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Abstract. We study combinatorics on Pκ(λ) under the assumption that
cov(Mκ,λ<κ ) > λ<κ.

0. Introduction.

Galvin (see [3]) established that if Martin’s axiom holds and λ is an uncountable
cardinal < 2ℵ0 , then I+

ω,λ → (I+
ω,λ)2. Jech and Shelah [12] observed that the conclusion

can be strengthened to “I+
ω,λ → (I+

ω,λ)n whenever 0 < n < ω”. Moreover, they proved
that I+

ω,ω1
→ (I+

ω,ω1
)n for all n with 0 < n < ω in the Cohen model for 2ℵ0 = ℵ2.

Johnson [14] asked the following question: if κ is mildly λ-ineffable, where κ is a
regular uncountable cardinal and λ a cardinal > κ, is it the case that Iκ,λ is (λ, 2)-
distributive? Abe [2] answered the question in the negative by showing that if κ is an
uncountable strongly compact cardinal and λ a strong limit cardinal > κ of cofinality
< κ, then (a) Iκ,λ is not (λ, 2)-distributive, and (b) I+

κ,λ−→/ (I+
κ,λ)2. This led him to

ask whether the following are theorems in ZFC: (1) Iκ,λ is not (λ, 2)-distributive for any
regular uncountable cardinal κ and cardinal λ > κ. (2) I+

κ,λ−→/ (I+
κ,λ)2 for any κ and

λ as in (1). Shioya [32] provided a negative answer to Abe’s questions by establishing
the consistency, relative to a supercompact cardinal, of “there is a regular uncountable
cardinal κ such that I+

κ,κ+ → (I+
κ,κ+)n for all n with 0 < n < ω (and therefore Iκ,κ+ is

(κ+, 2)-distributive)”.
Concerning another combinatorial aspect of Pκ(λ), let Sκ(λ) assert the following:

For every function g : Pκ(λ) → Pκ(λ), there is A ∈ I+
κ,λ such that for every B ⊆ A

with B in Iκ,λ, g“B is in Iκ,λ. Strengthening a result of Galvin (see [38]), Fleissner (see
[38]) established that if D(ω)λ is not the union of λ nowhere dense sets, where λ is an
uncountable cardinal and D(ω) denotes the discrete topological space of cardinality ℵ0,
then Sω(λ) holds. Zwicker [38] wondered whether these results of Galvin and Fleissner
could be extended to show Sκ(λ) consistent for regular uncountable κ.

The results of Galvin and Jech-Shelah were revisited in [25] where it was shown
that if λ is an uncountable cardinal such that λ < cov(Mω,λ), then pω,λ ≥ λ+ and Iω,λ

is weakly selective (and hence I+
ω,λ → (I+

ω,λ)n whenever 0 < n < ω). The present paper
is a continuation of [25]. Its purpose is to generalize results of [25] to the case of an
uncountable κ. Specifically we prove the following (focusing for simplicity on the case
λ = κ+):
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Proposition 1. Suppose that κ is a regular infinite cardinal and cov(Mκ,κ+) >

κ+. Then:

(i) Iκ,κ+ is weakly selective.
(ii) pκ,κ+ > κ+.
(iii) For every infinite cardinal θ ≤ κ, κ → (κ, θ)2 if and only if I+

κ,κ+ → (I+
κ,κ+ , θ)2.

(iv) κ is κ+-mildly ineffable if and only if I+
κ,κ+ → (I+

κ,κ+)n for all n with 0 < n < ω.
(v) If τℵ0 < κ for every cardinal τ with 2 ≤ τ < κ, then

(NSκ,κ+ |A)+ → (
I+
κ,κ+ , ω ⊕ 1

)2
,

where

A =
{
a ∈ Pκ(κ+) : cf

(∪(a ∩ κ)
)

= cf(∪a) = ω
}
.

(vi) Any two cofinal subsets of Pκ(κ+) have isomorphic cofinal subsets.
(vii) Sκ(κ+) holds. In fact, given g : Pκ(κ+) → Pκ(κ+) and A ∈ I+

κ,κ+ , there is
D ∈ I+

κ,κ+ ∩ P (A) such that g“B ∈ Iκ,λ for all B ∈ Iκ,λ ∩ P (D).

Proposition 2. It is consistent, relative to a supercompact cardinal, that for the
least uncountable measurable cardinal κ, I+

κ,κ+ → (I+
κ,κ+)n for all n with 0 < n < ω.

We also prove the following:

Proposition 3. Suppose that κ is a regular uncountable cardinal and dκ = κ+.
Then:

(i) {A : pIκ,λ|A ≥ κ+} is not dense in (I+
κ,κ+ ,⊆).

(ii) I+
κ,κ+ −→/ (I+

κ,κ+ , ω1)2.
(iii) (Iκ,κ+ |C)+ → (I+

κ,κ+ , ω + 1)2 for some C ∈ I+
κ,κ+ .

We mention that Galvin (see [38]) showed that if κ is a regular infinite cardinal such
that dκ = κ+, then Sκ(κ+) fails.

The structure of this paper is as follows. Section 1 contains standard definitions
concerning ideals on Pκ(λ). Section 2 is devoted to the notion of a cofinal Kurepa family
on Pκ(λ) (the existence of such a family is hypothesized in many results of the paper).
Section 3 reviews a number of facts concerning the covering number cov(Mκ,λ) and the
uniformity number non(Mκ,λ). In Section 4 we give sufficient conditions for an ideal H

on Pκ(λ) to be weakly selective and verify pH > λ<κ. Section 5 deals with the partition
property H+ → (H+, θ)2, Section 6 with a Pκ(λ) version of the topological partition
relation κ → (κ, top ω + 1)2, and Section 7 with H+ → (H+)n. Section 8 investigates
the assertion Sκ(λ) and the existence of isomorphisms between cofinal sets.

We do not know whether the two assumptions (namely that cov(Mκ,λ<κ) > λ<κ and
there exists a cofinal Kurepa family on Pκ(λ)) made in Sections 4–7 to derive properties
of Iκ,λ are necessary. Some negative results are presented in the final section of the paper.
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1. Ideals.

Throughout the paper κ and λ will denote, respectively, a regular infinite
cardinal and a cardinal > κ.

In this section we review various definitions concerning ideals on Pκ(λ).
For a set A and a cardinal µ, Pµ(A) = {a ⊆ A : |a| < µ}.
An ideal on a set S is a collection H of subsets of S such that: (i) S /∈ H, (ii)

P (A) ⊆ H for all A ∈ H, (iii) A ∪ B ∈ H for all A ∈ H, and (iv) {s} ∈ H for every
s ∈ S.

cof(H) is the least cardinality of any X ⊆ H such that H =
⋃

A∈X P (A).
Let H+ = P (S)−H and H∗ = {A ⊆ S : S −A ∈ H}.
For A ∈ H+,H|A = {B ⊆ S : B ∩ A ∈ H}. It is readily seen that H|A is an ideal

on S and cof(H|A) ≤ cof(H).
For A ∈ H+,H|A = {B ⊆ S : B ∩ A ∈ H}. It is readily seen that H|A is an ideal

on S and cof(H|A) ≤ cof(H).
H is κ-complete if ∪Y ∈ H for every Y ∈ Pκ(H).
If H is κ-complete, cof(H) is the least cardinality of any X ⊆ H such that for every

A ∈ H, there is x ∈ Pκ(X) with A ⊆ ∪x.
NSκ (respectively, NSκ,λ) denotes the nonstationary ideal on κ (respectively,

Pκ(λ)). That is, NSκ (respectively, NSκ,λ) is the collection of all subsets B of κ

(respectively, Pκ(λ)) such that {γ ∈ B : ∀α < γ (f(α) < γ)} ⊆ {0} (respectively,
{a ∈ B : ∀α, β ∈ a(f(α, β) ⊆ a)} ⊆ {φ}) for some f : κ → κ (respectively,
f : λ× λ → Pκ(λ)).

Given two cardinals ρ and µ with ω ≤ ρ ≤ µ, Iρ,µ is the set of all A ⊆ Pρ(µ) such
that {b ∈ A : a ⊆ b} = φ for some a ∈ Pρ(µ). It is simple to see that Iρ,µ is an ideal on
Pρ(µ). u(ρ, µ) denotes the least cardinality of any A ∈ I+

ρ,µ.
The following lists some elementary properties (see e.g. [10] and [23]):

Proposition 1.1.

(i) u(κ, λ) ≥ λ.
(ii) cf(u(κ, λ)) ≥ κ.
(iii) λ<κ = max{2<κ, u(κ, λ)} = u(κ, λ<κ).
(iv) u(κ, κ+n) = κ+n whenever 0 < n < ω.
(v) u(κ, λ) ≤ u(κ+, λ).
(vi) u(κ, λ) = cof(Iκ,λ|A) for every A ∈ I+

κ,λ.

An ideal H on Pκ(λ) is fine if Iκ,λ ⊆ H.

We adopt the convention that the phrase “ideal on Pκ(λ)” means “κ-
complete fine ideal on Pκ(λ)”.

For A ⊆ Pκ(λ) and an ordinal δ ≤ κ, [A]δ denotes the set of all B ⊆ A such that
(B,() has ordertype δ. Abusing notation, we write

[A]δ = {(aα : α < δ) : a0, a1, . . . ∈ A and a0 ( a1 ( . . . }.
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2. Cofinal Kurepa families.

This section is concerned with existence of cofinal Kurepa families. For more on the
subject, see [34], [35] and [36].

Definition. Kκ,λ is the set of all A ∈ I+
κ,λ such that |A ∩ P (a)| < κ for every

a ∈ A.
First let us establish two easy facts concerning members of Kκ,λ.

Lemma 2.1. Suppose A ∈ Kκ,λ. Then |A ∩ P (b)| < κ for every b ∈ Pκ(λ).

Proof. Given b ∈ Pκ(λ), pick a ∈ A with b ⊆ a. Then A ∩ P (b) ⊆ A ∩ P (a). ¤

Proposition 2.2. Suppose A ∈ Kκ,λ. Then |A| = u(κ, λ).

Proof. Pick B ∈ I+
κ,λ with |B| = u(κ, λ). Then A =

⋃
b∈B(A∩P (b)) and therefore

by Lemma 2.1 |A| ≤ κ · |B| = u(κ, λ). ¤

If Kκ,λ is not empty, then it is a large (i.e. dense) subset of I+
κ,λ.

Proposition 2.3. Suppose Kκ,λ 6= φ, and let J be an ideal on Pκ(λ) with cof(J) =
u(κ, λ). Then J+ ∩ Kκ,λ is dense in (J+,⊆).

Proof. Fix A ∈ Kκ,λ and B ∈ J+. Select Ca ∈ J for a ∈ A so that J =⋃
a∈A P (Ca). Define f : A → B so that a ⊆ f(a) and f(a) /∈ Ca for every a ∈ A.

Obviously, ran(f) ∈ J+ ∩ P (B). For a ∈ A,

{c ∈ A : f(c) ⊆ f(a)} ⊆ A ∩ P
(
f(a)

)

and consequently by Lemma 2.1, |ran(f) ∩ P (f(a))| < κ. ¤

Corollary 2.4.

i) Suppose Kκ,λ 6= φ. Then Kκ,λ is dense in (I+
κ,λ,⊆).

ii) Suppose Kκ,λ 6= φ and λ is a strong limit cardinal of cofinality less than κ. Then
NS+

κ,λ ∩ Kκ,λ is dense in (NS+
κ,λ,⊆).

