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Abstract. The set R(B) of submanifolds conjugate to a given reflective sub-
manifold B in a Riemannian symmetric space M has a structure of symmetric space.
Using this structure, for a submanifold N in M we establish integral formulae which
represent the integrals of the functions C 7→ vol(N ∩ C) on R(B) by some extrinsic
geometric amounts of N .

1. Introduction.

A reflective submanifold in a Riemannian manifold is a connected component of
the fixed point set of an involutive isometry of a complete Riemannian manifold, which
was defined by Leung [7]. A plane of any dimension in a Euclidean space is a typical
example of reflective submanifolds. We denote by G the identity component of the group
of isometries of Rn and take a plane B of dimension l in Rn. We consider the set R(B)
of all planes which are conjugate to B under the action of G:

R(B) = {gB | g ∈ G},

which is equal to the set of all planes of dimension l in Rn. Then R(B) has a structure
of symmetric space and a G-invariant measure. For an integer k with k + l ≥ n there
exists a constant σ such that

∫

R(B)

vol(N ∩ C)dµ(C) = σvol(N)

holds for any submanifold N of dimension k in Rn. For almost every C in R(B) the
intersection N ∩ C is empty or a submanifold of dimension k + l − n. The function
C 7→ vol(N ∩ C) is a measurable function on R(B) and we can consider its integration.
The above integral formula is a classical Crofton formula. Its explicit expression is stated
in Corollary 4.5. One can find various versions of Crofton formulae in Santaló [12].

The purpose of this paper is to extend these results to the case where B is a reflective
submanifold in a Riemannian symmetric space. In Section 2 we recall the definitions of
symmetric spaces and reflective submanifolds. We show in Theorem 2.5 that the set R(B)
of all submanifolds which are conjugate to one reflective submanifold B in a Riemannian
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symmetric space M has a structure of symmetric space. If M is a Riemannian symmetric
space of compact type, R(B) is a Riemannian symmetric space of compact type. If
M is a Riemannian symmetric space of noncompact type, R(B) is a semi-Riemannian
symmetric space. Essential parts of these facts have been already proved by Naitoh [10],
but our assumptions of the statements mentioned in Theorem 2.5 are weaker than that
of [10]. So we shall give its proof. In order to establish Crofton formulae with respect
to R(B) we have to consider the integration on it. In Section 3 we define a canonical
measure on a semi-Riemannian manifold and in Theorem 3.7 introduce a coarea formula
on it. Its proof is given in Appendix. In Section 4, Theorem 4.1 we describe the Crofton
formula with respect to R(B) as follows:

∫

R(B)

vol(N ∩ C)dµ(C) =
∫

N

σB(TxN)dµ(x),

where N is a submanifold in M . In Section 5 we consider Crofton formulae in complex
space forms. The author defined the multiple Kähler angle in order to describe Poincaré
formulae of submanifolds in complex projective spaces in [13], which is explained in
Section 5. Using multiple Kähler angles, we can describe Crofton formulae in complex
space forms more explicitly.

The author would like to thank the referee who suggested many improvements of
the manuscript.

2. Reflective submanifolds in Riemannian symmetric spaces.

We recall the definitions of symmetric spaces and reflective submanifolds in Rieman-
nian manifolds. Elie Cartan originated the theory of symmetric spaces, but the following
definition of symmetric space is due to Loos [9].

Definition 2.1. A differential manifold M is called a symmetric space if for each
x in M there exists a diffeomorphism sx which satisfies the following conditions.

(1) x is an isolated fixed point of sx,
(2) sx is involutive, that is, s2

x = 1,
(3) sx(sy(z)) = ssx(y)(sx(z)) for any y and z in M .

If M is a (semi-)Riemannian manifold and if each sx is isometric, we call M a (semi-)
Riemannian symmetric space.

Example 2.2. Let G be a Lie group with an involutive automorphism τ . We
denote by Fix(τ, G) and Fix(τ, G)0 the fixed point set of τ and its identity component
respectively. Let K be a closed Lie subgroup of G which satisfies

Fix(τ, G)0 ⊂ K ⊂ Fix(τ, G).

Let M = G/K and denote x̄ = xK. We define an involutive diffeomorphism sx̄ of M by

sx̄(ȳ) = xτ(x)−1τ(y)K (y ∈ G).
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Then M is a symmetric space. See Theorem 1.3 (p. 73) in Loos [9].

The following definition of reflective submanifolds is due to Leung [7].

Definition 2.3. Let M be a complete connected Riemannian manifold. A con-
nected component of the fixed point set of an involutive isometry of M is called a reflective
submanifold.

Lemma 2.4. Let M be a complete connected Riemannian manifold and B be a
reflective submanifold of M . Then an involutive isometry such that B is a connected
component of its fixed point set is determined uniquely.

We can prove this lemma by considering the differential of such an involutive isom-
etry at a point of B.

There is another class of submanifolds, called symmetric submanifolds, in Rieman-
nian manifolds, which was first defined by Ferus [2] in Euclidean spaces. We can define
symmetric submanifolds in general Riemannian manifolds. Totally geodesic, symmetric
submanifolds in Riemannian symmetric spaces are nothing but reflective submanifolds.
Naitoh [10] showed the following theorem in his study on symmetric submanifolds in Rie-
mannian symmetric spaces, where the ambient Riemannian symmetric spaces are simply
connected and have no Euclidean factor.

Theorem 2.5. Let M be a Riemannian symmetric space and B be a reflective
submanifold of M . We denote by G the identity component of the group of all isometries
on M and by R(B) the set of all reflective submanifolds in M which are conjugate to B

under the action of G:

R(B) = {gB | g ∈ G}.

Then R(B) has a structure of symmetric space. If M is a Riemannian symmetric space
of compact type, R(B) is a Riemannian symmetric space of compact type. If M is a Rie-
mannian symmetric space of noncompact type, R(B) is a semi-Riemannian symmetric
space of semisimple type.

The assumption of the theorem is slightly weaker than that of Theorem 2.3 in Naitoh
[10], so we show its proof for completeness. Take a point o in B and define

K = {g ∈ G | go = o}.

Then M is diffeomorphic to G/K. We identify M with G/K in a natural way. We denote
by S(B) the stabilizer of B in G:

S(B) = {g ∈ G | gB = B}.

