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Abstract. We provide an extended interpretation of the zeta regularized prod-
uct in [D]. This allows us to get regularized product expressions of Hölder’s double
sine function and its companion, i.e. the double and triple trigonometric functions.
The expressions may reasonably explain the ladder structure among these multiple
trigonometric functions. We also introduce the notion of finite ladders of functions
which helps us understand the meaning behind these regularizations.

1. Introduction.

There exist various couples of important functions satisfying the “extension” prop-
erty:

F (x + 1)
F (x)

= G(x). (E)

The multiple gamma functions Γm(x) due to Barnes [B] and the multiple trigono-
metric functions Sr(x), Cr(x) which are generalizations of usual trigonometric func-
tions provide non-trivial solutions to this problem (see [KW4]). Actually, one knows
Γm+1(x + 1)/Γm+1(x) = Γm(x)−1 and S2(x + 1)/S2(x) = −S1(x), S3(x + 1)/S3(x) =
−S2(x)2S1(x), etc. The higher Riemann zeta function ζ∞(s) [KMW] (see also [CL])
defined as ζ∞(s) :=

∏∞
n=0 ζ(s+n), ζ(s) being the Riemann zeta function, and the higher

Selberg zeta function zΓ (s) [KW2] defined similarly from (a shifted product of) the
Selberg zeta function ZΓ (s) for a Riemann surface Γ\H are also important examples.

Since it is well known that the multiple gamma function Γm(x) has the zeta regu-
larized product expression

Γm(x)−1 =
∞∐∏

n1,...,nm=0

(n1 + · · ·+ nm + x) := exp(−ζ ′m(0, x)),

it is immediate to see from a general property of the zeta regularized product;∐∏
n∈ItJan =

∐∏
n∈Ian

∐∏
n∈Jan (see, e.g. [KiW]), the pair (F (x), G(x)) = (Γm+1(x),

Γm(x)−1) gives a solution of (E). Here ζm(s, x) :=
∑∞

n1,...,nm=0(n1 + · · ·+ nm + x)−s is
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the multiple Hurwitz zeta function.
Let us recall next the multiple trigonometric functions. For r = 2, 3, 4, . . ., the

multiple sine Sr(x) and cosine Cr(x) functions of order r are given by the Weierstrass
products:

Sr(x) := e
xr−1
r−1

∞∏

n=−∞,n 6=0

Pr

(
x

n

)nr−1

= e
xr−1
r−1

∞∏
n=1

{
Pr

(
x

n

)
Pr

(
− x

n

)(−1)r−1}nr−1

and

Cr(x) :=
∞∏

n=−∞,n:odd

Pr

(
x
n
2

)( n
2 )r−1

=
∞∏

n=1,n:odd

{
Pr

(
x
n
2

)
Pr

(
− x

n
2

)(−1)r−1}( n
2 )r−1

,

where

Pr(u) := (1− u) exp
(

u +
u2

2
+ · · ·+ ur

r

)
.

The study of multiple trigonometric functions was started by Hölder [Hö] in 1886,
where he discovered the first non-trivial example S2(x). This double trigonometric
function is also used for describing the functional equation (and the calculation of the
gamma factor) of the Selberg zeta function [K] attached to a Riemann surface (see also
[KKo], [KW2]). Moreover, the multiple sine functions Sr(x) of order r provides the
expression of the value L(r, χ) of the Dirichlet L-function for a Dirichlet character χ

satisfying χ(−1) = (−1)r−1 (see [KW1], [KOW]). Among basic properties of multiple
trigonometric functions, the most characteristic one is the periodicity such as

S2(x + 1) =−S2(x)S1(x), S3(x + 1) =−S3(x)S2(x)2S1(x), . . .

C2(x + 1)2 =−C2(x)2C1(x)2, C3(x + 1)4 =−C3(x)4C2(x)8C1(x)4, . . . ,

which are considered as generalization of the usual periodicity of S1(x) := 2 sinπx and
C1(x) := 2 cos πx. In other words, these examples give the solutions to the problem (E):

(F (x), G(x)) = (S1(x),−1), (S2(x),−S1(x)), (S3(x),−S2(x)2S1(x)),

(C1(x),−1), (C2(x)2,−C1(x)2), (C3(x)4,−C2(x)8C1(x)4).

In view of these ladder structure, one may expect the existence of regularized product
expressions of Sr(x) and Cr(x). Such expressions, however, have not been known so
far. Thus, in this paper, we first investigate zeta regularized product expressions of these
functions (of small order). When we try to have such expressions, however, it is necessary
to introduce a certain extended interpretation of the zeta regularization (see §2).

The second aim of this paper is to study “finite” companions
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FN (x + 1)
FN (x)

= GN (x) (EN )

of multiple trigonometric functions. We call solutions of (EN ) finite ladders in multiple
trigonometry. The pair (FN , GN ) is expected to give a solution to the original problem
(E) as N →∞. With this, we study also the divergent structure behind the regularized
product expressions of multiple trigonometric functions via the Euler-Maclaurin formula.
The present study may be considered as a refinement of a part of the work of Hardy [H]
from the view point of the zeta regularized product (see §5).

2. Regularizations.

We have

S2(x) = ex
∞∏

n=1

{(
1− x

n

1 + x
n

)n

e2x

}
, C2(x) =

∞∏

n=1,n:odd

{(
1− x

( n
2 )

1 + x
( n

2 )

)n
2

e2x

}
,

S3(x) = e
x2
2

∞∏
n=1

{(
1− x2

n2

)n2

ex2
}

, C3(x) =
∞∏

n=1,n:odd

{(
1− x2

(n
2 )2

)( n
2 )2

ex2
}

.

