ ω1 and a pregap 〈aξ, bξ; ξ < α〉, let g ∈ 2α×ω×2 be a function such
that for all ξ ∈ α, aξ = {n ∈ ω; g(ξ, n, 0) = 1} and bξ = {n ∈ ω; g(ξ, n, 1) = 1}, that is,
g is a code of this pregap. Assume that α is a countable ordinal and g is a code of an
(α, α)-pregap 〈aξ, bξ; ξ ∈ α〉 which admits finite changes, and aξ∩bξ =∅ and ωr(aξ∪bξ)
is infinite for all ξ ∈ α. Then we define a subset X (g) of αω which is a collection of
members x in αω such that

⋃

ξ∈ran(x)

aξ ∩
⋃

ξ∈ran(x)

bξ =∅.

We can identify X (g) as the Baire space ωω. (By the admission of finite changes of
g, any node in X (g) has infinitely many successors.) For each s ∈ α<ω, we let [s] :=
{x ∈ X (g); s ⊆ x} and denote X <ω(g) as the set of s ∈ α<ω such that [s] is a basic
open set in X (g), i.e.

⋃

ξ∈ran(s)

aξ ∩
⋃

ξ∈ran(s)

bξ =∅.

Let O be a dense open subset of ωω. O is a union of countably many basic open sets,
that is, O has a code as a countable sequence of members of ω<ω. In this proof, we can
consider O as a dense open subset of X (g) using its code. Moreover we define a space
Y (g) such that
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Y (g) :=
{
y ∈ (α× ω)ω; the sequence of the first coordinates of y is in X (g)

and the second coordinates are strictly increasing}.

Y (g) is also considered as the Baire space. For y ∈ (α × ω)≤ω and l < |y|, we denote
y(l) = 〈y(l)(0), y(l)(1)〉 and ran0(y) := {y(l)(0); l < |y|}. As in the definition of X <ω(g),
we denote Y <ω(g) as the set of t ∈ (α× ω)<ω such that [t] is a basic open set in Y (g).

Let 〈Aα;α ∈ ω1〉 be a ♣-sequence. Since cof(M ) is equal to the cofinality of the
collection of closed nowhere dense sets (e.g. [15, Lemma 3.7]) and now cof(M ) = ℵ1,
there exists a family O of open dense subsets of ωω of size ℵ1 such that for any dense
open subset O of ωω, there exists a member of O which is a subset of O. We write Lim

as a class of limit ordinals. Let 〈Pβ ;β ∈ ω1 ∩ Lim〉 be a partition and f a function from
ω1 onto O such that for all β ∈ ω1 ∩ Lim,

• Pβ is uncountable,
• the set Pβ ∩ β is empty, and
• f ¹ Pβ is surjective.

We construct a pregap 〈aα, bα;α ∈ ω1〉 with the following properties:

(1) a0 = b0 =∅, aα ∩ bα =∅ and the set ω r (aα ∪ bα) is infinite for all α ∈ ω1.
(2) If β ≤ α < ω1, then both aβ ⊆∗ aα and bβ ⊆∗ bα.
(3) 〈aα, bα;α ∈ ω1〉 admits finite changes.
(4) For each α ∈ ω1 ∩ Lim, if for any γ, δ ∈ Aα with γ < δ, there is β > γ such

that δ ∈ Pβ , then there exists a strictly increasing sequence 〈jα
k ; k ∈ ω〉 of natural

numbers such that for each β ∈ α∩Lim and γ ∈ Pβ∩Aα, there is an infinite subset
S of ω so that for any j ∈ {jα

k ; k ∈ S} and K ⊆ j, there exists s ∈ X <ω(gβ) such
that [s] is a subset of the dense open subset f(γ) in X (gβ), and

⋃

ξ∈ran(s)

aξ ∩K =∅,
⋃

ξ∈ran(s)

aξ r j ⊆ aα,

⋃

ξ∈ran(s)

bξ ∩ j ⊆ K and
⋃

ξ∈ran(s)

bξ r j ⊆ bα.

(5) For each α ∈ ω1 ∩ Lim, if for any γ, δ ∈ Aα with γ < δ, there is β > γ such
that δ ∈ Pβ , then there exists a strictly increasing sequence 〈iαk : k ∈ ω〉 of natural
numbers such that for each β ∈ α ∩ Lim and γ ∈ Pβ ∩ Aα, there is an infinite
subset T of ω so that for any i ∈ {iαk ; k ∈ T}, there exists t ∈ Y <ω(gβ) such that
t(0)(1) ≥ i, [t] is a subset of the dense open subset f(γ) in Y (gβ), and

⋃

ξ∈ran0(t)

aξ ∩
[
i, t(|t| − 1)(1)

) ⊆ aα and
⋃

ξ∈ran0(t)

bξ ∩
[
i, t(|t| − 1)(1)

) ⊆ bα.

