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Abstract. Let us consider the following nonlinear singular partial differential
equation (t9/0t)™u = F(t,z,{(td/0t)7(8/0z)*u}j+a<m,j<m) in the complex do-
main with two independent variables (¢,z) € C?. When the equation is of totally
characteristic type, this equation was solved in [2] and [9] under certain Poincaré con-
dition. In this paper, the author will prove the uniqueness of the solution under the as-
sumption that u(t,z) is holomorphic in {(¢,z) € C?; 0 < || < r,|argt| < 0, |z| < R}
for some r > 0, 6 > 0, R > 0 and that it satisfies u(t,z) = O(|t|*) (as t — 0)
uniformly in z for some a > 0. The result is applied to the problem of removable
singularities of the solution.

1. Introduction.

Notations: (t,z) € Cy x C,, N ={0,1,2,...}, and N* = {1,2,...}. Let m € N*
be fixed, set N = #{(j,a) € N X N; j+a <m,j <m} (that is, N = m(m + 3)/2),
and denote the complex variable z € CV by z = {20}, 4 a<m jcm-

In this paper we will consider the following nonlinear singular partial differential
equation:

0 e ()

where F(t, z, z) is a function of the variables (¢, z, z) defined in a neighborhood A of the
origin of C; x C, x CN, and u = u(t, ) is the unknown function. Set Ag = AN {t =
0,2 =0}, and set also I,, = {(j,a) e Nx N;j+a<m, j<m }and L,(+) = {(j,a)
€Iy a>0}.

Let us first assume the following conditions:

Ay) F(t,x,z) is a holomorphic function on A;
Ag) F(O,l‘,O) =0on Ao.

Then, by expanding F(t, z, z) into Taylor series with respect to (¢, z) we have
F(t,z,2) = a(z)t + Z bjalx)zja + Z Gp(x)tP 2",

jHa<m p+lv|>2
j<m
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where a(z), bjo(z) (j+a <m,j <m)and g,,(x) (p+|v| > 2) are all holomorphic func-
tions on Ao, v = {vja}arer,, € NV, V] = X ayer,, Via a0d 2 =[] ayer,, [27.0]7-
We divide our equation into the following three types:

Type (1) : b o(x) =0 for all (j, ) € L, (+);

Type (2) : b; (0) # 0 for some (j, ) € Ly, (+);

Type (3) : b;,a(0) =0 for all (j,a) € I,,(+), but b; g(x) # 0 for some (4, 3) € L, (+).
Type (1) is called a Gérard-Tahara type partial differential equation and it was studied
in [3], [4] and [10]; the uniqueness of the solution was studied in [7] and [8]. Type (2)
is called a spacially nondegenerate type partial differential equation and it was studied
in [5]. Type (3) is called a totally characteristic type partial differential equation and it
was studied in [2] and [9].

In this paper we will consider the type (3) under the following condition:

A3z) bjo(z) = O(z®) (as © — 0) for all (j, ) € I;p(+).

Then, by the condition Ag) we have b; (z) = x%¢; o(z) for some holomorphic functions
¢jal(x) ((J,a) € I,) and therefore our equation (E) is written in the form

Clz t2 wg u=a(x)t+ Z (x)t? H tg ! 9 0éu o (1.1)
ot Tox )" T o | ot ) \ oz '
pt|v|>2 (Jro)€lm

where

Cla\p) =" = Y cal@Nplp—1)---(p—a+1).
jJrgSm
Jj<m

Set

jta=m
j<m

and denote by c1,..., ¢, the roots of the equation L,,(X) = 0 in X. If we factorize
L(\,1) into the form

LD =A== () (A=An(l), €N, (1.4)
by renumbering the subscript i of A;(I) suitably we have

lim L(l):ci fori=1,...,m.

l—o0
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On the existence of a solution of (E) we have the following results.

THEOREM 1. Assume the conditions A1), As) and As). We have:

(1)(Chen-Tahara [2]) If L(k,l) # 0 holds for any (k,l1) € N* x N and if ¢; €
C \ [0,00) holds for i =1,...,m, the equation (E) has a unique holomorphic solution
u(t,x) in a neighborhood of (0,0) € C; x C,, satisfying u(0,2) = 0.

(2)(Tahara [9]) If ¢; € C \ [0,00) holds for i = 1,...,m, the equation (E) has a
family of solutions u(t,x) of the form

u(t,z) = w(t, tlogt, t(logt)?, ... tlogt)", z),

where w(t, ty,ta, ..., ty,x) is a holomorphic function with p arbitrary constants in a
neighborhood of (t,t1,ta,...,t,,x) = (0,0,0,...,0,0) satisfying w(0,0,0,...,0,2) =0

and p is a non-negative integer determined by the equation.

Chen-Luo [1] and Shirai [6] have generalized the existence of the unique holomorphic
solution in (1) of Theorem 1 to the case of several variables (¢,2) € C' x C™ and (t,x) €
Cc?xCcn.

In this paper, we will establish the uniqueness of the solution of the equation (E).

