Convolution of Riemann zeta-values

Dedicated to Professor Isao Wakabayashi with great respect

By Shigeru Kanemitsu, Yoshio Tanigawa and Masami Yoshimoto

(Received Aug. 17, 2004)
(Revised Dec. 24, 2004)

Abstract

In this note we are going to generalize Prudnikov's method of using a double integral to deduce relations between the Riemann zeta-values, so as to prove intriguing relations between double zeta-values of depth 2 . Prior to this, we shall deduce the most well-known relation that expresses the sum $\sum_{j=1}^{m-2} \zeta(j+1) \zeta(m-j)$ in terms of $\zeta_{2}(1, m)$.

1. Introduction and statement of results.

If the Mellin transform

$$
\begin{equation*}
\mathscr{M} W(n)=\int_{0}^{\infty} x^{n-1} W(x) d x \tag{1.1}
\end{equation*}
$$

which is to yield (or at least, to be related to) zeta values, is computable in finite form for a suitable weight function W, then we may express the double integral

$$
\begin{equation*}
I(s)=\int_{0}^{\infty} \int_{0}^{\infty}(x+y)^{s-1} W(x) W(y) d x d y \tag{1.2}
\end{equation*}
$$

for positive integer values of $s=m$, as a convolution of zeta-values:

$$
\begin{equation*}
I(m)=\sum_{j=0}^{m-1}\binom{m-1}{j} \mathscr{M} W(j+1) \mathscr{M} W(m-j) . \tag{1.3}
\end{equation*}
$$

If, further, it so happens that, when we express (1.2) as a repeated integral

$$
\begin{equation*}
I(s)=\int_{0}^{\infty} z^{s-1} B(z) d z \tag{1.4}
\end{equation*}
$$

where $B(z)$ is the beta-type integral

$$
\begin{equation*}
B(z)=\int_{0}^{z} W(z-y) W(y) d y \tag{1.5}
\end{equation*}
$$

we may express $B(z)$ in tractable form, then we may expect to obtain a relation among zeta-values.

We consider the case where $W(x)$ can be expressed as a series (finite or infinite). Then the implementation of the above method is a well-known one in number theory, i.e. expanding the product $W(x) W(y)$ into a series, extracting the diagonal terms (which is of the form (1.1)), being thereby left with non-diagonal terms to be summed accordingly.
A. P. Prudnikov [6] (cf. also Srivastava-Choi [7]) was the first who put the above idea into practice, using the (elliptic) theta series as $W(x)$.

In this note we shall use the weight functions

$$
w_{N}(x)=\sum_{k=1}^{N} e^{-k x}
$$

and

$$
W_{n}(x)=x^{n} \lim _{N \rightarrow \infty} w_{N}(x)=x^{n} \sum_{k=1}^{\infty} e^{-k x}\left(=\frac{x^{n}}{e^{x}-1}\right), \quad(x>0)
$$

to deduce the well-known fundamental relation among Riemann zeta-values anew (Theorem 1) and an intriguing relation between Riemann zeta-values and the multiple zeta-values of depth 2 (Theorem 2), respectively.

We use the following notation:
For a positive integer N let $\zeta_{N}(s)$ denote the N-th partial sum $\sum_{n=1}^{N} n^{-s}$ of the Riemann zeta-function $\zeta(s)=\sum_{n=1}^{\infty} n^{-s}(\sigma=\Re s>1)$, let H_{N} denote the N-th harmonic number $\sum_{n=1}^{N} \frac{1}{n}$, and let $\zeta_{2}\left(s_{1}, s_{2}\right)$ denote the double zeta-function defined for $\Re s_{2}>$ $1, \Re\left(s_{1}+s_{2}\right)>2$ by

$$
\begin{equation*}
\zeta_{2}\left(s_{1}, s_{2}\right)=\sum_{m<n} \frac{1}{m^{s_{1}} n^{s_{2}}} \tag{1.6}
\end{equation*}
$$

so that $\zeta_{2}(1, s)=\sum_{n=1}^{\infty} H_{n-1} n^{-s}$. For double and multiple zeta-functions, cf. [2], [5], [10], [11].