The construction at successor stages are trivial by the property 3. Assume that α

is a limit ordinal. We enumerate the set {〈β, γ〉 ;β ∈ α ∩ Lim and γ ∈ Pβ ∩ Aα} by
{〈βk, γk〉 ; k ∈ ω} such that each pair 〈β, γ〉 appears infinitely many often. (These sets
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may be empty. If so, we let all 〈βk, γk〉 not be defined.) In order to construct aα and bα,
we construct an increasing cofinal sequence 〈ζk; k ∈ ω〉 of α and natural numbers iαk = ik,
jα
k = jk, with properties that

• 〈ζk; k ∈ ω〉 ∈ X (gα),
• βk < ζk−1 and ik < jk < ik+1 for every k ∈ ω, and
• aζk−1 ∩ jk−1 = aζk

∩ jk−1 and bζk−1 ∩ jk−1 = bζk
∩ jk−1 for every k ∈ ω

as follows; then we define aα :=
⋃

k∈ω aζk
and bα :=

⋃
k∈ω bζk

.
Assume that we have already constructed ζh, ih and jh, h < k, for some k ∈ ω. (We

put i−1 = j−1 = 0. If 〈βk, γk〉’s are not defined, then we ignore the following construction
and define aα and bα satisfying the properties 1 and 2 and for all µ ∈ α, both sets aαraµ

and bα r bµ are infinite.) Let
{
Km;m < 2jk−1

}
enumerate P(jk−1). By the inductive

hypothesis of the property 3, we pick ηm ∈ βk for each m ≤ 2jk−1 and sm ∈ X <ω(gβk
)

for each m < 2jk−1 such that

• aηm
∩ jk−1 = jk−1 rKm and bηm

∩ jk−1 = Km,
• 〈ηm〉 ⊆ sm (i.e. sm(0) = ηm),
• [sm] is a subset of the dense open subset f(γk) in X (gβk

),
• max(ηm+1 ∩ Lim) = max {max(ξ ∩ Lim); ξ ∈ ran(sm)}, and
•

⋃

ξ∈ran(sm)

aξ r jk−1 = aηm+1 r jk−1 and
⋃

ξ∈ran(sm)

bξ r jk−1 = bηm+1 r jk−1.

(This can be done by the property 3.) Let ik > jk−1 be such that

aη
2

jk−1
r ik ⊆ aζk−1 and bη

2
jk−1

r ik ⊆ bζk−1 ,

and then we take ζ ′k−1 ∈ α (by the inductive hypothesis of the property 3) so that

aζ′k−1
∩ jk−1 = aζk−1 ∩ jk−1, aζ′k−1

∩ [
jk−1, ik

)
= aη

2
jk−1

∩ [
jk−1, ik

)

aζ′k−1
r ik = aζk−1 r ik, bζ′k−1

∩ jk−1 = bζk−1 ∩ jk−1,

bζ′k−1
∩ [

jk−1, ik
)

= bη
2

jk−1
∩ [

jk−1, ik
)

and bζ′k−1
r ik = bζk−1 r ik.

The construction up to here is for the property 4. For the property 5, we pick t ∈
Y <ω(gβk

) such that t(0)(1) ≥ ik, [t] is a subset of the dense open subset f(γk) in
Y (gβk

). (This can be done by the density of f(γk). For the sequence 〈〈0, i〉〉 ∈ Y (gβk
)<ω,

there is t ∈ Y (gβk
)<ω so that 〈〈0, i〉〉 ⊆ t and [t] is a subset of f(γk).) We let

ζ ′′k−1 > max
(
ran0(t) ∪

{
ζ ′k−1

} )

be a large enough ordinal less than α and jk > t(|t| − 1)(1)(≥ ik) be such that for all
ξ ∈ ran0(t) ∪

{
ζ ′k−1

}
,

aξ r jk ⊆ aζ′′k−1
, bξ r jk ⊆ bζ′′k−1

and
∣∣∣jk r

(
aζ′′k−1

∪ bζ′′k−1

)∣∣∣ ≥ k
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and find ζk < α (by the inductive hypothesis of the property 3) so that

aζk
∩ ik = aζ′k−1

∩ ik, aζk
∩ [

ik, jk

)
=

( ⋃

ξ∈ran0(t)

aξ ∪ aζ′k−1

)
∩ [

ik, jk

)
,

aζk
r jk = aζ′′k−1

r jk, bζk
∩ ik = bζ′k−1

∩ ik,

bζk
∩ [

ik, jk

)
=

( ⋃

ξ∈ran0(t)

bξ ∪ bζ′k−1

)
∩ [

ik, jk

)
and bζk

r jk = bζ′′k−1
r jk,

which completes the construction.