We write C̃r(x) = Cr(x)2
r−1

. Note that Cr(x) is a 2r−1-multi-valued function and hence
C̃r(x) defines a single valued function. Note that

S1(x) = 2 sin(πx) = 2πx
∞∏

n=1

(
1− x2

n2

)
,

C1(x) = 2 cos(πx) = 2
∞∏

n=1,n:odd

(
1− x2

(
n
2

)2

)
.

We introduce the following notation:

∞∐∏
n=1

((an))bn := exp
(− φ′a,b(0)

)
.

Here we put φa,b(s) :=
∑∞

n=1 bn · a−s
n and φa,b(s) is assumed to be holomorphic around

s = 0. Hereafter, we always assume that −π ≤ arg(an) < π.

Obviously,
∐∏∞

n=1((an))1 (i.e. when bn ≡ 1) gives the usual zeta regularized product
∐∏∞

n=1an in [D]. If bn ∈ Z>0, each bn can be interpreted as the multiplicity of a−s
n

in the Dirichlet series φa,b(s). Let ζ(s) =
∑∞

n=1 n−s be the Riemann zeta function.

Notice that
∐∏∞

n=1((n))n = exp(−ζ ′(−1)) but we do not know the existence of
∐∏∞

n=1n
n,

(even if we employ the dotted products
∐∏
• ,

∐∏•
• developed in [KW3], [KiW]) where

we need to look at the behavior of
∑∞

n=1(n
n)−s =

∑∞
n=1 n−ns around s = 0. This new



1200 N. Kurokawa and M. Wakayama

regularized product, however, allows us to give zeta regularized expression of the multiple
trigonometric functions of small order.

Theorem 2.1. We have

(1) S1(x) = x
∞∐∏

n=1

(n− x)
∞∐∏

n=1

(n + x).

(2) C1(x) =
∞∐∏

n=1

(
n− 1

2
− x

) ∞∐∏
n=1

(
n− 1

2
+ x

)
.

(3) S2(x) =

∐∏∞
n=1((n− x))n

∐∏∞
n=1((n + x))n

.

(4) C̃2(x) =

∐∏∞
n=1((n− 1

2 − x))2n−1

∐∏∞
n=1((n− 1

2 + x))2n−1
.

(5) S3(x) =
( ∞∐∏

n=1

((n))n2
)−2

×
∞∐∏

n=1

((n− x))n2 ·
∞∐∏

n=1

((n + x))n2

with
∞∐∏

n=1

((n))n2
= exp

(− ζ ′(−2)
)

= exp
(

ζ(3)
4π2

)
.

(6) C̃3(x) =
( ∞∐∏

n=1

((
n− 1

2

))(2n−1)2)−2

×
∞∐∏

n=1

((
n− 1

2
− x

))(2n−1)2

·
∞∐∏

n=1

((
n− 1

2
+ x

))(2n−1)2

with
∞∐∏

n=1

((
n− 1

2

))(2n−1)2

= exp
(
3ζ ′(−2)

)
= exp

(
− 3ζ(3)

4π2

)
.

The first two are simple. Actually, since S1(x) = 2 sin(πx) = 2π
Γ (x)Γ (1−x) , the

assertion (1) follows immediately from the formula due to Lerch ([L]) (concerning the

first derivative of the Hurwitz zeta function at s = 0);
√

2πΓ (x)−1 =
∐∏∞

n=0(n + x). The
claim (2) follows easily from the fact C1(x) = S1(x+ 1

2 ). We may prove (3), (4), (5) and
(6) by using the explicit expressions of those multiple trigonometric functions in terms
of the normalized multiple trigonometric functions because they are defined via the zeta
regularized products (see [KKo]). To do so, however, it is necessary to make rather
tedious calculations. Thus we give here a direct proof based on the general property of
this new zeta regularized product which we study now. In other words, the expressions
for Sr(x) and C̃r(x) obtained here can reprove the explicit relations between these and
the normalized multiple trigonometric functions.

In order to develop the theory nicely, we first establish a certain general result

concerning the zeros (or poles) of the function defined by
∐∏∞

n=1((an − x))bn , where all bn

are the integers.
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Let a = {an}n=1,2,... be a divergent sequence of nonzero complex numbers and
b = {bn}n=1,2,... be a sequence of integers. Denote by µ the exponent of convergence of
the series

∞∑
n=1

|bn| · |an|−t,

that is, the series converges for Re(t) = µ+ε and diverges for Re(t) = µ−ε for any ε > 0.
Let p be the integer part of µ. Define a Dirichlet series attached to the data (a, b) by

φa,b(s, x) :=
∞∑

n=1

bn · (an − x)−s.

This Dirichlet series converges absolutely in the region Re(s) > µ and uniformly for each
compact subset in x-space C which does not meet any an. We assume that φa,b(s, x)

can be holomorphically extended to a region containing s = 0. Then
∐∏∞

n=1((an−x))bn =
exp

( − ∂
∂sφa,b(0, x)

)
. We now show the relation between this regularized product and

the Weierstarss canonical product which is a generalization of the result established in
[V] (see also [I], [KiW]). In other words, it can describe the location of zeroes of the
function expressed by this regularized product.

Theorem 2.2. Retain the notation above. Suppose that bn are all positive integers.

Then the function
∐∏∞

n=1((an − x))bn is analytically extended to the whole complex plane
as an entire function whose zeros are exactly given by x = an with multiplicity bn. More
precisely, there exists a polynomial P (x) of degree at most p = [µ] such that

∞∐∏
n=1

((an − x))bn = eP (x)
∞∏

n=1

(
1− x

an

)bn

exp
(

bn

p∑

`=1

1
`

(
x

an

)̀ )
.

Sketch of the proof. The proof is similar to the one given in [V]. Write the
infinite product in the right hand side by ∆a,b(x). Put

ηa,b(s, x) := Γ (s)φa,b(s, x).