Let us now turn to the question whether Kκ,λ 6= φ. The following observation is
immediate.

Proposition 2.5. If κ is inaccessible, then Kκ,λ = I+
κ,λ.

Proposition 2.6 ([24]). The following are equivalent :

(i) Kκ,λ 6= φ.
(ii) There is D ∈ I+

κ,u(κ,λ) such that cof(Iκ,u(κ,λ)|D) ≤ λ.
(iii) There is A ⊆ Pκ(λ) such that |A| = u(κ, λ) and |A∩P (b)| < κ for every b ∈ Pκ(λ).

Corollary 2.7. If u(κ, λ) = λ, then Kκ,λ 6= φ.

It follows that Kκ,λ<κ 6= φ, since (λ<κ)<κ = λ<κ.
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Corollary 2.8. Suppose Kκ,λ 6= φ. Then Kκ,ν 6= φ for every cardinal ν with
λ ≤ ν ≤ u(κ, λ).

Proof. If Kκ,λ 6= φ, then u(κ, u(κ, λ)) = u(κ, λ) by Proposition 2.6, and so

u(κ, λ) ≤ u(κ, ν) ≤ u(κ, u(κ, λ)) ≤ u(κ, λ)

for every cardinal ν with λ ≤ ν ≤ u(κ, λ). ¤

Proposition 2.9 ([24]). Suppose that κ < λ, u(κ, λ) = u(κ+, λ) and Kκ,λ 6= φ.
Then Kκ+,λ 6= φ.

Proposition 2.10 ([24]). Suppose that cf(λ) < κ, τ cf(λ) < κ for every infinite
cardinal τ < κ, and u(κ, λ) ≤ λcf(λ). Then Kκ,λ 6= φ.

Note that if cf(λ) < κ and u(κ, µ) < λ for every cardinal µ with κ < µ < λ, then
u(κ, λ) ≤ λcf(λ).

Proposition 2.11 ([24]). If µ is a cardinal with cf(µ) < κ < µ, and κ →
[κ]2cf(µ),<cf(µ), then Kκ,2<µ 6= φ.

Hence, by a result of Solovay [33], if κ bears an ω1-saturated κ-complete ideal, then
Kκ,2<µ 6= φ for every cardinal µ with cf(µ) < κ < µ.

Definition. cov(λ, λ, κ, 2) is the least cardinality of any X ⊆ Pλ(λ) such that for
every a ∈ Pκ(λ), there is b ∈ X with a ⊆ b.

It is readily checked that

λ<κ = max
{

2<κ, cov(λ, λ, κ, 2),
⋃

κ≤ν<λ

u(κ, ν)
}

.

The following is due to Shelah (see [24]).

Proposition 2.12. Suppose that cf(λ) < κ and u(λ+, u(κ, λ)) < cov(λ, λ, κ, 2).
Then Kκ,λ 6= φ.

The following is due to Todorcevic [37] and Cummings, Foreman and Magidor [8].

Proposition 2.13. Suppose cf(λ) < κ, u(κ, λ) = λ+ and either ¤∗λ holds or there
is a very good scale on λ. Then Kκ,λ 6= φ.

Todorcevic (see [24]) established that ωω+1 → [ω1]2ωω,<ω1
implies that Kω1,ωω+1 = φ.

Now we prove two generalizations of this result. The following key lemma is due to
Todorcevic (see [24]).

Lemma 2.14. Suppose ρ and χ are two cardinals such that κ ≤ ρ ≤ χ and χ →
[κ]2ρ,<κ, and let B ⊆ P (ρ) with |B| = χ. Then there is z ∈ Pκ(ρ) such that |{b ∩ z : b ∈
B}| ≥ κ.
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Lemma 2.15. Suppose A ∈ Kκ,λ, T ⊆ Pκ(λ), and τ is an infinite cardinal with
τ < κ. Suppose further there is ϕ : A → {x ⊆ T : |x| = τ} such that a ⊆ ∪y for each
a ∈ A and each y ⊆ ϕ(a) with |y| = τ . Then there is B ⊆ Pτ+(T ) such that |B| = u(κ, λ)
and |{b ∈ B : |b ∩ z| = τ}| < κ for every z ∈ Pκ(T ).

Proof. Set B = ran(ϕ). Then u(κ, λ) ≤ |B| since {∪x : x ∈ B} ∈ I+
κ,λ. Con-

versely, |B| ≤ u(κ, λ) by Proposition 2.2. It remains to observe that for every z ∈ Pκ(T ),

{a ∈ A : |ϕ(a) ∩ z| = τ} ⊆ {a ∈ A : a ⊆ ∪z}. ¤

Lemma 2.16. Suppose cf(λ) < κ and Kκ,λ 6= φ. Then setting ρ =
⋃

κ<σ<λ u(κ, σ)
and τ = cf(λ), there is B ⊆ Pτ+(ρ) such that |B| = u(κ, λ) and |{b ∈ B : |b∩z| = τ}| < κ

for every z ∈ Pκ(ρ).

Proof. Select a strictly increasing sequence < λξ : ξ < τ > of cardinals greater
than κ so that λ =

⋃
ξ<τ λξ. For ξ < τ , choose Tξ ∈ I+

κ,λξ
with |Tξ| = u(κ, λξ). Set

T =
⋃

ξ<τ Tξ. Note that |T | = ρ. Fix A ∈ Kκ,λ with A ⊆ {a ∈ Pκ(λ) : ∪a = λ}. For
a ∈ A and ξ < cf(λ), pick aξ ∈ Tξ so that a ∩ λξ ⊆ aξ. Define ϕ : A → P (T ) by
ϕ(a) = {aξ : ξ < τ}. Now apply Lemma 2.15. ¤

Proposition 2.17. Suppose cf(λ) < κ, u(κ, λ) → [κ]2ρ,<κ, where ρ =⋃
κ<σ<λ u(κ, σ), and µ<cf(λ) < κ for every cardinal µ < κ. Then Kκ,λ = φ.

Proof. By Lemmas 2.14 and 2.16. ¤

In particular, if λ = κ+ω and u(κ, λ) → [κ]2λ,<κ, then Kκ,λ = φ.

Lemma 2.18. Suppose κ = ν+ and Kκ,λ 6= φ. Then setting ρ = u(ν, λ) and
τ = cf(ν), there is B ⊆ Pτ+(ρ) such that |B| = u(κ, λ) and |{b ∈ B : |b ∩ z| = τ}| < κ

for every z ∈ Pκ(ρ).

Proof. Fix T ∈ I+
ν,λ with |T | = ρ, and A ∈ Kκ,λ with A ⊆ {a ∈ Pκ(λ) : |a| = ν}.

Pick a strictly increasing sequence < νξ : ξ < τ > of nonzero ordinals so that ν =
⋃

ξ<τ νξ.
For a ∈ A, choose a bijection ia : ν → a and select aξ ∈ T for ξ < τ so that i“a νξ ⊆ aξ.
Define ϕ : A → P (T ) by ϕ(a) = {aξ : ξ < τ}. Now apply Lemma 2.15. ¤

Proposition 2.19. Suppose κ = ν+, u(κ, λ) → [κ]2u(ν,λ),<κ and ν<cf(ν) = ν.
Then Kκ,λ = φ.

Proof. By Lemmas 2.14 and 2.18. ¤

In particular, if κ = ω1 and u(κ, λ) → [κ]2λ,<κ, then Kκ,λ = φ.
To conclude this section, we establish two consequences of “Kκ,λ 6= φ”. The proof

uses ideas from [36].

Proposition 2.20. Suppose κ is a successor cardinal and Kκ,λ 6= φ, and let H be
any ideal on Pκ(λ). Then every D ∈ H+ can be partitioned into u(κ, λ) disjoint members
of H+.

Proof. Set κ = ν+ and fix A ∈ Kκ,λ and D ∈ H+. For b ∈ Pκ(λ) pick a one-to-one
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fb : A ∩ P (b) → ν. Put

Dα
a = {b ∈ D : a ⊆ b and fb(a) = α}

for a ∈ A and α ∈ ν. Now define g ∈ Aν so that D
g(a)
a ∈ H+ for each a ∈ A.

Select B ∈ I+
κ,λ ∩ P (A) and β ∈ ν so that g takes the constant value β on B. Then

< Dβ
a : a ∈ B > is a sequence of disjoint members of H+ ∩ P (D). ¤

Definition. A partially ordered set (Q,<) is κ-directed if for every x ∈ Pκ(Q),
there is r ∈ Q such that q ≤ r for all q ∈ x.

Proposition 2.21. Suppose that (Q,<) is a κ-directed partially ordered set such
that |Q| = λ and |{r ∈ Q : r < q}| < κ for all q ∈ Q. Then there is A ∈ Kκ,λ such that
(Q,<) and (A,() are isomorphic.

Proof. Set Q = {qα : α < λ} and define a one-to-one g : Q → Pκ(λ) by
g(qα) = {β ∈ λ : qβ ≤ qα}. It is simple to check that ran(g) ∈ I+

κ,λ and

qα < qγ ↔ g(qα) ( g(qγ)

for all α, γ < λ. ¤

Thus, if Kκ,λ 6= φ and B ∈ I+
κ,λ, then there are C ∈ I+

κ,λ ∩ P (B) and A ∈ Kκ,u(κ,λ)

such that (C,() and (A,() are isomorphic.

3. Covering for category.

Definition. For a set A,

Fn(A, 2, κ) = ∪{a2 : a ∈ Pκ(A)}.

Fn(A, 2, κ) is ordered by : p ≤ q if and only if q ⊆ p.

Definition. Suppose ρ is a cardinal ≥ κ.

ρ2 is endowed with the topology obtained by taking as basic open sets φ and Oρ
s for

s ∈ Fn(ρ, 2, κ), where Oρ
s = {f ∈ ρ2 : s ( f}.

Mκ,ρ is the set of all W ⊆ ρ2 such that W ∩ (∩X) = φ for some collection X of
dense open subsets of ρ2 with 0 < |X| ≤ κ.

cov(Mκ,ρ) is the least cardinality of any Y ⊆ Mκ,ρ with ρ2 = ∪Y .
non(Mκ,ρ) is the least cardinality of any W ⊆ ρ2 with W /∈ Mκ,ρ.
In this section we review some well-known facts concerning the cardinal coefficients

cov(Mκ,ρ) and non(Mκ,ρ).

Definition. For a set A,A A
κ is the collection of all maximal antichains in

Fn(A, 2, κ).

Proposition 3.1 ([17], [28]). Let ρ be a cardinal ≥ κ. Then:
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(i) cov(Mκ,ρ) is the least cardinality of any nonempty family of dense open subsets
of ρ2 with empty intersection.

(ii) cov(Mκ,ρ) is the least cardinality of any collection Z of dense subsets of Fn(ρ, 2, κ)
(or of members of A ρ

κ ) such that for every filter G ⊆ Fn(ρ, 2, κ), there is D ∈ Z

with D ∩G = φ.

Proposition 3.2 ([17], [28]). Suppose that ρ and µ are two cardinals such that
κ ≤ µ ≤ ρ. Then cov(Mκ,µ) ≥ cov(Mκ,ρ) and non(Mκ,µ) ≤ non(Mκ,ρ).

