Covering for category and combinatorics on $P_{\kappa}(\lambda)$

By Pierre MATET

(Received Jun. 30, 2003) (Revised Feb. 9, 2005)

Abstract. We study combinatorics on $P_{\kappa}(\lambda)$ under the assumption that $\mathbf{cov}(\mathbf{M}_{\kappa,\lambda^{<\kappa}}) > \lambda^{<\kappa}$.

0. Introduction.

Galvin (see [3]) established that if Martin's axiom holds and λ is an uncountable cardinal $\langle 2^{\aleph_0}$, then $I^+_{\omega,\lambda} \to (I^+_{\omega,\lambda})^2$. Jech and Shelah [12] observed that the conclusion can be strengthened to " $I^+_{\omega,\lambda} \to (I^+_{\omega,\lambda})^n$ whenever $0 < n < \omega$ ". Moreover, they proved that $I^+_{\omega,\omega_1} \to (I^+_{\omega,\omega_1})^n$ for all n with $0 < n < \omega$ in the Cohen model for $2^{\aleph_0} = \aleph_2$.

Johnson [14] asked the following question: if κ is mildly λ -ineffable, where κ is a regular uncountable cardinal and λ a cardinal $> \kappa$, is it the case that $I_{\kappa,\lambda}$ is $(\lambda, 2)$ -distributive? Abe [2] answered the question in the negative by showing that if κ is an uncountable strongly compact cardinal and λ a strong limit cardinal $> \kappa$ of cofinality $< \kappa$, then (a) $I_{\kappa,\lambda}$ is not $(\lambda, 2)$ -distributive, and (b) $I^+_{\kappa,\lambda} \not\longrightarrow (I^+_{\kappa,\lambda})^2$. This led him to ask whether the following are theorems in ZFC: (1) $I_{\kappa,\lambda}$ is not $(\lambda, 2)$ -distributive for any regular uncountable cardinal κ and cardinal $\lambda > \kappa$. (2) $I^+_{\kappa,\lambda} \not\longrightarrow (I^+_{\kappa,\lambda})^2$ for any κ and λ as in (1). Shioya [32] provided a negative answer to Abe's questions by establishing the consistency, relative to a supercompact cardinal, of "there is a regular uncountable cardinal $\kappa_{\kappa,\kappa^+} \rightarrow (I^+_{\kappa,\kappa^+})^n$ for all n with $0 < n < \omega$ (and therefore I_{κ,κ^+} is $(\kappa^+, 2)$ -distributive)".

Concerning another combinatorial aspect of $P_{\kappa}(\lambda)$, let $S_{\kappa}(\lambda)$ assert the following: For every function $g : P_{\kappa}(\lambda) \to P_{\kappa}(\lambda)$, there is $A \in I^+_{\kappa,\lambda}$ such that for every $B \subseteq A$ with B in $I_{\kappa,\lambda}$, $g^{\mu}B$ is in $I_{\kappa,\lambda}$. Strengthening a result of Galvin (see [38]), Fleissner (see [38]) established that if $D(\omega)^{\lambda}$ is not the union of λ nowhere dense sets, where λ is an uncountable cardinal and $D(\omega)$ denotes the discrete topological space of cardinality \aleph_0 , then $S_{\omega}(\lambda)$ holds. Zwicker [38] wondered whether these results of Galvin and Fleissner could be extended to show $S_{\kappa}(\lambda)$ consistent for regular uncountable κ .

The results of Galvin and Jech-Shelah were revisited in [25] where it was shown that if λ is an uncountable cardinal such that $\lambda < \mathbf{cov}(\mathbf{M}_{\omega,\lambda})$, then $\mathfrak{p}_{\omega,\lambda} \geq \lambda^+$ and $I_{\omega,\lambda}$ is weakly selective (and hence $I^+_{\omega,\lambda} \to (I^+_{\omega,\lambda})^n$ whenever $0 < n < \omega$). The present paper is a continuation of [25]. Its purpose is to generalize results of [25] to the case of an uncountable κ . Specifically we prove the following (focusing for simplicity on the case $\lambda = \kappa^+$):

²⁰⁰⁰ Mathematics Subject Classification. 03E02, 03E55.

Key Words and Phrases. $P_{\kappa}(\lambda)$, partition relation.

PROPOSITION 1. Suppose that κ is a regular infinite cardinal and $\operatorname{cov}(\mathbf{M}_{\kappa,\kappa^+}) > \kappa^+$. Then:

- (i) I_{κ,κ^+} is weakly selective.
- (ii) $\mathfrak{p}_{\kappa,\kappa^+} > \kappa^+$.
- (iii) For every infinite cardinal $\theta \leq \kappa, \ \kappa \to (\kappa, \theta)^2$ if and only if $I^+_{\kappa,\kappa^+} \to (I^+_{\kappa,\kappa^+}, \theta)^2$.
- (iv) κ is κ^+ -mildly ineffable if and only if $I^+_{\kappa,\kappa^+} \to (I^+_{\kappa,\kappa^+})^n$ for all n with $0 < n < \omega$.
- (v) If $\tau^{\aleph_0} < \kappa$ for every cardinal τ with $2 \leq \tau < \kappa$, then

$$(NS_{\kappa,\kappa^+}|A)^+ \to (I^+_{\kappa,\kappa^+},\omega\oplus 1)^2,$$

where

$$A = \left\{ a \in P_{\kappa}(\kappa^{+}) : cf(\cup(a \cap \kappa)) = cf(\cup a) = \omega \right\}.$$

- (vi) Any two cofinal subsets of $P_{\kappa}(\kappa^+)$ have isomorphic cofinal subsets.
- (vii) $S_{\kappa}(\kappa^+)$ holds. In fact, given $g : P_{\kappa}(\kappa^+) \to P_{\kappa}(\kappa^+)$ and $A \in I^+_{\kappa,\kappa^+}$, there is $D \in I^+_{\kappa,\kappa^+} \cap P(A)$ such that $g^{"}B \in I_{\kappa,\lambda}$ for all $B \in I_{\kappa,\lambda} \cap P(D)$.

PROPOSITION 2. It is consistent, relative to a supercompact cardinal, that for the least uncountable measurable cardinal κ , $I^+_{\kappa,\kappa^+} \to (I^+_{\kappa,\kappa^+})^n$ for all n with $0 < n < \omega$.

We also prove the following:

PROPOSITION 3. Suppose that κ is a regular uncountable cardinal and $\mathfrak{d}_{\kappa} = \kappa^+$. Then:

(i) $\{A : \mathfrak{p}_{I_{\kappa,\lambda}|A} \ge \kappa^+\}$ is not dense in $(I^+_{\kappa,\kappa^+},\subseteq)$.

(ii)
$$I^+_{\kappa,\kappa^+} \longrightarrow (I^+_{\kappa,\kappa^+},\omega_1)^2$$
.

(iii) $(I_{\kappa,\kappa^+}|C)^+ \to (I_{\kappa,\kappa^+}^+,\omega+1)^2$ for some $C \in I_{\kappa,\kappa^+}^+$.

We mention that Galvin (see [38]) showed that if κ is a regular infinite cardinal such that $\mathfrak{d}_{\kappa} = \kappa^+$, then $S_{\kappa}(\kappa^+)$ fails.

The structure of this paper is as follows. Section 1 contains standard definitions concerning ideals on $P_{\kappa}(\lambda)$. Section 2 is devoted to the notion of a cofinal Kurepa family on $P_{\kappa}(\lambda)$ (the existence of such a family is hypothesized in many results of the paper). Section 3 reviews a number of facts concerning the covering number $\mathbf{cov}(\mathbf{M}_{\kappa,\lambda})$ and the uniformity number $\mathbf{non}(\mathbf{M}_{\kappa,\lambda})$. In Section 4 we give sufficient conditions for an ideal Hon $P_{\kappa}(\lambda)$ to be weakly selective and verify $\mathfrak{p}_H > \lambda^{<\kappa}$. Section 5 deals with the partition property $H^+ \to (H^+, \theta)^2$, Section 6 with a $P_{\kappa}(\lambda)$ version of the topological partition relation $\kappa \to (\kappa, \text{top } \omega + 1)^2$, and Section 7 with $H^+ \to (H^+)^n$. Section 8 investigates the assertion $S_{\kappa}(\lambda)$ and the existence of isomorphisms between cofinal sets.

We do not know whether the two assumptions (namely that $\operatorname{cov}(\mathbf{M}_{\kappa,\lambda^{<\kappa}}) > \lambda^{<\kappa}$ and there exists a cofinal Kurepa family on $P_{\kappa}(\lambda)$) made in Sections 4–7 to derive properties of $I_{\kappa,\lambda}$ are necessary. Some negative results are presented in the final section of the paper.

1. Ideals.

Throughout the paper κ and λ will denote, respectively, a regular infinite cardinal and a cardinal $> \kappa$.

In this section we review various definitions concerning ideals on $P_{\kappa}(\lambda)$.

For a set A and a cardinal μ , $P_{\mu}(A) = \{a \subseteq A : |a| < \mu\}.$

An *ideal* on a set S is a collection H of subsets of S such that: (i) $S \notin H$, (ii) $P(A) \subseteq H$ for all $A \in H$, (iii) $A \cup B \in H$ for all $A \in H$, and (iv) $\{s\} \in H$ for every $s \in S$.

 $\operatorname{cof}(H)$ is the least cardinality of any $X \subseteq H$ such that $H = \bigcup_{A \in X} P(A)$.

Let $H^+ = P(S) - H$ and $H^* = \{A \subseteq S : S - A \in H\}.$

For $A \in H^+$, $H|A = \{B \subseteq S : B \cap A \in H\}$. It is readily seen that H|A is an ideal on S and $cof(H|A) \leq cof(H)$.

For $A \in H^+$, $H|A = \{B \subseteq S : B \cap A \in H\}$. It is readily seen that H|A is an ideal on S and $\operatorname{cof}(H|A) \leq \operatorname{cof}(H)$.

H is κ -complete if $\cup Y \in H$ for every $Y \in P_{\kappa}(H)$.

If H is κ -complete, $\overline{\operatorname{cof}}(H)$ is the least cardinality of any $X \subseteq H$ such that for every $A \in H$, there is $x \in P_{\kappa}(X)$ with $A \subseteq \cup x$.

 NS_{κ} (respectively, $NS_{\kappa,\lambda}$) denotes the nonstationary ideal on κ (respectively, $P_{\kappa}(\lambda)$). That is, NS_{κ} (respectively, $NS_{\kappa,\lambda}$) is the collection of all subsets B of κ (respectively, $P_{\kappa}(\lambda)$) such that $\{\gamma \in B : \forall \alpha < \gamma \ (f(\alpha) < \gamma)\} \subseteq \{0\}$ (respectively, $\{a \in B : \forall \alpha, \beta \in a(f(\alpha, \beta) \subseteq a)\} \subseteq \{\phi\}$) for some $f : \kappa \to \kappa$ (respectively, $f : \lambda \times \lambda \to P_{\kappa}(\lambda)$).

Given two cardinals ρ and μ with $\omega \leq \rho \leq \mu$, $I_{\rho,\mu}$ is the set of all $A \subseteq P_{\rho}(\mu)$ such that $\{b \in A : a \subseteq b\} = \phi$ for some $a \in P_{\rho}(\mu)$. It is simple to see that $I_{\rho,\mu}$ is an ideal on $P_{\rho}(\mu)$. $u(\rho,\mu)$ denotes the least cardinality of any $A \in I_{\rho,\mu}^+$.

The following lists some elementary properties (see e.g. [10] and [23]):

PROPOSITION 1.1.