Then it is easy to verify that

dp+1

dxp+1
log ∆a,b(x) = −ηa,b(p + 1, x).

Note that ηa,b(s, x) may have poles at s = 0, 1, 2, . . . , p. For a meromorphic function
f(s), the finite part FPf(a) at s = a is in general defined by
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FPf(a) :=

{
f(a) if f(s) is holomorphic at s = a,

lims→a{f(s)− (the principal part of f(s)) if f(s) has a pole at s = a.

Then, since the operations taking FP and d
dx are compatible, we find the function defined

by

Fa,b(x) := exp
(
− FPηa,b(0, x) +

p∑

k=0

FPηa,b(k, 0)
xk

k!

)

satisfies

dp+1

dxp+1
log Fa,b(x) = −ηa,b(p + 1, x).

Hence we see that the difference of the functions log ∆a,b(x) − log Fa,b(x) is actually
given by a polynomial function of degree at most p.

Note here that

∂p+1

∂xp+1
φa,b(s, x) = s(s + 1) · · · (s + p)φa,b(s + p + 1, x).

Since φa,b(s, x) is holomorphic at s = p + 1, ∂p+1

∂xp+1 φa,b(s, x) vanishes at s = 0. Since
Γ (s) = s−1 + γ0 + γ1s + · · · and φa,b(s, x) is holomorphic around s = 0 (by assumption)
it follows hence that

∂p+1

∂xp+1
FPηa,b(0, x) =

∂p+1

∂xp+1

∂

∂s
φa,b(0, x)

This implies that log ∆a,b(x)− log ∂
∂sφa,b(0, x) is also a polynomial of degree at most p.

This completes the proof of the theorem. ¤

Before going to the actual proofs of (3), (4), (5) and (6) in Theorem 2.1 we note
here the following three useful properties of this new zeta regularized product.

We see easily that

∞∐∏
n=1

((an))bn =
{ ∞∐∏

n=1

((an))−bn

}−1

and
∞∐∏

n=1

((an))0 = 1.

Using this, we have in general

∞∐∏
n=1

((an))kbn =
{ ∞∐∏

n=1

((an))bn

}k

for any k ∈ C. (A)

For any two integral sequences b = {bn}n=1,2,... and c = {cn}n=1,2,..., we have
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∞∐∏
n=1

((an))bn+cn =
∞∐∏

n=1

((an))bn ·
∞∐∏

n=1

((an))cn (B)

whenever all of the regularized products exist. This relation follows immediately from
the relation φa,b+c(s) = φa,b(s) + φa,c(s).

Suppose λ > 0. Then we have

∞∐∏
n=1

((λan))bn = λφa,b(0)
∞∐∏

n=1

((an))bn . (C)

This follows from the Taylor expansion of φλa,b(s) as

φλa,b(s) =
∞∑

n=1

bn · (λan)−s = λ−sφa,b(s)

=
(
1− s log λ + O(s2)

)× (
φa,b(0) + φ′a,b(0)s + O(s2)

)

= φa,b(0) +
(− log λφa,b(0) + φ′a,b(0)

)
s + O(s2).

Proof of (3),(4), (5) and (6). We first show (3). Put f(x) =
∐∏∞

n=1((n + x))n

and g(x) = f(−x). Then, by the theorem above we see that f(x) defines an entire
function with zeros at x = −n of order n. Also, by the properties (A) and (B) we
calculate as

f(x + 1) =
∞∐∏

n=1

((n + x + 1))n =
∞∐∏

n=2

((n + x))n−1 =
∞∐∏

n=1

((n + x))n−1

=
( ∞∐∏

n=1

((n + x))
)−1 ∞∐∏

n=1

((n + x))n =
( ∞∐∏

n=1

(n + x)
)−1

· f(x).

Similarly we have g(x + 1) = −x
∐∏∞

n=1(n− x) · g(x). It follows that

g(x + 1)
f(x + 1)

= −x

∞∐∏
n=1

(n− x)
∞∐∏

n=1

(n + x)
g(x)
f(x)

= −S1(x)
g(x)
f(x)

by (1). It is known that S2(x) has the same periodicity (this follows also from (2) and
(4) of Theorem 3.1 below). Since two meromorphic functions S2(x) and g(x)

f(x) of order 2
have exactly the same zeros and the poles counting with their multiplicities, there exists
a quadratic polynomial ax2 + bx + c such that

S2(x) = eax2+bx+c g(x)
f(x)

.
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The fact that these functions S2(x) and g(x)
f(x) have the same periodicity yields a = 0 and

b ∈ 2πiZ. Here, noting that both S2(x) and g(x)
f(x) are real whenever x ∈ R we conclude

that b = 0. Comparing further the values at x = 0 we have c = 0. This proves (3).
We prove (4) quite similarly using the periodicity C̃2(x + 1)/C̃2(x) = −C1(x)2.

Actually, putting k(x) =
∐∏∞

n=1((n− 1
2 + x))2n−1, we have

k(x) =

{∐∏∞
n=1((n− 1

2 + x))n
}2

∐∏∞
n=1((n− 1

2 + x))
=

f(x− 1
2 )2∐∏∞

n=1(n− 1
2 + x)

.

Here we use the aforementioned properties (A) and (B) of the zeta regularized product.

Since f(x + 1) =
(∐∏∞

n=1(n + x)
)−1 · f(x), we obtain

k(x + 1) =
f(x + 1− 1

2 )2∐∏∞
n=1((n− 1

2 + x + 1))

=

∐∏∞
n=1(n− 1

2 + x)−2f(x− 1
2 )2

( 1
2 + x)−1

∐∏∞
n=1(n− 1

2 + x)
=

( 1
2 + x)k(x)∐∏∞

n=1(n− 1
2 + x)2

.