Definition. bκ (respectively, dκ) is the least cardinality of any F ⊆ κκ such
that for every g ∈ κκ, there is f ∈ F with |{α ∈ κ : f(α) ≥ g(α)}| = κ (respectively,
|{α ∈ κ : g(α) > f(α)}| < κ).

Proposition 3.3 ([30]). non(Mκ,κ) ≥ bκ.

Proof. Fix W ⊆ κ2 with W /∈ Mκ,κ. For t ∈ ⋃
δ≤κ

δ2, define a partial function t̃

from κ to κ by: t̃(α) = γ if and only if γ is the least ξ ∈ dom(t) such that (t ¹ ξ)−1({1})
has ordertype α.

Let g ∈ κκ. For β < κ, stipulate that Sβ is the set of all s ∈ ⋃
γ∈κ

γ2 such
that there is α ≥ β with α ∈ dom(s̃) and s̃(α) ≥ g(α). It is simple to check that
Uβ =

⋃
s∈Sβ

Oκ
s is dense. Hence there is f ∈ W such that f ∈ ⋃

β<κ Uβ . Obviously,

|{α ∈ κ : f̃(α) ≥ g(α)}| = κ. ¤

It is straightforward to check that cov(Mκ,κ) ≤ dκ.

Proposition 3.4 ([17], [28]). cov(Mκ,ρ) ≥ κ+ for every cardinal ρ ≥ κ.

Proposition 3.5 ([17]). Suppose 2<κ > κ. Then cov(Mκ,ρ) = κ+ for every
ρ ≥ κ.

Proof. By Propositions 3.2 and 3.4 it suffices to show that cov(Mκ,κ) ≤ κ+. Fix
a cardinal τ < κ with 2τ > κ. Let ϕ : κ × τ → κ be a bijection. For y ∈ τ2, define an
open subset Wy of κ2 by: f ∈ Wy if and only if there is γ < κ such that f

(
ϕ(γ, ξ)

)
= y(ξ)

for all ξ < τ . Then
⋂

y∈Y Wy = φ for any Y ⊆ τ2 with |Y | > κ. ¤

Corollary 3.6. Suppose that cov(Mκ,ρ) > κ+ for some cardinal ρ ≥ κ. Then
u(κ, µ) = µ<κ for every cardinal µ ≥ κ.

Proof. By Propositions 1.1 and 3.5. ¤

Lemma 3.7. Suppose ρ is a cardinal ≥ κ. Then:

(i) |A| ≤ 2<κ for every A ∈ A ρ
κ .

(ii) If X ⊆ A ρ
κ is such that 2<κ ≤ |X| < ρ, then X ⊆ A B

κ for some B ⊆ ρ with
|B| = |X|.

Proof.

(i) See Lemma VII.6.10 in [15].
(ii) Use (i). ¤
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Proposition 3.8 ([17]). cov(Mκ,ρ) = cov(Mκ,2κ) for every cardinal ρ ≥
cov(Mκ,2κ).

Proof. Argue as for Proposition 6.4 of [25]. ¤

Note that by Proposition 3.8, λ<κ < cov(Mκ,λ<κ) if and only if λ<κ < cov(Mκ,2κ).

Definition. Given a cardinal ρ ≥ κ, θκ,ρ is the least cardinality of any X ⊆ {A ⊆
ρ : |A| = κ} such that for every B ⊆ ρ with |B| = ρ, there is A ∈ X with A ⊆ B.

Proposition 3.9 ([28]). cov(Mκ,ρ) ≤ θκ,ρ for every cardinal ρ ≥ κ.

Proposition 3.10. Suppose that ρ is a cardinal > κ and V ² 2<κ = κ. Then
setting P = Fn(ρ, 2, κ):

(i) (2µ)V P ≤ (ρµ)V for every cardinal µ ≥ κ.
(ii) V P ² non(Mκ,ρ) = κ+.
(iii) ([17], [28]) V P ² cov(Mκ,ρ) ≥ ρ.
(iv) ([17], [28]) If cf(ρ) = κ and V ² “νκ+

< ρ for every cardinal ν with 2 ≤ ν < ρ”,
then V P ² θκ,κ+ = ρ.

(v) ([17]) If cf(ρ) < κ and V ² GCH, then V P ² cov(Mκ,ρ) = ρ+.

Proof.

(i) See Theorem 3.15 in [5].
(ii) In V , select a bijection j : κ+ × ρ → ρ. Now let G be Fn(ρ, 2, κ)-generic over

V . For α < κ+, define gα ∈ ρ2 by gα(β) = (∪G)(j(α, β)). It is readily seen that
{gα : α < κ+} /∈ Mκ,ρ. ¤

The following two results provide models for cov(Mκ,κ+) > κ+ at a large cardinal.
The first one is due to Silver (see Exercise VIII.I.10 in [15]).

Proposition 3.11. Suppose that V ² “GCH + κ is weakly compact”. Then there
is a partially ordered set P in V such that V P ² “κ is weakly compact and cov(Mκ,κ+) >

κ+”.

Proposition 2 will follow from Corollary 7.5 and the following result.

Proposition 3.12 ([4]). Suppose that V ² “κ is supercompact”. Then there is a
generic extension W of V such that for every cardinal ρ ≥ κ in W ,

WP ² “κ is both strongly compact and the least uncountable measurable cardinal”,

where P = Fn(ρ, 2, κ).

4. Selectivity and pseudointersections.

Definition. An ideal H on Pκ(λ) is weakly selective if given A ∈ H+ and Ba ∈ H

for a ∈ A, there is C ∈ H+ ∩ P (A) such that b /∈ Ba for every (a, b) ∈ [C]2.
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Definition. For an ideal H on Pκ(λ),ZH is the set of all F ⊆ H+ such that
(a) ∩X ∈ H+ for every X ⊆ F with 0 < |X| < κ, and (b) for every C ∈ H+, there is
A ∈ F with C −A ∈ H+.

pH is defined by: pH = the least cardinality of any member of ZH if ZH 6= φ, and
pH = (2λ<κ

)+ otherwise.
For H = Iκ,λ, we set pH = pκ,λ.
Note that pH|E ≥ pH for every E ∈ H+.

Lemma 4.1. Suppose H is an ideal on Pκ(λ) such that H∗ ∩ Kκ,λ 6= φ. Then the
following are equivalent :

(i) H is weakly selective and pH > u(κ, λ).
(ii) Given A ∈ H+ and Sa ⊆ A for a ∈ A such that

⋂
a∈x Sa ∈ H+ for every x ∈

Pκ(A)− {φ}, there is C ∈ H+ ∩ P (A) such that b ∈ Sa for every (a, b) ∈ [C]2.

Proof. (i) → (ii): Suppose (i) holds and A ∈ H+ and Sa ⊆ a for a ∈ A are such
that

⋂
a∈x Sa ∈ H+ for every x ∈ Pκ(A)− {φ}. Fix B ∈ H∗ ∩ Kκ,λ. By Proposition 2.2

pH > |A ∩ B|, so there is C ∈ H+ such that C − Sa ∈ H for every a ∈ A ∩ B. Select
D ∈ H+ ∩ (A ∩B ∩ C) so that b /∈ C − Sa for each (a, b) ∈ [D]2. Then b ∈ Sa whenever
(a, b) ∈ [D]2.

(ii) → (i): Suppose (ii) holds. Then given A ∈ H+ and Ba ∈ H for a ∈ A, there is
C ∈ H+∩P (A) such that b ∈ A−Ba for every (a, b) ∈ [C]2. Hence H is weakly selective.
To show that pH > u(κ, λ), let F ⊆ H+ be such that |F | ≤ u(κ, λ) and ∩X ∈ H+ for
every X ⊆ F with 0 < |X| < κ. Fix D ∈ H∗ ∩ Kκ,λ. By Proposition 2.2, there is an
onto j : D → F . Set Sa = D ∩ (

⋂
c∈D∩P (a) j(c)) for a ∈ D. Select T ∈ H+ ∩ P (D) so

that b ∈ Sa for every (a, b) ∈ [T ]2. It is easy to see that T −W ∈ H for every W ∈ F . ¤

For H = Iκ,λ, (ii) of Lemma 4.1 can be reformulated as follows:

Proposition 4.2. The following are equivalent :

(i) Given A ∈ I+
κ,λ and Sa ⊆ A for a ∈ A such that

⋂
a∈x Sa ∈ I+

κ,λ for every
x ∈ Pκ(A)−{φ}, there is C ∈ I+

κ,λ ∩P (A) such that b ∈ Sa for every (a, b) ∈ [C]2.
(ii) Given a cardinal µ ≥ λ and B ∈ I+

κ,µ, there is C ∈ I+
κ,λ such that [C]2 ⊆ {(c ∩

λ, d ∩ λ) : (c, d) ∈ [B]2}.
Proof. (i) → (ii): Suppose that (i) holds and let B ∈ I+

κ,µ, where µ is a cardinal
with µ ≥ λ. Set A = {d ∩ λ : d ∈ B}. Note that A ∈ I+

κ,λ. Pick g : A → B so that
a = λ ∩ g(a) for every a ∈ A. For a ∈ A, let Sa be the set of all b ∈ A with the
property that there is d ∈ B such that g(a) ( d and b = d ∩ λ. It is simple to see that⋂

a∈x Sa ∈ I+
κ,λ for every x ∈ Pκ(A)− {φ}. By our assumption there is C ∈ I+

κ,λ ∩ P (A)
such that b ∈ Sa for every (a, b) ∈ [C]2. Then for every (a, b) ∈ [C]2, there is d such that
(g(a), d) ∈ [B]2 and b = d ∩ λ.

(ii) → (i): Suppose that (ii) holds, and fix A ∈ I+
κ,λ and Sa ⊆ A for a ∈ A with

{⋂a∈x Sa : x ∈ Pκ(A) − {φ}} ⊆ I+
κ,λ. Now fix a cardinal µ with µ > λ and µ ≥ |A|.

Select a one-to-one j : A → µ − λ. Let B be the set of all d ∈ Pκ(µ) such that (a)
d ∩ λ ∈ A, (b) j(d ∩ λ) ∈ d, and (c) d ∩ λ ∈ Sa for all a ∈ A such that a ( d ∩ λ and
j(a) ∈ d.
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Let us show that B ∈ I+
κ,µ. Fix e ∈ Pκ(µ). Pick c ∈ A so that e ∩ λ ( c and c ∈ Sa

for all a ∈ A such that j(a) ∈ e. Then setting d = c ∪ e ∪ {j(c)}, we have d ∈ B. By
our assumption there is C ∈ I+

κ,λ with the property that for every (a, b) ∈ [C]2, one can
find (c, d) ∈ [B]2 such that a = c ∩ λ and b = d ∩ λ. Clearly, C ⊆ A. Moreover, b ∈ Sa

whenever (a, b) ∈ [C]2. ¤

Proposition 4.3. Suppose H is an ideal on Pκ(λ) such that H∗ ∩ Kκ,λ 6= φ and
cof(H) < cov(Mκ,λ<κ). Then H is weakly selective and pH > λ<κ.