- $\begin{array}{ll} (\mathrm{i}) & u(\kappa,\lambda) \geq \lambda. \\ (\mathrm{ii}) & cf(u(\kappa,\lambda)) \geq \kappa. \\ (\mathrm{iii}) & \lambda^{<\kappa} = \max\{2^{<\kappa}, u(\kappa,\lambda)\} = u(\kappa,\lambda^{<\kappa}). \\ (\mathrm{iv}) & u(\kappa,\kappa^{+n}) = \kappa^{+n} \ whenever \ 0 < n < \omega. \\ (\mathrm{v}) & u(\kappa,\lambda) \leq u(\kappa^{+},\lambda). \end{array}$
- (vi) $u(\kappa, \lambda) = \operatorname{cof}(I_{\kappa,\lambda}|A)$ for every $A \in I_{\kappa,\lambda}^+$.

An ideal H on $P_{\kappa}(\lambda)$ is fine if $I_{\kappa,\lambda} \subseteq H$.

We adopt the convention that the phrase "ideal on $P_{\kappa}(\lambda)$ " means " κ complete fine ideal on $P_{\kappa}(\lambda)$ ".

For $A \subseteq P_{\kappa}(\lambda)$ and an ordinal $\delta \leq \kappa, [A]^{\delta}$ denotes the set of all $B \subseteq A$ such that (B, \subsetneq) has order type δ . Abusing notation, we write

$$[A]^{\delta} = \{ (a_{\alpha} : \alpha < \delta) : a_0, a_1, \ldots \in A \text{ and } a_0 \subsetneq a_1 \subsetneq \ldots \}.$$

2. Cofinal Kurepa families.

This section is concerned with existence of cofinal Kurepa families. For more on the subject, see [34], [35] and [36].

DEFINITION. $\mathfrak{K}_{\kappa,\lambda}$ is the set of all $A \in I^+_{\kappa,\lambda}$ such that $|A \cap P(a)| < \kappa$ for every $a \in A$.

First let us establish two easy facts concerning members of $\mathfrak{K}_{\kappa,\lambda}$.

LEMMA 2.1. Suppose $A \in \mathfrak{K}_{\kappa,\lambda}$. Then $|A \cap P(b)| < \kappa$ for every $b \in P_{\kappa}(\lambda)$.

PROOF. Given $b \in P_{\kappa}(\lambda)$, pick $a \in A$ with $b \subseteq a$. Then $A \cap P(b) \subseteq A \cap P(a)$. \Box

PROPOSITION 2.2. Suppose $A \in \mathfrak{K}_{\kappa,\lambda}$. Then $|A| = u(\kappa, \lambda)$.

PROOF. Pick $B \in I^+_{\kappa,\lambda}$ with $|B| = u(\kappa, \lambda)$. Then $A = \bigcup_{b \in B} (A \cap P(b))$ and therefore by Lemma 2.1 $|A| \le \kappa \cdot |B| = u(\kappa, \lambda)$.

If $\mathfrak{K}_{\kappa,\lambda}$ is not empty, then it is a large (i.e. dense) subset of $I_{\kappa,\lambda}^+$.

PROPOSITION 2.3. Suppose $\mathfrak{K}_{\kappa,\lambda} \neq \phi$, and let J be an ideal on $P_{\kappa}(\lambda)$ with $\operatorname{cof}(J) = u(\kappa,\lambda)$. Then $J^+ \cap \mathfrak{K}_{\kappa,\lambda}$ is dense in (J^+, \subseteq) .

PROOF. Fix $A \in \mathfrak{K}_{\kappa,\lambda}$ and $B \in J^+$. Select $C_a \in J$ for $a \in A$ so that $J = \bigcup_{a \in A} P(C_a)$. Define $f : A \to B$ so that $a \subseteq f(a)$ and $f(a) \notin C_a$ for every $a \in A$. Obviously, $\operatorname{ran}(f) \in J^+ \cap P(B)$. For $a \in A$,

$$\{c \in A : f(c) \subseteq f(a)\} \subseteq A \cap P(f(a))$$

and consequently by Lemma 2.1, $|\operatorname{ran}(f) \cap P(f(a))| < \kappa$.

Corollary 2.4.

- i) Suppose $\mathfrak{K}_{\kappa,\lambda} \neq \phi$. Then $\mathfrak{K}_{\kappa,\lambda}$ is dense in $(I_{\kappa,\lambda}^+,\subseteq)$.
- ii) Suppose $\mathfrak{K}_{\kappa,\lambda} \neq \phi$ and λ is a strong limit cardinal of cofinality less than κ . Then $NS^+_{\kappa,\lambda} \cap \mathfrak{K}_{\kappa,\lambda}$ is dense in $(NS^+_{\kappa,\lambda}, \subseteq)$.

Let us now turn to the question whether $\Re_{\kappa,\lambda} \neq \phi$. The following observation is immediate.

PROPOSITION 2.5. If κ is inaccessible, then $\Re_{\kappa,\lambda} = I_{\kappa,\lambda}^+$.

PROPOSITION 2.6 ([24]). The following are equivalent:

- (i) $\Re_{\kappa,\lambda} \neq \phi$.
- (ii) There is $D \in I^+_{\kappa,u(\kappa,\lambda)}$ such that $\overline{\operatorname{cof}}(I_{\kappa,u(\kappa,\lambda)}|D) \leq \lambda$.
- (iii) There is $A \subseteq P_{\kappa}(\lambda)$ such that $|A| = u(\kappa, \lambda)$ and $|A \cap P(b)| < \kappa$ for every $b \in P_{\kappa}(\lambda)$.

COROLLARY 2.7. If $u(\kappa, \lambda) = \lambda$, then $\mathfrak{K}_{\kappa,\lambda} \neq \phi$.

It follows that $\mathfrak{K}_{\kappa,\lambda^{<\kappa}} \neq \phi$, since $(\lambda^{<\kappa})^{<\kappa} = \lambda^{<\kappa}$.

COROLLARY 2.8. Suppose $\mathfrak{K}_{\kappa,\lambda} \neq \phi$. Then $\mathfrak{K}_{\kappa,\nu} \neq \phi$ for every cardinal ν with $\lambda \leq \nu \leq u(\kappa, \lambda)$.

PROOF. If $\mathfrak{K}_{\kappa,\lambda} \neq \phi$, then $u(\kappa, u(\kappa, \lambda)) = u(\kappa, \lambda)$ by Proposition 2.6, and so

$$u(\kappa,\lambda) \le u(\kappa,\nu) \le u(\kappa,u(\kappa,\lambda)) \le u(\kappa,\lambda)$$

for every cardinal ν with $\lambda \leq \nu \leq u(\kappa, \lambda)$.

PROPOSITION 2.9 ([24]). Suppose that $\kappa < \lambda$, $u(\kappa, \lambda) = u(\kappa^+, \lambda)$ and $\mathfrak{K}_{\kappa,\lambda} \neq \phi$. Then $\mathfrak{K}_{\kappa^+,\lambda} \neq \phi$.

PROPOSITION 2.10 ([24]). Suppose that $cf(\lambda) < \kappa$, $\tau^{cf(\lambda)} < \kappa$ for every infinite cardinal $\tau < \kappa$, and $u(\kappa, \lambda) \leq \lambda^{cf(\lambda)}$. Then $\Re_{\kappa,\lambda} \neq \phi$.

Note that if $cf(\lambda) < \kappa$ and $u(\kappa, \mu) < \lambda$ for every cardinal μ with $\kappa < \mu < \lambda$, then $u(\kappa, \lambda) \leq \lambda^{cf(\lambda)}$.

PROPOSITION 2.11 ([24]). If μ is a cardinal with $cf(\mu) < \kappa < \mu$, and $\kappa \rightarrow [\kappa]^2_{cf(\mu), < cf(\mu)}$, then $\Re_{\kappa, 2^{<\mu}} \neq \phi$.

Hence, by a result of Solovay [33], if κ bears an ω_1 -saturated κ -complete ideal, then $\mathfrak{K}_{\kappa,2^{<\mu}} \neq \phi$ for every cardinal μ with $cf(\mu) < \kappa < \mu$.

DEFINITION. $\operatorname{cov}(\lambda, \lambda, \kappa, 2)$ is the least cardinality of any $X \subseteq P_{\lambda}(\lambda)$ such that for every $a \in P_{\kappa}(\lambda)$, there is $b \in X$ with $a \subseteq b$.

It is readily checked that

$$\lambda^{<\kappa} = \max\bigg\{2^{<\kappa}, \operatorname{cov}(\lambda, \lambda, \kappa, 2), \bigcup_{\kappa \le \nu < \lambda} u(\kappa, \nu)\bigg\}.$$

The following is due to Shelah (see [24]).

PROPOSITION 2.12. Suppose that $cf(\lambda) < \kappa$ and $u(\lambda^+, u(\kappa, \lambda)) < cov(\lambda, \lambda, \kappa, 2)$. Then $\mathfrak{K}_{\kappa,\lambda} \neq \phi$.

The following is due to Todorcevic [37] and Cummings, Foreman and Magidor [8].

PROPOSITION 2.13. Suppose $cf(\lambda) < \kappa$, $u(\kappa, \lambda) = \lambda^+$ and either \Box^*_{λ} holds or there is a very good scale on λ . Then $\mathfrak{K}_{\kappa,\lambda} \neq \phi$.

Todorcevic (see [24]) established that $\omega_{\omega+1} \to [\omega_1]^2_{\omega_{\omega},<\omega_1}$ implies that $\mathfrak{K}_{\omega_1,\omega_{\omega+1}} = \phi$. Now we prove two generalizations of this result. The following key lemma is due to Todorcevic (see [24]).

LEMMA 2.14. Suppose ρ and χ are two cardinals such that $\kappa \leq \rho \leq \chi$ and $\chi \rightarrow [\kappa]^2_{\rho,<\kappa}$, and let $B \subseteq P(\rho)$ with $|B| = \chi$. Then there is $z \in P_{\kappa}(\rho)$ such that $|\{b \cap z : b \in B\}| \geq \kappa$.

LEMMA 2.15. Suppose $A \in \mathfrak{K}_{\kappa,\lambda}, T \subseteq P_{\kappa}(\lambda)$, and τ is an infinite cardinal with $\tau < \kappa$. Suppose further there is $\varphi : A \to \{x \subseteq T : |x| = \tau\}$ such that $a \subseteq \cup y$ for each $a \in A$ and each $y \subseteq \varphi(a)$ with $|y| = \tau$. Then there is $B \subseteq P_{\tau^+}(T)$ such that $|B| = u(\kappa, \lambda)$ and $|\{b \in B : |b \cap z| = \tau\}| < \kappa$ for every $z \in P_{\kappa}(T)$.

PROOF. Set $B = \operatorname{ran}(\varphi)$. Then $u(\kappa, \lambda) \leq |B|$ since $\{ \cup x : x \in B \} \in I^+_{\kappa,\lambda}$. Conversely, $|B| \leq u(\kappa, \lambda)$ by Proposition 2.2. It remains to observe that for every $z \in P_{\kappa}(T)$,

$$\{a \in A : |\varphi(a) \cap z| = \tau\} \subseteq \{a \in A : a \subseteq \cup z\}.$$

LEMMA 2.16. Suppose $cf(\lambda) < \kappa$ and $\mathfrak{K}_{\kappa,\lambda} \neq \phi$. Then setting $\rho = \bigcup_{\kappa < \sigma < \lambda} u(\kappa, \sigma)$ and $\tau = cf(\lambda)$, there is $B \subseteq P_{\tau^+}(\rho)$ such that $|B| = u(\kappa, \lambda)$ and $|\{b \in B : |b \cap z| = \tau\}| < \kappa$ for every $z \in P_{\kappa}(\rho)$.

PROOF. Select a strictly increasing sequence $\langle \lambda_{\xi} : \xi < \tau \rangle$ of cardinals greater than κ so that $\lambda = \bigcup_{\xi < \tau} \lambda_{\xi}$. For $\xi < \tau$, choose $T_{\xi} \in I^+_{\kappa,\lambda_{\xi}}$ with $|T_{\xi}| = u(\kappa,\lambda_{\xi})$. Set $T = \bigcup_{\xi < \tau} T_{\xi}$. Note that $|T| = \rho$. Fix $A \in \mathfrak{K}_{\kappa,\lambda}$ with $A \subseteq \{a \in P_{\kappa}(\lambda) : \cup a = \lambda\}$. For $a \in A$ and $\xi < cf(\lambda)$, pick $a_{\xi} \in T_{\xi}$ so that $a \cap \lambda_{\xi} \subseteq a_{\xi}$. Define $\varphi : A \to P(T)$ by $\varphi(a) = \{a_{\xi} : \xi < \tau\}$. Now apply Lemma 2.15.