Similarly, since

k(−x) =
g(x + 1

2 )2∐∏∞
n=1(n− 1

2 − x)

we have

k(−x− 1) = −
(

x +
1
2

) ∞∐∏
n=1

(
n− 1

2
− x

)2

k(−x).

Hence it follows that

k(−x− 1)
k(x + 1)

= −
∞∐∏

n=1

(
n− 1

2
− x

)2 ∞∐∏
n=1

(
n− 1

2
+ x

)2
k(−x)
k(x)

= −C1(x)2
k(−x)
k(x)

.

This shows the function k(−x)
k(x) has the same periodicity of C̃2(x). Also, since these

two meromorphic functions k(−x)
k(x) and C̃2(x) (of order 2) have the same zeros and poles

counting with the multiplicity, and both are real valued for x ∈ R, as in the previous
proof of (3), we see that these two must coincide. This proves (4).

Since the proof of (5) is essentially the same as what we did for (3), we only give a

sketch: Put h(x) =
∐∏∞

n=1((n + x))n2
. Then, using (A) and (B), we observe that

h(x + 1) = h(x)
{ ∞∐∏

n=1

((n + x))n

}−2 ∞∐∏
n=1

((n + x)).
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Similarly

h(−x− 1) = −xh(−x)
{ ∞∐∏

n=1

((n− x))n

}2 ∞∐∏
n=1

((n− x)).

It follows that

h(x + 1)h(−x− 1) = h(x)h(−x)× (−x)

{∐∏∞
n=1((n− x))n

∐∏∞
n=1((n + x))n

}2 ∞∐∏
n=1

((n− x))
∞∐∏

n=1

((n + x))

= −h(x)h(−x)S2(x)2S1(x).

This shows that h(x)h(−x) has the same periodicity of S3(x) by (3) of Theorem 5.1.
Also, since the zeros of two entire functions S3(x) and h(x)h(−x) coincide they must

be the identical function up to the factor
∐∏∞

n=1((n))n. As to the normalizing constant
∐∏∞

n=1((n))n2
, the value is computed by the definition of the regularized product and the

functional equation of the Riemann zeta function; ζ(1− s) = 21−sπ−sΓ (s) cos
(

πs
2

)
ζ(s).

This proves (5). Also by using the periodicity of C̃3(x), that is, C3(x + 1)4 =
−C3(x)4C2(x)8C1(x)4, the same discussion of (4) can give a proof the formula (6). This
completes the proof of Theorem 2.1. ¤

3. Finite ladders.

We first give finite ladders of the sine and double sine functions.

Theorem 3.1. For each integer N ≥ 1 define

S1,N (x) =
(

N !
NN+ 1

2 e−N

)2

x
N∏

n=1

(
1− x2

n2

)

and

S2,N (x) =
(

1 +
x

N

)N N∏
n=1

{(
1− x

n

1 + x
n

)n

e2x

}
.

Then we have

(1) lim
N→∞

S1,N (x) = S1(x).

(2) lim
N→∞

S2,N (x) = S2(x).

(3)
S1,N (x + 1)

S1,N (x)
= −

(
1 +

x + 1
N

)(
1− x

N

)−1

.
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(4)
S2,N (x + 1)

S2,N (x)
= −S1,N (x)×

(
1− x2

N2

)−N(
1− x

N

)−1

.

Remark that such a finite level object is considered as a refinement of the multiple
sine function since there appear various factors vanishing in the limit N → ∞. For the
cosine cases we have similarly the following

Theorem 3.2. For each integer N ≥ 1 define

C1,N (x) =
(

(2N)!(N !)−12−2N

NNe−N

)2 N∏
n=1

(
1− x2

(n− 1
2 )2

)

and

C̃2,N (x) =
N∏

n=1

{(
1− x

n− 1
2

1 + x
n− 1

2

)2n−1

e4x

}
.

Then we have

(1) lim
N→∞

C1,N (x) = C1(x).

(2) lim
N→∞

C̃2,N (x) = C̃2(x).

(3)
C1,N (x + 1)

C1,N (x)
= −

(
1 +

x + 1
2

N

)(
1− x + 1

2

N

)−1

.

(4)
C̃2,N (x + 1)

C̃2,N (x)
= −C1,N (x)2 ×

(
1− (x + 1

2 )2

N2

)−2N(
1 +

x + 1
2

N

)(
1− x + 1

2

N

)−1

.

We have also the following duplication formulas for finite ladders in multiple
trigonometry.

Theorem 3.3. Duplications formulas in finite ladders hold :

(1) S1,2N (2x) = S1,N (x)C1,N (x).

(2) S2,2N (2x) = S2,N (x)2C̃2,N (x).

The proofs of these theorems are based on the Stirling formula. We study S3,N (x)
and S4,N (x) in the text below (see Theorem 5.1) together with the discussion about the
regularization.

4. Proofs of Theorems 3.1, 3.2 and 3.3.

Proof of Theorem 3.1. By the Stirling formula we have the assertion (1). The
claim (2) is clear from the fact

(
1 + x

N

)N → ex. For (3) and (4), we calculate directly as
follows. Concerning the case (3) we have
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S1,N (x + 1)
S1,N (x)

=
x + 1

x

N∏
n=1

n2 − (x + 1)2

n2 − x2

=
x + 1

x
· (−x)(1− x) · · · (N − 1− x)

(1− x)(2− x) · · · (N − x)
· (2 + x)(3 + x) · · · (N + 1 + x)

(1 + x)(2 + x) · · · (N + x)

= −N + 1 + x

N − x
.