We shall show that S(B) is a closed subgroup of G which satisfies the condition (∗)
mentioned below. Then R(B) is bijective to G/S(B) and R(B) has a manifold structure.
According to Lemma 2.4 we can take a unique involutive isometry τ of M such that B is
a connected component of its fixed point set. We define an automorphism A(τ) of G by
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A(τ) : G → G ; g 7→ τgτ−1.

We show the following relation between the sets Fix(A(τ), G) and S(B):

(∗) Fix(A(τ), G)0 ⊂ S(B) ⊂ Fix(A(τ), G).

Take any element g in S(B). For any point x in B, we have gx ∈ B and dgxTxB = TgxB.
So dgxT⊥x B = T⊥gxB also holds. The isometry τ is a reflection with respect to B, hence
dτx|TxB = 1 and dτx|T⊥x B = −1 hold and

d(τgτ−1)o|ToB = dτgodgodτ−1|ToB = dτgodgo|ToB = dgo|ToB ,

d(τgτ−1)o|T⊥o B = dτgodgodτ−1|T⊥o B = dτodgo(−1)|T⊥o B = dgo|T⊥o B .

Thus dgo = d(τgτ−1)o. Two isometries g and τgτ−1 of M have the same target and
differential at o. So g = τgτ−1, that is, g belongs to the fixed point set Fix(A(τ), G) of
A(τ). This shows S(B) ⊂ Fix(A(τ), G).

Take any element g in Fix(A(τ), G). Then τgτ−1 = g and τg = gτ . This operates
x in B and

τgx = gτx = gx,

which means that gx belongs to the fixed point set Fix(τ, M) of τ . Thus we have
Fix(A(τ), G)x ⊂ Fix(τ, M). Since Fix(A(τ), G)0x is connected, this is included in B.
Hence we obtain Fix(A(τ), G)0B ⊂ B and Fix(A(τ), G)0 ⊂ S(B). Therefore the relation
(∗) holds.

Since the relation (∗) implies that S(B) is a union of some cosets with respect to
Fix(A(τ), G)0, the complement of S(B) in Fix(A(τ), G) is also a union of some cosets.
Each coset is open in Fix(A(τ), G), so S(B) is closed in Fix(A(τ), G). Thus S(B) is a
closed Lie subgroup of G. By Example 2.2 R(B) = G/S(B) is a symmetric space.

If M is a Riemannian symmetric space of compact type, G is a compact semisimple
Lie group. The Riemannian metric of M is induced from a bi-invariant Riemannian
metric of G. This also induces a G-invariant Riemannian metric of R(B) = G/S(B).
With respect to this metric, R(B) is a Riemannian symmetric space of compact type.

If M is a Riemannian symmetric space of noncompact type, G is a noncompact
semisimple Lie group. The Riemannian metric of M is induced from a bi-invariant semi-
Riemannian metric of G. We show that this bi-invariant semi-Riemannian metric of G

induces a G-invariant semi-Riemannian metric of R(B) = G/S(B). With respect to this
metric, R(B) is a semi-Riemannian symmetric space of semisimple type. We denote by
g the Lie algebra of G. The bi-invariant semi-Riemannian metric of G induces an Ad(G)-
invariant indefinite inner product 〈 , 〉 on g, which is a positive constant multiple of the
Killing form of g on each simple factor of g. Let g = k + m be a canonical decomposition
of g associated with the Riemannian symmetric space M . These subspaces k and m are
orthogonal with respect to the inner product 〈 , 〉 and this inner product is negative
definite on k and positive definite on m. Let so be the geodesic symmetry of M at o. The
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involutive automorphism σ associated with the Riemannian symmetric space M is given
by

σ : G → G ; g 7→ sogs−1
o .

Since τso and soτ have the same target and differential at o, we obtain τso = soτ , which
implies A(τ)σ = σA(τ). Hence dA(τ)k = k and dA(τ)m = m. We can decompose k and
m to the direct sums of ±1-eigenspaces of dA(τ) as follows:

k = k+ + k−, m = m+ + m−.

The Lie algebra of S(B) is k++m+ and the tangent space of R(B) ∼= G/S(B) is naturally
isomorphic to k− + m−. The inner product 〈 , 〉 is negative definite on k− and positive
definite on m−. In particular it induces G-invariant semi-Riemannian metric on R(B).
Thus we have proved the theorem.

Remark 2.6. We can describe the structure of symmetric space on R(B) in a
geometric way as follows. We take x and y in G. We can write the symmetry sxB of
R(B) at xB by

sxB(yB) = x(A(τ)x)−1A(τ)yB = xτx−1yB.

Thus sxB = xτx−1. On the other hand xτx−1 is the involutive isometry corresponding
to the reflective submanifold xB.

3. Integration on semi-Riemannian manifolds.

In the case where M is a Riemannian symmetric space of noncompact type, for
a reflective submanifold B in M the manifold R(B) is a semi-Riemannian symmetric
space of semisimple type as is shown in the previous section. In order to consider the
integration on R(B), we prepare for a measure on a semi-Riemannian manifold.

Lemma 3.1. Let E be a real vector space of finite dimension. A bilinear form A

on E is bijectively corresponding to a linear map α from E to its dual space E∗ by

A(x, y) = (α(x))(y) (x, y ∈ E).

This correspondence gives a linear isomorphism between the vector space ⊗2E∗ of all
bilinear forms on E and the vector space Hom(E, E∗) of all linear maps from E to E∗.

Proposition 3.2. Let E be a real vector space of finite dimension with an inner
product 〈 , 〉. We do not always assume that 〈 , 〉 is positive definite. We denote by α the
element in Hom(E, E∗) associated with 〈 , 〉 by Lemma 3.1. Then α : E → E∗ induces a
linear map

∧pα : ∧pE → ∧pE∗ ∼= (∧pE)∗.
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Moreover the bilinear form in ⊗2(∧pE)∗ associated with ∧pα by Lemma 3.1 gives an
inner product on ∧pE.

In the case where 〈 , 〉 is positive definite the manner of Proposition 3.2 is stated in
1.7.5 of Federer [1]. The manner also works well in the case where 〈 , 〉 is not positive
definite. From now on we always consider the inner product on the exterior algebra ∧pE

mentioned above, and also denote it by the same symbol 〈 , 〉. We denote the length of
u by |u| = |〈u, u〉|1/2. We can show the following lemma.