2. Uniqueness of the solution.

We denote:

- Z(C \ {0}) the universal covering space of C'\ {0},

- So={t e Z(C\ {0});|argt| < 0} a sector in Z(C \ {0}),
CSy(r) = {t € 500 < [t] < 1},

- Dp={z € C;|z| < R}.

Let us define sets of functions 57; and % in which we will prove the uniqueness of the
solution of (E).

DEFINITION 1. (1) Let a > 0. We denote by 7 the set of all u(t, z) satisfying
the following i) and ii): i) u(¢, z) is a holomorphic function on Syp(r) x Dg for some 6 > 0,
r >0 and R > 0; and ii) u(t, z) satisfies

max |u(t,z)| = O(|t|*) (as t — 0 in Sy(r)).
r€DR

(2) We define % by
7 -

a>0

Let A1(1),..., Am(l) be the ones in (1.4). Our main theorem is as follows:

THEOREM 2. Assume the conditions A1), Ag), As) and

Rec; <0 fori=1,...,m. (2.1)
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Then, if uy (t, ) and ua(t, z) are solutions of (E) belonging in the class % and if uy—ug €

Sy holds for some a > 0 satisfying

a> max Re X;(1), (2.2)
>0
we have w1 = ug in %r
Since A;(1)/l — ¢; (as ] — o0) for i = 1,...,m, under the condition (2.1) we have

ReA;(l) — —o0 (as | — o) for i = 1,...,m and therefore the righthand side of (2.2)
is well-defined. We note:

LEMMA 1. Let a > 0. The following two conditions are equivalent:

(1) (2.1) and (2.2) hold;

(2) there are 0 < b < a and ¢ > 0 such that b — Re A\;(1) > ¢l holds for anyl € N
andi=1,...,m.

PRrROOF. Suppose the condition (1). Set
[ = max

1<i<m

150

0, max Re )\i(l)]
<

and take b > 0 so that 8 < b < a. Since Re \;(1)/l — Rec; (asl — oo) fori=1,...,m,
under the condition (2.1) we can find € > 0 and L € N such that —Re \;(I) > ¢! for any
I>Landi=1,...,m. Then, by taking ¢ > 0 so that 0 < ¢ < min{e, (b — §)/L} we can
verify the condition (2) in the following way: if [ > L we have b—Re A\;(I) > —Re \;(I) >
el >cl,and for 0 <[ < L we have b—Re \;(I) > b— (3 > ¢L > c¢l. Thus, we have proved
that (1) implies (2).

Conversely, suppose the condition (2). Then we have (b — Re A;(1))/l > ¢ and so by

letting | — oo we have —Re¢; > ¢ for i = 1,...,m; this proves (2.1). Since a > b holds,
we have a > b > Re\;(1) + ¢l > ReA;(l) for any I € N and i = 1,...,m; this proves
(2.2). Thus, we have proved also that (2) implies (1). O

Thus, Theorem 2 is equivalent to the following

THEOREM 2*.  Assume the conditions A1), As), Az) and that there are b > 0 and
¢ > 0 such that

b—ReX(l) >cl foranyle N andi=1,...,m. (2.3)

If ui(t, ) and ua(t, z) are solutions of (E) belonging in the class T and if uy —uy € S,
holds for some a > b, then we have u; = ug in 4.

The rest part of this paper is organized as follows. In the next section 3 we will
present basics of the theory of pseudo-differential operators, in section 4 we will prove
a uniqueness theorem for some linear pseudo-differential equations, and in section 5 we
will prove Theorem 2* by applying the result in section 4 to our nonlinear equations. In
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the last section 6 we will give an application of Theorem 2 to the problem of removable
singularities of the solution of (E).

3. Basics of pseudo-differential operators.

We denote by C][z]] the ring of formal power series in x with complex coefficients.
For a sequence A(I) (I =0,1,2,...) of complex numbers, we define the operator A(6) :
C[lz]] — C[z]] by the following;:

15 f=> fa' — XNO)f =D firDa' € C[la]]. (3.1)

>0 >0

If A(p) is a mapping from NN into C, we can define an operator A\() : C[[z]] — C][z]].
In particular, if A(p) is a function defined on Ry = {p € R; p > 0}, we have an operator
A(0) : Cl[z]] — C[lz]]. If A(p) is a polynomial in p, we easily see that A(0) = \(x(d/dx))
holds as an operator from C/[[z]] into C[[z]]. Thus, our operator A(¢) can be regarded
as a generalization of a differential operator. From now, we will call this operator A(6)
as a pseudo-differential operator.

If a pseudo-differential operator A(9) : C[[z]] — C][x]] satisfies

D <Ca+D* (1=0,1,2,...)

for some C > 0 and k > 0, we say that A(6) is a pseudo-differential operator of order k.
We denote by Sy the set of all such pseudo-differential operators of order k as above.
For a formal power series f(z) =)/ fi z! € C[[]], we define

[fl@) =D Ifila’ and |f], =1fl(0) = D_1fil o (3.2)

1>0 1>0

Let R > 0. Using this norm, we define X by
Xr={f(z) € C[[=]]; |f|r < o0}

It is easy to see that Xp is a Banach space with the norm |- |z. We denote by
C°([0,T], Xg) the space of all continuous functions f(¢,z) on [0, 7] with values in Xg:
it is also a Banach space with the norm || f|| = max;epo, 77 |f(t)|r-

The following lemma is an easy consequence of the definition.