Similarly we have

S2,N (x + 1)
S2,N (x)

=
(

1 +
x + 1

N

)N(
1 +

x

N

)−N

×
N∏

n=1

{(
n− 1− x

n + 1 + x

)n

e2x+2

} N∏
n=1

{(
n + x

n− x

)n

e−2x

}

=
(

1 +
x + 1

N

)N(
1 +

x

N

)−N

e2N

× (−x)1(1− x)2 · · · (N − 1− x)N

(1− x)1(2− x)2 · · · (N − x)N
· (1 + x)1(2 + x)2 · · · (N + x)N

(2 + x)1(3 + x)2 · · · (N + 1 + x)N

=
(

1 +
x + 1

N

)N(
1 +

x

N

)−N

e2N × (−x)(1− x) · · · (N − x)

× (1 + x)(2 + x) · · · (N + x)× (N − x)−N−1 × (N + 1 + x)−N

= − (N !)2

N2N+1e−2N
· x

N∏
n=1

(
1− x2

n2

)
×

(
1− x2

N2

)−N(
1− x

N

)−1

= S1,N (x)×
(

1− x2

N2

)−N(
1− x

N

)−1

.

This proves (4). ¤

Proof of Theorem 3.2. Since (2N)!(N !)−12−2N/NNe−N → √
2 by Stirling’s

formula, we easily observe that limN→∞ C̃1,N (x) = 2
∏∞

n=1

(
1− x2

(n− 1
2 )2

)
= C1(x), which

shows (1). The assertion (2) is clear. For (3) we have

C1,N (x + 1)
C1,N (x)

=
N∏

n=1

(n− 1
2 )2 − (x + 1)2

(n− 1
2 )2 − x2

=
N∏

n=1

(n− 3
2 − x)(n + 1

2 + x)
(n− 1

2 − x)(n− 1
2 + x)

= −N + 1
2 + x

N − 1
2 − x

.

We calculate (4) as
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C̃2,N (x + 1)
C̃2,N (x)

=
N∏

n=1

(
n− 1

2
− x

)−(2n−1) N∏
n=1

(
n− 1

2
+ x

)2n−1

×
N∏

n=1

(
n− 1

2
− (1 + x)

)2n−1 N∏
n=1

(
n− 1

2
+ (1 + x)

)−(2n−1)

× e4N

=
N∏

n=1

(
n− 1

2
− x

)2 N∏
n=1

(
n− 1

2
+ x

)2

×
(
− 1

2
− x

)(
N − 1

2
− x

)−2N−1(
N +

1
2

+ x

)−2N+1(1
2

+ x

)−1

· e4N

= −
N∏

n=1

((
n− 1

2

)2

− x2

)2

· e4N ·N−4N

×
(

1 +
x + 1

2

N

)−2N+1(
1 +

x− 1
2

N

)−2N−1

.

Noting that
∏N

n=1

(
n− 1

2

)
= 1

2 · 3
2 · · · 2N−1

2 = (2N)!
N !22N , we obtain

C̃2,N (x + 1)
C̃2,N (x)

= −
(

(2N)!(N !)−12−2N

NNe−N

)4 N∏
n=1

(
1− x2

(n− 1
2 )2

)2

·
(

1− (x + 1
2 )2

N2

)−2N

× N + 1
2 + x

N − 1
2 − x

.

This completes the proof of Theorem 3.2. ¤

Proof of Theorem 3.3. (1) Using the respective expressions

S1,N (x) =
(

N !
NN+ 1

2 e−N

)2

· x
N∏

n=1

(
1− x2

n2

)
=

(
N !

NN+ 1
2 e−N

)2

· x
2N∏

n=2,n:even

(
1− 4x2

n2

)

and

S1,2N (2x) =
(

(2N)!
(2N)2N+ 1

2 e−2N

)2

· 2x
2N∏
n=1

(
1− 4x2

n2

)
,

we see that

S1,2N (2x)
S1,N (x)

=
(

(2N)!(N !)−12−2N

NNe−N

)2

×
2N−1∏

n=1,n:odd

(
1− 4x2

n2

)

=
(

(2N)!(N !)−12−2N

NNe−N

)2

×
N∏

n=1

(
1− x2

(n− 1
2 )2

)
= C1,N (x).
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(2) Comparing expressions

S2,N (x)2 =
(

1 +
x

N

)2N N∏
n=1

{(
1− x

n

1 + x
n

)2n

e4x

}

=
(

1 +
x

N

)2N 2N∏
n=2,n:even

{(
1− 2x

n

1 + 2x
n

)n

e4x

}

with

S2,2N (2x) =
(

1 +
x

N

)2N 2N∏
n=1

{(
1− 2x

n

1 + 2x
n

)n

e4x

}
,

we obtain

S2,2N (2x)
S2,N (x)2

=
2N−1∏

n=1,n:odd

{(
1− 2x

n

1 + 2x
n

)n

e4x

}
=

N∏
n=1

{(
1− x

n− 1
2

1 + x
n− 1

2

)2n−1

e4x

}
= C̃2,N (x).