Lemma 3.3. Under the situation of Proposition 3.2 we have

〈u1 ∧ · · · ∧ up, v1 ∧ · · · ∧ vp〉 = det[〈ui, vj〉]1≤i,j≤p

for elements u1, . . . , up and v1, . . . , vp in E. If {e1, . . . , en} is an orthonormal basis of
E, then

ei1 ∧ · · · ∧ eip
(1 ≤ i1 < · · · < ip ≤ n)

is an orthonormal basis of ∧pE.

Lemma 3.4. Let m ≥ n and let V and W be real vector spaces of dimension m

and n with inner products. Let F : V → W be a linear map. We assume that the inner
product restricted to kerF is nondegenerate. If F is not surjective, we define a constant
JF by JF = 0. If F is surjective, we take a basis v1, . . . , vn of (kerF )⊥ and define it by

JF =
|F (v1) ∧ · · · ∧ F (vn)|

|v1 ∧ · · · ∧ vn| .

Then this is independent of the choice of v1, . . . , vn.

From now on we assume that a manifold has a countable open base in order to
consider integration.

Definition 3.5. Let (M, g) be a semi-Riemannian manifold of dimension n. We
denote by K (M) the set of all real valued continuous functions on M with compact
support. We take a local coordinate system (U ;x1, . . . , xn) of M . For each x ∈ U we
consider the inner product on ∧nTx(M) induced from the semi-Riemannian metric g.
For f ∈ K (M) with suppf ⊂ U we define L(f) by

L(f) =
∫

U

f(x1, . . . , xn)
∣∣∣∣

∂

∂x1
∧ · · · ∧ ∂

∂xn

∣∣∣∣dx1 · · · dxn.

Here the integral on the right hand side is the Lebesgue integral on the Euclidean space.
The integrand is a continuous function with compact support, so the integral is equal to
the usual Riemann integral. We can see that L(f) is independent of the choice of the
local coordinate system by the integration formula of variable change. For a function
f ∈ K (M) whose support is not included in a single coordinate neighborhood, we extend
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the value of L by the use of a partition of unity. This is also independent of the choice
of the partition of unity. By Riesz representation theorem there exists a Radon measure
µM on M which satisfies

L(f) =
∫

M

fdµM (f ∈ K (M)).

We call this measure µM the canonical measure. We will hereafter consider this canonical
measure on a semi-Riemannian manifold. We write vol(M) = µM (M) and call vol(M)
the volume of M .

Remark 3.6. In Definition 3.5

∣∣∣∣
∂

∂x1
∧ · · · ∧ ∂

∂xn

∣∣∣∣ =
∣∣∣∣ det

[〈
∂

∂xi
,

∂

∂xj

〉]∣∣∣∣
1/2

.

In the case of a Riemannian manifold we use the density

(
det

[〈
∂

∂xi
,

∂

∂xj

〉])1/2

,

because det[〈∂/∂xi, ∂/∂xj〉] is always positive.

Theorem 3.7 (Coarea formula). Let m ≥ n and f : M → N be a map of class C∞

from a semi-Riemannian manifold M of dimension m to a semi-Riemannian manifold
N of dimension n. We assume that the inverse images f−1(y) are semi-Riemannian
submanifolds of M for almost all y ∈ N . Let φ be a µM -measurable function on M .
Then the function which maps y in N to

∫
f−1(y)

φ(x)dµf−1(y)(x) is a µN -measurable
function on N . Moreover if φJdf is µM -integrable or φ ≥ 0, then

∫

N

( ∫

f−1(y)

φ(x)dµf−1(y)(x)
)

dµN (y) =
∫

M

φ(x)Jdf(x)dµM (x).

We shall give a proof of this theorem in Appendix.

4. Crofton formulae by reflective submanifolds.

We retain the notations in Section 2 and for a submanifold N of M which satisfies
dimN + dimB ≥ dimM , consider integral formulae of the following types:

∫

R(B)

vol(N ∩ C)dµ(C) = geometric amount of N,

which is called Crofton formula. In our cases the geometric amount of N in the right
hand side of the above formula is dependent of its embedding to M . In order to formulate
this we put by definition
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R0(B) = {kToB | k ∈ K},

which coincides with the set of tangent spaces ToC of all reflective submanifolds C in
R(B) through o. Since R0(B) ∼= K/(K ∩ S(B)), we can consider a K-invariant Rie-
mannian metric on R0(B) induced from the bi-invariant Riemannian metric on K. If a
vector subspace V ⊂ ToM satisfies dim V + dimB ≥ dimM , we define σB(V ) by

σB(V ) =
∫

R0(B)

|~V ⊥ ∧~c⊥|dµ(c).

Here ~V ⊥ is the wedge product of an orthonormal basis of V ⊥ and ~c⊥ is similar. We
consider only the norm of their wedge product, so there is no ambiguity. For a vector
subspace V ⊂ TxM satisfying dimV + dim B ≥ dimM , we take g ∈ G which satisfies
go = x and put σB(V ) = σB(dg−1V ). Since K acts isometrically on R0(B), the definition
of σB(V ) is independent of the choice of g ∈ G. Using σB we can give Crofton formulae
by reflective submanifolds as follows.

Theorem 4.1. Let M be a Riemannian symmetric space of compact type or non-
compact type and B be a reflective submanifold of M . For a submanifold N of M which
satisfies dimN + dimB ≥ dimM , the following equation holds.

∫

R(B)

vol(N ∩ C)dµ(C) =
∫

N

σB(TxN)dµ(x).

Since the amount σB(TxN) depends on the inclusion of TxN in TxM , the integral
of the right hand side is extrinsic in general. If M is a real space form, it is determined
by the volume of N as is shown in Corollary 4.5. This is the simplest Crofton formula.
On the other hand, if M is a complex space form, σB(TxN) is described by the multiple
Kähler angle of TxN as is shown in Corollary 5.9. So its integral is not intrinsic but
extrinsic.

Howard [3] touched on Crofton formulae of submanifolds in Riemannian homoge-
neous spaces. In our case the invariant measure on the class of submanifolds and the
integrand of the right side are explicitly given.

In order to prove this theorem we put

I(M ×R(B)) = {(x,C) ∈ M ×R(B) | x ∈ C}

and investigate some properties about this. We define an action of G on M ×R(B) by

g(x,C) = (gx, gC) (g ∈ G, x ∈ M, C ∈ R(B)).

Then G is a Lie transformation group of M ×R(B).

Lemma 4.2.

G(o,B) = I(M ×R(B)).
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In particular I(M ×R(B)) is a homogeneous submanifold of M ×R(B).