PROPOSITION 2.17. Suppose $cf(\lambda) < \kappa$, $u(\kappa, \lambda) \rightarrow [\kappa]^2_{\rho, <\kappa}$, where $\rho = \bigcup_{\kappa < \sigma < \lambda} u(\kappa, \sigma)$, and $\mu^{< cf(\lambda)} < \kappa$ for every cardinal $\mu < \kappa$. Then $\mathfrak{K}_{\kappa, \lambda} = \phi$.

PROOF. By Lemmas 2.14 and 2.16.

In particular, if $\lambda = \kappa^{+\omega}$ and $u(\kappa, \lambda) \to [\kappa]^2_{\lambda, <\kappa}$, then $\mathfrak{K}_{\kappa, \lambda} = \phi$.

LEMMA 2.18. Suppose $\kappa = \nu^+$ and $\Re_{\kappa,\lambda} \neq \phi$. Then setting $\rho = u(\nu,\lambda)$ and $\tau = cf(\nu)$, there is $B \subseteq P_{\tau^+}(\rho)$ such that $|B| = u(\kappa,\lambda)$ and $|\{b \in B : |b \cap z| = \tau\}| < \kappa$ for every $z \in P_{\kappa}(\rho)$.

PROOF. Fix $T \in I_{\nu,\lambda}^+$ with $|T| = \rho$, and $A \in \mathfrak{K}_{\kappa,\lambda}$ with $A \subseteq \{a \in P_\kappa(\lambda) : |a| = \nu\}$. Pick a strictly increasing sequence $\langle \nu_{\xi} : \xi < \tau \rangle$ of nonzero ordinals so that $\nu = \bigcup_{\xi < \tau} \nu_{\xi}$. For $a \in A$, choose a bijection $i_a : \nu \to a$ and select $a_{\xi} \in T$ for $\xi < \tau$ so that $i_a^{``} \nu_{\xi} \subseteq a_{\xi}$. Define $\varphi : A \to P(T)$ by $\varphi(a) = \{a_{\xi} : \xi < \tau\}$. Now apply Lemma 2.15.

PROPOSITION 2.19. Suppose $\kappa = \nu^+$, $u(\kappa, \lambda) \to [\kappa]^2_{u(\nu,\lambda), <\kappa}$ and $\nu^{< cf(\nu)} = \nu$. Then $\Re_{\kappa,\lambda} = \phi$.

PROOF. By Lemmas 2.14 and 2.18.

In particular, if $\kappa = \omega_1$ and $u(\kappa, \lambda) \to [\kappa]^2_{\lambda, <\kappa}$, then $\mathfrak{K}_{\kappa, \lambda} = \phi$.

To conclude this section, we establish two consequences of " $\Re_{\kappa,\lambda} \neq \phi$ ". The proof uses ideas from [36].

PROPOSITION 2.20. Suppose κ is a successor cardinal and $\Re_{\kappa,\lambda} \neq \phi$, and let H be any ideal on $P_{\kappa}(\lambda)$. Then every $D \in H^+$ can be partitioned into $u(\kappa, \lambda)$ disjoint members of H^+ .

PROOF. Set $\kappa = \nu^+$ and fix $A \in \mathfrak{K}_{\kappa,\lambda}$ and $D \in H^+$. For $b \in P_{\kappa}(\lambda)$ pick a one-to-one

 $f_b: A \cap P(b) \to \nu$. Put

$$D_a^{\alpha} = \{ b \in D : a \subseteq b \text{ and } f_b(a) = \alpha \}$$

for $a \in A$ and $\alpha \in \nu$. Now define $g \in {}^{A}\nu$ so that $D_{a}^{g(a)} \in H^{+}$ for each $a \in A$. Select $B \in I^{+}_{\kappa,\lambda} \cap P(A)$ and $\beta \in \nu$ so that g takes the constant value β on B. Then $< D_{a}^{\beta} : a \in B >$ is a sequence of disjoint members of $H^{+} \cap P(D)$.

DEFINITION. A partially ordered set (Q, <) is κ -directed if for every $x \in P_{\kappa}(Q)$, there is $r \in Q$ such that $q \leq r$ for all $q \in x$.

PROPOSITION 2.21. Suppose that (Q, <) is a κ -directed partially ordered set such that $|Q| = \lambda$ and $|\{r \in Q : r < q\}| < \kappa$ for all $q \in Q$. Then there is $A \in \mathfrak{K}_{\kappa,\lambda}$ such that (Q, <) and (A, \subsetneq) are isomorphic.

PROOF. Set $Q = \{q_{\alpha} : \alpha < \lambda\}$ and define a one-to-one $g : Q \to P_{\kappa}(\lambda)$ by $g(q_{\alpha}) = \{\beta \in \lambda : q_{\beta} \leq q_{\alpha}\}$. It is simple to check that $\operatorname{ran}(g) \in I^{+}_{\kappa,\lambda}$ and

$$q_{\alpha} < q_{\gamma} \leftrightarrow g(q_{\alpha}) \subsetneq g(q_{\gamma})$$

for all $\alpha, \gamma < \lambda$.

Thus, if $\mathfrak{K}_{\kappa,\lambda} \neq \phi$ and $B \in I^+_{\kappa,\lambda}$, then there are $C \in I^+_{\kappa,\lambda} \cap P(B)$ and $A \in \mathfrak{K}_{\kappa,u(\kappa,\lambda)}$ such that (C, \subsetneq) and (A, \subsetneq) are isomorphic.

3. Covering for category.

DEFINITION. For a set A,

$$Fn(A,2,\kappa) = \bigcup \{^a 2 : a \in P_{\kappa}(A) \}.$$

 $Fn(A, 2, \kappa)$ is ordered by : $p \leq q$ if and only if $q \subseteq p$.

DEFINITION. Suppose ρ is a cardinal $\geq \kappa$.

 ${}^{\rho}2$ is endowed with the topology obtained by taking as basic open sets ϕ and O_s^{ρ} for $s \in Fn(\rho, 2, \kappa)$, where $O_s^{\rho} = \{f \in {}^{\rho}2 : s \subsetneq f\}$.

 $\mathbf{M}_{\kappa,\rho}$ is the set of all $W \subseteq \rho_2$ such that $W \cap (\cap X) = \phi$ for some collection X of dense open subsets of ρ_2 with $0 < |X| \le \kappa$.

 $\mathbf{cov}(\mathbf{M}_{\kappa,\rho})$ is the least cardinality of any $Y \subseteq \mathbf{M}_{\kappa,\rho}$ with $\rho_2 = \bigcup Y$.

 $\mathbf{non}(\mathbf{M}_{\kappa,\rho})$ is the least cardinality of any $W \subseteq {}^{\rho}2$ with $W \notin \mathbf{M}_{\kappa,\rho}$.

In this section we review some well-known facts concerning the cardinal coefficients $cov(\mathbf{M}_{\kappa,\rho})$ and $non(\mathbf{M}_{\kappa,\rho})$.

DEFINITION. For a set $A, \mathscr{A}_{\kappa}^{A}$ is the collection of all maximal antichains in $Fn(A, 2, \kappa)$.

PROPOSITION 3.1 ([17], [28]). Let ρ be a cardinal $\geq \kappa$. Then:

- (i) $\mathbf{cov}(\mathbf{M}_{\kappa,\rho})$ is the least cardinality of any nonempty family of dense open subsets of $^{\rho}2$ with empty intersection.
- (ii) $\mathbf{cov}(\mathbf{M}_{\kappa,\rho})$ is the least cardinality of any collection Z of dense subsets of $Fn(\rho, 2, \kappa)$ (or of members of $\mathscr{A}_{\kappa}^{\rho}$) such that for every filter $G \subseteq Fn(\rho, 2, \kappa)$, there is $D \in Z$ with $D \cap G = \phi$.

PROPOSITION 3.2 ([17], [28]). Suppose that ρ and μ are two cardinals such that $\kappa \leq \mu \leq \rho$. Then $\operatorname{cov}(\mathbf{M}_{\kappa,\mu}) \geq \operatorname{cov}(\mathbf{M}_{\kappa,\rho})$ and $\operatorname{non}(\mathbf{M}_{\kappa,\mu}) \leq \operatorname{non}(\mathbf{M}_{\kappa,\rho})$.

DEFINITION. \mathfrak{b}_{κ} (respectively, \mathfrak{d}_{κ}) is the least cardinality of any $F \subseteq {}^{\kappa}\kappa$ such that for every $g \in {}^{\kappa}\kappa$, there is $f \in F$ with $|\{\alpha \in \kappa : f(\alpha) \ge g(\alpha)\}| = \kappa$ (respectively, $|\{\alpha \in \kappa : g(\alpha) > f(\alpha)\}| < \kappa$).

PROPOSITION 3.3 ([30]). $\operatorname{non}(\mathbf{M}_{\kappa,\kappa}) \geq \mathfrak{b}_{\kappa}$.

PROOF. Fix $W \subseteq {}^{\kappa}2$ with $W \notin \mathbf{M}_{\kappa,\kappa}$. For $t \in \bigcup_{\delta \leq \kappa} {}^{\delta}2$, define a partial function \tilde{t} from κ to κ by: $\tilde{t}(\alpha) = \gamma$ if and only if γ is the least $\xi \in \text{dom}(t)$ such that $(t \upharpoonright \xi)^{-1}(\{1\})$ has ordertype α .

Let $g \in {}^{\kappa}\kappa$. For $\beta < \kappa$, stipulate that S_{β} is the set of all $s \in \bigcup_{\gamma \in \kappa} {}^{\gamma}2$ such that there is $\alpha \geq \beta$ with $\alpha \in \operatorname{dom}(\widetilde{s})$ and $\widetilde{s}(\alpha) \geq g(\alpha)$. It is simple to check that $U_{\beta} = \bigcup_{s \in S_{\beta}} O_{s}^{\kappa}$ is dense. Hence there is $f \in W$ such that $f \in \bigcup_{\beta < \kappa} U_{\beta}$. Obviously, $|\{\alpha \in \kappa : \widetilde{f}(\alpha) \geq g(\alpha)\}| = \kappa$.

It is straightforward to check that $\mathbf{cov}(\mathbf{M}_{\kappa,\kappa}) \leq \mathfrak{d}_{\kappa}$.

PROPOSITION 3.4 ([17], [28]). $\operatorname{cov}(\mathbf{M}_{\kappa,\rho}) \geq \kappa^+$ for every cardinal $\rho \geq \kappa$.

PROPOSITION 3.5 ([17]). Suppose $2^{<\kappa} > \kappa$. Then $\mathbf{cov}(\mathbf{M}_{\kappa,\rho}) = \kappa^+$ for every $\rho \ge \kappa$.

PROOF. By Propositions 3.2 and 3.4 it suffices to show that $\operatorname{cov}(\mathbf{M}_{\kappa,\kappa}) \leq \kappa^+$. Fix a cardinal $\tau < \kappa$ with $2^{\tau} > \kappa$. Let $\varphi : \kappa \times \tau \to \kappa$ be a bijection. For $y \in \tau^2$, define an open subset W_y of κ^2 by: $f \in W_y$ if and only if there is $\gamma < \kappa$ such that $f(\varphi(\gamma,\xi)) = y(\xi)$ for all $\xi < \tau$. Then $\bigcap_{y \in Y} W_y = \phi$ for any $Y \subseteq \tau^2$ with $|Y| > \kappa$.

COROLLARY 3.6. Suppose that $\mathbf{cov}(\mathbf{M}_{\kappa,\rho}) > \kappa^+$ for some cardinal $\rho \ge \kappa$. Then $u(\kappa,\mu) = \mu^{<\kappa}$ for every cardinal $\mu \ge \kappa$.

