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Abstract. In this note we are going to generalize Prudnikov’s method of using a
double integral to deduce relations between the Riemann zeta-values, so as to prove
intriguing relations between double zeta-values of depth 2. Prior to this, we shall

deduce the most well-known relation that expresses the sum
Pm−2

j=1 ζ(j + 1)ζ(m− j)

in terms of ζ2(1, m).

1. Introduction and statement of results.

If the Mellin transform

MW (n) =
∫ ∞

0

xn−1W (x)dx, (1.1)

which is to yield (or at least, to be related to) zeta values, is computable in finite form
for a suitable weight function W , then we may express the double integral

I(s) =
∫ ∞

0

∫ ∞

0

(x + y)s−1W (x)W (y)dxdy, (1.2)

for positive integer values of s = m, as a convolution of zeta-values:

I(m) =
m−1∑

j=0

(
m− 1

j

)
MW (j + 1)MW (m− j). (1.3)

If, further, it so happens that, when we express (1.2) as a repeated integral

I(s) =
∫ ∞

0

zs−1B(z)dz, (1.4)

where B(z) is the beta-type integral

B(z) =
∫ z

0

W (z − y)W (y)dy, (1.5)
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we may express B(z) in tractable form, then we may expect to obtain a relation among
zeta-values.

We consider the case where W (x) can be expressed as a series (finite or infinite).
Then the implementation of the above method is a well-known one in number theory, i.e.
expanding the product W (x)W (y) into a series, extracting the diagonal terms (which is
of the form (1.1)), being thereby left with non-diagonal terms to be summed accordingly.

A. P. Prudnikov [6] (cf. also Srivastava-Choi [7]) was the first who put the above
idea into practice, using the (elliptic) theta series as W (x).

In this note we shall use the weight functions

wN (x) =
N∑

k=1

e−kx

and

Wn(x) = xn lim
N→∞

wN (x) = xn
∞∑

k=1

e−kx

(
=

xn

ex − 1

)
, (x > 0)

to deduce the well-known fundamental relation among Riemann zeta-values anew
(Theorem 1) and an intriguing relation between Riemann zeta-values and the multiple
zeta-values of depth 2 (Theorem 2), respectively.

We use the following notation:
For a positive integer N let ζN (s) denote the N -th partial sum

∑N
n=1 n−s of the

Riemann zeta-function ζ(s) =
∑∞

n=1 n−s (σ = <s > 1), let HN denote the N -th harmonic
number

∑N
n=1

1
n , and let ζ2(s1, s2) denote the double zeta-function defined for <s2 >

1,<(s1 + s2) > 2 by

ζ2(s1, s2) =
∑
m<n

1
ms1ns2

, (1.6)

so that ζ2(1, s) =
∑∞

n=1 Hn−1n
−s. For double and multiple zeta-functions, cf. [2], [5],

[10], [11].
We are now in a position to state the results.

Theorem 1. For each positive integer m ≥ 2 and N →∞, we have the interme-
diate formula

mζN (m + 1)− 2
∑

h≤N

Hh−1

hm
+ o(1) =

m−2∑

j=1

ζN (j + 1)ζN (m− j)

and in the limit

2ζ2(1,m) = mζ(m + 1)−
m−2∑

j=1

ζ(j + 1)ζ(m− j). (1.7)
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Remark 1. The identity (1.7) is equivalent to Euler’s sum formula

ζ(k) =
k−1∑

j=2

ζ2(k − j, j) (k ≥ 2),

which is derived easily from the relation

ζ(p)ζ(q) = ζ(p + q) + ζ2(p, q) + ζ2(q, p).

Theorem 2. (1) For integers 1 ≤ n1 < n2, we have

n2−n1∑

j=0

(
n1 + j

n1

)(
n2 − j

n1

)
ζ(n1 + 1 + j)ζ(n2 + 1− j)

− 2
n1∑

j=0

(−1)j

(
n1 + j

n1

)(
n2 − j

n2 − n1

)
ζ(n1 + 1 + j)ζ(n2 + 1− j)

=
(

n1 + n2 + 1
n2 − n1

)
ζ(n1 + n2 + 2)

− 2(−1)n1

n1∑

j=0

(
n1 + j

n1

)(
n2 − j

n2 − n1

)
ζ2(n1 + 1 + j, n2 + 1− j).