Proof. For g ∈ G we have gB ∈ R(B) and go ∈ gB, so g(o,B) = (go, gB) ∈
I(M ×R(B)). Hence we get G(o,B) ⊂ I(M ×R(B)).

Conversely we take any (x,C) ∈ I(M×R(B)). Since C ∈ R(B), there exists g1 ∈ G

which satisfies C = g1B. Thus g−1
1 x ∈ g−1

1 C = B. Since S(B) acts transitively on B,
there exists g2 ∈ S(B) such that g2g

−1
1 x = o ∈ B, which implies

g−1
1 x = g−1

2 o ∈ g−1
2 B = B,

thus,

x = g1g
−1
2 o ∈ g1g

−1
2 B = g1B = C.

This shows (x,C) = g1g
−1
2 (o,B) and we obtain I(M ×R(B)) ⊂ G(o,B). Therefore

G(o,B) = I(M ×R(B)).

In particular I(M ×R(B)) is a homogeneous submanifold of M ×R(B).

Proof of Theorem 4.1. The Lie algebra of K∩S(B) is equal to k+. The tangent
space of I(M ×R(B)) ∼= G/(K ∩ S(B)) at the origin (o,B) is identified with

k− + m = k− + m+ + m−.

If M is a Riemannian symmetric space of compact type, 〈 , 〉 is positive definite on k−+m,
and it induces a G-invariant Riemannian metric on I(M ×R(B)). If M is a Riemannian
symmetric space of noncompact type, 〈 , 〉 is negative definite on k− and positive definite
on m, and it induces a G-invariant semi-Riemannian metric on I(M ×R(B)). In each
case the considered G-invariant metric is not equal to the metric induced on I(M×R(B))
from that of M ×R(B). We define the following maps pB and pM by pB(x,C) = C and
pM (x,C) = x.

I(M ×R(B))
pB //

pM

²²

R(B) G/(K ∩ S(B))
pB //

pM

²²

G/S(B)

∼=

M G/K

These maps pB and pM are both (semi-)Riemannian submersions and projections of fiber
bundles. Their differentials at the origin are given as follows:
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k− + m+ + m−
dpB //

dpM

²²

k− + m−

m+ + m−

Since ker dpM = k− at the origin, 〈 , 〉 is positive definite on ker dpM if M is of compact
type, and 〈 , 〉 is negative definite on ker dpM if M is of noncompact type. Since
ker dpB = m+ at the origin, 〈 , 〉 is positive definite on ker dpB in both cases. The fiber
of pM at the origin coincides with K/(K ∩ S(B)).

Let N be a submanifold of M which satisfies dim N + dimB ≥ dimM . We put

I(N) = {(x,C) ∈ I(M ×R(B)) | x ∈ N} = p−1
M (N).

We consider the metric of I(N) induced from that of I(M×R(B)). For any (x,C) ∈ I(N)
there exists g ∈ G which satisfies gx = o and gC = B.

T(o,B)(gI(N)) = T(o,B)(I(gN)) = k− + To(gN)

holds. The inner product 〈 , 〉 is negative definite on k− and positive definite on To(gN).
Thus the induced metric on I(N) is a semi-Riemannian metric. Since pM is the projection
of the fiber bundle, p−1

M (N) is a submanifold of I(M ×R(B)). We consider the inverse
image of the restriction of pB to I(N). The inner product 〈 , 〉 is positive definite on the
inverse images of pB as is shown above. Thus 〈 , 〉 is also positive definite on almost all
inverse images of pB |I(N). We can apply Theorem 3.7 to pB |I(N) : I(N) → R(B) and
obtain

∫

R(B)

vol((pB |I(N))−1(C))dµ(C) =
∫

I(N)

Jd(pB |I(N))dµ.

Here

(pB |I(N))−1(C) = {(x,C) | x ∈ C, x ∈ N} = (N ∩ C)× C,

hence we get vol((pB |I(N))−1(C)) = vol(N ∩ C) and

∫

R(B)

vol(N ∩ C)dµ(C) =
∫

I(N)

Jd(pB |I(N))dµ.

So we calculate the right hand side. We take any (x,C) ∈ I(N). There exists g ∈ G

which satisfies go = x, gB = C.

T(x,C)(G/(K ∩ S(B))) = dg(k− + m+ + m−)
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and we can regard dg−1TxN ⊂ ToM ∼= m+ + m−. We have

T(x,C)(I(N)) = dg(k− + dg−1TxN).

Since dpBdg(T, X+, X−) = dg(T, X−), we get

ker(x,C) = ker(dpB : T(x,C)(I(N)) → TC(R(B))) = dg(dg−1TxN ∩m+).

These imply

ker⊥(x,C) ∩T(x,C)(I(N)) = ker⊥(x,C) ∩dg(k− + dg−1TxN)

= dg(k− + (dg−1TxN ∩m+)⊥ ∩ dg−1TxN).

We take an orthonormal basis {Ta} of k− and an orthonormal basis {Xb} of (dg−1TxN ∩
m+)⊥ ∩ dg−1TxN . Using these we can write

Jd(pB |I(N)) =
∣∣∣∣
∧
a

dpBTa ∧
∧

b

dpBXb

∣∣∣∣ =
∣∣∣∣
∧
a

Ta ∧
∧

b

(Xb)−

∣∣∣∣

=
∣∣∣∣
∧

b

(Xb)−

∣∣∣∣,

where (Xb)− is its m−-component. In order to investigate this we prepare the following
lemma.

Lemma 4.3. Let E be a real vector space of finite dimension with a positive definite
inner product and V and W be vector subspaces of E which satisfy E = V +W . We denote
by pW⊥ : E → W⊥ the orthogonal projection from E to W⊥ and take an orthonormal
basis {Xb} of (V ∩W )⊥ ∩ V . Then we have the following equation:

∣∣∣∣
∧

b

pW⊥(Xb)
∣∣∣∣ =

∣∣~V ⊥ ∧ ~W⊥∣∣.

Proof. Note that

E = (V ∩W )⊕ ((V ∩W )⊥ ∩ V )⊕ ((V ∩W )⊥ ∩W ).

We set

EV = (V ∩W )⊥ ∩ V, EW = (V ∩W )⊥ ∩W.