Proof. By Corollary 3.6, λ<κ = u(κ, λ) since cov(Mκ,λ<κ) > cof(H) > κ. So it
suffices to show that (ii) of Lemma 4.1 holds. Thus let A ∈ H+ and Sa ⊆ A for a ∈ A

with the property that
⋂

a∈x Sa ∈ H+ for every x ∈ Pκ(A) − {φ}. Fix Z ∈ H∗ ∩ Kκ,λ

and Y ⊆ H such that |Y | = cof(H) and H =
⋃

B∈Y P (B). For B ∈ Y , let DB be the set
of all p ∈ Fn(A ∩ Z, 2, κ) such that there is b ∈ dom(p) with the following properties:

(0) b /∈ B.
(1) dom(p) = (A ∩ Z) ∩ P (b).
(2) p(b) = 1.
(3) b ∈ Sa for every a ∈ dom(p) such that a 6= b and p(a) = 1.

Let us show that DB is dense. Thus fix q ∈ Fn(A∩Z, 2, κ). Pick b ∈ (A∩Z)−B so that
(i) a ( b for all a ∈ dom(q), and (ii) b ∈ Sa for each a ∈ dom(q) with q(a) = 1. Define
p : (A ∩ Z) ∩ P (b) → 2 by:

(α) p(b) = 1.
(β) p ¹ dom(q) = q.
(γ) p(c) = 0 for every c ∈ (A ∩ Z) ∩ P (b) such that c 6= b and c /∈ dom(q).

Obviously, q ⊆ p and p ∈ DB .
Let G ⊆ Fn(A ∩ Z, 2, κ) be a filter such that G ∩ DB 6= φ for every B ∈ Y . Pick

ϕ ∈ ∏
B∈Y (G ∩DB). For B ∈ Y , let bB ∈ A ∩ Z be such that dom

(
ϕ(B)

)
= P (bB). Set

C = {bB : B ∈ Y }. Then clearly C ∈ H+ ∩ P (A). Now suppose B0, B1 ∈ Y are such
that bB0 ( bB1 . There is r ∈ G such that ϕ(B0) ∪ ϕ(B1) ⊆ r. Then

(ϕ(B1))(bB0) = r(bB0) = (ϕ(B0))(bB0) = 1

and consequently bB1 ∈ SbB0
. Thus d ∈ Sa whenever (a, d) ∈ [C]2. ¤

Corollary 4.4. Suppose Kκ,λ 6= φ and cov(Mκ,λ<κ) > λ<κ. Then Iκ,λ is weakly
selective and {C : pIκ,λ|C > λ<κ} is dense in (I+

κ,λ,⊆).

Proof. Use the following observation: Let A ∈ I+
κ,λ. Then by Proposition 2.3 there

is C ∈ Kκ,λ∩P (A). Now setting H = Iκ,λ|C, H∗∩Kκ,λ 6= φ and cof(H) < cov(Mκ,λ<κ).
¤

It is immediate from Proposition 4.3 that if κ is inaccessible and cov(Mκ,λ<κ) > λ<κ,
then pκ,λ > λ<κ. More generally, Corollary 8.5 and Proposition 8.6 below yield that if
Kκ,λ 6= φ and cov(Mκ,λ<κ) > λ<κ, then pκ,λ > λ<κ.
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5. I+
κ,λ → (I+

κ,λ, θ)2.

Definition. Given X, Y ⊆ P
(
Pκ(λ)

)
and an ordinal η ≤ κ, X → (Y, η)2 means

that for all A ∈ X and F : Pκ(λ) × Pκ(λ) → 2, there is B ⊆ A such that either B ∈ Y

and F is constantly 0 on [B]2, or B ∈ [Pκ(λ)]η and F is constantly 1 on [B]2.
The negation of this and other partition relations is indicated by crossing the arrow.

In this section we investigate the problem of getting I+
κ,λ → (I+

κ,λ, θ)2 for a given
infinite cardinal θ ≤ κ. First, a simple observation:

Proposition 5.1. Suppose η is an ordinal ≤ κ such that {Pκ(λ)} → (I+
κ,λ, η)2.

Then κ → (κ, η)2.

Proof. Given f : κ × κ → 2, consider F : Pκ(λ) × Pκ(λ) → 2 defined by:
F (a, b) = 1 if and only if ∪(a ∩ κ) < ∪(b ∩ κ) and f

(∪(a ∩ κ),∪(b ∩ κ)
)

= 1. ¤

Lemma 5.2. Suppose κ → (κ, θ)2, where θ is an infinite cardinal < κ, and µ, τ are
two cardinals such that θ ≤ µ < κ and ω ≤ τ < θ. Then µτ < κ.

Proof. By Corollary 19.7 in [11], µτ −→/ (µ+, τ+)2. ¤

Definition. Given an ideal H on Pκ(λ), A ∈ H+ and F : Pκ(λ) × Pκ(λ) →
2, (H, A, F ) is 0-nice if there is C ∈ H+ ∩ P (A) such that

{b ∈ C : ∀a ∈ x (F (a, b) = 0)} ∈ H+

for every x ∈ Pκ(C)− {φ}.
Lemma 5.3. Suppose H∗ ∩ Kκ,λ 6= φ, cof(H) < cov(Mκ,λ<κ) and (H, A,F ) is

0-nice, where H is an ideal on Pκ(λ), A ∈ H+ and F : Pκ(λ) × Pκ(λ) → 2. Then there
is D ∈ H+ ∩ P (A) such that F is constantly 0 on [D]2.

Proof. By Proposition 4.3. ¤

Definition. For an ideal H on Pκ(λ) and C ∈ H+,Md
H,C is the set of all Q ⊆

H+ ∩ P (C) such that (a) any two distinct members of Q are disjoint, and (b) for every
A ∈ H+ ∩ P (C), there is B ∈ Q with A ∩B ∈ H+.

Lemma 5.4. Suppose κ → (κ, θ)2, where θ is an infinite cardinal < κ, and
(H, A, F ) is not 0-nice, where H is an ideal on Pκ(λ), A ∈ H+ and F : Pκ(λ)×Pκ(λ) → 2.
Then there is D ∈ [A]θ+1 such that F is constantly 1 on [D]2.

Proof. First, we define two functions ϕ and ψ so that for each C ∈ H+ ∩ P (A),

(a) ϕ(C) ∈ Md
H,C and |ϕ(C)| < κ,

(b) ψ(C) is a one-to-one function from ϕ(C) to C,
(c) If b ∈ B ∈ ϕ(C), then (ψ(C))(B) ( b and F ((ψ(C))(B), b) = 1.

Given C ∈ H+ ∩ P (A), pick x ∈ Pκ(C)− {φ} so that

{b ∈ C : ∀a ∈ x (F (a, b) = 0)} ∈ H.
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Select a bijection j : |x| → x. For δ < |x|, let Bδ be the set of all b ∈ C such that ∪x ( b

and δ = the least γ < |x| such that F (j(γ), b) = 1. Now set ϕ(C) = H+ ∩ {Bδ : δ < |x|}
and (ψ(C))(Bδ) = j(δ) for every δ < |x| such that Bδ ∈ ϕ(C).

Recalling Lemma 5.2, define Rβ , Qβ ∈ {W ∈ Md
H,A : |W | < κ} and ψβ : Qβ → A

for β < θ by:

(0) R0 = {A}.
(1) Qβ =

⋃
C∈Rβ

ϕ(C).
(2) Rβ+1 = Qβ .
(3) Rβ = H+ ∩ {⋂α<β h(α) : h ∈ ∏

α<β Qα} if β is a limit ordinal > 0.
(4) ψβ =

⋃
C∈Rβ

ψ(C).

Finally, select b ∈ ⋂
β<θ(∪Qβ). There is k ∈ ∏

β<θ Qβ such that b ∈ ⋂
β<θ k(β). Then

D = {ψβ(k(β)) : β < θ} ∪ {b}

is as desired. ¤

Proposition 5.5. Suppose κ → (κ, θ)2, where θ is an infinite cardinal < κ, and
H is an ideal on Pκ(λ) such that H∗ ∩ Kκ,λ 6= φ and cof(H) < cov(Mκ,λ<κ). Then
H+ → (H+, θ + 1)2.

Proof. By Lemmas 5.3 and 5.4. ¤

Corollary 5.6. Suppose Kκ,λ 6= φ and cov(Mκ,λ<κ) > λ<κ. Then for every
infinite cardinal θ < κ, the following are equivalent :

(i) κ → (κ, θ)2.
(ii) I+

κ,λ → (I+
κ,λ, θ + 1)2.

(iii) I+
κ,λ → (I+

κ,λ, θ)2.

Proof.

(i) → (ii) follows from Propositions 2.3 and 5.5.
(ii) → (iii) is immediate.
(iii) → (i) is immediate by Proposition 5.1. ¤

It remains to handle the case θ = κ.

Lemma 5.7. Suppose κ is weakly compact and (H, A, F ) is not 0-nice, where H is
an ideal on Pκ(λ), A ∈ H+ and F : Pκ(λ) × Pκ(λ) → 2. Then there is D ∈ [A]κ such
that F is constantly 1 on [D]2.

Proof. Proceed as in the proof of Lemma 5.4, but this time define Rβ , Qβ and
ψβ for every β < κ. Since κ has the tree property, there is k ∈ ∏

β<κ Qβ such that⋂
β≤γ k(β) 6= φ for every γ < κ. Then D = {ψβ(k(β)) : β < κ} is as desired. ¤

Proposition 5.8. Suppose κ is weakly compact and H is an ideal on Pκ(λ) such
that cof(H) < cov(Mκ,λ<κ). Then H+ → (H+, κ)2.

Proof. By Proposition 2.5 and Lemmas 5.3 and 5.7. ¤
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Corollary 5.9. Suppose cov(Mκ,λ<κ) > λ<κ. Then the following are equivalent :

(i) κ is weakly compact.
(ii) I+

κ,λ → (I+
κ,λ, κ)2.

Proof. By Propositions 5.1 and 5.8. ¤

6. H+ → (I+
κ,λ, θ ⊕ 1)2.

Throughout this section κ is assumed to be uncountable.

Definition. Given X, Y ⊆ P (Pκ(λ)) and an infinite cardinal θ < κ,X → (Y, θ ⊕
1)2 means that for all A ∈ X and F : Pκ(λ)× Pκ(λ) → 2, there is either B ∈ Y ∩ P (A)
such that F is constantly 0 on [B]2, or (a0, a1, . . . , aθ) ∈ [A]θ+1 such that aθ =

⋃
α<θ aα

and F is constantly 1 on [{aβ : β ≤ θ}]2.
If θ is an infinite cardinal < κ, then I+

κ,λ−→/ (I+
κ,λ, θ ⊕ 1)2. (Set

A = {a ∈ Pκ(λ) : ∃α < κ (a ∩ κ = α + 1)}

and consider F : [A]2 → 2 defined by: F (a, b) = 0 if and only if a ∩ κ = b ∩ κ.) Our goal
is to produce an ideal H on Pκ(λ) such that H+ → (I+

κ,λ, θ⊕ 1)2. We start by reviewing
a few facts.

Definition. Suppose H is an ideal on Pκ(λ) and δ is an ordinal with κ ≤ δ ≤ λ.
Then H is δ-normal if given A ∈ H+ and f : A → δ such that f(a) ∈ a for all a ∈ A,
there is B ∈ H+ ∩ P (A) such that f is constant on B.

NSδ
κ,λ denotes the smallest δ-normal ideal on Pκ(λ).

Note that being λ-normal is the same as being normal, so that NSλ
κ,λ = NSκ,λ.