(2) For integers n ≥ 1, we have

n−1∑

j=0

(−1)j

(
n + j

n

)
ζ(n + 1 + j)ζ(n + 1− j)

= (−1)n−1

(
2n

n

){
ζ(2n + 2) + ζ2(1, 2n + 1)

}
+ ζ2(n + 1, n + 1)

+ (−1)n
n−1∑

j=0

(
n + j

n

)
ζ2(n + 1 + j, n + 1− j).

2. Proofs.

In this section we shall carry out the proof of our results in the lines indicated in §1.

Proof of Theorem 1. We choose

wN (x) =
N∑

k=1

e−kx (x > 0) (2.1)
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as a weight function. Then its Mellin transform (1.1) is

MwN (s) = Γ (s)ζN (s), (2.2)

so that the convolution formula (1.3) becomes

I(m) = IN (m)

= 2Γ (m)HNζN (m) +
m−2∑

j=1

(
m− 1

j

)
Γ (j + 1)Γ (m− j)ζN (j + 1)ζN (m− j). (2.3)

On the other hand, since

wN (z − y)wN (y) = wN (z) +
∑∑

h,k≤N
h6=k

e−kze(k−h)y,

it follows that

B(z) =
∫ z

0

wN (z − y)wN (y)dy = zwN (z) + 2
∑∑

h,k≤N
h6=k

e−hz

k − h
. (2.4)

Hence its Mellin transform IN (s) is given by

IN (s) = MwN (s + 1) + 2
∑∑

h,k≤N
h6=k

1
k − h

∫ ∞

0

zs−1e−hzdz

= Γ (s + 1)ζN (s + 1) + 2Γ (s)JN (s), (2.5)

say, where

JN (s) =
∑∑

h,k≤N
h6=k

1
hs(k − h)

. (2.6)

Expressing the sum over k in (2.6) concretely, we obtain

JN (s) =
N∑

h=1

1
hs

(−Hh−1 + HN−h

)

=
N∑

h=1

1
hs

{
−Hh−1 + HN −

(
1

N − h + 1
+ · · ·+ 1

N

)}
,
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or

JN (s) = HNζN (s)−
N∑

h=1

Hh−1

hs
− J

(1)
N (s), (2.7)

where

J
(1)
N (s) =

N∑

h=1

1
hs

(
1

N − h + 1
+ · · ·+ 1

N

)
.

Since

∣∣J (1)
N (s)

∣∣ ≤
N∑

h=1

1
hσ

h

N − h + 1
,

we derive, on dividing the sum into two at h =
[

N
2

]
, that

∣∣J (1)
N (s)

∣∣ ¿ N1−σ log N = o(1), N →∞

for σ > 1, and therefore that

JN (s) = HNζN (s)−
N∑

h=1

Hh−1

hs
+ o(1), (2.8)

as N →∞ for σ > 1.
Substituting (2.8) into (2.5) and combining it with (2.3), thereby s = m ≥ 2 an

integer, we complete the proof of the intermediate formula. Letting then N →∞, (1.7)
follows, and the proof is complete. ¤

Proof of Theorem 2. First we consider the case σ > 1. Corresponding to (2.1),
we choose

W (x) = Wn(x) = xnw(x), (2.9)

where n is a positive integer and

w(x) =
∞∑

k=1

e−kx =
1

ex − 1
. (2.10)

Then its Mellin transform is

MWn(s) = Γ (n + s)ζ(n + s) (2.11)
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corresponding to (2.2), and the convolution formula takes the form

I(m) =
∫ ∞

0

∫ ∞

0

(x + y)m−1Wn(x)Wn(y)dxdy

=
m−1∑

j=0

(
m− 1

j

)
Γ (n + j + 1)Γ (m + n− j)ζ(n + j + 1)ζ(m + n− j), (2.12)

corresponding to (2.3).
On the other hand, the same reasoning that led to (2.4) gives

B(z) =
∫ z

0

Wn(z − y)Wn(y)dy = B1(z) + B2(z), (2.13)

where

B1(z) = w(z)
∫ z

0

(z − y)nyndy,

and

B2(z) =
∑∑

h6=k

e−kz

∫ z

0

(z − y)nyne(k−h)ydy. (2.14)

The integral in B1(z) is

z2n+1B(n + 1, n + 1) =
Γ (n + 1)2

Γ (2n + 2)
z2n+1,

so that

B1(z) =
Γ (n + 1)2

Γ (2n + 2)
z2n+1w(z). (2.15)

The integral in B2(z) can be treated by the well-known formulas involving the modified
Bessel function Iµ (cf. e.g. Erdélyi [3]):

∫ u

0

(x(u− x))µ−1eβxdx =
√

π

(
u

β

)µ−1/2

exp
(

βu

2

)
Γ (µ)Iµ−1/2

(
βu

2

)
(2.16)

(β > 0), and

In+1/2(x) =
e−x

√
2πx

n∑

j=0

(n + j)!
j! (n− j)!