We are now in a position to state the results.
Theorem 1. For each positive integer $m \geq 2$ and $N \rightarrow \infty$, we have the intermediate formula

$$
m \zeta_{N}(m+1)-2 \sum_{h \leq N} \frac{H_{h-1}}{h^{m}}+o(1)=\sum_{j=1}^{m-2} \zeta_{N}(j+1) \zeta_{N}(m-j)
$$

and in the limit

$$
\begin{equation*}
2 \zeta_{2}(1, m)=m \zeta(m+1)-\sum_{j=1}^{m-2} \zeta(j+1) \zeta(m-j) \tag{1.7}
\end{equation*}
$$

Remark 1. The identity (1.7) is equivalent to Euler's sum formula

$$
\zeta(k)=\sum_{j=2}^{k-1} \zeta_{2}(k-j, j) \quad(k \geq 2)
$$

which is derived easily from the relation

$$
\zeta(p) \zeta(q)=\zeta(p+q)+\zeta_{2}(p, q)+\zeta_{2}(q, p)
$$

Theorem 2. (1) For integers $1 \leq n_{1}<n_{2}$, we have

$$
\begin{aligned}
& \sum_{j=0}^{n_{2}-n_{1}}\binom{n_{1}+j}{n_{1}}\binom{n_{2}-j}{n_{1}} \zeta\left(n_{1}+1+j\right) \zeta\left(n_{2}+1-j\right) \\
& \quad-2 \sum_{j=0}^{n_{1}}(-1)^{j}\binom{n_{1}+j}{n_{1}}\binom{n_{2}-j}{n_{2}-n_{1}} \zeta\left(n_{1}+1+j\right) \zeta\left(n_{2}+1-j\right) \\
& \quad=\binom{n_{1}+n_{2}+1}{n_{2}-n_{1}} \zeta\left(n_{1}+n_{2}+2\right) \\
& \quad-2(-1)^{n_{1}} \sum_{j=0}^{n_{1}}\binom{n_{1}+j}{n_{1}}\binom{n_{2}-j}{n_{2}-n_{1}} \zeta_{2}\left(n_{1}+1+j, n_{2}+1-j\right)
\end{aligned}
$$

(2) For integers $n \geq 1$, we have

$$
\begin{aligned}
& \sum_{j=0}^{n-1}(-1)^{j}\binom{n+j}{n} \zeta(n+1+j) \zeta(n+1-j) \\
& \quad=(-1)^{n-1}\binom{2 n}{n}\left\{\zeta(2 n+2)+\zeta_{2}(1,2 n+1)\right\}+\zeta_{2}(n+1, n+1) \\
& \quad+(-1)^{n} \sum_{j=0}^{n-1}\binom{n+j}{n} \zeta_{2}(n+1+j, n+1-j)
\end{aligned}
$$

2. Proofs.

In this section we shall carry out the proof of our results in the lines indicated in $\S 1$.
Proof of Theorem 1. We choose

$$
\begin{equation*}
w_{N}(x)=\sum_{k=1}^{N} e^{-k x} \quad(x>0) \tag{2.1}
\end{equation*}
$$

as a weight function. Then its Mellin transform (1.1) is

$$
\begin{equation*}
\mathscr{M} w_{N}(s)=\Gamma(s) \zeta_{N}(s), \tag{2.2}
\end{equation*}
$$

so that the convolution formula (1.3) becomes

$$
\begin{align*}
I(m) & =I_{N}(m) \\
& =2 \Gamma(m) H_{N} \zeta_{N}(m)+\sum_{j=1}^{m-2}\binom{m-1}{j} \Gamma(j+1) \Gamma(m-j) \zeta_{N}(j+1) \zeta_{N}(m-j) . \tag{2.3}
\end{align*}
$$

On the other hand, since

$$
w_{N}(z-y) w_{N}(y)=w_{N}(z)+\sum_{\substack{h, k \leq N \\ h \neq k}} \sum^{-k z} e^{(k-h) y},
$$

it follows that

$$
\begin{equation*}
B(z)=\int_{0}^{z} w_{N}(z-y) w_{N}(y) d y=z w_{N}(z)+2 \sum_{\substack{h, k \leq N \\ h \neq k}} \frac{e^{-h z}}{k-h} . \tag{2.4}
\end{equation*}
$$