PROOF. By Propositions 1.1 and 3.5.

LEMMA 3.7. Suppose ρ is a cardinal $\geq \kappa$. Then:

- (i) $|A| \le 2^{<\kappa}$ for every $A \in \mathscr{A}^{\rho}_{\kappa}$.
- (ii) If $X \subseteq \mathscr{A}^{\rho}_{\kappa}$ is such that $2^{<\kappa} \leq |X| < \rho$, then $X \subseteq \mathscr{A}^{B}_{\kappa}$ for some $B \subseteq \rho$ with |B| = |X|.

Proof.

(i) See Lemma VII.6.10 in [**15**].

⁽ii) Use (i).

PROPOSITION 3.8 ([17]). $\operatorname{cov}(\mathbf{M}_{\kappa,\rho}) = \operatorname{cov}(\mathbf{M}_{\kappa,2^{\kappa}})$ for every cardinal $\rho \geq \operatorname{cov}(\mathbf{M}_{\kappa,2^{\kappa}})$.

PROOF. Argue as for Proposition 6.4 of [25].

Note that by Proposition 3.8, $\lambda^{<\kappa} < \mathbf{cov}(\mathbf{M}_{\kappa,\lambda^{<\kappa}})$ if and only if $\lambda^{<\kappa} < \mathbf{cov}(\mathbf{M}_{\kappa,2^{\kappa}})$.

DEFINITION. Given a cardinal $\rho \geq \kappa, \theta_{\kappa,\rho}$ is the least cardinality of any $X \subseteq \{A \subseteq \rho : |A| = \kappa\}$ such that for every $B \subseteq \rho$ with $|B| = \rho$, there is $A \in X$ with $A \subseteq B$.

PROPOSITION 3.9 ([28]). $\operatorname{cov}(\mathbf{M}_{\kappa,\rho}) \leq \theta_{\kappa,\rho}$ for every cardinal $\rho \geq \kappa$.

PROPOSITION 3.10. Suppose that ρ is a cardinal $> \kappa$ and $V \models 2^{<\kappa} = \kappa$. Then setting $P = Fn(\rho, 2, \kappa)$:

- (i) $(2^{\mu})^{V^{P}} \leq (\rho^{\mu})^{V}$ for every cardinal $\mu \geq \kappa$.
- (ii) $V^P \vDash \mathbf{non}(\mathbf{M}_{\kappa,\rho}) = \kappa^+$.
- (iii) ([17], [28]) $V^P \vDash \operatorname{cov}(\mathbf{M}_{\kappa,\rho}) \ge \rho$.
- (iv) ([17], [28]) If $cf(\rho) = \kappa$ and $V \vDash {}^{\kappa^+} < \rho$ for every cardinal ν with $2 \le \nu < \rho$ ", then $V^P \vDash \theta_{\kappa,\kappa^+} = \rho$.
- (v) ([17]) If $cf(\rho) < \kappa$ and $V \vDash \text{GCH}$, then $V^P \vDash \text{cov}(\mathbf{M}_{\kappa,\rho}) = \rho^+$.

Proof.

- (i) See Theorem 3.15 in [**5**].
- (ii) In V, select a bijection $j : \kappa^+ \times \rho \to \rho$. Now let G be $Fn(\rho, 2, \kappa)$ -generic over V. For $\alpha < \kappa^+$, define $g_\alpha \in \rho_2$ by $g_\alpha(\beta) = (\cup G)(j(\alpha, \beta))$. It is readily seen that $\{g_\alpha : \alpha < \kappa^+\} \notin \mathbf{M}_{\kappa,\rho}$.

The following two results provide models for $\mathbf{cov}(\mathbf{M}_{\kappa,\kappa^+}) > \kappa^+$ at a large cardinal. The first one is due to Silver (see Exercise VIII.I.10 in [15]).

PROPOSITION 3.11. Suppose that $V \vDash$ "GCH + κ is weakly compact". Then there is a partially ordered set P in V such that $V^P \vDash$ " κ is weakly compact and $\mathbf{cov}(\mathbf{M}_{\kappa,\kappa^+}) > \kappa^+$ ".

Proposition 2 will follow from Corollary 7.5 and the following result.

PROPOSITION 3.12 ([4]). Suppose that $V \vDash$ " κ is supercompact". Then there is a generic extension W of V such that for every cardinal $\rho \ge \kappa$ in W,

 $W^P \vDash `\kappa$ is both strongly compact and the least uncountable measurable cardinal",

where $P = Fn(\rho, 2, \kappa)$.

4. Selectivity and pseudointersections.

DEFINITION. An ideal H on $P_{\kappa}(\lambda)$ is weakly selective if given $A \in H^+$ and $B_a \in H$ for $a \in A$, there is $C \in H^+ \cap P(A)$ such that $b \notin B_a$ for every $(a, b) \in [C]^2$.

161

DEFINITION. For an ideal H on $P_{\kappa}(\lambda)$, \mathscr{Z}_{H} is the set of all $\mathscr{F} \subseteq H^{+}$ such that (a) $\cap X \in H^{+}$ for every $X \subseteq \mathscr{F}$ with $0 < |X| < \kappa$, and (b) for every $C \in H^{+}$, there is $A \in \mathscr{F}$ with $C - A \in H^{+}$.

 \mathfrak{p}_H is defined by: \mathfrak{p}_H = the least cardinality of any member of \mathscr{Z}_H if $\mathscr{Z}_H \neq \phi$, and $\mathfrak{p}_H = (2^{\lambda^{\leq \kappa}})^+$ otherwise.

For $H = I_{\kappa,\lambda}$, we set $\mathfrak{p}_H = \mathfrak{p}_{\kappa,\lambda}$. Note that $\mathfrak{p}_{H|E} \ge \mathfrak{p}_H$ for every $E \in H^+$.

LEMMA 4.1. Suppose H is an ideal on $P_{\kappa}(\lambda)$ such that $H^* \cap \mathfrak{K}_{\kappa,\lambda} \neq \phi$. Then the following are equivalent:

- (i) *H* is weakly selective and $\mathbf{p}_H > u(\kappa, \lambda)$.
- (ii) Given $A \in H^+$ and $S_a \subseteq A$ for $a \in A$ such that $\bigcap_{a \in x} S_a \in H^+$ for every $x \in P_{\kappa}(A) \{\phi\}$, there is $C \in H^+ \cap P(A)$ such that $b \in S_a$ for every $(a, b) \in [C]^2$.

PROOF. (i) \rightarrow (ii): Suppose (i) holds and $A \in H^+$ and $S_a \subseteq a$ for $a \in A$ are such that $\bigcap_{a \in X} S_a \in H^+$ for every $x \in P_{\kappa}(A) - \{\phi\}$. Fix $B \in H^* \cap \mathfrak{K}_{\kappa,\lambda}$. By Proposition 2.2 $\mathfrak{p}_H > |A \cap B|$, so there is $C \in H^+$ such that $C - S_a \in H$ for every $a \in A \cap B$. Select $D \in H^+ \cap (A \cap B \cap C)$ so that $b \notin C - S_a$ for each $(a, b) \in [D]^2$. Then $b \in S_a$ whenever $(a, b) \in [D]^2$.

(ii) \rightarrow (i): Suppose (ii) holds. Then given $A \in H^+$ and $B_a \in H$ for $a \in A$, there is $C \in H^+ \cap P(A)$ such that $b \in A - B_a$ for every $(a, b) \in [C]^2$. Hence H is weakly selective. To show that $\mathfrak{p}_H > u(\kappa, \lambda)$, let $\mathscr{F} \subseteq H^+$ be such that $|\mathscr{F}| \leq u(\kappa, \lambda)$ and $\cap X \in H^+$ for every $X \subseteq \mathscr{F}$ with $0 < |X| < \kappa$. Fix $D \in H^* \cap \mathfrak{K}_{\kappa,\lambda}$. By Proposition 2.2, there is an onto $j: D \to \mathscr{F}$. Set $S_a = D \cap (\bigcap_{c \in D \cap P(a)} j(c))$ for $a \in D$. Select $T \in H^+ \cap P(D)$ so that $b \in S_a$ for every $(a, b) \in [T]^2$. It is easy to see that $T - W \in H$ for every $W \in \mathscr{F}$. \Box

For $H = I_{\kappa,\lambda}$, (ii) of Lemma 4.1 can be reformulated as follows:

PROPOSITION 4.2. The following are equivalent:

- (i) Given $A \in I_{\kappa,\lambda}^+$ and $S_a \subseteq A$ for $a \in A$ such that $\bigcap_{a \in x} S_a \in I_{\kappa,\lambda}^+$ for every $x \in P_{\kappa}(A) \{\phi\}$, there is $C \in I_{\kappa,\lambda}^+ \cap P(A)$ such that $b \in S_a$ for every $(a,b) \in [C]^2$.
- (ii) Given a cardinal $\mu \geq \lambda$ and $B \in I^+_{\kappa,\mu}$, there is $C \in I^+_{\kappa,\lambda}$ such that $[C]^2 \subseteq \{(c \cap \lambda, d \cap \lambda) : (c, d) \in [B]^2\}.$

PROOF. (i) \rightarrow (ii): Suppose that (i) holds and let $B \in I_{\kappa,\mu}^+$, where μ is a cardinal with $\mu \geq \lambda$. Set $A = \{d \cap \lambda : d \in B\}$. Note that $A \in I_{\kappa,\lambda}^+$. Pick $g : A \rightarrow B$ so that $a = \lambda \cap g(a)$ for every $a \in A$. For $a \in A$, let S_a be the set of all $b \in A$ with the property that there is $d \in B$ such that $g(a) \subsetneq d$ and $b = d \cap \lambda$. It is simple to see that $\bigcap_{a \in x} S_a \in I_{\kappa,\lambda}^+$ for every $x \in P_{\kappa}(A) - \{\phi\}$. By our assumption there is $C \in I_{\kappa,\lambda}^+ \cap P(A)$ such that $b \in S_a$ for every $(a, b) \in [C]^2$. Then for every $(a, b) \in [C]^2$, there is d such that $(g(a), d) \in [B]^2$ and $b = d \cap \lambda$.

(ii) \rightarrow (i): Suppose that (ii) holds, and fix $A \in I^+_{\kappa,\lambda}$ and $S_a \subseteq A$ for $a \in A$ with $\{\bigcap_{a \in x} S_a : x \in P_\kappa(A) - \{\phi\}\} \subseteq I^+_{\kappa,\lambda}$. Now fix a cardinal μ with $\mu > \lambda$ and $\mu \geq |A|$. Select a one-to-one $j : A \rightarrow \mu - \lambda$. Let B be the set of all $d \in P_\kappa(\mu)$ such that (a) $d \cap \lambda \in A$, (b) $j(d \cap \lambda) \in d$, and (c) $d \cap \lambda \in S_a$ for all $a \in A$ such that $a \subsetneq d \cap \lambda$ and $j(a) \in d$.

Let us show that $B \in I_{\kappa,\mu}^+$. Fix $e \in P_{\kappa}(\mu)$. Pick $c \in A$ so that $e \cap \lambda \subsetneq c$ and $c \in S_a$ for all $a \in A$ such that $j(a) \in e$. Then setting $d = c \cup e \cup \{j(c)\}$, we have $d \in B$. By our assumption there is $C \in I_{\kappa,\lambda}^+$ with the property that for every $(a,b) \in [C]^2$, one can find $(c,d) \in [B]^2$ such that $a = c \cap \lambda$ and $b = d \cap \lambda$. Clearly, $C \subseteq A$. Moreover, $b \in S_a$ whenever $(a,b) \in [C]^2$.

PROPOSITION 4.3. Suppose H is an ideal on $P_{\kappa}(\lambda)$ such that $H^* \cap \mathfrak{K}_{\kappa,\lambda} \neq \phi$ and $\operatorname{cof}(H) < \operatorname{cov}(\mathbf{M}_{\kappa,\lambda^{<\kappa}})$. Then H is weakly selective and $\mathfrak{p}_H > \lambda^{<\kappa}$.