Then we have (V ∩W )⊥ = EV ⊕EW . {Xb} is an orthonormal basis of EV . We take an
orthonormal basis {Yc} of EW .
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∣∣∣∣
∧

b

pW⊥(Xb)
∣∣∣∣ =

∣∣∣∣
∧

b

Xb ∧
∧
c

Yc

∣∣∣∣ =
∣∣∣∣ ~EV ∧ ~EW

∣∣∣∣

=
∣∣((V ∩W )⊥ ∩ V )→ ∧ ((V ∩W )⊥ ∩W )→

∣∣

=
∣∣((V ∩W )⊥ ∩ V ⊥)→ ∧ ((V ∩W )⊥ ∩W⊥)→

∣∣

=
∣∣~V ⊥ ∧ ~W⊥∣∣.

Now we return to the proof of Theorem 4.1. For almost all (x,C) ∈ I(N) we have
dg−1TxN +m+ = m and the inner product 〈 , 〉 is positive definite on m, so we can apply
Lemma 4.3 to these vector subspaces.

Jd(pB |I(N)) =
∣∣∣∣
∧

b

(Xb)−

∣∣∣∣ =
∣∣(dg−1T⊥x N)→ ∧ ~m⊥+

∣∣

=
∣∣(T⊥x N)→ ∧ (T⊥x C)→

∣∣.

This implies

∫

R(B)

vol(N ∩ C)dµ(C) =
∫

I(N)

∣∣(T⊥x N)→ ∧ (T⊥x C)→
∣∣dµ.

The projection pM |I(N) : I(N) → N is a semi-Riemannian submersion. We apply Theo-
rem 3.7 to this semi-Riemannian submersion and obtain

∫

I(N)

∣∣(T⊥x N)→ ∧ (T⊥x C)→
∣∣dµ

=
∫

N

( ∫

p−1
M (x)

∣∣(T⊥x N)→ ∧ (T⊥x C)→
∣∣dµ(C)

)
dµ(x)

=
∫

N

σB(TxN)dµ(x),

which implies the following equation:

∫

R(B)

vol(N ∩ C)dµ(C) =
∫

N

σB(TxN)dµ(x).

Howard [3] showed that two Riemannian homogeneous spaces which have orthog-
onally equivalent linear isotropy representations have same Poincaré formulae of sub-
manifolds and he called it a transfer principle. Typical examples are symmetric spaces
of compact type and their noncompact duals. They have same Poincaré formulae of
submanifolds. He also mentioned the transfer principle of Crofton formulae.

Corollary 4.4. Let M = G/K be a Riemannian symmetric space of compact
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type and B be a reflective submanifold of M . We denote by M∗ = G∗/K the noncompact
dual of M and by B∗ the reflective submanifold in M∗ associated with B. We can take
bi-invariant metrics on G and G∗ which coincide on K. Then we have σB(V ) = σB∗(V )
for any vector subspace V ⊂ ToM ∼= ToM

∗. As a consequence, for a submanifold N of
M which satisfies dimN + dimB ≥ dimM , the following equation holds.

∫

R(B)

vol(N ∩ C)dµ(C) =
∫

N

σB(TxN)dµ(x).

On the other hand for a submanifold N∗ of M∗ which satisfies dimN∗ = dimN , the
following equation holds.

∫

R(B∗)
vol(N∗ ∩ C∗)dµ(C∗) =

∫

N∗
σB(TxN∗)dµ(x).

In the case where M = G/K is a real space form any totally geodesic submanifold
B in M is a reflective submanifold and σB is constant, because the linear isotropy action
of K on the Grassmann manifold consisting of real vector subspaces of dimension dimB

in ToM is transitive. In the case where

M = Sn = SO(n + 1)/SO(n), B = Sl

we consider a submanifold N of dimension k in Sn such that k + l ≥ n. We have

∫

R(Sl)

vol(N ∩ C)dµ(C) =
∫

N

σSl(TxN)dµ(x) = σ(n; k, l)vol(N),

where σ(n; k, l) is a constant dependent on n, k and l. If N is equal to a great sphere
Sk, then Sk ∩ C is isometric to a great sphere Sk+l−n for almost every C in R(Sl) and

∫

R(Sl)

vol(N ∩ C)dµ(C) = vol(Sk+l−n)vol(R(Sl)).

Thus we get

vol(Sk+l−n)vol(R(Sl)) = σ(n; k, l)vol(Sk),

that is

σ(n; k, l) =
vol(Sk+l−n)

vol(Sk)
vol(R(Sl)).

Therefore we obtain the following corollary.

Corollary 4.5. Let B be a totally geodesic submanifold of dimension l in a real
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space form M = G/SO(n) of dimension n. For a submanifold N of dimension k in M

such that k + l ≥ n, the following equation holds.

∫

R(B)

vol(N ∩ C)dµ(C) =
vol(Sk+l−n)

vol(Sk)
vol(R(Sl))vol(N).

Leung [8] gave a classification of all reflective submanifolds in simply connected
Riemannian symmetric spaces. Among them we can give Crofton formulae for the real
and the complex space forms more explicitly than Theorem 4.1. We show this for the
complex space forms in the next section.

5. Complex space forms.

In order to give Crofton formulae of submanifolds in complex space forms we use
the notion of multiple Kähler angle which the author introduced in [13]. We denote by
ω the standard Kähler form of Cn.

Definition 5.1. Let 1 < k ≤ n. For a real vector subspace V of dimension k in
Cn we consider a canonical form of the restriction ω|V , that is, we take an orthonormal
basis {α1, . . . , αk} of the dual space of V which satisfies

ω|V =
[k/2]∑

i=1

cos θiα
2i−1 ∧ α2i, 0 ≤ θ1 ≤ · · · ≤ θ[k/2] ≤ π/2.

Then we put θ(V ) = (θ1, . . . , θ[k/2]) and call it the multiple Kähler angle of V . In the
case where n < k ≤ 2n− 1, for a real vector subspace V of dimension k in Cn we define
the multiple Kähler angle of V by θ(V ) = θ(V ⊥).

Remark 5.2. Let 1 < k ≤ n. For a real vector subspace V of dimension k in Cn

the followings hold.

(1) For any g ∈ U(n) we have θ(gV ) = θ(V ).
(2) If k = 2, the multiple Kähler angle is nothing but the Kähler angle.
(3) θ(V ) = (0, . . . , 0) holds if and only if there exists a complex vector subspace of

complex dimension [k/2] in V .
(4) θ(V ) = (π/2, . . . , π/2) holds if and only if V and

√−1V are orthogonal. In this
case with the condition dimV = n we call V a Lagrangian vector subspace.