(
1
2x

)j(
(−1)je2x + (−1)n+1

)
(2.17)
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(x > 0, n ∈ N).
Combining these, we deduce that

∫ z

0

(z − y)nyneβydy = Γ (n + 1)
zn

βn+1

n∑

j=0

(n + j)!
j! (n− j)!

(
1
βz

)j(
(−1)jeβz + (−1)n+1

)
,

whence further that

∫ z

0

(z − y)nyneβydy = Γ (n + 1)(−1)n+1
n∑

j=0

(n + j)!
j! (n− j)!

zn−j

βn+j+1

(
(−1)n+j+1eβz + 1

)
.

(2.18)

Since (2.18) remains valid with β replaced by −β, we may substitute (2.18) with
β = k − h in B2(z) (in (2.14)), whereby we distinguish two cases: n + j + 1 is odd or
even:

B2(z) = Γ (n + 1)(−1)n+1
n∑

j=0

(n + j)!
j! (n− j)!

zn−j
( ∑

o
+

∑
e

)
, (2.19)

where

∑
o

=
∑∑

h6=k
n+j+1:odd

e−kz −e(k−h)z + 1
(k − h)n+j+1

(2.20)

and

∑
e

=
∑∑

h6=k
n+j+1:even

e−kz e(k−h)z + 1
(k − h)n+j+1

. (2.21)

We transform
∑

o as follows,

∑
o

=
∑∑

h6=k

−e−hz + e−kz

(k − h)n+j+1

= −2
∑∑

h6=k

e−hz

(k − h)n+j+1

= −2
∑

h

e−hz
∑

k
k 6=h

1
(k − h)n+j+1

= −2
∑

h

e−hz
∑

l≥h

1
ln+j+1

,
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which we record as

∑
o

= 2
∑

h

e−hz

( ∑

l<h

1
ln+j+1

− ζ(n + j + 1)
)

. (2.22)

The sum
∑

e is more readily transformed in the form of (2.22):

∑
e

= 2
∑

h

e−hz

( ∑

l<h

1
ln+j+1

+ ζ(n + j + 1)
)

. (2.23)

Now (2.22) and (2.23) give

∑
o
+

∑
e

= 2
∑

h

e−hz

( ∑

l<h

1
ln+j+1

+ (−1)n+j+1ζ(n + j + 1)
)

.

Thus we conclude that

B2(z) = 2(−1)n+1Γ (n + 1)
n∑

j=0

(n + j)!
j! (n− j)!

zn−j

×
∑

h

e−hz

( ∑

l<h

1
ln+j+1

+ (−1)n+j+1ζ(n + j + 1)
)

. (2.24)

We substitute (2.15) and (2.24) in (2.13), obtaining the counterpart of (2.3), which
we substitute in (1.4), to conclude that

I(s) =
Γ (n + 1)2

Γ (2n + 2)
MW2n+1(s) + 2(−1)n+1Γ (n + 1)

n∑

j=0

(n + j)!
j! (n− j)!

×
∑

h

( ∑

l<h

1
ln+j+1

+ (−1)n+j+1ζ(n + j + 1)
) ∫ ∞

0

e−hzzs+n−j−1dz.

Now using (2.11) for the first term and noting that the integral in the second term
is Γ (s + n− j)/hs+n−j in the above formula, we finally deduce that

I(s) =
Γ (n + 1)2

Γ (2n + 2)
Γ (s + 2n + 1)ζ(s + 2n + 1)

+ 2(−1)n+1Γ (n + 1)
n∑

j=0

(n + j)!
j! (n− j)!