PROOF. By Corollary 3.6, $\lambda^{<\kappa} = u(\kappa, \lambda)$ since $\mathbf{cov}(\mathbf{M}_{\kappa,\lambda^{<\kappa}}) > \mathrm{cof}(H) > \kappa$. So it suffices to show that (ii) of Lemma 4.1 holds. Thus let $A \in H^+$ and $S_a \subseteq A$ for $a \in A$ with the property that $\bigcap_{a \in X} S_a \in H^+$ for every $x \in P_{\kappa}(A) - \{\phi\}$. Fix $Z \in H^* \cap \mathfrak{K}_{\kappa,\lambda}$ and $Y \subseteq H$ such that $|Y| = \mathrm{cof}(H)$ and $H = \bigcup_{B \in Y} P(B)$. For $B \in Y$, let \mathscr{D}_B be the set of all $p \in Fn(A \cap Z, 2, \kappa)$ such that there is $b \in \mathrm{dom}(p)$ with the following properties:

- (0) $b \notin B$.
- (1) $\operatorname{dom}(p) = (A \cap Z) \cap P(b).$
- (2) p(b) = 1.
- (3) $b \in S_a$ for every $a \in \text{dom}(p)$ such that $a \neq b$ and p(a) = 1.

Let us show that \mathscr{D}_B is dense. Thus fix $q \in Fn(A \cap Z, 2, \kappa)$. Pick $b \in (A \cap Z) - B$ so that (i) $a \subsetneq b$ for all $a \in \operatorname{dom}(q)$, and (ii) $b \in S_a$ for each $a \in \operatorname{dom}(q)$ with q(a) = 1. Define $p: (A \cap Z) \cap P(b) \to 2$ by:

(α) p(b) = 1.

$$(\beta) \ p \restriction \operatorname{dom}(q) = q.$$

 $(\gamma) \ p(c) = 0$ for every $c \in (A \cap Z) \cap P(b)$ such that $c \neq b$ and $c \notin \text{dom}(q)$.

Obviously, $q \subseteq p$ and $p \in \mathscr{D}_B$.

Let $G \subseteq Fn(A \cap Z, 2, \kappa)$ be a filter such that $G \cap \mathscr{D}_B \neq \phi$ for every $B \in Y$. Pick $\varphi \in \prod_{B \in Y} (G \cap \mathscr{D}_B)$. For $B \in Y$, let $b_B \in A \cap Z$ be such that $\operatorname{dom}(\varphi(B)) = P(b_B)$. Set $C = \{b_B : B \in Y\}$. Then clearly $C \in H^+ \cap P(A)$. Now suppose $B_0, B_1 \in Y$ are such that $b_{B_0} \subsetneq b_{B_1}$. There is $r \in G$ such that $\varphi(B_0) \cup \varphi(B_1) \subseteq r$. Then

$$(\varphi(B_1))(b_{B_0}) = r(b_{B_0}) = (\varphi(B_0))(b_{B_0}) = 1$$

and consequently $b_{B_1} \in S_{b_{B_0}}$. Thus $d \in S_a$ whenever $(a, d) \in [C]^2$.

COROLLARY 4.4. Suppose $\mathfrak{K}_{\kappa,\lambda} \neq \phi$ and $\operatorname{cov}(\mathbf{M}_{\kappa,\lambda^{<\kappa}}) > \lambda^{<\kappa}$. Then $I_{\kappa,\lambda}$ is weakly selective and $\{C : \mathfrak{p}_{I_{\kappa,\lambda}|C} > \lambda^{<\kappa}\}$ is dense in $(I^+_{\kappa,\lambda}, \subseteq)$.

PROOF. Use the following observation: Let $A \in I_{\kappa,\lambda}^+$. Then by Proposition 2.3 there is $C \in \mathfrak{K}_{\kappa,\lambda} \cap P(A)$. Now setting $H = I_{\kappa,\lambda} | C, \ H^* \cap \mathfrak{K}_{\kappa,\lambda} \neq \phi$ and $\operatorname{cof}(H) < \operatorname{cov}(\mathbf{M}_{\kappa,\lambda^{<\kappa}})$.

It is immediate from Proposition 4.3 that if κ is inaccessible and $\mathbf{cov}(\mathbf{M}_{\kappa,\lambda^{<\kappa}}) > \lambda^{<\kappa}$, then $\mathfrak{p}_{\kappa,\lambda} > \lambda^{<\kappa}$. More generally, Corollary 8.5 and Proposition 8.6 below yield that if $\mathfrak{K}_{\kappa,\lambda} \neq \phi$ and $\mathbf{cov}(\mathbf{M}_{\kappa,\lambda^{<\kappa}}) > \lambda^{<\kappa}$, then $\mathfrak{p}_{\kappa,\lambda} > \lambda^{<\kappa}$.

5. $I^+_{\kappa,\lambda} \to (I^+_{\kappa,\lambda},\theta)^2$.

DEFINITION. Given $X, Y \subseteq P(P_{\kappa}(\lambda))$ and an ordinal $\eta \leq \kappa, X \to (Y, \eta)^2$ means that for all $A \in X$ and $F : P_{\kappa}(\lambda) \times P_{\kappa}(\lambda) \to 2$, there is $B \subseteq A$ such that either $B \in Y$ and F is constantly 0 on $[B]^2$, or $B \in [P_{\kappa}(\lambda)]^{\eta}$ and F is constantly 1 on $[B]^2$.

The negation of this and other partition relations is indicated by crossing the arrow.

In this section we investigate the problem of getting $I_{\kappa,\lambda}^+ \to (I_{\kappa,\lambda}^+, \theta)^2$ for a given infinite cardinal $\theta \leq \kappa$. First, a simple observation:

PROPOSITION 5.1. Suppose η is an ordinal $\leq \kappa$ such that $\{P_{\kappa}(\lambda)\} \to (I_{\kappa,\lambda}^+,\eta)^2$. Then $\kappa \to (\kappa,\eta)^2$.

PROOF. Given $f : \kappa \times \kappa \to 2$, consider $F : P_{\kappa}(\lambda) \times P_{\kappa}(\lambda) \to 2$ defined by: F(a,b) = 1 if and only if $\cup (a \cap \kappa) < \cup (b \cap \kappa)$ and $f(\cup (a \cap \kappa), \cup (b \cap \kappa)) = 1$. \Box

LEMMA 5.2. Suppose $\kappa \to (\kappa, \theta)^2$, where θ is an infinite cardinal $< \kappa$, and μ, τ are two cardinals such that $\theta \le \mu < \kappa$ and $\omega \le \tau < \theta$. Then $\mu^{\tau} < \kappa$.

PROOF. By Corollary 19.7 in [11], $\mu^{\tau} \not\longrightarrow (\mu^+, \tau^+)^2$.

DEFINITION. Given an ideal H on $P_{\kappa}(\lambda)$, $A \in H^+$ and $F : P_{\kappa}(\lambda) \times P_{\kappa}(\lambda) \to 2, (H, A, F)$ is 0-nice if there is $C \in H^+ \cap P(A)$ such that

$$\{b \in C : \forall a \in x \ (F(a,b)=0)\} \in H^+$$

for every $x \in P_{\kappa}(C) - \{\phi\}.$

LEMMA 5.3. Suppose $H^* \cap \mathfrak{K}_{\kappa,\lambda} \neq \phi$, $\operatorname{cof}(H) < \operatorname{cov}(\mathbf{M}_{\kappa,\lambda^{<\kappa}})$ and (H, A, F) is 0-nice, where H is an ideal on $P_{\kappa}(\lambda), A \in H^+$ and $F : P_{\kappa}(\lambda) \times P_{\kappa}(\lambda) \to 2$. Then there is $D \in H^+ \cap P(A)$ such that F is constantly 0 on $[D]^2$.

PROOF. By Proposition 4.3.

DEFINITION. For an ideal H on $P_{\kappa}(\lambda)$ and $C \in H^+, M^{\mathbf{d}}_{H,C}$ is the set of all $Q \subseteq H^+ \cap P(C)$ such that (a) any two distinct members of Q are disjoint, and (b) for every $A \in H^+ \cap P(C)$, there is $B \in Q$ with $A \cap B \in H^+$.

LEMMA 5.4. Suppose $\kappa \to (\kappa, \theta)^2$, where θ is an infinite cardinal $\langle \kappa, and (H, A, F) \text{ is not } 0\text{-nice, where } H \text{ is an ideal on } P_{\kappa}(\lambda), A \in H^+ \text{ and } F : P_{\kappa}(\lambda) \times P_{\kappa}(\lambda) \to 2.$ Then there is $D \in [A]^{\theta+1}$ such that F is constantly 1 on $[D]^2$.

PROOF. First, we define two functions φ and ψ so that for each $C \in H^+ \cap P(A)$,

(a) $\varphi(C) \in M^{d}_{H,C}$ and $|\varphi(C)| < \kappa$,

- (b) $\psi(C)$ is a one-to-one function from $\varphi(C)$ to C,
- (c) If $b \in B \in \varphi(C)$, then $(\psi(C))(B) \subsetneq b$ and $F((\psi(C))(B), b) = 1$.

Given $C \in H^+ \cap P(A)$, pick $x \in P_{\kappa}(C) - \{\phi\}$ so that

$$\{b \in C : \forall a \in x \ (F(a,b)=0)\} \in H.$$

Select a bijection $j : |x| \to x$. For $\delta < |x|$, let B_{δ} be the set of all $b \in C$ such that $\cup x \subsetneq b$ and δ = the least $\gamma < |x|$ such that $F(j(\gamma), b) = 1$. Now set $\varphi(C) = H^+ \cap \{B_{\delta} : \delta < |x|\}$ and $(\psi(C))(B_{\delta}) = j(\delta)$ for every $\delta < |x|$ such that $B_{\delta} \in \varphi(C)$.

Recalling Lemma 5.2, define $R_{\beta}, Q_{\beta} \in \{W \in M_{H,A}^{d} : |W| < \kappa\}$ and $\psi_{\beta} : Q_{\beta} \to A$ for $\beta < \theta$ by:

- (0) $R_0 = \{A\}.$
- (1) $Q_{\beta} = \bigcup_{C \in R_{\beta}} \varphi(C).$
- (2) $R_{\beta+1} = Q_{\beta}$.
- (3) $R_{\beta} = H^+ \cap \{\bigcap_{\alpha < \beta} h(\alpha) : h \in \prod_{\alpha < \beta} Q_{\alpha}\}$ if β is a limit ordinal > 0.
- (4) $\psi_{\beta} = \bigcup_{C \in R_{\beta}} \psi(C).$

Finally, select $b \in \bigcap_{\beta < \theta} (\cup Q_{\beta})$. There is $k \in \prod_{\beta < \theta} Q_{\beta}$ such that $b \in \bigcap_{\beta < \theta} k(\beta)$. Then

$$D = \{\psi_{\beta}(k(\beta)) : \beta < \theta\} \cup \{b\}$$

is as desired.

PROPOSITION 5.5. Suppose $\kappa \to (\kappa, \theta)^2$, where θ is an infinite cardinal $< \kappa$, and H is an ideal on $P_{\kappa}(\lambda)$ such that $H^* \cap \mathfrak{K}_{\kappa,\lambda} \neq \phi$ and $\operatorname{cof}(H) < \operatorname{cov}(\mathbf{M}_{\kappa,\lambda^{<\kappa}})$. Then $H^+ \to (H^+, \theta + 1)^2$.

PROOF. By Lemmas 5.3 and 5.4.

COROLLARY 5.6. Suppose $\mathfrak{K}_{\kappa,\lambda} \neq \phi$ and $\mathbf{cov}(\mathbf{M}_{\kappa,\lambda^{<\kappa}}) > \lambda^{<\kappa}$. Then for every infinite cardinal $\theta < \kappa$, the following are equivalent:

 $\begin{array}{ll} (\mathrm{i}) & \kappa \to (\kappa, \theta)^2. \\ (\mathrm{ii}) & I^+_{\kappa, \lambda} \to (I^+_{\kappa, \lambda}, \theta+1)^2. \\ (\mathrm{iii}) & I^+_{\kappa, \lambda} \to (I^+_{\kappa, \lambda}, \theta)^2. \end{array}$

Proof.