We denote by GR
k (Cn) the real Grassmann manifold consisting of real vector sub-

spaces of dimension k in Cn. The author [13] has showed the following fundamental
property of the multiple Kähler angle.

Proposition 5.3. Let V and W be real vector subspaces of same dimension in
Cn. There exists g in U(n) such that W = gV if and only if θ(V ) = θ(W ).

The definition of the multiple Kähler angle depends only on the Hermitian structure
of Cn, so we can consider the multiple Kähler angle for any real submanifold in an almost
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Hermitian manifold. Using the multiple Kähler angle the author described Poincaré
formulae for real submanifolds in the complex space forms in [13]. In the present paper
we describe Crofton formulae for real submanifolds in the complex space forms.

Before we treat general cases, we review some known Crofton formulae in complex
space forms. We recall a result of Leung on reflective submanifolds in complex space
forms which is stated in Theorem 7 in [8].

Theorem 5.4 (Leung). The reflective submanifolds of the complex projective space
CPn are CP k (1 ≤ k < n) and the real projective space RPn which is naturally embedded
in CPn. The reflective submanifolds of the complex hyperbolic space CHn are the totally
geodesic submanifolds which are dual to the reflective submanifolds of CPn.

In the case where

M = CPn = SU(n + 1)/S(U(n)× U(1)), B = CP l

we consider a complex submanifold N of complex dimension k in CPn such that k+l ≥ n.
Since the linear isotropy action of K on the Grassmann manifold consisting of complex
vector subspaces of dimension k in ToM is transitive, σB is constant. We have

∫

R(CP l)

vol(N ∩ C)dµ(C) =
∫

N

σB(TxN)dµ(x) = σ(n; k, l)vol(N),

where σ(n; k, l) is a constant dependent on n, k and l. If N is equal to a totally geodesic
CP k, then CP k ∩ C is isometric to CP k+l−n for almost every C in R(CP l) and

∫

R(CP l)

vol(N ∩ C)dµ(C) = vol(CP k+l−n)vol(R(CP l)).

Thus we get

vol(CP k+l−n)vol(R(CP l)) = σ(n; k, l)vol(CP k),

that is

σ(n; k, l) =
vol(CP k+l−n)

vol(CP k)
vol(R(CP l)).

Therefore we obtain the following corollary.

Corollary 5.5. Let B be a totally geodesic complex submanifold of complex di-
mension l in a complex space form M = G/S(U(n) × U(1)) of complex dimension n.
For a complex submanifold N of complex dimension k in M such that k + l ≥ n, the
following equation holds.

∫

R(B)

vol(N ∩ C)dµ(C) =
vol(CP k+l−n)

vol(CP k)
vol(R(CP l))vol(N).
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Remark 5.6. We can describe similar Crofton formulae of complex submani-
folds in the other Hermitian symmetric spaces, using results obtained in Kang-Sakai-
Takahashi-Tasaki [5] and Sakai [11].

In the case where M = CPn and B = RPn, we consider a Lagrangian submanifold
N in CPn. Since the linear isotropy action of K on the Grassmann manifold consisting
of Lagrangian vector subspaces in ToM is transitive, σB is constant. We have

∫

R(RP n)

vol(N ∩ C)dµ(C) =
∫

N

σB(TxN)dµ(x) = σ(n)vol(N),

where σ(n) is a constant dependent on n. If N is equal to a totally geodesic RPn, then
RPn ∩C is a set of n + 1 points for almost every C in R(CP l) by the result of Howard
[3] (pp. 26, 27) and

∫

R(RP n)

vol(N ∩ C)dµ(C) = (n + 1)vol(R(CP l)).

Thus we get

(n + 1)vol(R(RPn)) = σ(n)vol(RPn),

that is

σ(n) =
n + 1

vol(RPn)
vol(R(RPn)).

Therefore we obtain the following corollary.

Corollary 5.7. Let B be a totally geodesic Lagrangian submanifold in a com-
plex space form M = G/S(U(n) × U(1)) of complex dimension n. For a Lagrangian
submanifold N in M , the following equation holds.

∫

R(B)

#(N ∩ C)dµ(C) =
n + 1

vol(RPn)
vol(R(RPn))vol(N),

where #X denote the number of the points in X.

Now we consider the case where σB is not constant. We use Poincaré formulae in
order to describe Crofton formulae, so we briefly review Poincaré formulae. We assume
that G/K is a Riemannian homogeneous space. We denote by o the origin of G/K.
For any x and y in G/K and vector subspaces V and W in Tx(G/K) and Ty(G/K)
respectively, we define σK(V, W ) by

σK(V, W ) =
∫

K

|(dgx)−1
o

~V ∧ dk−1
o (dgy)−1

o
~W |dµK(k),
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where gx and gy are elements of G such that gxo = x and gyo = y. Using σK we can
state the generalized Poincaré formula obtained by Howard.

Theorem 5.8 (Howard [3]). Assume that G is unimodular. Let N and N ′ be sub-
manifolds of G/K such that dimN + dimN ′ ≥ dim(G/K). Then the following equation
holds:

∫

G

vol(N ∩ gN ′)dµG(g) =
∫

N×N ′
σK(T⊥x N, T⊥y N ′)dµN×N ′(x, y).

In the case where G/K is a complex projective space, according to Poincaré formulae
stated in Theorem 8 in [13], σK(T⊥x N, T⊥y N ′) is described by the multiple Kähler angles
of TxN and TyN ′. If N ′ is a given reflective submanifold B, σK(T⊥x N, T⊥y B) is described
by the multiple Kähler angle of TxN , that means there exists a function σ(θ) which
satisfies σK(T⊥x N, T⊥y B) = σ(θ(TxN)). The function σ(θ) is dependent on the choice of
B. The Poincaré formula mentioned above implies

∫

G

vol(N ∩ gB)dµG(g) = vol(B)
∫

N

σ(θ(TxN))dµN (x).

The left hand side is equal to

vol(S(B))
∫

R(B)

vol(N ∩ C)dµ(C).

Thus we obtain the following corollary from the discussion above and Corollary 4.4.