Definition. Suppose H is an ideal on Pκ(λ), ν is a cardinal with κ ≤ ν ≤ λ and
θ is an infinite cardinal ≤ κ. Then H is [ν]<θ-normal if given A ∈ H+ and f : A → P (ν)
such that f(a) ∈ P|a∩θ|(a) for all a ∈ A, there is B ∈ H+ ∩P (A) such that f is constant
on B.

The following is easy.

Lemma 6.1. Suppose H is an ideal on Pκ(λ) and ν is a cardinal with κ ≤ ν ≤ λ.
Then H is [ν]<ω-normal if and only if it is ν-normal.

Lemma 6.2 ([7], [23]).

(i) Suppose ν is a cardinal with κ ≤ ν ≤ λ and θ is an uncountable cardinal < κ.
Then there exists a [ν]<θ-normal ideal on Pκ(λ) if and only if τ<θ < κ for every
cardinal τ with θ ≤ τ < κ.

(ii) Suppose κ is a limit cardinal and ν is a cardinal with κ ≤ ν ≤ λ. Then there exists
a [ν]<κ-normal ideal on Pκ(λ) if and only if κ is Mahlo.
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Definition. Suppose there exists a [ν]<θ-normal ideal on Pκ(λ), where ν, θ are
two cardinals such that κ ≤ ν ≤ λ and ω ≤ θ ≤ κ. Then NS

[ν]<θ

κ,λ denotes the smallest
such ideal.

Note that by Lemma 6.1 NS
[λ]<ω

κ,λ = NSκ,λ.

Lemma 6.3 ([23]). Suppose θ is an uncountable cardinal < κ and ν is a cardinal
with κ ≤ ν ≤ λ. Then the set of all a ∈ Pκ(λ) such that cf(∪(a ∩ τ)) < θ for some
regular cardinal τ with κ ≤ τ ≤ ν lies in NS

[ν]<θ

κ,λ .

As will now be shown, [ν]<θ-normality can be seen as the combination of ν-normality
with a distributivity property.

Definition. For an ideal H on Pκ(λ) and A ∈ H+,MH,A is the set of all Q ⊆
H+ ∩ P (A) such that (a) the intersection of any two distinct members of Q lies in H,
and (b) for every C ∈ H+ ∩ P (A), there is B ∈ Q with B ∩ C ∈ H+.

Definition. Suppose H is an ideal on Pκ(λ) and µ, ρ are two cardinals ≥ 1. Then
H is (µ, ρ)-distributive (respectively, disjointly (µ, ρ)-distributive) if given A ∈ H+ and
Qα ∈ MH,A (respectively, Qα ∈ Md

H,A) for α < µ with |Qα| ≤ ρ, there are C ∈ H+∩P (A)
and h ∈ ∏

α<µ Qα such that C − h(α) ∈ H for all α < µ.
The following generalizes a result of Johnson [14].

Lemma 6.4. Suppose ν is a cardinal with κ ≤ ν ≤ λ, H is a ν-normal ideal on
Pκ(λ), and θ is a regular uncountable cardinal which is ≤ κ if κ is a limit cardinal, and
< κ otherwise. Then the following are equivalent :

(i) H is [ν]<θ-normal.
(ii) H is (µ, ν<θ)-distributive for every infinite cardinal µ < θ.
(iii) H is disjointly (µ, ν)-distributive for every infinite cardinal µ < θ.

Proof. (i) → (ii): Assume (i) holds, and let µ be an infinite cardinal < θ. Fix
A ∈ H+ and Qα ∈ MH,A for α < µ with |Qα| ≤ ν<θ. Select a one-to-one j : µ× ν → ν.
Given α < µ, pick a one-to-one fα : Qα → Pθ(j“({α} × ν)) and define kα : Qα → Pθ(ν)
by: kα(B) = fα(B) ∪ {|fα(B)|} if θ = κ, and kα(B) = fα(B) otherwise. Next, define
`α : Qα → P (Pκ(λ)) by `α(B) = {a ∈ B : kα(b) ⊆ a}, and put Rα = ran(`α) and
Wα = A− (∪Rα). Clearly Rα ∈ MH,A, consequently Wα ∈ H.

Define C as follows: If θ < κ, C is the set of all a ∈ A − (
⋃

α<µ Wα) such that
θ ⊆ a. If θ = κ, C is the set of all a ∈ A − (

⋃
α<µ Wα) such that a ∩ κ is an infinite

cardinal of cofinality > µ. Then C ∈ H+ by Lemma 6.3. For a ∈ C, pick ta ∈
∏

α<µ Qα

so that a ∈ ta(α) and kα(ta(α)) ⊆ a for all α < µ. Now define g : C → P (ν) by
g(a) =

⋃
α<µ fα(ta(α)). Since g(a) ∈ P|a∩θ|(a) for all a ∈ C, there is D ∈ H+ ∩ P (C)

such that g is constant on D. Pick a ∈ D. Then D ⊆ ⋂
α<µ ta(α).

(ii) → (iii) is immediate.
(iii) → (i): Suppose (iii) holds and fix A ∈ H+ and f : A → P (ν) such that

f(a) ∈ P|a∩θ|(a) for all a ∈ A. Define B by: B = {a ∈ A : θ ⊆ a} if θ < κ, else

B = {a ∈ A : a ∩ κ is an infinite ordinal}.
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Then B ∈ H+, so by ν-normality there are C ∈ H+ ∩ P (B) and µ < θ such that
|f(a)| = µ for all a ∈ C. If µ is finite, then f is constant on some D ∈ H+ ∩ P (C) by
Lemma 6.1. Now suppose µ is infinite. Select a bijection ja : µ → f(a) for each a ∈ C.
Now for α < µ, set

Qα = H+ ∩ {{a ∈ C : ja(α) = β} : β < ν}.

It is simple to check that Qα ∈ Md
H,C . Hence there is h ∈ ∏

α<µ Qα such that⋂
α<µ h(α) ∈ H+. Obviously, f is constant on

⋂
α<µ h(α). ¤

Definition. Given h : λ → Pκ(λ) and a regular infinite cardinal θ < κ, Uθ
h is the

set of all a ∈ Pκ(λ) such that a =
⋃

α∈e h(α) for some e ⊆ a with |e| = θ.

We are looking for pairs (h, θ) such that Uθ
h ∈ (NS

[λ]<θ

κ,λ )+.

Definition. Given a regular infinite cardinal θ < κ, H θ
κ,λ is the set all h : λ →

Pκ(λ) such that for each a ∈ Pκ(λ), there is e ∈ Pθ+(λ) with a ⊆ ⋃
α∈e h(α).

The easy proof of the following is left to the reader.

Lemma 6.5. Suppose θ is a regular infinite cardinal < κ. Then

H θ
κ,λ = {h : λ → Pκ(λ) : Uθ

h ∈ I+
κ,λ}.

Lemma 6.6. Suppose h, k ∈ H θ
κ,λ, where θ is a regular infinite cardinal < κ. Then

Uθ
h∆Uθ

k ∈ NSκ,λ.

Proof. Define f : λ → Pθ+(λ) and g : λ → Pθ+(λ) so that for every α ∈ λ,
h(α) ⊆ ⋃

β∈f(α) k(β) and k(α) ⊆ ⋃
β∈g(α) h(β). Let D be the set of all a ∈ Pκ(λ) such

that θ ⊆ a and

h(α) ∪ k(α) ∪ f(α) ∪ g(α) ⊆ a

for all α ∈ a. Then D ∈ NS∗κ,λ and Uθ
h ∩D = Uθ

k ∩D. ¤

Lemma 6.7. Suppose κ → (κ, θ)2 and h ∈ H θ
κ,λ, where θ is a regular infinite

cardinal < κ. Then Uθ
h ∈ (NS

[λ]<θ

κ,λ )+.

Proof. The existence of a [λ]<θ-normal ideal on Pκ(λ) follows from Lemmas
5.2 and 6.2 (i). To establish that Uθ

h /∈ NS
[λ]<θ

κ,λ , it suffices to show that for every
f : Pθ(λ) → Pκ(λ), there is a ∈ Uθ

h such that θ ⊆ a and f(z) ⊆ a for every z ∈ Pθ(a).
Given f , define aβ , bβ ∈ Pκ(λ) and eβ ∈ Pθ+(λ) for β < θ by:

(0) a0 = θ ∪ (
⋃

α∈θ h(α)).
(1) aβ ⊆ bβ .
(2) bβ =

⋃
α∈eβ

h(α).
(3) aβ+1 = bβ ∪ (∪{f(z) : z ∈ Pθ(bβ)}).
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(4) aβ =
⋃

γ<β aγ if β is a limit ordinal > 0.
(5) ψα =

⋃
C∈Tα

ψ(C).

Now set a =
⋃

β<θ bβ . Obviously, θ ⊆ a. Moreover, a ∈ Uθ
h since

a =
⋃ {

h(α) : α ∈ θ
⋃ ( ⋃

β<θ

eβ

)}
.

Finally, given z ∈ Pθ(a), there is β < θ such that z ⊆ bβ , and then f(z) ⊆ aβ+1 ⊆ a. ¤

It remains to discuss whether H θ
κ,λ 6= φ.

Lemma 6.8. Suppose that θ is a regular infinite cardinal < κ and either cf(λ) ≥ κ

and u(κ, λ) = λ, or cf(λ) ≤ θ and u(κ, µ) ≤ λ for every cardinal µ with κ < µ < λ.
Then H θ

κ,λ 6= φ.

Proof. Select h : λ → ⋃
κ≤ξ<λ Pκ(ξ) so that

⋃

κ≤ξ<λ

Pκ(ξ) =
⋃

α<λ

P
(
h(α)

)
.

Then it is simple to see that h ∈ H θ
κ,λ. ¤

Definition. Given a regular infinite cardinal θ < κ, T θ
κ,λ (respectively, T≤θ

κ,λ) is
the set of all a ∈ Pκ(λ) such that ∪(a ∩ τ) is a limit ordinal of cofinality θ (respectively,
≤ θ) for every regular cardinal τ with κ ≤ τ ≤ λ.

Lemma 6.9. Suppose h : λ → Pκ(λ) and θ is a regular infinite cardinal < κ. Then
Uθ

h − T≤θ
κ,λ ∈ NSκ,λ.

Proof. Set β̃ = max{κ, |β|+} for every β < λ. Let A be the set of all a ∈ Pκ(λ)
such that

∪(
h(α) ∩ β̃

)
< ∪(a ∩ β̃)

for all α, β ∈ a, and γ + 1 ∈ a for all γ ∈ a. Then A ∈ NS∗κ,λ and A ∩ Uθ
h ⊆ T≤θ

κ,λ. ¤

Lemma 6.10. Suppose h : λ → Pκ(λ) and θ is a regular infinite cardinal < κ.
Then Uθ

h − T θ
κ,λ ∈ NS

[λ]<θ

κ,λ .

Proof. By Lemmas 6.3 and 6.9. ¤

Lemma 6.11. Suppose that θ is a regular infinite cardinal < κ and either κ = θ+

or λ < κ+θ+
. Then T≤θ

κ,λ − Uθ
h ∈ NSκ,λ for some h : λ → Pκ(λ).

Proof. If κ = θ+ and h : λ → Pκ(λ) is defined by h(α) = {α}, then

{a ∈ Pκ(λ) : θ ⊆ a} ⊆ Uθ
h .
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For the other case, see Proposition 5.6 in [10]. ¤

We are now in a position to prove the main result of this section.