This proves the duplication formulas for finite ladders. ¤

5. Divergent factors and higher orders.

In order to arrive the finite ladders corresponding to the multiple sine functions of
higher order, we start by the following general problem. Let

F (x) =
∞∐∏

n=1

(an − x) = Det(A− x) and G(x) =
∞∐∏

n=1

(bn − x) = Det(B − x)

be zeta regularized products giving solutions to the problem (E), where 0 < a1 ≤ a2 ≤
a3 ≤ · · · ↑ +∞, 0 < b1 ≤ b2 ≤ b3 ≤ · · · ↑ +∞, A = diag(a1, a2, a3, · · · ) and B =

diag(b1, b2, b3, · · · ). Assume that
∐∏∞

n=1an takes the form of

∞∐∏
n=1

an = lim
N→∞

[ N∏
n=1

an

]

reg

with
[ N∏

n=1

an

]

reg

=
∏N

n=1 an[∏N
n=1 an

]
div

and
∐∏∞

n=1bn is so, where reg denotes a regularization and div indicates a divergent factor
in an appropriate sense. This type of expression frequently occurs (usually written in an
additive way) when we use the Euler-Maclaurin summation formula (see e.g. [T]). For
instance, if we put [N !]div = NN+ 1

2 e−N , then the expression

∞∐∏
n=1

n = lim
N→∞

[ N∏
n=1

n

]

reg

= lim
N→∞

[N !]reg = lim
N→∞

N !
[N !]div

= lim
N→∞

N !
NN+ 1

2 e−N
=
√

2π.
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may explain the situation. Here we used the Stirling formula. Remark that the coef-
ficients of S1,N (x) in Theorem 3.1 and C1,N (x) in Theorem 3.2 are expressed in this
manner. Then, there arises a natural question as follows: Let IN be a finite set indexed
by an integer N . Then, one can ask

Do the sequences of pair of functions of the form

FN (x) =
[ ∏

n∈IN

|an|cn

]

reg

·
∏

n∈IN

Pr

(
x

an

)cn

and

GN (x) =
[ ∏

n∈IN

|bn|dn

]

reg

·
∏

n∈IN

P`

(
x

bn

)dn

(L)

give natural candidates of solutions to the problem (EN ) for some appropriate choices
of the sequences {an}, {bn}, {cn}, {dn} and integers r, ` ? Moreover, do the limits
limN→∞ FN (x) and limN→∞GN (x) exist and have expressions via certain zeta regu-
larized products ?

For instance, the case of the pair (S2,N (x),S1,N (x)) can be interpreted in this
setting. In fact, first taking IN = {−N, . . . ,−1, 1, 2, . . . , N}, bn = n, dn = 1 and ` = 1,
we have

[ ∏

n∈IN

|bn|dn

]

reg

=
[ ∏

n∈IN

|n|
]

reg

=
[
(N !)2

]
reg

=
(N !)2[
(N !)2

]
div

with [(N !)2]div = N2N+1e−2N . It follows that xGN (x) = S1,N (x) → S1(x). Moreover,
if we take an = n, cn = n, r = 2 and IN as above then, since

∏
n∈IN

acn
n =

∏N
n=1 |n|n ·∏N

n=1 |n|−n = 1 we have
(
1 + x

N

)N
FN (x) = S2,N (x) → S2(x). By Theorem 3.1, this

observation shows that the pair (FN (x), GN (x)) gives essentially finite ladders;

FN (x + 1)
FN (x)

= −x

{(
1− x

N

)−N(
1 +

x + 1
N

)−N(
1− x

N

)−1}
×GN (x).

Here, the part { } clearly becomes 1 when N →∞.
To be more explicit the situation about a divergent part, we recall the asymptotic

formula of ζ ′(s) which is obtained from the Euler-Maclaurin formula (see [T], [H]). The
quantity

−ζ ′(s)−
N∑

n=1

n−s log n

has an asymptotic expansion

−N1−s log N

1− s
+

N1−s

(1− s)2
− 1

2
N−s log N +

s

12
N−s−1 log N − 1

12
N−s−1 + · · · .



Regularizations and finite ladders in multiple trigonometry 1211

Let us truncate these series after the last term which doesn’t tend to 0 with N−1. Then
one obtains, for every complex number s 6= 1,

−ζ ′(s) = lim
N→∞

{ N∑
n=1

n−s log n−R(s,N)
}

,

where R(s,N) is the truncated series.
As we mentioned above, it is easy to see that we have R(0, N) =

(
N + 1

2

)
log N −N

and

−ζ ′(0) = lim
N→∞

{ N∑
n=1

log n−
((

N +
1
2

)
log N −N

)}
= lim

N→∞
log

(
N !

NN+ 1
2 e−N

)
,

which gives the Stirling formula (one knows ζ ′(0) = − 1
2 log 2π from the functional equa-

tion of ζ(s). See p. 335 in [H]). Furthermore, if s = −2, for instance, one has

R(−2, N) =
(

N3

3
+

N2

2
+

N

6

)
log N − N3

9
+

N

12
.

It follows that

−ζ ′(−2) = lim
N→∞

{
log

N∏
n=1

nn2 − log eR(−2,N)

}
.

Hence, if we put
[∏N

n=1 nn2]
div

= eR(−2,N) = N
N3
3 + N2

2 + N
6 e−

N3
9 + N

12 , by the definition of
our regularized product, we obtain

∞∐∏
n=1

((n))n2
= e−ζ′(−2) = lim

N→∞

∏N
n=1 nn2

eR(−2,N)
= lim

N→∞

∏N
n=1 nn2

[
∏N

n=1 nn2 ]div

= lim
N→∞

[ N∏
n=1

nn2
]

reg

.

This observation would suggest the definition of the finite ladders of the multiple sine
functions of order 3 and 4. In fact, we have the

Theorem 5.1. Define S3,N (x) by

S3,N (x) =
( ∏N

n=1 nn2

e−ζ′(−2)N
N3
3 + N2

2 + N
6 e−

N3
9 + N

12

)2

· e x2
2

N∏
n=1

{(
1− x2

n2

)n2

ex2
}

.

Also, define S4,N (x) by

S4,N (x) = e
x3
3

N∏
n=1

{(
1− x

n

1 + x
n

)n3

exp
(

2n2x +
2
3
x3

)}
.
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Then we have

(1) lim
N→∞

S3,N (x) = e
x2
2

∞∏
n=1

{(
1− x2

n2

)n2

ex2
}

= S3(x).