Hence its Mellin transform $I_{N}(s)$ is given by

$$
\begin{align*}
I_{N}(s) & =\mathscr{M} w_{N}(s+1)+2 \sum_{\substack{h, k \leq N \\
h \neq k}} \frac{1}{k-h} \int_{0}^{\infty} z^{s-1} e^{-h z} d z \\
& =\Gamma(s+1) \zeta_{N}(s+1)+2 \Gamma(s) J_{N}(s) \tag{2.5}
\end{align*}
$$

say, where

$$
\begin{equation*}
J_{N}(s)=\sum_{\substack{h, k \leq N \\ h \neq k}} \sum_{h^{s}(k-h)} . \tag{2.6}
\end{equation*}
$$

Expressing the sum over k in (2.6) concretely, we obtain

$$
\begin{aligned}
J_{N}(s) & =\sum_{h=1}^{N} \frac{1}{h^{s}}\left(-H_{h-1}+H_{N-h}\right) \\
& =\sum_{h=1}^{N} \frac{1}{h^{s}}\left\{-H_{h-1}+H_{N}-\left(\frac{1}{N-h+1}+\cdots+\frac{1}{N}\right)\right\},
\end{aligned}
$$

or

$$
\begin{equation*}
J_{N}(s)=H_{N} \zeta_{N}(s)-\sum_{h=1}^{N} \frac{H_{h-1}}{h^{s}}-J_{N}^{(1)}(s), \tag{2.7}
\end{equation*}
$$

where

$$
J_{N}^{(1)}(s)=\sum_{h=1}^{N} \frac{1}{h^{s}}\left(\frac{1}{N-h+1}+\cdots+\frac{1}{N}\right) .
$$

Since

$$
\left|J_{N}^{(1)}(s)\right| \leq \sum_{h=1}^{N} \frac{1}{h^{\sigma}} \frac{h}{N-h+1},
$$

we derive, on dividing the sum into two at $h=\left[\frac{N}{2}\right]$, that

$$
\left|J_{N}^{(1)}(s)\right| \ll N^{1-\sigma} \log N=o(1), \quad N \rightarrow \infty
$$

for $\sigma>1$, and therefore that

$$
\begin{equation*}
J_{N}(s)=H_{N} \zeta_{N}(s)-\sum_{h=1}^{N} \frac{H_{h-1}}{h^{s}}+o(1), \tag{2.8}
\end{equation*}
$$

as $N \rightarrow \infty$ for $\sigma>1$.
Substituting (2.8) into (2.5) and combining it with (2.3), thereby $s=m \geq 2$ an integer, we complete the proof of the intermediate formula. Letting then $N \rightarrow \infty$, (1.7) follows, and the proof is complete.

Proof of Theorem 2. First we consider the case $\sigma>1$. Corresponding to (2.1), we choose

$$
\begin{equation*}
W(x)=W_{n}(x)=x^{n} w(x), \tag{2.9}
\end{equation*}
$$

where n is a positive integer and

$$
\begin{equation*}
w(x)=\sum_{k=1}^{\infty} e^{-k x}=\frac{1}{e^{x}-1} . \tag{2.10}
\end{equation*}
$$

Then its Mellin transform is

$$
\begin{equation*}
\mathscr{M} W_{n}(s)=\Gamma(n+s) \zeta(n+s) \tag{2.11}
\end{equation*}
$$

corresponding to (2.2), and the convolution formula takes the form

$$
\begin{align*}
I(m) & =\int_{0}^{\infty} \int_{0}^{\infty}(x+y)^{m-1} W_{n}(x) W_{n}(y) d x d y \\
& =\sum_{j=0}^{m-1}\binom{m-1}{j} \Gamma(n+j+1) \Gamma(m+n-j) \zeta(n+j+1) \zeta(m+n-j), \tag{2.12}
\end{align*}
$$