LEMMA 2. (1) Let A(0) be a pseudo-differential operator of order 0. If f(t,z) €
CY([0,T], Xg), we have X(0)f(t,x) € C°([0,T],XR). Moreover, if |f(t)|r = O(t°) (as
t — 0) for some s > 0, we have |A(0)f(t)|r = O(t®) (ast — 0).

(2) Let m € N* and let A\(0) be a pseudo-differential operator of order m. If f(t,x) €
C°([0,T], Xr), we have \(0) f(t,xz) € C°([0,T), Xg,) for any 0 < Ry < R. Moreover, if
lft)|r = O(t®) (ast — 0) for some s > 0, we have |A(0) f(t)|r, = O(t*) (ast — 0)
for any 0 < R; < R.
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Now, let us consider the following pseudo-differential equation:

<t§t - >\(6))> = f(t,x). (3.3)

For u(t,z) = Y ;s w(t)z!, instead of |u(t)|, we often write

|ul(t, p) Z | (t)

1>0
LEMMA 3. Let R >0 and ¢ > 0. Assume that
—ReA(l) > ¢l foranyl=0,1,2,.... (3.4)

(1)(Integral representation) If u(t,r) € C*((0,T], Xg) satisfies |u(t)|r = o(1) (as
t —0), if f(t,x) € C°([0,T), Xr) satisfies | f(t)|r = O(t°) (as t — 0) for some ¢ > 0,
and if u(t, z) and f(t,x) satisfy the equation (3.3) on (0, T|x Dg, then u(t,x) is expressed
in the form

d
u(t, z) Zfz ) /)02t on (0,7 x Dg. (3.5)
0 >0 T

(2)(A priori estimate) Under the same conditions as in (1) we have

ul(t.p) < [ 171 (/09) S on 0.T] x [0, (36)

In the above (3.6) we can replace “ <7 by “ <7, where Y 5 ap' < > 50 bip! means
that |a;| < by holds for alll =0,1,2,.... - -

(3)(Uniqueness) If ui(t,z) and us(t, ) are solutions of (3.3) belonging in the class

CH((0,T], Xg) and if |u1(t)—ua(t)|r = o(1) (ast — 0) holds, we have u1(t,z) = ua(t, )
on [0 T] X DR.

(4)(Solvability) If A(0) is a pseudo-differential operator of order 1, and if f(t,x) €
CY([0,T), Xr) satisfies |f(t)|r = O(t°) (as t — 0) for some & > 0, the equation (3.3)
has a unique solution u(t,z) € C°([0,T), Xr) N C((0,T], Xr,) for any 0 < Ry < R
such that |u(t)|r = O(t%) (as t — 0) and |(Ou/0t)(t)|r, = O(t=~1) (as t — 0) for any
0< Ry <R.

PROOF.  Let us prove (1). Set u(t,x) = X5 qw(t)z! and f(t,2) = 35, fi(t)z!
By the equation (3.3) we have

(t(?at - /\(l)> 1(t) = fi(t) foranyl=0,1,2,...,



Uniqueness of the solution 1051

which is equivalent to (9/0t)(t=*Wuy(t)) = t2O=1f(¢) for | = 0, 1,2, .. .. By integrating
this from ¢y to ¢ (with 0 < tg < t) we have

My (t) = to V(o) = / 0 fi(r) I (3.7)

to T
Since —ReA(l) > 0 is assumed, by the assumption we have

lto Dy (to)| < [to] P |uy(to)| < Juilto)| = o(1) (as to — 0), and

7O fi(r) (/1) < | TRAOOEE ) = 05 (as 7 — 0)

therefore by letting tg — 0 in (3.7) we have

t
d
2 Ouy(t) = / T fi(r) T forany 1=0,1,2,..
0 T

which is equivalent to

t
ul(t):/ (T/t)—Ml)fl(T)@ for any 1 = 0,1,2,....
0 T

This proves the result (1). By (3.5) we have the result (2) as follows:

d’T
fult, p)| = [u(t Ip_/ZIfz (/) RAD

>0

< [ S iamlsnrs T = /Ifl( (/i) L.

1>0
The result (3) is an easy consequence of the result (1).