- (i) \rightarrow (ii) follows from Propositions 2.3 and 5.5.
- (ii) \rightarrow (iii) is immediate.
- (iii) \rightarrow (i) is immediate by Proposition 5.1.

It remains to handle the case $\theta = \kappa$.

LEMMA 5.7. Suppose κ is weakly compact and (H, A, F) is not 0-nice, where H is an ideal on $P_{\kappa}(\lambda), A \in H^+$ and $F : P_{\kappa}(\lambda) \times P_{\kappa}(\lambda) \to 2$. Then there is $D \in [A]^{\kappa}$ such that F is constantly 1 on $[D]^2$.

PROOF. Proceed as in the proof of Lemma 5.4, but this time define R_{β}, Q_{β} and ψ_{β} for every $\beta < \kappa$. Since κ has the tree property, there is $k \in \prod_{\beta < \kappa} Q_{\beta}$ such that $\bigcap_{\beta \leq \gamma} k(\beta) \neq \phi$ for every $\gamma < \kappa$. Then $D = \{\psi_{\beta}(k(\beta)) : \beta < \kappa\}$ is as desired. \Box

PROPOSITION 5.8. Suppose κ is weakly compact and H is an ideal on $P_{\kappa}(\lambda)$ such that $\operatorname{cof}(H) < \operatorname{cov}(\mathbf{M}_{\kappa,\lambda^{<\kappa}})$. Then $H^+ \to (H^+,\kappa)^2$.

PROOF. By Proposition 2.5 and Lemmas 5.3 and 5.7.

165

 \Box

COROLLARY 5.9. Suppose $\mathbf{cov}(\mathbf{M}_{\kappa,\lambda^{<\kappa}}) > \lambda^{<\kappa}$. Then the following are equivalent:

(i) κ is weakly compact.

(ii)
$$I_{\kappa,\lambda}^+ \to (I_{\kappa,\lambda}^+,\kappa)^2$$
.

PROOF. By Propositions 5.1 and 5.8.

6.
$$H^+ \to (I^+_{\kappa,\lambda}, \theta \oplus 1)^2$$
.

Throughout this section κ is assumed to be uncountable.

DEFINITION. Given $X, Y \subseteq P(P_{\kappa}(\lambda))$ and an infinite cardinal $\theta < \kappa, X \to (Y, \theta \oplus 1)^2$ means that for all $A \in X$ and $F : P_{\kappa}(\lambda) \times P_{\kappa}(\lambda) \to 2$, there is either $B \in Y \cap P(A)$ such that F is constantly 0 on $[B]^2$, or $(a_0, a_1, \ldots, a_{\theta}) \in [A]^{\theta+1}$ such that $a_{\theta} = \bigcup_{\alpha < \theta} a_{\alpha}$ and F is constantly 1 on $[\{a_{\beta} : \beta \leq \theta\}]^2$.

If θ is an infinite cardinal $\langle \kappa, \text{ then } I^+_{\kappa,\lambda} \not\longrightarrow (I^+_{\kappa,\lambda}, \theta \oplus 1)^2$. (Set

$$A = \{a \in P_{\kappa}(\lambda) : \exists \alpha < \kappa \ (a \cap \kappa = \alpha + 1)\}$$

and consider $F: [A]^2 \to 2$ defined by: F(a, b) = 0 if and only if $a \cap \kappa = b \cap \kappa$.) Our goal is to produce an ideal H on $P_{\kappa}(\lambda)$ such that $H^+ \to (I^+_{\kappa,\lambda}, \theta \oplus 1)^2$. We start by reviewing a few facts.

DEFINITION. Suppose H is an ideal on $P_{\kappa}(\lambda)$ and δ is an ordinal with $\kappa \leq \delta \leq \lambda$. Then H is δ -normal if given $A \in H^+$ and $f : A \to \delta$ such that $f(a) \in a$ for all $a \in A$, there is $B \in H^+ \cap P(A)$ such that f is constant on B.

 $NS^{\delta}_{\kappa,\lambda}$ denotes the smallest δ -normal ideal on $P_{\kappa}(\lambda)$.

Note that being λ -normal is the same as being normal, so that $NS_{\kappa,\lambda}^{\lambda} = NS_{\kappa,\lambda}$.

DEFINITION. Suppose H is an ideal on $P_{\kappa}(\lambda)$, ν is a cardinal with $\kappa \leq \nu \leq \lambda$ and θ is an infinite cardinal $\leq \kappa$. Then H is $[\nu]^{<\theta}$ -normal if given $A \in H^+$ and $f : A \to P(\nu)$ such that $f(a) \in P_{|a \cap \theta|}(a)$ for all $a \in A$, there is $B \in H^+ \cap P(A)$ such that f is constant on B.

The following is easy.

LEMMA 6.1. Suppose H is an ideal on $P_{\kappa}(\lambda)$ and ν is a cardinal with $\kappa \leq \nu \leq \lambda$. Then H is $[\nu]^{<\omega}$ -normal if and only if it is ν -normal.

LEMMA 6.2 ([7], [23]).

- (i) Suppose ν is a cardinal with $\kappa \leq \nu \leq \lambda$ and θ is an uncountable cardinal $< \kappa$. Then there exists a $[\nu]^{<\theta}$ -normal ideal on $P_{\kappa}(\lambda)$ if and only if $\tau^{<\theta} < \kappa$ for every cardinal τ with $\theta \leq \tau < \kappa$.
- (ii) Suppose κ is a limit cardinal and ν is a cardinal with $\kappa \leq \nu \leq \lambda$. Then there exists a $[\nu]^{<\kappa}$ -normal ideal on $P_{\kappa}(\lambda)$ if and only if κ is Mahlo.

DEFINITION. Suppose there exists a $[\nu]^{<\theta}$ -normal ideal on $P_{\kappa}(\lambda)$, where ν, θ are two cardinals such that $\kappa \leq \nu \leq \lambda$ and $\omega \leq \theta \leq \kappa$. Then $NS_{\kappa,\lambda}^{[\nu]^{<\theta}}$ denotes the smallest such ideal.

Note that by Lemma 6.1 $NS_{\kappa,\lambda}^{[\lambda]^{<\omega}} = NS_{\kappa,\lambda}$.

LEMMA 6.3 ([23]). Suppose θ is an uncountable cardinal $< \kappa$ and ν is a cardinal with $\kappa \leq \nu \leq \lambda$. Then the set of all $a \in P_{\kappa}(\lambda)$ such that $cf(\cup(a \cap \tau)) < \theta$ for some regular cardinal τ with $\kappa \leq \tau \leq \nu$ lies in $NS_{\kappa,\lambda}^{[\nu]^{\leq \theta}}$.

As will now be shown, $[\nu]^{\leq \theta}$ -normality can be seen as the combination of ν -normality with a distributivity property.

DEFINITION. For an ideal H on $P_{\kappa}(\lambda)$ and $A \in H^+, M_{H,A}$ is the set of all $Q \subseteq H^+ \cap P(A)$ such that (a) the intersection of any two distinct members of Q lies in H, and (b) for every $C \in H^+ \cap P(A)$, there is $B \in Q$ with $B \cap C \in H^+$.

DEFINITION. Suppose H is an ideal on $P_{\kappa}(\lambda)$ and μ, ρ are two cardinals ≥ 1 . Then H is (μ, ρ) -distributive (respectively, disjointly (μ, ρ) -distributive) if given $A \in H^+$ and $Q_{\alpha} \in M_{H,A}$ (respectively, $Q_{\alpha} \in M_{H,A}^{d}$) for $\alpha < \mu$ with $|Q_{\alpha}| \leq \rho$, there are $C \in H^+ \cap P(A)$ and $h \in \prod_{\alpha < \mu} Q_{\alpha}$ such that $C - h(\alpha) \in H$ for all $\alpha < \mu$.

The following generalizes a result of Johnson [14].

LEMMA 6.4. Suppose ν is a cardinal with $\kappa \leq \nu \leq \lambda$, H is a ν -normal ideal on $P_{\kappa}(\lambda)$, and θ is a regular uncountable cardinal which is $\leq \kappa$ if κ is a limit cardinal, and $< \kappa$ otherwise. Then the following are equivalent:

- (i) H is $[\nu]^{<\theta}$ -normal.
- (ii) *H* is $(\mu, \nu^{<\theta})$ -distributive for every infinite cardinal $\mu < \theta$.
- (iii) *H* is disjointly (μ, ν) -distributive for every infinite cardinal $\mu < \theta$.

PROOF. (i) \rightarrow (ii): Assume (i) holds, and let μ be an infinite cardinal $< \theta$. Fix $A \in H^+$ and $Q_{\alpha} \in M_{H,A}$ for $\alpha < \mu$ with $|Q_{\alpha}| \le \nu^{<\theta}$. Select a one-to-one $j : \mu \times \nu \to \nu$. Given $\alpha < \mu$, pick a one-to-one $f_{\alpha} : Q_{\alpha} \to P_{\theta}(j^{"}(\{\alpha\} \times \nu))$ and define $k_{\alpha} : Q_{\alpha} \to P_{\theta}(\nu)$ by: $k_{\alpha}(B) = f_{\alpha}(B) \cup \{|f_{\alpha}(B)|\}$ if $\theta = \kappa$, and $k_{\alpha}(B) = f_{\alpha}(B)$ otherwise. Next, define $\ell_{\alpha} : Q_{\alpha} \to P(P_{\kappa}(\lambda))$ by $\ell_{\alpha}(B) = \{a \in B : k_{\alpha}(b) \subseteq a\}$, and put $R_{\alpha} = \operatorname{ran}(\ell_{\alpha})$ and $W_{\alpha} = A - (\cup R_{\alpha})$. Clearly $R_{\alpha} \in M_{H,A}$, consequently $W_{\alpha} \in H$.

Define *C* as follows: If $\theta < \kappa$, *C* is the set of all $a \in A - (\bigcup_{\alpha < \mu} W_{\alpha})$ such that $\theta \subseteq a$. If $\theta = \kappa$, *C* is the set of all $a \in A - (\bigcup_{\alpha < \mu} W_{\alpha})$ such that $a \cap \kappa$ is an infinite cardinal of cofinality $> \mu$. Then $C \in H^+$ by Lemma 6.3. For $a \in C$, pick $t_a \in \prod_{\alpha < \mu} Q_{\alpha}$ so that $a \in t_a(\alpha)$ and $k_{\alpha}(t_a(\alpha)) \subseteq a$ for all $\alpha < \mu$. Now define $g : C \to P(\nu)$ by $g(a) = \bigcup_{\alpha < \mu} f_{\alpha}(t_a(\alpha))$. Since $g(a) \in P_{|a \cap \theta|}(a)$ for all $a \in C$, there is $D \in H^+ \cap P(C)$ such that g is constant on D. Pick $a \in D$. Then $D \subseteq \bigcap_{\alpha < \mu} t_a(\alpha)$.

(ii) \rightarrow (iii) is immediate.

(iii) \rightarrow (i): Suppose (iii) holds and fix $A \in H^+$ and $f : A \rightarrow P(\nu)$ such that $f(a) \in P_{|a \cap \theta|}(a)$ for all $a \in A$. Define B by: $B = \{a \in A : \theta \subseteq a\}$ if $\theta < \kappa$, else

$$B = \{a \in A : a \cap \kappa \text{ is an infinite ordinal}\}\$$

P. MATET

Then $B \in H^+$, so by ν -normality there are $C \in H^+ \cap P(B)$ and $\mu < \theta$ such that $|f(a)| = \mu$ for all $a \in C$. If μ is finite, then f is constant on some $D \in H^+ \cap P(C)$ by Lemma 6.1. Now suppose μ is infinite. Select a bijection $j_a : \mu \to f(a)$ for each $a \in C$. Now for $\alpha < \mu$, set

$$Q_{\alpha} = H^+ \cap \{\{a \in C : j_a(\alpha) = \beta\} : \beta < \nu\}.$$

It is simple to check that $Q_{\alpha} \in M^{d}_{H,C}$. Hence there is $h \in \prod_{\alpha < \mu} Q_{\alpha}$ such that $\bigcap_{\alpha < \mu} h(\alpha) \in H^{+}$. Obviously, f is constant on $\bigcap_{\alpha < \mu} h(\alpha)$.