corresponding to (2.3).
On the other hand, the same reasoning that led to (2.4) gives

$$
\begin{equation*}
B(z)=\int_{0}^{z} W_{n}(z-y) W_{n}(y) d y=B_{1}(z)+B_{2}(z), \tag{2.13}
\end{equation*}
$$

where

$$
B_{1}(z)=w(z) \int_{0}^{z}(z-y)^{n} y^{n} d y
$$

and

$$
\begin{equation*}
B_{2}(z)=\sum_{h \neq k} \sum e^{-k z} \int_{0}^{z}(z-y)^{n} y^{n} e^{(k-h) y} d y \tag{2.14}
\end{equation*}
$$

The integral in $B_{1}(z)$ is

$$
z^{2 n+1} B(n+1, n+1)=\frac{\Gamma(n+1)^{2}}{\Gamma(2 n+2)} z^{2 n+1}
$$

so that

$$
\begin{equation*}
B_{1}(z)=\frac{\Gamma(n+1)^{2}}{\Gamma(2 n+2)} z^{2 n+1} w(z) . \tag{2.15}
\end{equation*}
$$

The integral in $B_{2}(z)$ can be treated by the well-known formulas involving the modified Bessel function I_{μ} (cf. e.g. Erdélyi [3]):

$$
\begin{equation*}
\int_{0}^{u}(x(u-x))^{\mu-1} e^{\beta x} d x=\sqrt{\pi}\left(\frac{u}{\beta}\right)^{\mu-1 / 2} \exp \left(\frac{\beta u}{2}\right) \Gamma(\mu) I_{\mu-1 / 2}\left(\frac{\beta u}{2}\right) \tag{2.16}
\end{equation*}
$$

$(\beta>0)$, and

$$
\begin{equation*}
I_{n+1 / 2}(x)=\frac{e^{-x}}{\sqrt{2 \pi x}} \sum_{j=0}^{n} \frac{(n+j)!}{j!(n-j)!}\left(\frac{1}{2 x}\right)^{j}\left((-1)^{j} e^{2 x}+(-1)^{n+1}\right) \tag{2.17}
\end{equation*}
$$

$(x>0, n \in \boldsymbol{N})$.
Combining these, we deduce that

$$
\int_{0}^{z}(z-y)^{n} y^{n} e^{\beta y} d y=\Gamma(n+1) \frac{z^{n}}{\beta^{n+1}} \sum_{j=0}^{n} \frac{(n+j)!}{j!(n-j)!}\left(\frac{1}{\beta z}\right)^{j}\left((-1)^{j} e^{\beta z}+(-1)^{n+1}\right)
$$

whence further that

$$
\begin{equation*}
\int_{0}^{z}(z-y)^{n} y^{n} e^{\beta y} d y=\Gamma(n+1)(-1)^{n+1} \sum_{j=0}^{n} \frac{(n+j)!}{j!(n-j)!} \frac{z^{n-j}}{\beta^{n+j+1}}\left((-1)^{n+j+1} e^{\beta z}+1\right) \tag{2.18}
\end{equation*}
$$

Since (2.18) remains valid with β replaced by $-\beta$, we may substitute (2.18) with $\beta=k-h$ in $B_{2}(z)$ (in (2.14)), whereby we distinguish two cases: $n+j+1$ is odd or even:

$$
\begin{equation*}
B_{2}(z)=\Gamma(n+1)(-1)^{n+1} \sum_{j=0}^{n} \frac{(n+j)!}{j!(n-j)!} z^{n-j}\left(\sum_{\mathrm{o}}+\sum_{\mathrm{e}}\right), \tag{2.19}
\end{equation*}
$$

where

$$
\begin{equation*}
\sum_{\mathrm{o}}=\sum_{\substack{h \neq k \\ n+j+1: \text { odd }}} e^{-k z} \frac{-e^{(k-h) z}+1}{(k-h)^{n+j+1}} \tag{2.20}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\mathrm{e}}=\sum_{\substack{h \neq k \\ n+j+1: \text { even }}} e^{-k z} \frac{e^{(k-h) z}+1}{(k-h)^{n+j+1}} \tag{2.21}
\end{equation*}
$$