Lastly, let us prove (4). By the argument in the proof of (1) it is easy to see that
the unique solution u(¢,x) is given by

ult, z) Zfl Yo 1) 1 4T

i
0 >0

By the assumption on f(t,z) we have

t)\Rg/O e L = /o VT _ 0@ (ast — 0),

and by Lemma 2 we have |[A(Q)u(t)|r, = O(t°) (as t — 0) for any 0 < R; < R;
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therefore we obtain |t(0u/0t)(t)|r, < |f(t)|r, + |NO)u(t)|r, = O(t%) (as t — 0) for any
0 < Ry < R. This proves the result (4). O

Set

0
L=tz —NO). (3.8)

In the proof of Theorem 2* we will use Lemma 3 in the following form:

PROPOSITION 1. Let R > 0 and ¢ > 0. Assume that A(0) is a pseudo-differential
operator of order 1 and that

—ReA(l) > ¢l foranyl=0,1,2,.... (3.9)

Assume also that u(t,x) € C1((0,T],XR) satisfies |u(t)|rg = O(t°) (as t — 0) and
|(Ou/ot)(t)|r = Ot~ (as t — 0) for some e > 0. Set

o) = [ Ll (/1) F on (0,71 0.B)

Then we have |ul(t, p) < ¢(t,p) on (0,T] x [0, R) (or |u|(t, p) <K ¢(t, p) as formal power
series in p) and

( 2 epl )¢><t,p> — |Lul(t.p) on (0.T) x [0, R).

PROOF. Set f(t,z) = (Lu)(t, z); then by the assumption and Lemma 2 we see that
f(t,z) € C°([0,T), Xg,) and |f(t)|r, = O(t) (as t — 0) hold for any 0 < R; < R.
Since ¢(t, p) is nothing but

bt p) = /|f| (r/ty°) /Zm /oyt o

>0

by (2) of Lemma 3 we have |u|(t, p) < ¢(t, p) on (0,T]x [0, R:], and by the same argument
as in the proof of (4) of Lemma 3 we obtain (t9/0t + cpd/0p)d(t,p) = |f|(t,p) on
(0,T] x [0, Ry]. Since 0 < Ry < R is arbitrary, this proves the proposition. O

The following lemma will be used in section 4.

LEMMA 4. Letp > 0, k € N* and let A(0) be a pseudo differential operator of
order 1 with the estimates |A\(1)] < C(1+1) (I =0,1,2,...). Then for any f(z) € Xr
and 0 < p < R we have the following results:

o [ieor (g2 ) <) vors

(6) = 5210+ 0P F1(p)




Uniqueness of the solution 1053

s @zl o)l (2o
)| (i)kxe)f\(p) <ca+nfa+o (;jf

W) I+ 0710 = (1457 )1716)

();

PROOF. i) is verified by the condition: (1+ (I —1))? < (1+4+1)? (I =1,2,...). ii)
is verified by the assumption [A()| < C(1+1) (I=0,1,...) and the result i) with p = 1.
i) is verified by the condition [A(1)] < C(1+ k)(1+ (I — k)) for any I > k. iv) is clear
from the definition. O

For a sequence a(t,z;l) € C°([0,T],Xgr) (I = 0,1,2,...) we define the operator
a(t, x;0) by the following:

=Y A2 — at,z;0)f(t,x) = > alt,z;1) fi(t)a', (3.10)

1>0 1>0
We often write a(t; 0) f(t) instead of a(t,z;6)f(t,x). By the definition we have:
LEMMA 5. For any f(t,z) =3 ;5 filt)zt € C°([0,T], Xr) we have

la(t:0)f(O)lr < 3 la(t: Dlr 1fi(0)] B (3.11)

1>0

where |a(t;1)| g is the norm of a(t, ;1) € Xg for fized (¢,1).

In view of Lemma 5, we say that a(t,x;0) is a pseudo-differential operator of order
k (> 0) with symbol in C°([0,T], Xr), if it satisfies

la(t;)|r <CA+DF, 0<t<Tandl=0,1,2,... (3.12)

for some C > 0. We denote by Si([0,T], Xr) the set of all the pseudo-differential
operators of order k with symbol in C°([0,T], XRg).

PROPOSITION 2. (1) Let a(t;0) = a(t,x;0) € So([0,T],XRr). Then the mapping
a(t;0) : C°([0,T], Xr) — C°([0,T), Xg) is well defined, and we have

a(t:0)f(1)r < AlfOlr with A= sup_|a(tD]a (3.13)
0§§%T

for any f(t) = f(t,z) € C°([0,T], XRr).

(2) Let k be a positive integer and let a(t;0) = a(t,z;0) € Si([0,T], Xg). Then the
mapping a(t;0) : C°([0,T), Xr) — C°([0,T], Xr,) is well defined for any 0 < Ry < R,
and we have



1054 H. TAHARA

Ay

|a(t; a)f(t)h?o < W |f(t)|R (3'14)
with
o= S TR+ (D)
>0

for any f(t) = f(t,x) € C°([0,T], X&).
PrROOF. (1) is verified by Lemma 5 and

a(t:0)fOlr < 3 la(tDlr AR < A OB = ALf(0)] .