Corollary 5.9. For positive integers k, l and n which satisfy k, 2l < 2n ≤
k + 2l, there exists a function σn

k,l(θ
(k)) of variables θ(k) ∈ R[min{k,2n−k}/2] such that

the following Crofton formula holds. Let Bl be a totally geodesic complex submanifold
of complex dimension l in a complex space form M = G/S(U(n) × U(1)) of complex
dimension n. For a real submanifold N of dimension k in M , the following equation
holds.

∫

R(Bl)

vol(N ∩ C)dµ(C) =
∫

N

σn
k,l(θ(TxN))dµ(x),

where θ(TxN) is the multiple Kähler angle of TxN .
For positive integers k and n which satisfy k < 2n ≤ k + n, there exists a function

τn
k (θ(k)) of variables θ(k) ∈ R[min{k,2n−k}/2] such that the following Crofton formula

holds. Let L be a totally geodesic Lagrangian submanifold in a complex space form M

of complex dimension n. For a real submanifold N of dimension k in M , the following
equation holds.

∫

R(L)

vol(N ∩ C)dµ(C) =
∫

N

τn
k (θ(TxN))dµ(x).



292 H. Tasaki

In some cases we can express σn
k,l and τn

k mentioned above more explicitly. In the
case where M = CPn and B = CPn−1, we consider a real submanifold N of dimension
2 in CPn. By Theorem 4.1 we have

∫

R(CP n−1)

#(N ∩ C)dµ(C) =
∫

N

σB(TxN)dµ(x).

In this case, Theorem 1.1 in [14] induces

σB(TxN) = a(1 + cos2 θx) (x ∈ N),

where a is a constant and θx is the Kähler angle of TxN . So we have

∫

R(CP n−1)

#(N ∩ C)dµ(C) =
∫

N

a(1 + cos2 θx)dµ(x).

If N is equal to a totally geodesic CP 1, then CP 1 ∩ C is equal to a point for almost
every C in R(CP l) and

∫

R(CP n−1)

#(N ∩ C)dµ(C) = vol(R(CPn−1)).

Since θx = 0 in this case, we get

vol(R(CPn−1)) = 2avol(CP 1),

that is

a =
vol(R(CPn−1))

2vol(CP 1)
.

Therefore we obtain the following corollary.

Corollary 5.10. Let B be a totally geodesic complex submanifold of complex
dimension n− 1 in a complex space form M = G/S(U(n)×U(1)) of complex dimension
n. For a real submanifold N of dimension 2 in M , the following equation holds.

∫

R(B)

#(N ∩ C)dµ(C) =
vol(R(CPn−1))

2vol(CP 1)

∫

N

(1 + cos2 θx)dµ(x),

where θx is the Kähler angle of N at x.

A similar argument shows the following corollary.

Corollary 5.11. Let B be a totally geodesic complex submanifold of complex
dimension 1 in a complex space form M = G/S(U(n)× U(1)) of complex dimension n.
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For a real submanifold N of dimension 2n− 2 in M , the following equation holds.

∫

R(B)

#(N ∩ C)dµ(C) =
vol(R(CP 1))
2vol(CPn−1)

∫

N

(1 + cos2 θx)dµ(x),

where θx is the Kähler angle of N at x.

Corollary 5.12 (Kang-Tasaki [6, Theorem 1.1]). Let B be a totally geodesic La-
grangian submanifold in a complex space form M = G/S(U(2) × U(1)) of complex di-
mension 2. For a real submanifold N of dimension 2 in M , the following equation holds.

∫

R(B)

#(N ∩ C)dµ(C) =
vol(R(RP 2))

vol(RP 2)

∫

N

(3− cos2 θx)dµ(x).

Corollary 5.13 ([16, Theorem 4.3]). Let B be a totally geodesic Lagrangian sub-
manifold in a complex space form M = G/S(U(3)× U(1)) of complex dimension 3. For
a real submanifold N of dimension 3 in M , the following equation holds.

∫

R(B)

#(N ∩ C)dµ(C) =
4vol(R(RP 3))

3vol(RP 3)

∫

N

(3− cos2 θx)dµ(x).

Corollary 5.14 (Kang [4, Theorem 1.1]). Let B be a totally geodesic complex
submanifold of complex dimension 2 in a complex space form M = G/S(U(4) × U(1))
of complex dimension 4. For a real submanifold N of dimension 4 in M , the following
equation holds.

∫

R(B)

#(N ∩ C)dµ(C) =
vol(R(CP 2))
8vol(CP 2)

∫

N

(3 + cos2 θ1 + cos2 θ2 + 3 cos2 θ1 cos2 θ2)dµ,

where (θ1, θ2) is the multiple Kähler angle of N .

6. Appendix.

In this appendix we give a proof of the coarea formula (Theorem 3.7). We define an
open subset O of M by

O = {x ∈ M | dfx is surjective}.

This is µM -measurable and

∫

M

φ(x)Jf(x)dµM (x) =
∫

O

φ(x)Jf(x)dµM (x).

For each x ∈ O, by the implicit function theorem, there exists a local coordinate neigh-
borhood Ux of x such that f(Ux) is an open neighborhood of f(x) and that we can regard
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f : Ux → f(Ux) as a natural projection from the product of open subsets in Euclidean
spaces. We first prove the theorem in the case where f itself is such a projection.

We assume the following situation. N is an open subset of Rn, F is an open subset
of Rm−n, M = N × F and

f : M = N × F → N ; (y, t) 7→ y.

We denote by {y1, . . . , yn} and {x1, . . . , xm} the canonical systems of coordinates of
N ⊂ Rn and M = N × F ⊂ Rm respectively, where yi ◦ f = xi (1 ≤ i ≤ n). Then
{xn+1, . . . , xm} is a system of coordinates of F . Since φ is a measurable function on M ,

φ(y, t)
∣∣∣∣

∂

∂xn+1
∧ · · · ∧ ∂

∂xm

∣∣∣∣
M

∣∣∣∣
∂

∂y1
∧ · · · ∧ ∂

∂yn

∣∣∣∣
N

◦ f

is also measurable on M . For almost every y ∈ N the induced metric on f−1(y) is nonde-
generate, so we can consider integration on f−1(y) with respect to its semi-Riemannian
metric. According to Fubini’s theorem, it holds

∫

F

φ(y, t)
∣∣∣∣

∂

∂xn+1
∧ · · · ∧ ∂

∂xm

∣∣∣∣
M

∣∣∣∣
∂

∂y1
∧ · · · ∧ ∂

∂yn

∣∣∣∣
N

◦ fdxn+1 · · · dxm(t)

=
( ∫

F

φ(y, t)
∣∣∣∣

∂

∂xn+1
∧ · · · ∧ ∂

∂xm

∣∣∣∣
M

dxn+1 · · · dxm(t)
)∣∣∣∣

∂

∂y1
∧ · · · ∧ ∂

∂yn

∣∣∣∣
N

=
( ∫

f−1(y)

φ(x)dµf−1(y)(x)
)∣∣∣∣

∂

∂y1
∧ · · · ∧ ∂

∂yn

∣∣∣∣
N

.