We transform \sum_{o} as follows,

$$
\begin{aligned}
\sum_{\mathrm{o}} & =\sum_{h \neq k} \sum \frac{-e^{-h z}+e^{-k z}}{(k-h)^{n+j+1}} \\
& =-2 \sum_{h \neq k} \sum_{h} \frac{e^{-h z}}{(k-h)^{n+j+1}} \\
& =-2 \sum_{h} e^{-h z} \sum_{\substack{k \\
k \neq h}} \frac{1}{(k-h)^{n+j+1}} \\
& =-2 \sum_{h} e^{-h z} \sum_{l \geq h} \frac{1}{l^{n+j+1}},
\end{aligned}
$$

which we record as

$$
\begin{equation*}
\sum_{\mathrm{o}}=2 \sum_{h} e^{-h z}\left(\sum_{l<h} \frac{1}{l^{n+j+1}}-\zeta(n+j+1)\right) \tag{2.22}
\end{equation*}
$$

The sum \sum_{e} is more readily transformed in the form of (2.22):

$$
\begin{equation*}
\sum_{\mathrm{e}}=2 \sum_{h} e^{-h z}\left(\sum_{l<h} \frac{1}{l^{n+j+1}}+\zeta(n+j+1)\right) \tag{2.23}
\end{equation*}
$$

Now (2.22) and (2.23) give

$$
\sum_{o}+\sum_{e}=2 \sum_{h} e^{-h z}\left(\sum_{l<h} \frac{1}{l^{n+j+1}}+(-1)^{n+j+1} \zeta(n+j+1)\right) .
$$

Thus we conclude that

$$
\begin{align*}
B_{2}(z)= & 2(-1)^{n+1} \Gamma(n+1) \sum_{j=0}^{n} \frac{(n+j)!}{j!(n-j)!} z^{n-j} \\
& \times \sum_{h} e^{-h z}\left(\sum_{l<h} \frac{1}{l^{n+j+1}}+(-1)^{n+j+1} \zeta(n+j+1)\right) \tag{2.24}
\end{align*}
$$

We substitute (2.15) and (2.24) in (2.13), obtaining the counterpart of (2.3), which we substitute in (1.4), to conclude that

$$
\begin{aligned}
I(s)= & \frac{\Gamma(n+1)^{2}}{\Gamma(2 n+2)} \mathscr{M} W_{2 n+1}(s)+2(-1)^{n+1} \Gamma(n+1) \sum_{j=0}^{n} \frac{(n+j)!}{j!(n-j)!} \\
& \times \sum_{h}\left(\sum_{l<h} \frac{1}{l^{n+j+1}}+(-1)^{n+j+1} \zeta(n+j+1)\right) \int_{0}^{\infty} e^{-h z} z^{s+n-j-1} d z .
\end{aligned}
$$

Now using (2.11) for the first term and noting that the integral in the second term is $\Gamma(s+n-j) / h^{s+n-j}$ in the above formula, we finally deduce that

$$
\begin{align*}
I(s)= & \frac{\Gamma(n+1)^{2}}{\Gamma(2 n+2)} \Gamma(s+2 n+1) \zeta(s+2 n+1) \\
& +2(-1)^{n+1} \Gamma(n+1) \sum_{j=0}^{n} \frac{(n+j)!}{j!(n-j)!} \Gamma(s+n-j) \\
& \times\left\{\zeta_{2}(n+j+1, s+n-j)+(-1)^{n+j+1} \zeta(s+n-j) \zeta(n+j+1)\right\} \tag{2.25}
\end{align*}
$$

Putting $s=m \geq 2$, we have, from (2.12) and (2.15),

$$
\begin{aligned}
& \sum_{j=0}^{m-1}\binom{m-1}{j} \Gamma(n+1+j) \Gamma(n+m-j) \zeta(n+1+j) \zeta(n+m-j) \\
& \quad=\frac{\Gamma(n+1)^{2}}{\Gamma(2 n+2)} \Gamma(2 n+m+1) \zeta(2 n+m+1) \\
& \quad+2(-1)^{n+1} \Gamma(n+1) \sum_{r=0}^{n} \frac{(n+r)!}{r!(n-r)!} \Gamma(n+m-r) \\
& \quad \times\left\{\zeta_{2}(n+r+1, n-r+m)+(-1)^{n+r+1} \zeta(n+r+1) \zeta(n-r+m)\right\} .
\end{aligned}
$$