1>0 1>0

By Cauchy’s inequality we have |fi(t)| < |f(t)|r/R' for any I = 0,1,2,...: then (2) is

verified as follows:

o500, < 3t Dl L) o' < 3 REEDC T DI
o L] pa—— 0

(1 _ R()/R)1+k '

4. A uniqueness result in some linear equations.

In this section we will prove the uniqueness of the solution of some linear pseudo-

differential equations.
Let T >0, R > 0, and let

1) /\1(9) ISt (i: 1,...,77?,),
2) aj(tax;e) € Sm—j([O’T]’XR) (.7 < m)a
3) bq,j(tax“g) € Sm*Q*j([OaT]aXR) (q +Jj<m,q> 0)7

and set

6 =1,
0, = (tat - )\1(6)>,

Oy = (tgt —~ A2(9)> (tgt - /\1(9)>’

n = (12 - 300) (12 -0 (12 -0,

S5}
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Let p € R, and let us consider the following linear pseudo-differential equation:

o q
@mu:_g a;(t,z;0)0u + g bq7j(t,x;9)(t“aw) O,u. (4.1)
j<m Q+J>§0m
q

Main assumptions are:

H;) there is a ¢ > 0 such that —Re \;(I) > ¢l holds for any l € N and i =1,...,m;
Hy) for i =0,1,...,m — 1 we have

|a; (¢ )| Ry
sup ——— =0(1 as Tp — 0 and Ry — 0);
Ogtngo (1+l)m_J ( ) ( 0 0 )
1>0

H3) /L>O

THEOREM 3.  Assume the conditions Hy), Hy) and Hs). Then, if u(t,z) is a
solution of (4.1) belonging in the class C™((0,T], Xg) and satisfies

()0

for some a > 0, we have u(t,z) =0 on (0,e] x Ds for some e >0 and 6 > 0.

=0(t") (ast—0) forj=0,1,...,m—1 (4.2)
R

The rest part of this section will be used to prove this theorem. Let u(t,z) €
C™((0,T],XRr) be a solution of (4.1) satisfying the condition (4.2). First, for (q,j) €
N x N with ¢+ 7 < m — 1 we set

t
d
b05(t.0) = [ 1Ly Dygulir (r/0)0) (43)

where ¢ > 0 is the constant in Hy),

0 .
Lj+l(t8t>‘j+1(0)>a J=0,1,....m—1,

) o \?
Dyj = (1+0)ym=1-9-i (t“ax) 6, q+j<m—1.

By (4.2) we see that ¢, ;(t, p) (¢+j < m—1) are well defined on (0,7] x [0, R). Moreover
we have:

LEMMA 6. In the above context we have:

Cl) |Dq,ju|(tap) < (bq,j(tvp) on (OvT] X [07R) (07" |Dq,ju|(t7p) < ¢q,j(t7p) as formal
power series in p).
c2) (t% + Cpagp)gbq,j(tvp) = ‘Lj+1Dq,ju‘(tap) on (0,T] x [0, R).
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c3) @q.(t,p) = O(t*) (ast — 0) uniformly in p € [0, Ro] (for any 0 < Ry < R).
cy) When g > 1 we have

| Lj+1Dq jul(t, p)

0 0
< t“a—p|Dq,1,j+1u\(t, p)+ (ng + Cialg+ 1))t“a*p|Dq717j“|(t, p) (44
on (0,T] x [0, R), where

N1 (D]
Cirq = sup 231
R )

c5) Wheng=0and j=0,1,...,m — 2 we have

0
[ Lj+1Do jul(t, p) = (1 +p3p> [ Do,j+1ul(t,p) on (0,T] x [0, R). (4.5)

cg) Whenqg=0and j=m—1, for any 0 < Ty <T and 0 < Ry < R we have
| L Do,m—1ul(t, p) = |Onul

0 0
<X {1ty Dol + X Byt iD ) (46)
j<m P q+j>S0m P
q

on (0,Tp] x [0, Ro], where

la; (& DR lbg.; ()| R,

A= su L0 gnd B, ;= su AN A 4.7

T e, (L0 @ e, (L+1)ma-d *7)
150 150

PROOF. ¢1) and cg) are clear from Proposition 1. Let us show c3). Since u(t, x) is
a solution of (4.1), by (4.2) and Proposition 2 we have

O

for any 0 < Ry < R and so |Lj+1Dg jul(t,p) = O(t*) (as t — 0) uniformly on [0, Ro;
therefore c3) is verified by

=0(t*) (ast—0)

Ry

t
0q.i(t,p) = / o(r?) dr = O(t*) (as t — 0) uniformly on [0, Ro].
0 T

Let us prove c4). When ¢ > 1 we have
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1o} i 9\
Ljt1Dg ju = (tﬁt - >\j+1(9)> (1+0g)mimad (t“aa) Oju
_ (1+0)m71*¢Z*j tug qL. 1@_u+‘uq(1+9)m71*Q*j t”g q@.u
ox ) I ox J

. 0 q
e (S RO

) o \¢
— A]+1(0)(1 + e)miliqij (t#ax) @ju.