We check that 〈aα, bα;α ∈ ω1〉 is a destructible gap, i.e. we will prove the following
two statements:

(a) ∀X ∈ [ω1]ω1 ∃α 6= β ∈ X ((aα ∩ bβ) ∪ (aβ ∩ bα) =∅).
(b) ∀X ∈ [ω1]ω1 ∃α 6= β ∈ X ((aα ∩ bβ) ∪ (aβ ∩ bα) 6=∅).

(We recall that (a) means that the pregap is destructible, and (b) means that the pregap
is a gap.)

For a proof of (a), assume that there exists an uncountable subset X of ω1 such that
for all γ 6= δ ∈ X,

(aγ ∩ bδ) ∪ (aδ ∩ bγ) 6=∅.

Without loss of generality, we may moreover assume that for all γ ∈ ω1, there exists
δ ∈ X such that

(aγ ∩ bδ) ∪ (aδ ∩ bγ) =∅.

We note that the set

C := {α ∈Lim ∩ ω1;∀γ ∈ α ∃δ ∈ X ∩ α ((aγ ∩ bδ) ∪ (aδ ∩ bγ) =∅)}

is club on ω1. We construct an uncountable subset A of ω1 as follows. Assume that
we have already constructed A up to δ for some countable ordinal δ. Then there is
β ∈ C r (δ + 1). We notice that the set

Dβ := {x ∈ X (gβ); ran(x) ∩X 6=∅}

is dense open in X (gβ). So there exists γ ∈ Pβ such that f(γ) is contained in Dβ and
let A ∩ (γ + 1) := (A ∩ δ) ∪ {γ} which completes the construction of A.

By the ♣-sequence, we can find α ∈ C such that Aα ⊆ A. By the construction of A,
Aα satisfies the first assumption of the property 4. We take any η ∈ X r α. Then there
is a natural number m such that
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aα rm ⊆ aη and bα rm ⊆ bη.

We fix any γ ∈ Aα. Then by the construction of A, for some β ∈ α, γ ∈ Pβ and f(γ) is
a subset of Dβ . Applying the property 4 for 〈α, β, γ〉, we can find j ≥ m which satisfies
the conclusion of the property 4. Then we can find s ∈ X <ω(gβ) such that [s] is a subset
of f(γ) and

⋃

ξ∈ran(s)

aξ ∩ bη ∩ j =∅,
⋃

ξ∈ran(s)

aξ r j ⊆ aα,

⋃

ξ∈ran(s)

bξ ∩ j ⊆ bη ∩ j and
⋃

ξ∈ran(s)

bξ r j ⊆ bα.

By the definition of Dβ , there exists ξ ∈ ran(s) ∩ X. (Because if ran(s) ∩ X = ∅,
then let ζ ∈ ran(s) and x ∈ βω such that s ⊆ x and x(i) = ζ for all i ≥ |s|, and then
x ∈ ([s]∩X (gβ))rDβ , which contradicts an assumption of s. The point is that for any
s0, s1 ∈ α<ω, the intersection [s0]∩ [s1] is empty if s0 and s1 are incomparable, otherwise
[s0] ∩ [s1] is either [s0] or [s1].) But then

(aξ ∩ bη) ∪ (aη ∩ bξ) =∅

which is a contradiction and completes the proof of (a).
A proof of (b) is similar to one of (a), but we will use the property 5 instead of 4.

We assume that there exists an uncountable subset Y of ω1 such that for all γ 6= δ ∈ Y ,

(aγ ∩ bδ) ∪ (aδ ∩ bγ) =∅.

Without loss of generality, we may moreover assume that for all γ ∈ ω1, there exists
δ ∈ Y such that

(aγ ∩ bδ) ∪ (aδ ∩ bγ) 6=∅.