DEFINITION. Given $h : \lambda \to P_{\kappa}(\lambda)$ and a regular infinite cardinal $\theta < \kappa, U_h^{\theta}$ is the set of all $a \in P_{\kappa}(\lambda)$ such that $a = \bigcup_{\alpha \in e} h(\alpha)$ for some $e \subseteq a$ with $|e| = \theta$.

We are looking for pairs (h, θ) such that $U_h^{\theta} \in (NS_{\kappa, \lambda}^{[\lambda]^{<\theta}})^+$.

DEFINITION. Given a regular infinite cardinal $\theta < \kappa$, $\mathscr{H}^{\theta}_{\kappa,\lambda}$ is the set all $h : \lambda \to P_{\kappa}(\lambda)$ such that for each $a \in P_{\kappa}(\lambda)$, there is $e \in P_{\theta^+}(\lambda)$ with $a \subseteq \bigcup_{\alpha \in e} h(\alpha)$.

The easy proof of the following is left to the reader.

LEMMA 6.5. Suppose θ is a regular infinite cardinal $< \kappa$. Then

$$\mathscr{H}^{\theta}_{\kappa,\lambda} = \{h : \lambda \to P_{\kappa}(\lambda) : U^{\theta}_h \in I^+_{\kappa,\lambda}\}.$$

LEMMA 6.6. Suppose $h, k \in \mathscr{H}^{\theta}_{\kappa,\lambda}$, where θ is a regular infinite cardinal $< \kappa$. Then $U^{\theta}_{h} \Delta U^{\theta}_{k} \in NS_{\kappa,\lambda}$.

PROOF. Define $f : \lambda \to P_{\theta^+}(\lambda)$ and $g : \lambda \to P_{\theta^+}(\lambda)$ so that for every $\alpha \in \lambda$, $h(\alpha) \subseteq \bigcup_{\beta \in f(\alpha)} k(\beta)$ and $k(\alpha) \subseteq \bigcup_{\beta \in g(\alpha)} h(\beta)$. Let D be the set of all $a \in P_{\kappa}(\lambda)$ such that $\theta \subseteq a$ and

$$h(\alpha) \cup k(\alpha) \cup f(\alpha) \cup g(\alpha) \subseteq a$$

for all $\alpha \in a$. Then $D \in NS^*_{\kappa,\lambda}$ and $U^{\theta}_h \cap D = U^{\theta}_k \cap D$.

LEMMA 6.7. Suppose $\kappa \to (\kappa, \theta)^2$ and $h \in \mathscr{H}^{\theta}_{\kappa, \lambda}$, where θ is a regular infinite cardinal $< \kappa$. Then $U^{\theta}_h \in (NS^{[\lambda]^{\leq \theta}}_{\kappa, \lambda})^+$.

PROOF. The existence of a $[\lambda]^{\leq \theta}$ -normal ideal on $P_{\kappa}(\lambda)$ follows from Lemmas 5.2 and 6.2 (i). To establish that $U_h^{\theta} \notin NS_{\kappa,\lambda}^{[\lambda]^{\leq \theta}}$, it suffices to show that for every $f: P_{\theta}(\lambda) \to P_{\kappa}(\lambda)$, there is $a \in U_h^{\theta}$ such that $\theta \subseteq a$ and $f(z) \subseteq a$ for every $z \in P_{\theta}(a)$. Given f, define $a_{\beta}, b_{\beta} \in P_{\kappa}(\lambda)$ and $e_{\beta} \in P_{\theta^+}(\lambda)$ for $\beta < \theta$ by:

- (0) $a_0 = \theta \cup (\bigcup_{\alpha \in \theta} h(\alpha)).$
- (1) $a_{\beta} \subseteq b_{\beta}$.
- (2) $b_{\beta} = \bigcup_{\alpha \in e_{\beta}} h(\alpha).$
- (3) $a_{\beta+1} = b_{\beta} \cup (\cup \{f(z) : z \in P_{\theta}(b_{\beta})\}).$

- (4) $a_{\beta} = \bigcup_{\gamma < \beta} a_{\gamma}$ if β is a limit ordinal > 0.
- (5) $\psi_{\alpha} = \bigcup_{C \in T_{\alpha}} \psi(C).$

Now set $a = \bigcup_{\beta < \theta} b_{\beta}$. Obviously, $\theta \subseteq a$. Moreover, $a \in U_h^{\theta}$ since

$$a = \bigcup \left\{ h(\alpha) : \alpha \in \theta \bigcup \left(\bigcup_{\beta < \theta} e_{\beta} \right) \right\}.$$

Finally, given $z \in P_{\theta}(a)$, there is $\beta < \theta$ such that $z \subseteq b_{\beta}$, and then $f(z) \subseteq a_{\beta+1} \subseteq a$. \Box

It remains to discuss whether $\mathscr{H}^{\theta}_{\kappa,\lambda} \neq \phi$.

LEMMA 6.8. Suppose that θ is a regular infinite cardinal $< \kappa$ and either $cf(\lambda) \ge \kappa$ and $u(\kappa, \lambda) = \lambda$, or $cf(\lambda) \le \theta$ and $u(\kappa, \mu) \le \lambda$ for every cardinal μ with $\kappa < \mu < \lambda$. Then $\mathscr{H}^{\theta}_{\kappa,\lambda} \neq \phi$.

PROOF. Select $h : \lambda \to \bigcup_{\kappa \le \xi \le \lambda} P_{\kappa}(\xi)$ so that

$$\bigcup_{\kappa \le \xi < \lambda} P_{\kappa}(\xi) = \bigcup_{\alpha < \lambda} P(h(\alpha)).$$

Then it is simple to see that $h \in \mathscr{H}^{\theta}_{\kappa,\lambda}$.

DEFINITION. Given a regular infinite cardinal $\theta < \kappa$, $T^{\theta}_{\kappa,\lambda}$ (respectively, $T^{\leq \theta}_{\kappa,\lambda}$) is the set of all $a \in P_{\kappa}(\lambda)$ such that $\cup (a \cap \tau)$ is a limit ordinal of cofinality θ (respectively, $\leq \theta$) for every regular cardinal τ with $\kappa \leq \tau \leq \lambda$.

LEMMA 6.9. Suppose $h : \lambda \to P_{\kappa}(\lambda)$ and θ is a regular infinite cardinal $< \kappa$. Then $U_{h}^{\theta} - T_{\kappa,\lambda}^{\leq \theta} \in NS_{\kappa,\lambda}$.

PROOF. Set $\tilde{\beta} = \max\{\kappa, |\beta|^+\}$ for every $\beta < \lambda$. Let A be the set of all $a \in P_{\kappa}(\lambda)$ such that

$$\cup (h(\alpha) \cap \widetilde{\beta}) < \cup (a \cap \widetilde{\beta})$$

for all $\alpha, \beta \in a$, and $\gamma + 1 \in a$ for all $\gamma \in a$. Then $A \in NS^*_{\kappa,\lambda}$ and $A \cap U_h^{\theta} \subseteq T_{\kappa,\lambda}^{\leq \theta}$. \Box

LEMMA 6.10. Suppose $h : \lambda \to P_{\kappa}(\lambda)$ and θ is a regular infinite cardinal $< \kappa$. Then $U_h^{\theta} - T_{\kappa,\lambda}^{\theta} \in NS_{\kappa,\lambda}^{[\lambda]^{\leq \theta}}$.

PROOF. By Lemmas 6.3 and 6.9.

LEMMA 6.11. Suppose that θ is a regular infinite cardinal $< \kappa$ and either $\kappa = \theta^+$ or $\lambda < \kappa^{+\theta^+}$. Then $T_{\kappa,\lambda}^{\leq \theta} - U_h^{\theta} \in NS_{\kappa,\lambda}$ for some $h : \lambda \to P_{\kappa}(\lambda)$.

PROOF. If $\kappa = \theta^+$ and $h : \lambda \to P_{\kappa}(\lambda)$ is defined by $h(\alpha) = \{\alpha\}$, then

$$\{a \in P_{\kappa}(\lambda) : \theta \subseteq a\} \subseteq U_h^{\theta}.$$

P. MATET

For the other case, see Proposition 5.6 in [10].

We are now in a position to prove the main result of this section.

PROPOSITION 6.12. Suppose that $\operatorname{cov}(\mathbf{M}_{\kappa,\lambda^{<\kappa}}) > \lambda^{<\kappa}$, θ is a regular infinite cardinal $<\kappa$ such that $\kappa \to (\kappa,\theta)^2$, $h: \lambda \to P_{\kappa}(\lambda)$ and $Z \in \mathfrak{K}_{\kappa,\lambda} \cap P(U_h^{\theta}) \cap (NS_{\kappa,\lambda}^{[\lambda]^{<\theta}})^+$. Then $(NS_{\kappa,\lambda}^{[\lambda]^{<\theta}}|Z)^+ \to (I_{\kappa,\lambda}^+, \theta \oplus 1)^2$.

PROOF. Set $H = NS_{\kappa,\lambda}^{[\lambda]^{\leq \theta}} | Z$. Fix $B \in H^+$ and $F : P_{\kappa}(\lambda) \times P_{\kappa}(\lambda) \to 2$. Set $A = B \cap Z$.

If (H, A, F) is 0-nice, then clearly so is $(I_{\kappa,\lambda}|A, A, F)$ and therefore by Lemma 5.3 F is constantly 0 on $[D]^2$ for some $D \in I^+_{\kappa,\lambda} \cap P(A)$.

Next, suppose (H, A, F) is not 0-nice. Pick $g : \theta \times A \to \lambda$ so that $\{g(\alpha, b) : \alpha < \theta\} \subseteq b$ and $b = \bigcup_{\alpha < \theta} h(g(\alpha, b))$ for every $b \in A$. For $\alpha < \theta$, define a function χ_{α} on $H^+ \cap P(A)$ by

$$\chi_{\alpha}(C) = H^{+} \cap \{ \{ b \in C : g(\alpha, b) = \xi \} : \xi < \lambda \}.$$

It is simple to check that $\chi_{\alpha}(C) \in M^{d}_{H,C}$. Let φ, ψ be as in the proof of Lemma 5.4. Now appealing to Lemma 6.4, define

$$R_{\alpha}, T_{\alpha}, Q_{\alpha} \in \{ W \in M_{H,A}^{\mathrm{d}} : |W| \le \lambda^{|1+\alpha|} \}$$

and $\psi_{\alpha}: Q_{\alpha} \to A$ for $\alpha < \theta$ by:

(0)
$$R_0 = \{A\}.$$

(1) $T_\alpha = \bigcup_{C \in R_\alpha} \chi_\alpha(C).$
(2) $Q_\alpha = \bigcup_{C \in T_\alpha} \varphi(C).$
(3) $R_{\alpha+1} = Q_\alpha.$
(4) $R_\alpha = H^+ \cap \{\bigcap_{\beta < \alpha} q(\beta) : q \in \prod_{\beta < \alpha} Q_\beta\}$ if α is a limit ordinal > (5) $\psi_\alpha = \bigcup_{C \in T} \psi(C).$

Finally, select $b \in \bigcap_{\alpha < \theta} (\cup Q_{\alpha})$. Let $k \in \prod_{\alpha < \theta} Q_{\alpha}$ be such that $b \in \bigcap_{\alpha < \theta} k(\alpha)$. Stipulate that $a_{\alpha} = \psi_{\alpha}(k(\alpha))$ for $\alpha < \theta$, and $a_{\theta} = b$. Then clearly $(a_0, a_1, \ldots, a_{\theta}) \in [A]^{\theta+1}$ and F takes the constant value 1 on $[\{a_{\delta} : \delta \leq \theta\}]^2$. Moreover, $g(\alpha, a_{\alpha}) = g(\alpha, a_{\delta})$ whenever $\alpha < \delta \leq \theta$. It follows that

$$a_{\theta} = \bigcup_{\alpha < \theta} h(g(\alpha, a_{\theta})) \subseteq \bigcup_{\alpha < \theta} a_{\alpha}.$$

0.