Therefore, by the conditions L;110; = 41, (1 + )" 17077 < (1 + )™~ (I =
0,1,2,...), and by Lemma 4 we see:

o 9Nt
LiaDysulttp) < ooy (o 2 00

0

9 : !
t (14 g)ym—a—i [ r | (t
+ g 3/}‘( +0) < 8x> Ojul(t, p)

d e N
+Cj+1qt“ap‘(1+9) 1 J(t”&c) Oju

(t,p)

B 9N
T A (R R (3 BT (0

0 0
= t“a*p|Dq—1,j+1U|(t, p) + (g + Cipa(q + 1))t#§p\Dq—1,ju|(t7 p)

which proves the condition ¢4). When ¢ =0 and j =0,1,...,m — 2, by iv) of Lemma 4
we have

0 )
Ly Dosul(tp) = (157 = 2502(0) ) 1+ 0" 96501

= ‘(1 +0)(1+6)m 1=,y

0
(t,p) = (1 " f’ap) Do 1t p)

which proves the condition cs5). Lastly, let us prove cg). Let ¢ =0 and j = m — 1. Since
u(t, x) is a solution of (4.1), we have

0
D11t ) =| (157 = A(6) ) 0101 0) = €0

o q
<Y ls0ult o+ X i) 5 ) orlen. ws)
j<m q+j>§0m

q
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By the definition of A;, Proposition 2 and iv) of Lemma 4 we have

a; (t; 0)

|a;(t; 0)@;ul (t, p) = A+o)m7

(1+60)™0u

(t,p)
m—j 0
< A1+ 0)" 7 0;ul(t, p) = Aj| 1+ r | Do,jul(t, p)

on (0,Tp] x [0, Rp]. Similarly, by the definition of B, ; we have

(t,p)

(tp) = ' bg,; (t;0) — (14 0y (t“(,i)q@ju

(1+g)ym—a—7

q
qu‘ (t; 9) (t#({fx> @ju

S Bq,j (tvp)

q
(1+9)m—q—j tug 6.u
ox)

B Nt
< Byt g oy (0] o)

dp

0
=By, t“a*p|Dq—1,jU|(t,ﬂ)

on (0, Tp] x [0, Rp]. Thus, applying these two estimates to (4.8) we obtain the result (4.6).
This proves cg). O

Next, let B9 > 0,31 > 0,...,Bm—1 > 0 and set

Dt p) =D Bidotp)+ Y. bailt.p) (4.9)
j<m q+];l§>161—1

on (0,7] x [0, R).
LEMMA 7. Forany0<Ty <T and 0 < Ry < R we have the following inequality

0 0] 0] 0
— . m_— g . —_ .

j<m—2

+ ﬁm—l Z Aj (1 + p§p>¢07j(tap) (410)

j<m

on (0,Tp] x [0, Ry], where ¢ > 0 is the constant in Hy), M > 0 is a suitable constant
depending on By, B1,- - -, Bm—1, To and Ry, and A; is the constant in (4.7).

PROOF. By ¢1), ¢2) and Lemma 6 we have the following results: when ¢ > 1 by
c4) we have

0 0 0 0
(té)t + Cpap)qbq,j(t, p) < tu%¢q—1’j+1(t, p) + (ng + Cjyp1(q + 1))75“37)%—1,]‘(75, p)
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n (0,7] x [0, R); when ¢ =0 and j =0,1,...,m — 2 by c5) we have

(13 +cogp Jonsttp) < (14555 Yomalt

n (0,7] x [0,R); when ¢ =0and j =m —1, for any 0 < Ty < T and 0 < Ry < R we
have

0 0 7
<8t+6p8 >¢>0m 1(t, p) ZA (1+Pa >¢0] (t,p) + Z By t* p¢q—1’j(tﬂp)

j<m q+j<m
q>0

on (0,Tp] x [0, Rg]. Hence, by applying these inequalities to

o 9 o
<at+0”a) Zﬁﬂ(at“”a )%’ﬁ 2 (8t+0p8 >¢q’

Jj<m g+ji<m-—1
q>0

we can obtain the result (4.10). O

COROLLARY TO LEMMA 7. Let u(t,z) € C™((0,T], Xr) be a solution of (4.1) sat-
isfying the condition (4.2) for some a > 0. Then we can find By > 0,081 > 0,..., Bm-1 >
0,0<b<a, M >0, Ty and Ry such that D(t, p) defined by (4.9) satisfies

t%@(t,p) < bd(t, p) +Mt“§q§(t,p) on (0, Ty] x [0, R]. (4.11)
p

PROOF.  We choose B > 0 so that B < min{a/3,¢/2} and then set 8; = 1/B for
7=0,1,...,m — 1: then we have

Z B; (1+P8 >¢0,g+1(t p)=DB Z ﬂg+1<1+P8p)¢0J+1(t p)

j<m-—2 j<m-—2

0 a c 0
<Bl1 — |P <-9¢ —p=—9P .
< B(1+4pg5 )0lt.0) < 5000 + § g0t 0)
(4.12)