This function of variable y is a measurable function on N and moreover it holds

∫

M

φ(y, t)
∣∣∣∣

∂

∂xn+1
∧ · · · ∧ ∂

∂xm

∣∣∣∣
M

∣∣∣∣
∂

∂y1
∧ · · · ∧ ∂

∂yn

∣∣∣∣
N

◦ fdx1 · · · dxm

=
∫

N

( ∫

f−1(y)

φ(x)dµf−1(y)(x)
)∣∣∣∣

∂

∂y1
∧ · · · ∧ ∂

∂yn

∣∣∣∣
N

dy1 · · · dyn(y)

=
∫

N

( ∫

f−1(y)

φ(x)dµf−1(y)(x)
)

dµN (y).

For almost every y ∈ N the metric on the tangent space of F at (y, t) is nondegenerate,
the tangent space of M is the direct sum of the tangent space of F and its orthogonal

complement. We decompose each tangent vector
∂

∂xi
of M = N × F into the sum of its

components tangent to F and orthogonal to F as follows:

∂

∂xi
=

(
∂

∂xi

)

F

+
(

∂

∂xi

)

F⊥
.
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Then we get

df

(
∂

∂xi

)
= df

((
∂

∂xi

)

F⊥

)

and

∣∣∣∣
∂

∂y1
∧ · · · ∧ ∂

∂yn

∣∣∣∣
N

◦ f =
∣∣∣∣df

(
∂

∂x1

)
∧ · · · ∧ df

(
∂

∂xn

)∣∣∣∣
N

=
∣∣∣∣df

((
∂

∂x1

)

F⊥

)
∧ · · · ∧ df

((
∂

∂xn

)

F⊥

)∣∣∣∣
N

.

Since
∂

∂xn+1
, . . . ,

∂

∂xm
are tangent to F ,

∣∣∣∣
∂

∂x1
∧ · · · ∧ ∂

∂xm

∣∣∣∣
M

=
∣∣∣∣
(

∂

∂x1

)

F⊥
∧ · · · ∧

(
∂

∂xn

)

F⊥
∧ ∂

∂xn+1
∧ · · · ∧ ∂

∂xm

∣∣∣∣
M

=
∣∣∣∣
(

∂

∂x1

)

F⊥
∧ · · · ∧

(
∂

∂xn

)

F⊥

∣∣∣∣
M

∣∣∣∣
∂

∂xn+1
∧ · · · ∧ ∂

∂xm

∣∣∣∣
M

.

Thus we obtain

∫

M

φ(y, t)
∣∣∣∣

∂

∂xn+1
∧ · · · ∧ ∂

∂xm

∣∣∣∣
M

∣∣∣∣
∂

∂y1
∧ · · · ∧ ∂

∂yn

∣∣∣∣
N

◦ fdx1 · · · dxm

=
∫

M

φ(x)

∣∣∣∣df
((

∂
∂x1

)

F⊥

)
∧ · · · ∧ df

((
∂

∂xn

)

F⊥

)∣∣∣∣
N∣∣∣∣

(
∂

∂x1

)

F⊥
∧ · · · ∧

(
∂

∂xn

)

F⊥

∣∣∣∣
M

dµM (x) =
∫

M

φJfdµM .

Therefore

∫

N

( ∫

f−1(y)

φ(x)dµf−1(y)(x)
)

dµN (y) =
∫

M

φJfdµM .

This is the coarea formula in the case of a natural projection from the products of open
subsets on Euclidean spaces.

Now we return to the general case. For each x ∈ O, by the implicit function
theorem, there exists a local coordinate neighborhood Ux of x such that f(Ux) is an open
neighborhood of f(x) and that we can regard f : Ux → f(Ux) as a natural projection
from the product of open subsets in Euclidean spaces. The collection {Ux}x∈O is an open
covering of O. Since M has a countable open base, O has a countable open base. So we
can select a countable subfamily {Uk} of {Ux}x∈O which is also an open covering of O.
We take a partition of unity {ψk} subordinate to {Uk}. Let
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fk : Uk → Vk = f(Uk)

be the restriction of f to Uk. We apply the local version of the coarea formula proved
above to the function ψkφ. The function

y 7→
∫

f−1
k (y)

(ψkφ)(x)dµf−1
k (y)(x)

is a µN -measurable function on Vk and

∫

Vk

( ∫

f−1
k (y)

(ψkφ)(x)dµf−1
k (y)(x)

)
dµVk

(y) =
∫

Uk

ψkφJfdµUk
.

Hence the function

y 7→
∑

k

∫

f−1
k (y)

(ψkφ)(x)dµf−1
k (y)(x)

is a µN -measurable function on N . The collection {ψk|f−1(y)} is a partition of unity on
f−1(y) for each y, so we get

∑

k

∫

f−1
k (y)

(ψkφ)(x)dµf−1
k (y)(x) =

∫

f−1(y)

φ(x)dµf−1(y)(x).

This implies that the function

y 7→
∫

f−1(y)

φ(x)dµf−1(y)(x)

is a µN -measurable function on N . We can apply Lebesgue’s convergence theorem and
obtain

∫

M

φJfdµM =
∑

k

∫

Uk

ψkφJfdµUk

=
∑

k

∫

Vk

( ∫

f−1
k (y)

(ψkφ)(x)dµf−1
k (y)(x)

)
dµVk

(y)

=
∫

N

( ∑

k

∫

f−1
k (y)

(ψkφ)(x)dµf−1
k (y)(x)

)
dµN (y)

=
∫

N

( ∫

f−1(y)

φ(x)dµf−1(y)(x)
)

dµN (y).
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[12] L. A. Santaló, Integral geometry and geometric probability, Addison-Wesley, London, 1976.

[13] H. Tasaki, Generalization of Kähler angle and integral geometry in complex projective spaces,

“Steps in Differential Geometry”, Proceedings of Colloquium on Differential Geometry, Debrecen,
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