(2) lim
N→∞

S4,N (x) = e
x3
3

∞∏
n=1

{(
1− x

n

1 + x
n

)n3

exp
(

2n2x +
2
3
x3

)}
= S4(x).

(3)
S3,N (x + 1)

S3,N (x)
= −S2,N (x)2S1,N (x)

×
{(

1− x2

N2

)(
1− x

N

)−1

·
(

1 +
1 + x

N

)N2(
1− x

N

)−N2

× exp
(
− 2Nx−N + x +

1
2

)}
.

Here the term in { } goes to 1 as N →∞. In particular,

S3(x + 1)
S3(x)

= −S2(x)2S1(x).

(4)
S4,N (x + 1)

S4,N (x)
= −e6ζ′(−2)S3,N (x)3S2,N (x)3S1,N (x)

×
{(

1 +
x

N

)−3N(
1− x

N

)−(N+1)3(
1 +

1 + x

N

)−N3

× exp
(
−

(
N +

1
2

)
x2 − (4N − 1)x + N2 − N

2
+

1
3

)}
.

The factor in { } goes to 1 as N →∞. Especially, we have

S4(x + 1)
S4(x)

= −e6ζ′(−2)S3(x)3S2(x)3S1(x).

Proof. The assertion (1) follows immediately from the limit formula we have

already seen; limN→∞
∏N

n=1 nn2
/N

N3
3 + N2

2 + N
6 e−

N3
9 + N

12 = e−ζ′(−2)(=
∐∏∞

n=1((n))n2
). The

assertion (2) is clear. To show (3) we calculate as

S3,N (x + 1)
S3,N (x)

= e(N+ 1
2 )(2x+1)

N∏
n=1

(
n2 − (x + 1)2

n2 − x2

)n2

= e(N+ 1
2 )(2x+1)

N∏
n=1

(n− 1− x)n2
(n + 1 + x)n2

(n− x)n2(n + x)n2

= e(N+ 1
2 )(2x+1)

N∏
n=1

(n− x)(n+1)2−n2

(n + x)n2−(n−1)2
× (−x)(N − x)−(N+1)2(N + 1 + x)N2
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= − e(N+ 1
2 )(2x+1)

N∏
n=1

(
n− x

n + x

)2n

× x

N∏
n=1

(n− x)(n + x)× (N − x)−(N+1)2(N + 1 + x)N2

= − e(N+ 1
2 )(2x+1)

(
S2,N (x)

(
1 +

x

N

)−N

e−2Nx

)2

×
(

S1,N (x)(N !)2
(

N !
NN+ 1

2 e−N

)−2)
(N − x)−(N+1)2(N + 1 + x)N2

= −S2,N (x)2S1,N (x)
(

1− x2

N2

)−2N(
1− x

N

)−1

×
(

1 +
1 + x

N

)N2(
1− x

N

)−N2

exp
(
− 2Nx−N + x +

1
2

)
.

This proves the former part of the assertion (3). The latter follows from this equation
and

lim
N→∞

(
1 +

1 + x

N

)N2(
1− x

N

)−N2

exp
(
− 2Nx−N + x +

1
2

)

= lim
N→∞

exp
(

N2 log
(

1 +
1 + x

N

)
−N2 log

(
1− x

N

)
− 2Nx−N + x +

1
2

)

= lim
N→∞

exp
(

N2

(
1 + x

N
− 1

2

(
1 + x

N

)2)
+ N2

(
x

N
− 1

2

(
x

N

)2)
− 2Nx−N + x +

1
2

)

= 1.

(4) Since

S4,N (x) = exp
(

2N + 1
3

x3 + 2(12 + · · ·+ N2)x
) N∏

n=1

(
n− x

n + x

)n3

,

we see that

S4,N (x + 1)
S4,N (x)

= exp
{

2N + 1
3

(3x2 + 3x + 1) + 2(12 + · · ·+ N2)
}

×
N∏

n=1

{
(n− 1− x)(n + x)
(n− x)(n + 1 + x)

}n3

.

Here we have
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N∏
n=1

{
(n− 1− x)(n + x)
(n− x)(n + 1 + x)

}n3

= −x

N∏
n=1

(n− x)(n+1)3−n3

(n + x)n3−(n−1)3
× (N − x)−(N+1)3(N + 1 + x)−N3

= −x
N∏

n=1

{
(n− x)3n2+3n+1(n + x)3n3−3n+1

}× (N − x)−(N+1)3(N + 1 + x)−N3

= −
( N∏

n=1

(n2 − x2)n2
)3

·
( N∏

n=1

(
n− x

n + x

)n)3

· x
N∏

n=1

(n2 − x2)

× (N − x)−(N+1)3(N + 1 + x)−N3
.

If we put AN =
(

N !

NN+ 1
2 e−N

)2

and BN =
( QN

n=1 n2

e−ζ′(−2)N
N3
3 + N2

2 + N
6 e−

N3
9 + N

12

)2

, then we notice

that

x
N∏

n=1

(n2 − x2) = A−1
N (N !)2S1,N (x),

N∏
n=1

(
n− x

n + x

)
=

(
1 +

x

N

)−N

e−2NxS2,N (x)

and

N∏
n=1

(n2 − x2)n2
= B−1

N

( N∏
n=1

nn2
)2

e−(N+ 1
2 )x2

S3,N (x).

Thus we obtain

S4,N (x + 1)
S4,N (x)

= −S3,N (x)3S2,N (x)3S1,N (x)

×
{

exp
(

2N + 1
3

(3x2 + 3x + 1) + 2(12 + · · ·+ N2)
)
×A−1

N (N !)2

×
(

1 +
x

N

)−3N

e−6Nx ×B−3
N

( N∏
n=1

nn2
)6

e−(3N+ 3
2 )x2

·N−N3−(N+1)3
(

1− x

N

)−(N+1)3(
1 +

1 + x

N

)−N3}
.