Now rewriting $n_{1}=n$ and $n_{2}=n+m-1\left(>n_{1}\right)$, and dividing the both sides by $\left(n_{2}-n_{1}\right)!\left(n_{1}!\right)^{2}$, we get the formula (1) of Theorem 2.

To obtain the formula valid for $s=1$, we rewrite the sum in $B_{2}(z)$ over h, k corresponding to $j=n$ and get

$$
\begin{align*}
& B_{2}(z)=2(-1)^{n+1} \Gamma(n+1) \\
& \times\{ \sum_{j=0}^{n-1} \frac{(n+j)!}{j!(n-j)!} z^{n-j} \sum_{h} e^{-h z}\left(\sum_{l<h} \frac{1}{l^{n+j+1}}+(-1)^{n+j+1} \zeta(n+j+1)\right) \\
&\left.-\frac{(2 n)!}{n!} \sum_{h} e^{-h z}\left(\frac{1}{h^{2 n+1}}+\sum_{l>h} \frac{1}{l^{2 n+1}}\right)\right\}, \tag{2.26}
\end{align*}
$$

from which we get

$$
\begin{aligned}
\Gamma(n & +1)^{2} \zeta(n+1)^{2} \\
= & \Gamma(n+1)^{2} \zeta(2 n+2)+(-1)^{n+1} \Gamma(n+1) \sum_{j=0}^{n-1} \frac{(n+j)!}{j!(n-j)!} \Gamma(n+1-j) \\
& \times\left\{\zeta_{2}(n+1+j, n+1-j)+(-1)^{n+j+1} \zeta(n+1+j) \zeta(n+1-j)\right\} \\
& -2(-1)^{n+1}(2 n)!\left\{\zeta(2 n+2)+\zeta_{2}(1,2 n+1)\right\} .
\end{aligned}
$$

Dividing both side by $(n!)^{2}$, we obtain the formula (2) of Theorem 2 .
We now illustrate by some examples. From Theorem 2 (1), we have

$$
\begin{array}{ll}
\left(n_{1}, n_{2}\right)=(2,3): & \zeta(7)=3 \zeta_{2}(3,4)+4 \zeta_{2}(4,3)-2 \zeta_{2}(2,5) \\
\left(n_{1}, n_{2}\right)=(3,4): & 2 \zeta_{2}(4,5)+2 \zeta_{2}(5,4)+10 \zeta_{2}(6,3)+5 \zeta_{2}(3,6)-5 \zeta_{2}(2,7)=0
\end{array}
$$

From Theorem 2 (2), we have

$$
\begin{array}{ll}
n=1: & \zeta(4)=2 \zeta_{2}(2,2)-2 \zeta_{2}(1,3) \\
n=2: & 4 \zeta(6)=3 \zeta_{2}(2,4)+6 \zeta_{2}(4,2)-6 \zeta_{2}(1,5) \\
n=3: & 13 \zeta(8)=-20 \zeta_{2}(1,7)+10 \zeta_{2}(2,6)-4 \zeta_{2}(3,5)+2 \zeta_{2}(4,4)+20 \zeta_{2}(6,2) .
\end{array}
$$

Remark 2. We may consider more general integral

$$
I_{n_{1}, n_{2}}(s)=\int_{0}^{\infty} \int_{0}^{\infty}(x+y)^{s-1} x^{n_{1}} y^{n_{2}} w(x) w(y) d x d y
$$