Proposition 6.12. Suppose that cov(Mκ,λ<κ) > λ<κ, θ is a regular infinite

cardinal < κ such that κ → (κ, θ)2, h : λ → Pκ(λ) and Z ∈ Kκ,λ ∩ P (Uθ
h) ∩ (NS

[λ]<θ

κ,λ )+.

Then (NS
[λ]<θ

κ,λ |Z)+ → (I+
κ,λ, θ ⊕ 1)2.

Proof. Set H = NS
[λ]<θ

κ,λ |Z. Fix B ∈ H+ and F : Pκ(λ) × Pκ(λ) → 2. Set
A = B ∩ Z.

If (H, A, F ) is 0-nice, then clearly so is (Iκ,λ|A,A, F ) and therefore by Lemma 5.3
F is constantly 0 on [D]2 for some D ∈ I+

κ,λ ∩ P (A).
Next, suppose (H, A, F ) is not 0-nice. Pick g : θ×A → λ so that {g(α, b) : α < θ} ⊆ b

and b =
⋃

α<θ h(g(α, b)) for every b ∈ A. For α < θ, define a function χα on H+ ∩ P (A)
by

χα(C) = H+ ∩ {{b ∈ C : g(α, b) = ξ} : ξ < λ}.

It is simple to check that χα(C) ∈ Md
H,C . Let ϕ,ψ be as in the proof of Lemma 5.4. Now

appealing to Lemma 6.4, define

Rα, Tα, Qα ∈ {W ∈ Md
H,A : |W | ≤ λ|1+α|}

and ψα : Qα → A for α < θ by:

(0) R0 = {A}.
(1) Tα =

⋃
C∈Rα

χα(C).
(2) Qα =

⋃
C∈Tα

ϕ(C).
(3) Rα+1 = Qα.
(4) Rα = H+ ∩ {⋂β<α q(β) : q ∈ ∏

β<α Qβ} if α is a limit ordinal > 0.
(5) ψα =

⋃
C∈Tα

ψ(C).

Finally, select b ∈ ⋂
α<θ(∪Qα). Let k ∈ ∏

α<θ Qα be such that b ∈ ⋂
α<θ k(α). Stipulate

that aα = ψα

(
k(α)

)
for α < θ, and aθ = b. Then clearly (a0, a1, . . . , aθ) ∈ [A]θ+1 and

F takes the constant value 1 on [{aδ : δ ≤ θ}]2. Moreover, g(α, aα) = g(α, aδ) whenever
α < δ ≤ θ. It follows that

aθ =
⋃

α<θ

h(g(α, aθ)) ⊆
⋃

α<θ

aα. ¤

Corollary 6.13. Suppose that (a) cov(Mκ,λ<κ) > λ<κ, (b) θ is a regular infinite
cardinal < κ such that κ → (κ, θ)2, (c) τθ < κ for every infinite cardinal τ < κ, and
(d) either cf(λ) ≥ κ and λ<κ = λ, or cf(λ) ≤ θ and µ<κ ≤ λ for every cardinal µ with
κ < µ < λ. Then (NS

[λ]<θ

κ,λ |Z)+ → (I+
κ,λ, θ ⊕ 1)2 for some Z ∈ (NS

[λ]<θ

κ,λ )+.

Proof. By Lemma 6.8, there is h ∈ H θ
κ,λ. Set Z = Uθ

h . Then Z ∈ (NS
[λ]<θ

κ,λ )+ by
Lemma 6.7. That Z ∈ Kκ,λ follows from (c). ¤
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Corollary 6.14. Suppose that (a) cov(Mκ,λ<κ) > λ<κ, (b) θ is a regular infinite
cardinal < κ such that κ → (κ, θ)2, (c) τθ < κ for every infinite cardinal τ < κ, and (d)
either κ = θ+ or λ < κ+θ+

. Then (NS
[λ]<θ

κ,λ |T θ
κ,λ)+ → (I+

κ,λ, θ ⊕ 1)2.

Proof. By Lemma 6.11, there is h : λ → Pκ(λ) such that T≤θ
κ,λ − Uθ

h ∈ NSκ,λ. It

can be checked that T≤θ
κ,λ ∈ NS+

κ,λ, so h ∈ H θ
κ,λ. Set Z = Uθ

h∩T θ
κ,λ. Then Z ∈ (NS

[λ]<θ

κ,λ )+

by Lemmas 6.7 and 6.10, and Z ∈ Kκ,λ because of (c). Moreover,

NS
[λ]<θ

κ,λ |Z = NS
[λ]<θ

κ,λ |T θ
κ,λ

by Lemma 6.10. ¤

Thus for example if CH holds and cov(Mω2,ω3) > ω3, then

(
NSω3,ω3 |Tω

ω2,ω3

)+ → (
I+
ω2,ω3

, ω ⊕ 1
)2

.

Left unanswered is whether it is possible that NS+
ω1,ω2

→ (I+
ω1,ω2

, ω ⊕ 1)2. Note that by
the results above if NS+

ω1,ω2
∩ Kω1,ω2 6= φ and cov(Mω1,ω2) > ω2, then

(
NSω1,ω2 |Z

)+ → (
I+
ω1,ω2

, ω ⊕ 1
)2

for some Z ∈ NS+
ω1,ω2

. We do not know whether it is consistent that NS+
ω1,ω2

∩Kω1,ω2 6=
φ.

7. I+
κ,λ → (I+

κ,λ)3.

Definition. Given X, Y ⊆ P
(
Pκ(λ)

)
and n < ω, X → (Y )n means that for all

A ∈ X and F : [Pκ(λ)]n → 2, there is B ∈ Y ∩ P (A) such that F is constant on [B]n.

The main purpose of this section is to discuss the partition relation I+
κ,λ → (I+

κ,λ)n.
To start, let us show that I+

κ,λ → (I+
κ,λ)3 implies that I+

κ,λ → (I+
κ,λ)n for all n ≥ 1.

Lemma 7.1 ([18]). Suppose H is (ν, 2)-distributive, where H is an ideal on Pκ(λ)
and ν an infinite cardinal < κ. Then 2ν < κ.

The following is essentially due to Johnson (see Theorem 6.2 in [14]).

Lemma 7.2. Given an ideal H on Pκ(λ), the following are equivalent :

(i) H is (λ<κ, 2)-distributive and weakly selective.
(ii) H+ → (H+)n for all n with 0 < n < ω.
(iii) H+ → (H+)3.

Proof. (i) → (ii): Assume (i) holds. To prove (ii), we proceed by induction on
n. It is immediate that H+ → (H+)1. Now suppose H+ → (H+)n for some n with
0 < n < ω. Fix A ∈ H+ and F : [A]n+1 → 2. Since H is (λ<κ, 2)-distributive, there are
B ∈ H+ ∩ P (A) and f : [A]n → 2 such that
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{b ∈ B : an ( b and F (a1, . . . , an, b) 6= f(a1, . . . , an)} ∈ H

for every (a1, . . . , an) ∈ [A]n. Because κ is inaccessible by Lemma 7.1 and H is weakly
selective, there is C ∈ H+ ∩ P (B) such that F (a1, . . . , an, b) = f(a1, . . . , an) whenever
(a1, . . . , an, b) ∈ [C]n+1. Finally, by inductive hypothesis there is D ∈ H+ ∩ P (C) such
that f is constant on [D]n. Clearly, F is constant on [D]n+1.

(ii) → (iii) is trivial.
(iii) → (i): Assume (iii) holds. To show that H is weakly selective, let A ∈ H+ and

Ba ∈ H for a ∈ A. Define F : [A]2 → 2 by F (a, b) = 0 if and only if b ∈ Ba. Then F

is constant on [C]2 for some C ∈ H+ ∩ P (A). It is simple to check that b /∈ Ba for all
(a, b) ∈ [C]2. Next, let us establish that H is (λ<κ, 2)-distributive. Thus let A ∈ H+

and Ba ⊆ Pκ(λ) for a ∈ Pκ(λ). Define F : [A]3 → 2 by:

F (a, b, c) = 0 iff ∀e ⊆ a(b ∈ Be ↔ c ∈ Be).

Pick C ∈ H+∩P (A) so that F is constant on [C]3. Since κ is clearly weakly compact and
hence inaccessible, F must be identically 0 on [C]3. Now define h ∈ ∏

e∈Pκ(λ){Be, Pκ(λ)−
Be} as follows. Given e ∈ Pκ(λ), pick (a, b) ∈ [C]2 with e ⊆ a, and let h(e) = Be if and
only if b ∈ Be. If d ∈ C and a ( d, then d ( c for some c ∈ C with b ( c, so that

d ∈ Be ↔ c ∈ Be ↔ b ∈ Be

and consequently d ∈ Be. Thus C −Be ∈ Iκ,λ. ¤

Definition. For a cardinal µ ≥ κ, κ is mildly µ-ineffable if given ta ∈ a2 for
a ∈ Pκ(µ), there is g ∈ µ2 such that for every a ∈ Pκ(µ),

{b ∈ Pκ(µ) : a ⊆ b and tb ¹ a = g ¹ a} ∈ I+
κ,µ.

It is simple to see that if κ is µ-compact, then κ is mildly µ-ineffable. An immediate
consequence is the result of Rado [29] that ω is mildly µ-ineffable for every infinite
cardinal µ.

The following refines a result of Di Prisco and Zwicker [9].

Lemma 7.3. Suppose κ is mildly λ<κ-ineffable, H is an ideal on Pκ(λ) and Bδ ⊆
Pκ(λ) for δ ∈ λ<κ. Then there is h ∈ ∏

δ∈λ<κ{Bδ, Pκ(λ)−Bδ} such that
⋂

δ∈c h(δ) ∈ H+

for every c ∈ Pκ(λ<κ)− {φ}.
Proof. For δ ∈ λ<κ, set B0

δ = Bδ and B1
δ = Pκ(λ) − Bδ. Now for each d ∈

Pκ(λ<κ) − {φ} pick td ∈ d2 so that
⋂

δ∈d B
td(δ)
δ ∈ H+. Select g : λ<κ → 2 so that for

every c ∈ Pκ(λ<κ) − {φ}, there is d ∈ Pκ(λ<κ) with c ⊆ d and td ¹ c = g ¹ c. Then
obviously

⋂
δ∈c B

g(δ)
δ ∈ H+ for any c ∈ Pκ(λ<κ)− {φ}. ¤

Proposition 7.4. Suppose κ is mildly λ<κ-ineffable and H is an ideal on Pκ(λ)
such that cof(H) < cov(Mκ,λ<κ). Then H+ → (H+)n for all n with 0 < n < ω.
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Proof. By Lemma 7.2 it suffices to establish that H is weakly selective and
(λ<κ, 2)-distributive. Weak selectivity is direct from Proposition 4.3. To show (λ<κ, 2)-
distributivity, let A ∈ H+ and Bδ ⊆ A for δ ∈ λ<κ. By Lemma 7.3 one can find
h ∈ ∏

δ∈λ<κ{Bδ, A − Bδ} so that
⋂

δ∈c h(δ) ∈ H+ for every c ∈ Pκ(λ<κ) − {φ}. By
Proposition 4.3 pH > λ<κ, so there must be C ∈ H+ such that C − h(δ) ∈ H for all
δ < λ<κ. ¤

Corollary 7.5. Suppose κ is mildly λ<κ-ineffable and cov(Mκ,λ<κ) > λ<κ.
Then I+

κ,λ → (I+
κ,λ)n for all n with 0 < n < ω.