It follows from the definition of AN and BN that
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S4,N (x + 1)
S4,N (x)

= − e−6ζ′(−2)S3,N (x)3S2,N (x)3S1,N (x)

×
{(

1 +
x

N

)−3N(
1− x

N

)−(N+1)3(
1 +

1 + x

N

)−N3

· exp
(
−

(
N +

1
2

)
x2 − (4N − 1)x + N2 − N

2
+

1
3

)}
.

Here, the factor { } goes to 1 as N →∞. In fact, this can be seen from

lim
N→∞

{(
1− x

N

)−(N+1)3(
1 +

1 + x

N

)−N3

· exp
(
−

(
N +

1
2

)
x2 − (4N − 1)x + N2 − N

2
+

1
3

)}

= lim
N→∞

exp
{
− (N + 1)3 log

(
1− x

N

)

−N3 log
(

1 +
1 + x

N

)
−

(
N +

1
2

)
x2 − (4N − 1)x + N2 − N

2
+

1
3

)}

= lim
N→∞

exp
{

(N + 1)3
(

x

N
+

1
2

(
x

N

)2

+
1
3

(
x

N

)3)

−N3

(
1 + x

N
− 1

2

(
1 + x

N

)2

+
1
3

(
1 + x

N

)3)

−
(

N +
1
2

)
x2 − (4N − 1)x + N2 − N

2
+

1
3

)}

= lim
N→∞

exp 3x = e3x.

This completes the proof of the theorem. ¤

Remark 1. As in the case of S2,N (x) we may put polynomials in x instead of the
exponential in front of the product for S3,N (x) and S4,N (x), but we do not pursue this
here.

Remark 2. Look at the case of S3,N (x). Let IN = {−N, . . . ,−1, 1, . . . , N}, an =
n, cn = n2 and r = 3 in the notation we used for describing the question (L) in the be-
ginning of this section. Then

∏
n∈IN

|an|cn =
( ∏N

n=1 nn2)2 and
[∏

n∈IN
|an|cn

]
reg

=
∏

n∈IN
|an|cn/

[∏
n∈IN

|an|cn
]
div

with
[∏

n∈IN
|an|cn

]
div

=
(
N

N3
3 + N2

2 + N
6 e−

N3
9 + N

12
)2.

Therefore, by Theorem 5.1 and Theorem 2.1 we see that limN→∞
[∏

n∈IN
|an|cn

]
reg

=
(∐∏∞

n=1((n))n2)2 = e−2ζ′(2) and S3,N (x) = e2ζ′(2)e
x2
2 FN (x) → S3(x).

Remark 3. By Theorem 3.1, the sequence of functions S1,N (x) can be also re-
garded as a regularization factors of the products x

∏N
n=1(n − x)

∏N
n=1(n + x) in the
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following sense.

S1(x) = lim
N→∞

S1,N (x)

= lim
N→∞

[
x

N∏
n=1

(n− x)
N∏

n=1

(n + x)
]

reg

= lim
N→∞

x
∏N

n=1(n− x)
∏N

n=1(n + x)[
x

∏N
n=1(n− x)

∏N
n=1(n + x)

]
div

,

with
[
x

∏N
n=1(n−x)

∏N
n=1(n+x)

]
div

= (NN+ 1
2 e−N )2. Furthermore, S3,N (x) can be also

a regularization factor of the product e(N+ 1
2 )x2 ∏N

n=1(n− x)n2 ∏N
n=1(n + x)n2

. Actually,

if we put
[
e(N+ 1

2 )x2 ∏N
n=1(n− x)n2 ∏N

n=1(n + x)n2]
div

=
(
e−ζ′(2)N

N3
3 + N2

2 + N
6 e−

N3
9 + N

12
)2

then S3,N (x) =
[
e(N+ 1

2 )x2 ∏N
n=1(n− x)n2 ∏N

n=1(n + x)n2]
reg

→ S3(x) when N →∞ by
Theorem 5.1.
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[Hö] O. Hölder, Ueber eine transcendente Function, Göttingen Nachrichten Nr.16, 1886, 514–522.

[I] G. Illies, Regularized products and determinants, Commun. Math. Phys., 220 (2001), 69–94.

[KiW] K. Kimoto and M. Wakayama, Remarks on zeta regularized products, Internat. Math. Res.

Notices, (2004) no. 17, 855–875.

[K] N. Kurokawa, Multiple sine functions and Selberg zeta functions, Proc. Japan Acad., 67A

(1991), 61–64.

[KKo] N. Kurokawa and S. Koyama, Multiple sine functions, Forum Math., 15 (2003), 839–876.

[KMW] N. Kurokawa, S. Matsuda and M. Wakayama, Gamma factors and functional equations of

higher Riemann zeta functions, Kyushu University Preprint Series in Math., (2003).

[KOW] N. Kurokawa, H. Ochiai and M. Wakayama, Zetas and multiple trigonometry, J. Ramanujan

Math. Soc., 17 (2002), 101–113.

[KW1] N. Kurokawa and M. Wakayama, On ζ(3), J. Ramanujan Math. Soc., 16 (2001), 205–214.

[KW2] N. Kurokawa and M. Wakayama, Higher Selberg zeta functions, Commun. Math. Phys., 247

(2004), 447–466.

[KW3] N. Kurokawa and M. Wakayama, Generalized zeta regularizations, quantum class number

formulas, and Appell’s O-functions, to appear in The Ramanujan J.

[KW4] N. Kurokawa and M. Wakayama, Extremal values of double and triple trigonometric functions,

Kyushu J. Math., 58 (2004), 141–166.
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