Since $I_{n_{1}, n_{2}}(s)=I_{n_{2}, n_{1}}(s)$, there is no harm to assume that $n_{1} \leq n_{2}$. From the trivial identity

$$
x^{n_{1}} y^{n_{2}+1}=x^{n_{1}} y^{n_{2}}(x+y-x)
$$

we have

$$
I_{n_{1}, n_{2}+1}(s)=I_{n_{1}, n_{2}}(s+1)-I_{n_{1}+1, n_{2}}(s) .
$$

This means that $I_{n_{1}, n_{2}}(s)$ can be written as a linear combination of $I_{m, m}(s+j)$, e.g.

$$
\begin{aligned}
& I_{n, n+1}(s)=\frac{1}{2} I_{n, n}(s+1) \\
& I_{n, n+2}(s)=\frac{1}{2} I_{n, n}(s+2)-I_{n+1, n+1}(s) \\
& I_{n, n+3}(s)=\frac{1}{2} I_{n, n}(s+3)-\frac{3}{2} I_{n+1, n+1}(s+1) .
\end{aligned}
$$

Remark 3. We have not exhausted out the method and hope to return to the study of other possible relations among zeta and L-values by similar methods, elsewhere.

For harmonic numbers and their generalizations we refer e.g. to P. Flajolet and B. Salvy [4] and reference therein.

Tornheim's double series $T(r, s, t)[8]$ defined by

$$
T(r, s, t)=\sum_{m, n=1}^{\infty} \frac{1}{m^{r} n^{s}(m+n)^{t}},
$$

where r, s, t are non-negative integers subject to some conditions has received considerable attention by several authors including T. M. Apsotal and T. H. Vu [1] H. Tsumura [9] et al. We hope to turn to the study of $T(r, s, t)$ subsequently. We remark that Apostal and Vu considered $T(r, s, 1)$ by denoting it by $T(r, s)$, but without referring to Tornheim's paper [8].

Acknowledgements. This paper was finished when the first two authors were staying at National University of Singapore in March 2004. They would like to thank Professor H.-H. Chan for his great hospitality. The authors would also like to express their sincere gratitude to the referee for his valuable comments and suggestions.

References

[1] T. M. Apostol and T. H. Vu, Dirichlet series related to the Riemann zeta-function, J. Number Theory, 19 (1984), 85-102.
[2] P. Cartier, Fonction polylogarithmes, nombres polyzetas et groupes pro-unipotants, Sém. Bourbaki, 53 éme année, 2000-2001, 85, 2001.
[3] A. Erdélyi, Higher Transcendental Functions II, McGraw-Hill, New York, 1953.
[4] P. Flajolet and B. Salvy, Euler sums and contour integral representation, Experiment. Math., 7 (1998), 15-35.
[5] M. Kaneko, Multiple zeta-values, Sugaku (2002), 404-415.
[6] A. P. Prudnikov, On the Euler problem of summation of harmonic series, Integral transforms and special functions, Informat. Bull., 1 (1996), 5-7.
[7] H. Srivastava and J.-S. Choi, Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht-Boston-London, 2001.
[8] L. Tornheim, Harmonic double series, Amer. J. Math., 72 (1950), 303-314.
[9] H. Tsumura, On some combinatorial relation for Tornheim's double series, Acta Arith., 105 (2002), 239-252.
[10] M. Waldschmidt, Values zeta multiples: Une introduction, J. Théor. Nombre Bordeaux, 12 (2000), 581-595.
[11] D. Zagier, Values of zeta function and their application, ECM, volume 2, Progr. Math., 120 (1994), 497-512.

Shigeru Kanemitsu
Graduate School of Advanced Technology
University of Kinki, Iizuka
Fukuoka, 820-8555
Japan
E-mail: kanemitu@fuk.kindai.ac.jp

Yoshio TANIGAWA
Graduate School of Mathematics
Nagoya University
Nagoya, 464-8602
Japan
E-mail: tanigawa@math.nagoya-u.ac.jp
Masami Yoshimoto
Graduate School of Mathematics
Nagoya University
Nagoya, 464-8602
Japan
E-mail: x02001n@math.nagoya-u.ac.jp
current address
Interdisciplinary Graduate
School of Science and Technology,
Kinki Univerisity, Higashi-Osaka, Osaka, 577-8502, Japan
E-mail: myoshi@math.kindai.ac.jp