The following generalization is immediate from Proposition 2.21:

Corollary 7.6. Suppose that κ is mildly λ<κ-ineffable, cov(Mκ,λ<κ) > λ<κ and
(Q,<) is a κ-directed partially ordered set such that λ ≤ |Q| ≤ λ<κ and |{r ∈ Q : r <

q}| < κ for all q ∈ Q. Then given f : Qn → 2, where 0 < n < ω, there is a cofinal subset
T of Q such that f is constant on

{(q1, . . . , qn) ∈ Tn : q1 < · · · < qn}.

Note that Corollary 5.6 and Corollary 5.9 can be extended in the same way.

8. Isomorphisms.

We will now prove that if λ<κ < cov(Mκ,λ<κ) and Kκ,λ 6= φ, then any two cofinal
subsets of Pκ(λ) have isomorphic cofinal subsets.

Lemma 8.1. Suppose that (Q,<) is a κ-directed partially ordered set with no max-
imal element and H is an ideal on Pκ(λ) with cof(H) < cov(Mκ,λ<κ). Suppose further
that A ∈ H+ and h : A → Q are such that h“(A ∩ R) is cofinal in Q for every R ∈ H∗.
Then:

(i) If |{a ∈ A : h(a) < h(b)}| < κ for every b ∈ A, then there is C ∈ H+ ∩ P (A) such
that for all a, b ∈ C,

h(a) < h(b) → a ( b.

(ii) If H∗ ∩ Kκ,λ 6= φ, then there is D ∈ H+ ∩ P (A) such that for all a, b ∈ D,

a ( b → h(a) < h(b).

Proof.

(i) Assume that |{a ∈ A : h(a) < h(b)}| < κ for all b ∈ A. Pick X ⊆ H so
that |X| = cof(H) and H =

⋃
B∈X P (B). For B ∈ X, let DB be the set of all

p ∈ Fn(A, 2, κ) such that there is b ∈ dom(p) with the following properties:

(0) b /∈ B.
(1) dom(p) = {b} ∪ {a ∈ A : h(a) < h(b)}.
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(2) p(b) = 1.
(3) a ( b for every a ∈ dom(p) such that a 6= b and p(a) = 1.

Let us establish that DB is dense. Thus fix s ∈ Fn(A, 2, κ). Pick q ∈ Q so that
h(a) < q for every a ∈ dom(s). There is

b ∈ {c ∈ A−B : ∀a ∈ s−1({1})(a ( c)}

such that q ≤ h(b). Define

p : {b} ∪ {a ∈ A : h(a) < h(b)} → 2

by:

(α) p(b) = 1.
(β) p ¹ dom(s) = s.
(γ) p(c) = 0 for every c ∈ dom(p) such that c 6= b and c /∈ dom(s).

Clearly, s ⊆ p and p ∈ DB .
Let G ⊆ Fn(A, 2, κ) be a filter such that G ∩ DB 6= φ for every B ∈ X. Pick
ϕ ∈ ∏

B∈X(G ∩DB) and let < bB : B ∈ X > be such that

dom
(
ϕ(B)

)
= {bB} ∪ {a ∈ A : h(a) < h(bB)}.

Stipulate that C = {bB : B ∈ X}. Obviously, C ∈ H+ ∩ P (A). Now suppose
B0, B1 ∈ X are such that h(bB0) < h(bB1). Select r ∈ G so that ϕ(B0)∪ϕ(B1) ⊆ r.
Then

(
ϕ(B1)(bB0)

)
= r(bB0) =

(
ϕ(B0)

)
(bB0) = 1

and hence bB0 ( bB1 . Thus C is as desired.
(ii) Assume H∗ ∩ Kκ,λ 6= φ. Set Sa = {b ∈ A : h(b) > h(a)} for a ∈ A. Then⋂

a∈x Sa ∈ H+ for every x ∈ Pκ(A)− {φ}. Hence by Lemma 4.1 and Proposition
4.3 there is D ∈ H+ ∩ P (A) such that b ∈ Sa whenever (a, b) ∈ [D]2. ¤

Proposition 8.2. Suppose that (Q,<) is a κ-directed partially ordered set such
that (a) |{r ∈ Q : r < q}| < κ for all q ∈ Q, and (b) λ<κ is the least cardinality of
any cofinal subset of (Q,<). Suppose further that H is an ideal on Pκ(λ) such that
H∗ ∩ Kκ,λ 6= φ and cof(H) < cov(Mκ,λ<κ). Then for every A ∈ H+, there exist
D ∈ H+∩P (A) and a cofinal subset T of Q such that (D,() and (T,<) are isomorphic.

Proof. Fix A ∈ H+. Pick Z ∈ H∗ ∩Kκ,λ and a cofinal subset R of Q of size λ<κ.
Set A∩Z = {aδ : δ < λ<κ} and R = {ed : d ∈ Z}. Define a one-to-one h : A∩Z → Q as
follows: suppose h(aξ) has already been defined for each ξ < δ. There is q ∈ Q such that
q 
 h(aξ) for all ξ < δ. Select r ∈ Q so that q ≤ r and ed ≤ r for every d ∈ Z ∩ P (aδ).
Now stipulate that h(aδ) = r.

Note that h“B is a cofinal subset of Q for every B ∈ I+
κ,λ ∩ P (A ∩ Z). It is readily
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seen that Q has no maximal element. Hence by Lemma 8.1 there is C ∈ H+ ∩P (A∩Z)
such that

h(a) < h(b) → a ( b

for all a, b ∈ C, and D ∈ H+ ∩ P (C) such that

a ( b → h(a) < h(b)

for all a, b ∈ D. Obviously, (D,() and (h“D, <) are isomorphic. ¤

Corollary 8.3. Suppose that ν is a cardinal with λ ≤ ν ≤ λ<κ and H is an ideal
on Pκ(λ) such that H∗ ∩ Kκ,λ 6= φ and cof(H) < cov(Mκ,λ<κ). Then for all A ∈ H+

and B ∈ I+
κ,ν , there are D ∈ H+∩P (A) and T ∈ I+

κ,ν ∩P (B) such that (D,() and (T,()
are isomorphic.

Proof. Fix A ∈ H+ and B ∈ I+
κ,ν . By Proposition 2.3 and Corollary 2.8, there

is C ∈ Kκ,ν ∩ P (B). Using Corollary 3.6, u(κ, ν) = ν<κ = λ<κ, so by Proposition 8.2,
there exist D ∈ H+ ∩P (A) and a cofinal subset T of (C,() such that (D,() and (T,()
are isomorphic. Obviously, T ∈ I+

κ,ν ∩ P (B). ¤

It easily follows that if Kκ,λ 6= φ, cov(Mκ,λ<κ) > λ<κ, A ∈ I+
κ,λ and B ∈ I+

κ,ν , where
λ ≤ ν ≤ λ<κ, then A and B have isomorphic cofinal subsets. Note that if Pκ(λ) and
Pκ(λ<κ) have isomorphic subsets, then we must have u(κ, λ) = λ<κ and Kκ,λ 6= φ.

Next we deal with the problem whether Sκ(λ) holds. (Recall that Sκ(λ) asserts that
for any g : Pκ(λ) → Pκ(λ), there is a cofinal subset D of Pκ(λ) such that the image under
f of every noncofinal subset of D is noncofinal.)

Proposition 8.4. Suppose (Q,<) and H are as in the statement of Proposition
8.2, A ∈ H+ and f : A → Q. Then there is D ∈ H+ ∩ P (A) such that for every
B ∈ Iκ,λ ∩ P (D), f“B is not cofinal in (Q,<).

Proof. Fix Z ∈ H∗ ∩ Kκ,λ. A slight modification of the proof of Proposition 8.2
yields the existence of (a) a one-to-one h : A ∩ Z → Q such that f(a) ≤ h(a) for all
a ∈ A ∩ Z, and (b) D ∈ H+ ∩ P (A ∩ Z) such that

h(a) < h(b) → a ( b

for all a, b ∈ D. Given B ∈ Iκ,λ ∩ P (D), there is a ∈ D such that

B ∩ {b ∈ Pκ(λ) : a ⊆ b} = φ.

Then

h“B ∩ {q ∈ Q : h(a) ≤ q} = φ

and hence
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f“B ∩ {q ∈ Q : h(a) ≤ q} = φ. ¤

Corollary 8.5. Suppose λ<κ < cov(Mκ,λ<κ), Kκ,λ 6= φ and g : Pκ(λ) → Pκ(λ).
Then given E ∈ I+

κ,λ, there is D ∈ I+
κ,λ ∩ P (E) such that g“B ∈ Iκ,λ for any B ∈

Iκ,λ ∩ P (D).

Proof. Using Proposition 2.3, pick A ∈ Kκ,λ ∩ P (E). Define f : A → A so that
g(a) ⊆ f(a) for all a ∈ A. By Proposition 8.4, there is D ∈ (Iκ,λ|A)+ ∩ P (A) such that
for every B ∈ Iκ,λ ∩ P (D), f“B is not cofinal in (A,(). It is simple to see that D is as
desired. ¤

To conclude the section, let us show that the two statements “Sκ(λ) holds” and
“pκ,λ > u(κ, λ)” are closely related.

Proposition 8.6. Suppose that Kκ,λ 6= φ and Sκ(λ) holds. Then pκ,λ > u(κ, λ).

Proof. Select A ∈ I+
κ,λ so that |A∩P (e)| < κ for all e ∈ Pκ(λ). Let Sa ⊆ Pκ(λ) for

a ∈ A be such that
⋂

a∈x Sa ∈ I+
κ,λ for every x ∈ Pκ(A)−{φ}. Define g : Pκ(λ) → Pκ(λ)

so that for every d ∈ Pκ(λ), (a) d ⊆ g(d), and (b) g(d) ∈ Sa for every a ∈ A ∩ P (d).
Pick D ∈ I+

κ,λ so that g“B ∈ Iκ,λ for all B ∈ Iκ,λ ∩ P (D). Now set C = g“D. Clearly,
C ∈ I+

κ,λ. Moreover for every a ∈ A, C − Sa ∈ Iκ,λ since C − Sa ⊆ g“Ba, where
Ba = {d ∈ D : a * d}. ¤

Conservely, pκ,λ > u(κ, λ) implies that Sκ(λ) holds.

Proposition 8.7. Let E ∈ I+
κ,λ be such that pIκ,λ|E > u(κ, λ). Then for every

g : Pκ(λ) → Pκ(λ), there is D ∈ I+
κ,λ∩P (E) such that g“B ∈ Iκ,λ for any B ∈ Iκ,λ∩P (D).

Proof. Select A ∈ I+
κ,λ ∩ P (E) so that |A| = u(κ, λ). Set A = {aα : α < u(κ, λ)}.

Fix g : Pκ(λ) → Pκ(λ). Define f : A → A so that for every α < u(κ, λ), (i) aα ∪ g(aα) ⊆
f(aα), and (ii) f(aα) ⊆ f(aβ) for all β < α. For a ∈ A, set Za = {f(b) : b ∈ A

and a ⊆ b}. It is readily checked that
⋂

a∈x Za ∈ I+
κ,λ for every x ∈ Pκ(A) − {φ}. It

follows that there is C ∈ I+
κ,λ ∩ P (A) such that C − Za ∈ Iκ,λ for every a ∈ A. Now

set D = f−1(C). Then D ∈ I+
κ,λ since f−1(C ∩ Za) ⊆ {b ∈ D : a ⊆ b} for all a ∈ A.