Γ (s + n− j)

× {
ζ2(n + j + 1, s + n− j) + (−1)n+j+1ζ(s + n− j)ζ(n + j + 1)

}
. (2.25)
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Putting s = m ≥ 2, we have, from (2.12) and (2.15),

m−1∑

j=0

(
m− 1

j

)
Γ (n + 1 + j)Γ (n + m− j)ζ(n + 1 + j)ζ(n + m− j)

=
Γ (n + 1)2

Γ (2n + 2)
Γ (2n + m + 1)ζ(2n + m + 1)

+ 2(−1)n+1Γ (n + 1)
n∑

r=0

(n + r)!
r! (n− r)!

Γ (n + m− r)

× {
ζ2(n + r + 1, n− r + m) + (−1)n+r+1ζ(n + r + 1)ζ(n− r + m)

}
.

Now rewriting n1 = n and n2 = n + m − 1 (> n1), and dividing the both sides by
(n2 − n1) ! (n1 !)2, we get the formula (1) of Theorem 2.

To obtain the formula valid for s = 1, we rewrite the sum in B2(z) over h, k corre-
sponding to j = n and get

B2(z) = 2(−1)n+1Γ (n + 1)

×
{ n−1∑

j=0

(n + j)!
j! (n− j)!

zn−j
∑

h

e−hz

( ∑

l<h

1
ln+j+1

+ (−1)n+j+1ζ(n + j + 1)
)

− (2n)!
n!

∑

h

e−hz

(
1

h2n+1
+

∑

l>h

1
l2n+1

)}
, (2.26)

from which we get

Γ (n + 1)2ζ(n + 1)2

= Γ (n + 1)2ζ(2n + 2) + (−1)n+1Γ (n + 1)
n−1∑

j=0

(n + j) !
j !(n− j) !

Γ (n + 1− j)

× {
ζ2(n + 1 + j, n + 1− j) + (−1)n+j+1ζ(n + 1 + j)ζ(n + 1− j)

}

− 2(−1)n+1(2n) !
{
ζ(2n + 2) + ζ2(1, 2n + 1)

}
.

Dividing both side by (n !)2, we obtain the formula (2) of Theorem 2. ¤

We now illustrate by some examples. From Theorem 2 (1), we have

(n1, n2) = (2, 3) : ζ(7) = 3ζ2(3, 4) + 4ζ2(4, 3)− 2ζ2(2, 5)

(n1, n2) = (3, 4) : 2ζ2(4, 5) + 2ζ2(5, 4) + 10ζ2(6, 3) + 5ζ2(3, 6)− 5ζ2(2, 7) = 0.

From Theorem 2 (2), we have
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n = 1 : ζ(4) = 2ζ2(2, 2)− 2ζ2(1, 3)

n = 2 : 4ζ(6) = 3ζ2(2, 4) + 6ζ2(4, 2)− 6ζ2(1, 5)

n = 3 : 13ζ(8) = −20ζ2(1, 7) + 10ζ2(2, 6)− 4ζ2(3, 5) + 2ζ2(4, 4) + 20ζ2(6, 2).

Remark 2. We may consider more general integral

In1,n2(s) =
∫ ∞

0

∫ ∞

0

(x + y)s−1xn1yn2w(x)w(y)dxdy.

Since In1,n2(s) = In2,n1(s), there is no harm to assume that n1 ≤ n2. From the trivial
identity

xn1yn2+1 = xn1yn2(x + y − x),

we have

In1,n2+1(s) = In1,n2(s + 1)− In1+1,n2(s).

This means that In1,n2(s) can be written as a linear combination of Im,m(s + j), e.g.

In,n+1(s) =
1
2
In,n(s + 1)

In,n+2(s) =
1
2
In,n(s + 2)− In+1,n+1(s)

In,n+3(s) =
1
2
In,n(s + 3)− 3

2
In+1,n+1(s + 1).

Remark 3. We have not exhausted out the method and hope to return to the
study of other possible relations among zeta and L-values by similar methods, elsewhere.

For harmonic numbers and their generalizations we refer e.g. to P. Flajolet and B.
Salvy [4] and reference therein.

Tornheim’s double series T (r, s, t) [8] defined by

T (r, s, t) =
∞∑

m,n=1

1
mrns(m + n)t

,

where r, s, t are non-negative integers subject to some conditions has received considerable
attention by several authors including T. M. Apsotal and T. H. Vu [1] H. Tsumura [9] et
al. We hope to turn to the study of T (r, s, t) subsequently. We remark that Apostal and
Vu considered T (r, s, 1) by denoting it by T (r, s), but without referring to Tornheim’s
paper [8].
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