By the assumption Hy) we see that the constant A; satisfies A; — 0 (as Tp — 0 and
Ry — 0): therefore, by taking Ty > 0 and Ry > 0 sufficiently small we may assume

max Pm=1 A o fael

Then we have
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0 A 0
Brm—1 Z Aj (1 + Pap)%,j(t, p) = Bm-1 Z ﬁfjj (1 + pap>5j¢o,j(t’l))

j<m j<m
5m71Aj 0 a c 0
< < — - 0— . .
< (Ifﬁ%‘ 5 1+ Pap P(t,p) < 30, 0) + 3 pap¢(t,p) (4.13)

Hence, by applying (4.12), (4.13) to (4.10), and by setting b = 2a,/3 we have the inequality
(411) on (O,T‘O] X [O,Ro] O

COMPLETION OF THE PROOF OF THEOREM 3. Since
|u|(ta p) < |(1 + H)m_luKt’ p) = |D0,0u|(t’p) < ¢0,0(t7 IO)
holds, to show Theorem 3 it is sufficient to prove that @(t, p) = 0 holds on {(¢,p); 0 <
t<eand0<p<J} for somee >0and § > 0.

Let b > 0 and M > 0 be as in Corollary to Lemma 7. Choose 77 > 0 so that
0<Ty <Tpand MT1* /1 < Rp hold. Define the function p(t) by

T
p(t):]\/[/ Tdr = M(Ty" —t")/u, 0<t<T.
t T

Then, p(t) is a solution of t(dp/dt) = —Mt*, 0 < p(0) < Ry, p(Th1) = 0 and p(t) is
decreasing in t. Set

Y(t) = t70P(t, p(t), 0<t<T.

Since @(t, p) = O(t*) (as t — 0) uniformly on [0, Ry] and since a > b > 0 holds, we
have ¥(t) = O(t*~%) = o(1) (as t — 0). Moreover, by Corollary to Lemma 7 we have

t%ﬂ’(@ = —bt7"B(t, p(1)) + f”t%f(t,pm) + fb%fu, p(t)) td%ff)
< = b0, o)+ ¢ (6000, () + D 1 (0, p(0))
_p 0P p
7082 0 p(0) (0110
—0

and therefore (d/dt)y(t) < 0 for 0 < ¢ < Ty. By integrating this from e to ¢(> 0) we get
¥(t) < Y(e) for 0 < e <t < T and by letting e — 0 we have 9(t) < 0 for 0 < ¢t < T3.
On the other hand, ¥ (t) > 0 is clear from the definition of v (¢). Hence, we obtain
P(t) =0 for 0 <t < Ti: this implies

D(t,p) =0 on {(t,p); 0<t<Tyand p=p(t)}. (4.14)
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Since @(t, p) is increasing in p, (4.14) implies
D(t,p) =0 on {(t,p); 0 <t <Ty and 0 < p < p(t)}.

This completes the proof of Theorem 3. O

Let us give a variation. Set

H;)* there are b > 0 and ¢ > 0 such that b — Re A\;(I) > ¢! holds for any [ € N and
1=1,...,m.

We have

THEOREM 3*.  Assume the conditions H1)*, Ha) and Hs). Then, if u(t,z) is a
solution of (4.1) belonging in the class C™((0,T], Xr) and satisfies

()0

for some a > b, we have u(t,z) =0 on (0,g] x Ds for some € >0 and § > 0.

=0(t") (ast—0) forj=0,1,...,m—1 (4.15)
R

PROOF. By setting u* = t~bu, a* = a — b and \}(0) = —b + \;(6), we can reduce
our problem to the case in Theorem 3*. (|

5. Proof of Theorem 2*.

In this section, we will prove Theorem 2* by using Theorem 3*.

Let A1 (1),...,Am(l) (I € N) be the ones in (1.4), and assume that there are b > 0
and ¢ > 0 which satisfy the condition (2.3). Let u; (¢, z) and us(t, z) be solutions of (E)
belonging in the class 5/’1 and assume that u; —ug € % holds for some a > b. By the
definition of 3’?_ we have u;(t,z) € A (i =1,2) for some s > 0.

Set

w(t,x) = us(t, ) — uy(t, ) €.7, . (5.1)
Our aim is to prove that w(t,2) = 0 holds on (0,¢] x Ds for some € > 0 and 6 > 0. Let

us show this now.
It is easy to see that w(t,z) € C™((0,T], Xr) holds for some T' > 0 and R > 0, and

O

Moreover, since u1 (t, z) and ug (¢, z) are solutions of (1.1) we see that w(t, x) satisfies the
following equation

=0(t*) (ast —0) for j=0,1,...,m— L (5.2)
R

o 0
C’(x,tat, xax>w = G(t,x, D(uy + w)) - G(t,x, Dul) (5.3)
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where

G(t,x,z) = Z Gpv(x)tP H [2j.a]", and

pH|v|>2,|v[>1 (d,0)€lm

g e}
ou={(131) (5) =)
ot ox (o) el

with 2 = {2ja}(j,a)er,- Let us write [Ag = 1, and Ao = A(A —1)--- (A —a + 1) for
a € N*. Then the eqution (5.3) is written in the form

L<t§t,xaax)ww > S(Cj,a)(x)<t;>j {xaax]aw

(J,a)€lm

+ ) hjalt,x) (ti)j (;;)aw (5.4)

(4,0)ELm

where for (j,a) € I,

S(es ) (@) = 20(®) = Gal0)

X
L aa
0 aZjva

hja(t,z) = (tx, Duq(t,x) + aDw(t,x))dU.