Given B ∈ Iκ,λ ∩ P (D), select a ∈ A so that {b ∈ B : a ⊆ b} = φ, and w ∈ Pκ(λ) so
that {c ∈ C − Za : w ⊆ c} = φ. Then {z ∈ g“B : w ⊆ z} = φ since for every b ∈ B,
g(b) ⊆ f(b) ∈ C − Za. Thus, g“B ∈ Iκ,λ. ¤

9. Negative results.

This section presents some negative results concerning combinatorial properties of
Pκ(λ) considered above. Several of these results rely on the fact that restrictions of Iκ,λ

may have some degree of normality. It is straightforward to check the following:

Lemma 9.1. Suppose C ∈ I+
κ,λ and θ, ν are two cardinals such that ω ≤ θ ≤ κ ≤

ν ≤ λ. Then the following are equivalent :

(i) Iκ,λ|C is [ν]<θ-normal.
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(ii) Iκ,λ|C = NS
[ν]<θ

κ,λ |C.

Let us first describe a situation when {A : pIκ,λ|A > κ} is not dense in (I+
κ,λ,⊆).

Proposition 9.2. Suppose C ∈ I+
κ,λ is such that Iκ,λ|C is κ-normal. Then

pIκ,λ|A = κ for every A ∈ I+
κ,λ ∩ P (C).

Proof. Let B ∈ (NSκ
κ,λ)+ and set H = NSκ

κ,λ|B. Then pH = κ by Corollary 3.3
and Proposition 3.4 of [27]. ¤

The next results are about the unbalanced partition relation I+
κ,λ → (I+

κ,λ, θ)2. The
following technical observation is crucial:

Lemma 9.3. Suppose H is a ν-normal ideal on Pκ(λ) such that H+ → (H+, θ+)2,
where θ, ν are two infinite cardinals with θ < κ ≤ ν ≤ λ. Then H is [ν]<θ+

-normal.

Proof. By Proposition 5.9 of [18] and Lemma 6.4. ¤

Proposition 9.4. Suppose H is a κ-normal ideal on Pκ(λ) such that H+ →
(H+, θ+)2, where θ is an infinite cardinal < κ. Then

{a ∈ Pκ(λ) : cf
(∪(a ∩ κ)

) ≤ θ} ∈ H.

Proof. By Lemmas 6.3 and 9.3. ¤

Corollary 9.5. Suppose Iκ,λ|C is κ-normal for some C ∈ (
NS

[λ]<θ

κ,λ

)∗, where θ

is a regular infinite cardinal < κ. Then I+
κ,λ−→/ (I+

κ,λ, θ+)2.

Proof. Setting A = {a ∈ Pκ(λ) : cf
(∪(a ∩ κ)

)
= θ}, it is simple to check that

A ∈ (NS
[λ]<θ

κ,λ )+. It follows that A ∩ C ∈ I+
κ,λ. Now by Proposition 9.4,

(
Iκ,λ|(A ∩ C)

)+−→/ (I+
κ,λ, θ+)2. ¤

In particular, if Iκ,λ|C is κ-normal for some C ∈ NS∗κ,λ, then I+
κ,λ−→/ (I+

κ,λ, ω1)2. A
convenient reformulation of the hypothesis of Corollary 9.5 is supplied by the following:

Lemma 9.6 ([24]). Suppose θ is a regular infinite cardinal ≤ κ and ν is a cardinal
with κ ≤ ν ≤ λ. Then the following are equivalent :

(i) Iκ,λ|C is ν-normal for some C ∈ (NS
[λ]<θ

κ,λ )∗.

(ii) cof(NSν
κ,λ|A) ≤ λ for some A ∈ (NS

[λ]<θ

κ,λ )∗.

In particular, cof(NSκ
κ,λ) ≤ λ implies that Iκ,λ|C is κ-normal for some C ∈ NS∗κ,λ.

Definition. cov(λ, κ+, κ+, κ) is the least size of any X ⊆ Pκ+(λ) such that
Pκ+(λ) =

⋃
x∈Pκ(X) P (∪x).

Lemma 9.7 ([26]). cof(NSκ
κ,λ) = max{cof(NSκ), cov(λ, κ+, κ+, κ)}.
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By a result of [24], it follows that if cof(NSκ) ≤ λ < κ+κ, then cof(NSκ
κ,λ) = λ.

If cf(λ) = κ, then for every C ∈ NS∗κ,λ, Iκ,λ|C is not κ-normal:

Proposition 9.8 ([24]). Suppose that cf(λ) = κ and θ is an infinite cardinal < κ

such that τ<θ < λ for every cardinal τ with κ ≤ τ < λ. Then for every C ∈ (NS
[λ]<θ

κ,λ )∗,
Iκ,λ|C is not κ-normal.

Proposition 9.9. Suppose dκ ≤ λ and u(κ+, µ) ≤ λ for every cardinal µ with
κ < µ < λ. Then I+

κ,λ−→/ (I+
κ,λ)2.

Proof. For the case κ = ω = cf(λ) (respectively, κ = ω < cf(λ), ω < κ =
cf(λ)), see [19] (respectively, [22], [21]). Assuming now ω < κ and cf(λ) 6= κ, we
have cov(λ, κ+, κ+, κ) = λ since by results of [31], (1) if λ is a successor cardinal, say
λ = τ+, then cov(λ, κ+, κ+, κ) = λ · cov(τ, κ+, κ+, κ), and (2) if λ is a limit cardinal,
then cov(λ, κ+, κ+, κ) =

⋃
κ<µ<λ cov(µ, κ+, κ+, κ). It follows from Landver’s result [16]

that cof(NSκ) = dκ and Lemma 9.7 that cof(NSκ
κ,λ) = λ. Hence by Corollary 9.5 and

Lemma 9.6, I+
κ,λ−→/ (I+

κ,λ, ω1)2. ¤

The results above do not settle the problem whether I+
κ,λ → (I+

κ,λ, ω)2. The partition
relation H+ → (H+, ω)2 has the following interesting consequence:

Proposition 9.10. Suppose H is an ideal on Pκ(λ) such that H+ → (H+, ω)2

and A ∈ H+. Then there exists B ∈ H+∩P (A) with the property that there is no infinite
strictly decreasing sequence

a0 ) a1 ) a2 ) . . .

of elements of B.

Proof. Let j : A → |A| be a bijection. Since H+ → (H+, ω)2, there is B ∈
H+ ∩ P (A) such that j(a) < j(b) for every (a, b) ∈ [B]2. Clearly B is as desired. ¤

Johnson established the existence of a C ∈ I+
κ,λ such that (Iκ,λ|C)+ → (I+

κ,λ, ω)2

subject to some cardinality assumptions:

Proposition 9.11. Suppose λ is regular and cof(NSµ
κ,λ) ≤ λ for every cardinal

µ with κ ≤ µ < λ. Then setting H =
⋃

κ≤δ<λ NSδ
κ,λ, (a) H is weakly selective, (b)

H+ → (H+, ω + 1)2 and (c) For every A ∈ H+, there is C ∈ H+ ∩ P (A) such that
H|C = Iκ,λ|C.

Proof. By Theorems 1.7, 1.9 and 1.12 of [13] and 1.6 of [14]. ¤

Baumgartner, Carr and Di Prisco have independently shown that {Pκ(λ)} → (I+
κ,λ)3

implies that κ is mildly λ-ineffable (see [6], page 183). This result can be slightly im-
proved:

Proposition 9.12. Suppose {Pκ(λ)} → (I+
κ,λ)3. Then κ is mildly λ<κ-ineffable.
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Proof. Note that κ must be weakly compact and hence inaccessible. Now let
tx ∈ x2 for x ∈ Pκ(Pκ(λ)). Define F : [Pκ(λ)]3 → 2 by stipulating that F (a, b, c) = 0
if and only if tP (b) ¹ P (a) = tP (c) ¹ P (a). Pick A ∈ I+

κ,λ so that F is constant on [A]3.
Then clearly F is identically 0 on [A]3. If (a, b), (a′, b′) ∈ [A]2, then

tP (b) ¹
(
P (a) ∩ P (a′)

)
= tP (c) ¹

(
P (a) ∩ P (a′)

)
= tP (b′) ¹

(
P (a) ∩ P (a′)

)
,

where c is any member of A such that b ( c and b′ ( c. So we can define g : Pκ(λ) → 2
by g =

⋃
(a,b)∈[A]2(tP (b) ¹ P (a)). Now fix x ∈ Pκ(Pκ(λ)). Given y ∈ Pκ

(
Pκ(λ)

)
, select

(a, b) ∈ [A]2 so that x ∪ y ⊆ P (a). Then y ⊆ P (b) and

g ¹ x =
(
tP (b) ¹ P (a)

)
¹ x = tP (b) ¹ x. ¤

As was pointed out by the referee, Proposition 9.12 can also be obtained by using
Abe’s result (see [1], Corollary 4.5 (1)) that {Pκ(λ)} → (I+

κ,λ)3 implies {Pκ(λ<κ)} →
(I+

κ,λ<κ)3.
Our last observation concerns the failure of Sκ(λ). The following is a straightfor-

ward generalization of a result of Galvin (see [38], Theorem 5.1, and also Theorem 5.2,
Corollary 5.4 and Theorem 5.9.).

Proposition 9.13. Suppose Kκ,λ 6= φ and dκ ≤ u(κ, λ) = u(κ+, λ). Then Sκ(λ)
fails.

Proof. Fix Z ∈ Kκ,λ. Note that |Z| = u(κ, λ) by Proposition 2.2. Let Y ∈ I+
κ+,λ

be such that Y ⊆ {y ∈ Pκ+(λ) : |y| = κ} and |Y | = u(κ, λ). For y ∈ Y , select a bijection
iy : κ → y. Let F ⊆ κκ be such that |F | = dκ and for every s ∈ κκ, there is t ∈ F

with the property that s(α) ≤ t(α) for all α < κ. Pick a bijection j : Y × F → Z. For
z ∈ Z, define hz : κ → Pκ(λ) by hz(α) = {iy(ξ) : ξ < t(α)}, where y and t are such that
j(y, t) = z. It is simple to check that for every f : κ → Pκ(λ), there is z ∈ Z such that
f(δ) ⊆ hz(δ) for all δ ∈ κ. Define g : Pκ(λ) → Pκ(λ) by

g(a) =
⋃

z∈Z∩P (a)

hz

((∪(a ∩ κ)
)

+ 1
)
.

Now fix A ∈ I+
κ,λ. For δ ∈ κ, set Bδ = {a ∈ A : δ /∈ a}. Suppose that g“Bδ ∈ Iκ,λ for all

δ ∈ κ. Then there is z ∈ Z such that

g“Bδ ∩ {b ∈ Pκ(λ) : hz(δ) ⊆ b} = φ

for every δ ∈ κ. Select a ∈ A so that z ⊆ a, and stipulate that δ = (∪(a ∩ κ)) + 1. Then
clearly g(a) ∈ g“Bδ and hz(δ) ⊆ g(a). Contradiction. ¤
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BP5186

14032 CAEN CEDEX

France

E-mail: matet@math.unicaen.fr