We note again that the set

C ′ := {α ∈ Lim ∩ ω1;∀γ ∈ α ∃δ ∈ Y ∩ α ((aγ ∩ bδ) ∪ (aδ ∩ bγ) 6=∅)}

is club on ω1. We construct an uncountable subset B of ω1 as follows. Assume that
we have already constructed B up to δ for some countable ordinal δ. Then there is
β ∈ C ′ r (δ + 1). We define the subset Eβ of Y (gβ) such that y ∈ Eβ if there exists
ξ ∈ Y so that for some l ∈ ω, either

aξ ∩
( ⋃

ζ∈ran0(y)

bζ

)
∩ [

y(l), y(l + 1)
) 6=∅
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or

( ⋃

ζ∈ran0(y)

aζ

)
∩ bξ ∩

[
y(l), y(l + 1)

) 6=∅.

We note that Eβ is dense open in Y (gβ), hence there exists γ ∈ Pβ such that f(γ) is
contained in Eβ and let

B ∩ (γ + 1) := (B ∩ δ) ∪ {γ}

which completes the construction of B.
By the ♣-sequence, we can find α ∈ C ′ such that Aα ⊆ B. By the construction of

B, Aα satisfies the first assumption of the property 4. We take any η ∈ Y r α. Then
there is a natural number m such that

aα rm ⊆ aη and bα rm ⊆ bη.

We take any γ ∈ Aα, then by the construction of B, for some β ∈ α, γ ∈ Pβ and f(γ) is
a subset of Eβ . Applying the property 5 for 〈α, β, γ〉, we can find i ≥ m which satisfies
the conclusion of the property 5. Then we can find t ∈ Y <ω(gβ) such that t(0)(1) ≥ i,
[t] is a subset of f(γ) and

( ⋃

ζ∈ran0(t)

aζ

)
∩ [

i, t(|t| − 1)(1)
) ⊆ aα

and

( ⋃

ζ∈ran0(t)

bζ

)
∩ [

i, t(|t| − 1)(1)
) ⊆ bα.

By the definition of Eβ , there exists ξ ∈ Y such that for some l < |t| − 1, either

aξ ∩
( ⋃

ζ∈ran0(t)

bζ

)
∩ [

t(l)(1), t(l + 1)(1)
) 6=∅

or

( ⋃

ζ∈ran0(t)

aζ

)
∩ bξ ∩

[
t(l)(1), t(l + 1)(1)

) 6=∅.

But then, since t(l)(1) ≥ i,

(aξ ∩ bη) ∪ (aη ∩ bξ) 6=∅
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which is a contradiction and completes the proof of (b). ¤

3. Remarks.

Since we can show that the Lévy collapse of ω1 to ω adds a destructible gap, there
exists a destructible gap in Shelah’ model of ♣+¬CH [14, Chapter 1, 7.4 Theorem]. As
a corollary of Theorem 1.1, in the model of [6, Theorem 3.8], there exists a destructible
gap as for a Suslin tree. Moreover as a corollary of Theorem 2.2, in the extension with
the countable support iteration of Sacks forcing of length ω2 ([11, Corollary 6.14]), and
in the extension with the countable support product of Sacks forcing over ♦ ([8, Theorem
IV. 4]), ♣ holds and there exist a Suslin tree and a destructible gap. So it seems to be
the following question still open.

Question 3.1. Is it consistent with ZFC that ♣ holds and there are no destructible
gaps?

As a corollary of two theorems, if ♣ holds and all gaps are indestructible, then the
inequality

cov(M ) = ℵ1 < cof(M )

holds. This is as same as the case of the existence of a Suslin tree.

References

[ 1 ] U. Abraham and S. Todorčević, Partition properties of ω1 compatible with CH, Fund. Math.,

152 (1997), 165–180.

[ 2 ] S. Broverman, J. Ginsburg, K. Kunen and F. Tall, Topologies determined by σ-ideals on ω1,

Canad. J. Math., 30 (1978), 1360–1312.

[ 3 ] J. Brendle, Cardinal invariants of the continuum and combinatorics on uncountable cardinals,

Ann. Pure Appl. Logic, to appear.

[ 4 ] A. Dow, More set-theory for topologists, Topology Appl., 64 (1995), 243–300.

[ 5 ] I. Farah, OCA and towers in P(N)/fin, Comment. Math. Univ. Carolin., 37 (1996), 861–866.

[ 6 ] S. Fuchino, S. Shelah and L. Soukup, Sticks and clubs, Ann. Pure Appl. Logic, 90 (1997), 57–77.

[ 7 ] J. Hirschorn, Summable gaps, Ann. Pure Appl. Logic, 120 (2003), 1–63.
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