We note the following lemma:

LEMMA 8. Let A\;(6) € S1 be the pseudo-differential operator corresponding to A;(1)
(l € N) fori=1,...,m, and define the operators ©; (j = 0,1,...,m) as in section 4.
We have the following results.

(1) We have L(t0/0t,x0/0x) = O as an operator from C™((0,T],Xr) into
C°((0,T], Xg,) for any 0 < Ry < R.

(2) For j =0,1,...,m — 1 the operator (t0/0t)? is expressed in the form

oY &
<t8t> :ZAj7P(9)9j—P
p=0

for some A; ,(8) € Sp; of course, we have A;o(0) = 1.

(3) [0]a € Sa, that is, [0]a is a pseudo-differential operator of order c.

(4) hjaltz) € Z holds for any 0 < d < min{l, s,a}, and therefore, if we take p
satisfying 0 < p < d/m we have hj o(t,x) = t'*k; o(t, ) for some k;o(t,z) € 5’1

(5) We have the relation: (t#0/0x)14; ,(0) = A; ,(q + 0)(t#0/0x)9.

By using this lemma, we can rewrite our equation (5.4) into
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Omw= Y > 2S(cia)(®)Aii_;(0)[0la Ojw
j<m Jflim

3 q
+ Z Z kivq(t,l') Al,z—j(q+9) <tu81)> ij,

q+j<m j<i<m—q
j<m i<m

and hence by setting

aj(t,z;0) = Y wS(cia)@) Ay (0) Bla+ D Fiolt,w) Aiij(0),
jgiim 7<i<m
i+alm

boj(t:0) = > kig(t,z) Aiij(qg+0)
j<i<m—q
<m

we obtain the following equation

o q
j<m q+j>gom
q

which is just discussed in section 4.
By the definition we see:

a;j(t,z;0) € Spm—;([0,T], Xgr) and by ;(t, 2;0) € Sp—q—;([0,T], Xr)

for some T' > 0 and R > 0. Moreover, since |2S5(cio)(z)| = o(1) (as |z] — 0) and
|kiq(t, )] = o(1) (as |t| — 0) are known, we easily see that

|a; (£ D) ro

o<t<T, (1+1)m™J
>0

=o0(l) (as Top — 0 and Ry — 0).

Summing up, we have seen that we can apply Theorem 3* to the equation (5.5). Thus,
we obtain the conclusion that w(t,z) =0 on (0,e] x Ds for some € > 0 and § > 0. This
completes the proof of Theorem 2*. O

6. Application.

Lastly, let us give an application of Theorem 2 to the problem of removable singu-
larities of solutions of (E). The following theorem asserts the removability of some kind
of singularities on {¢t = 0}.

THEOREM 4. Assume A1), As), A3z), and the following i) and ii):
i) ReX;(1) <0 foranyl € N andi=1,...,m;
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ii) Rec; <0 fori=1,...,m.

Then, if u(t,x) is a solution of (E) belonging in the class s, u(t,z) is holomorphic in
a full neighborhood of (0,0) € Cy x C,.

PROOF.  Since the condition i) implies that L(k,l) # 0 holds for any (k,1) €
N* x N, by (1) of Theorem 1 we see that the equation (E) has a unique holomorphic
solution ug (¢, z) satisfying uo(0,z) = 0.

Let u(t, ) be a solution of (E) in the class ., for some s > 0. Then we have

u—ug € S, for any 0 < a < min{l, s}, and so by Theorem 2 we have u = ug. This
concludes that (¢, z) is holomorphic in a full neighborhood of (0,0) € C; x C,. O

Conversely, if the condition i) in Theorem 4 is not satisfied we have

THEOREM 5. Assume A1), Ag), As), and the following 1) and ii):

i) there is a (p,1) such that ReX,(1) > 0 and A\,(1) € N* hold;
ii) Rec; <0 fori=1,...,m.

Then, the equation (E) has a solution u(t,z) belonging in the class 9—7— which has really

singularities on {t = 0}.

PROOF. Set 8 = A,(I). By the same argument as in [9] we can construct an
S-solution u(t, z) of the form

u(t,z) = w(t, t(logt),. .., t(logt)",¢7 1" (logt),. ..t (logt)", z)

=+ AP 4

where w(to, . . . 2t G0y - - -, Gy @) is a holomorphic function in a neighborhood of the origin
of CIHH x CCH'“ x C, satisfying w(0,...,0,2) = 0, A € C is an arbitrary constant,
po=#{(,0); \() € N*\ S} with S = {p+¢8; (p,q) € N x N*}, and 1 + k =
#{(i,1); \;y(1) € S}. If we take A # 0, by looking at the term At’z! we can conclude
that this solution has really singularities on {¢ = 0}. The argument of the construction

is almost the same as in [9], and so we may omit the details. O
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