COROLLARY 6.13. Suppose that (a) $\operatorname{cov}(\mathbf{M}_{\kappa,\lambda^{<\kappa}}) > \lambda^{<\kappa}$, (b) θ is a regular infinite cardinal $< \kappa$ such that $\kappa \to (\kappa,\theta)^2$, (c) $\tau^{\theta} < \kappa$ for every infinite cardinal $\tau < \kappa$, and (d) either $cf(\lambda) \ge \kappa$ and $\lambda^{<\kappa} = \lambda$, or $cf(\lambda) \le \theta$ and $\mu^{<\kappa} \le \lambda$ for every cardinal μ with $\kappa < \mu < \lambda$. Then $(NS_{\kappa,\lambda}^{[\lambda]^{<\theta}}|Z)^+ \to (I_{\kappa,\lambda}^+, \theta \oplus 1)^2$ for some $Z \in (NS_{\kappa,\lambda}^{[\lambda]^{<\theta}})^+$.

PROOF. By Lemma 6.8, there is $h \in \mathscr{H}^{\theta}_{\kappa,\lambda}$. Set $Z = U^{\theta}_h$. Then $Z \in (NS^{[\lambda]^{\leq \theta}}_{\kappa,\lambda})^+$ by Lemma 6.7. That $Z \in \mathfrak{K}_{\kappa,\lambda}$ follows from (c).

170

COROLLARY 6.14. Suppose that (a) $\operatorname{cov}(\mathbf{M}_{\kappa,\lambda^{<\kappa}}) > \lambda^{<\kappa}$, (b) θ is a regular infinite cardinal $< \kappa$ such that $\kappa \to (\kappa, \theta)^2$, (c) $\tau^{\theta} < \kappa$ for every infinite cardinal $\tau < \kappa$, and (d) either $\kappa = \theta^+$ or $\lambda < \kappa^{+\theta^+}$. Then $(NS_{\kappa,\lambda}^{[\lambda]^{<\theta}} | T_{\kappa,\lambda}^{\theta})^+ \to (I_{\kappa,\lambda}^+, \theta \oplus 1)^2$.

PROOF. By Lemma 6.11, there is $h : \lambda \to P_{\kappa}(\lambda)$ such that $T_{\kappa,\lambda}^{\leq \theta} - U_h^{\theta} \in NS_{\kappa,\lambda}$. It can be checked that $T_{\kappa,\lambda}^{\leq \theta} \in NS_{\kappa,\lambda}^+$, so $h \in \mathscr{H}_{\kappa,\lambda}^{\theta}$. Set $Z = U_h^{\theta} \cap T_{\kappa,\lambda}^{\theta}$. Then $Z \in (NS_{\kappa,\lambda}^{[\lambda]^{\leq \theta}})^+$ by Lemmas 6.7 and 6.10, and $Z \in \mathfrak{K}_{\kappa,\lambda}$ because of (c). Moreover,

$$NS_{\kappa,\lambda}^{[\lambda]^{<\theta}}|Z = NS_{\kappa,\lambda}^{[\lambda]^{<\theta}}|T_{\kappa,\lambda}^{\theta}|$$

by Lemma 6.10.

Thus for example if CH holds and $\mathbf{cov}(\mathbf{M}_{\omega_2,\omega_3}) > \omega_3$, then

$$\left(NS_{\omega_3,\omega_3}|T^{\omega}_{\omega_2,\omega_3}\right)^+ \to \left(I^+_{\omega_2,\omega_3},\omega\oplus 1\right)^2.$$

Left unanswered is whether it is possible that $NS^+_{\omega_1,\omega_2} \to (I^+_{\omega_1,\omega_2}, \omega \oplus 1)^2$. Note that by the results above if $NS^+_{\omega_1,\omega_2} \cap \mathfrak{K}_{\omega_1,\omega_2} \neq \phi$ and $\mathbf{cov}(\mathbf{M}_{\omega_1,\omega_2}) > \omega_2$, then

$$\left(NS_{\omega_1,\omega_2}|Z\right)^+ \to \left(I^+_{\omega_1,\omega_2},\omega\oplus 1\right)^2$$

for some $Z \in NS^+_{\omega_1,\omega_2}$. We do not know whether it is consistent that $NS^+_{\omega_1,\omega_2} \cap \mathfrak{K}_{\omega_1,\omega_2} \neq \phi$.

7.
$$I_{\kappa,\lambda}^+ \to (I_{\kappa,\lambda}^+)^3$$
.

DEFINITION. Given $X, Y \subseteq P(P_{\kappa}(\lambda))$ and $n < \omega, X \to (Y)^n$ means that for all $A \in X$ and $F : [P_{\kappa}(\lambda)]^n \to 2$, there is $B \in Y \cap P(A)$ such that F is constant on $[B]^n$.

The main purpose of this section is to discuss the partition relation $I^+_{\kappa,\lambda} \to (I^+_{\kappa,\lambda})^n$. To start, let us show that $I^+_{\kappa,\lambda} \to (I^+_{\kappa,\lambda})^3$ implies that $I^+_{\kappa,\lambda} \to (I^+_{\kappa,\lambda})^n$ for all $n \ge 1$.

LEMMA 7.1 ([18]). Suppose H is $(\nu, 2)$ -distributive, where H is an ideal on $P_{\kappa}(\lambda)$ and ν an infinite cardinal $< \kappa$. Then $2^{\nu} < \kappa$.

The following is essentially due to Johnson (see Theorem 6.2 in [14]).

LEMMA 7.2. Given an ideal H on $P_{\kappa}(\lambda)$, the following are equivalent:

- (i) H is $(\lambda^{<\kappa}, 2)$ -distributive and weakly selective.
- (ii) $H^+ \to (H^+)^n$ for all n with $0 < n < \omega$.
- (iii) $H^+ \to (H^+)^3$.

PROOF. (i) \rightarrow (ii): Assume (i) holds. To prove (ii), we proceed by induction on n. It is immediate that $H^+ \rightarrow (H^+)^1$. Now suppose $H^+ \rightarrow (H^+)^n$ for some n with $0 < n < \omega$. Fix $A \in H^+$ and $F : [A]^{n+1} \rightarrow 2$. Since H is $(\lambda^{<\kappa}, 2)$ -distributive, there are $B \in H^+ \cap P(A)$ and $f : [A]^n \rightarrow 2$ such that

171

P. MATET

 $\{b \in B : a_n \subsetneq b \text{ and } F(a_1, \dots, a_n, b) \neq f(a_1, \dots, a_n)\} \in H$

for every $(a_1, \ldots, a_n) \in [A]^n$. Because κ is inaccessible by Lemma 7.1 and H is weakly selective, there is $C \in H^+ \cap P(B)$ such that $F(a_1, \ldots, a_n, b) = f(a_1, \ldots, a_n)$ whenever $(a_1, \ldots, a_n, b) \in [C]^{n+1}$. Finally, by inductive hypothesis there is $D \in H^+ \cap P(C)$ such that f is constant on $[D]^n$. Clearly, F is constant on $[D]^{n+1}$.

(ii) \rightarrow (iii) is trivial.

(iii) \rightarrow (i): Assume (iii) holds. To show that H is weakly selective, let $A \in H^+$ and $B_a \in H$ for $a \in A$. Define $F : [A]^2 \rightarrow 2$ by F(a, b) = 0 if and only if $b \in B_a$. Then F is constant on $[C]^2$ for some $C \in H^+ \cap P(A)$. It is simple to check that $b \notin B_a$ for all $(a,b) \in [C]^2$. Next, let us establish that H is $(\lambda^{<\kappa}, 2)$ -distributive. Thus let $A \in H^+$ and $B_a \subseteq P_{\kappa}(\lambda)$ for $a \in P_{\kappa}(\lambda)$. Define $F : [A]^3 \rightarrow 2$ by:

$$F(a, b, c) = 0$$
 iff $\forall e \subseteq a(b \in B_e \leftrightarrow c \in B_e).$

Pick $C \in H^+ \cap P(A)$ so that F is constant on $[C]^3$. Since κ is clearly weakly compact and hence inaccessible, F must be identically 0 on $[C]^3$. Now define $h \in \prod_{e \in P_{\kappa}(\lambda)} \{B_e, P_{\kappa}(\lambda) - B_e\}$ as follows. Given $e \in P_{\kappa}(\lambda)$, pick $(a, b) \in [C]^2$ with $e \subseteq a$, and let $h(e) = B_e$ if and only if $b \in B_e$. If $d \in C$ and $a \subsetneq d$, then $d \subsetneq c$ for some $c \in C$ with $b \subsetneq c$, so that

$$d \in B_e \leftrightarrow c \in B_e \leftrightarrow b \in B_e$$

and consequently $d \in B_e$. Thus $C - B_e \in I_{\kappa,\lambda}$.

DEFINITION. For a cardinal $\mu \geq \kappa$, κ is mildly μ -ineffable if given $t_a \in {}^a2$ for $a \in P_{\kappa}(\mu)$, there is $g \in {}^{\mu}2$ such that for every $a \in P_{\kappa}(\mu)$,

$$\{b \in P_{\kappa}(\mu) : a \subseteq b \text{ and } t_b \upharpoonright a = g \upharpoonright a\} \in I^+_{\kappa,\mu}.$$

It is simple to see that if κ is μ -compact, then κ is mildly μ -ineffable. An immediate consequence is the result of Rado [29] that ω is mildly μ -ineffable for every infinite cardinal μ .

The following refines a result of Di Prisco and Zwicker [9].

LEMMA 7.3. Suppose κ is mildly $\lambda^{<\kappa}$ -ineffable, H is an ideal on $P_{\kappa}(\lambda)$ and $B_{\delta} \subseteq P_{\kappa}(\lambda)$ for $\delta \in \lambda^{<\kappa}$. Then there is $h \in \prod_{\delta \in \lambda^{<\kappa}} \{B_{\delta}, P_{\kappa}(\lambda) - B_{\delta}\}$ such that $\bigcap_{\delta \in c} h(\delta) \in H^+$ for every $c \in P_{\kappa}(\lambda^{<\kappa}) - \{\phi\}$.

PROOF. For $\delta \in \lambda^{<\kappa}$, set $B^0_{\delta} = B_{\delta}$ and $B^1_{\delta} = P_{\kappa}(\lambda) - B_{\delta}$. Now for each $d \in P_{\kappa}(\lambda^{<\kappa}) - \{\phi\}$ pick $t_d \in d^2$ so that $\bigcap_{\delta \in d} B^{t_d(\delta)}_{\delta} \in H^+$. Select $g : \lambda^{<\kappa} \to 2$ so that for every $c \in P_{\kappa}(\lambda^{<\kappa}) - \{\phi\}$, there is $d \in P_{\kappa}(\lambda^{<\kappa})$ with $c \subseteq d$ and $t_d \upharpoonright c = g \upharpoonright c$. Then obviously $\bigcap_{\delta \in c} B^{g(\delta)}_{\delta} \in H^+$ for any $c \in P_{\kappa}(\lambda^{<\kappa}) - \{\phi\}$.

PROPOSITION 7.4. Suppose κ is mildly $\lambda^{<\kappa}$ -ineffable and H is an ideal on $P_{\kappa}(\lambda)$ such that $\operatorname{cof}(H) < \operatorname{cov}(\mathbf{M}_{\kappa,\lambda^{<\kappa}})$. Then $H^+ \to (H^+)^n$ for all n with $0 < n < \omega$.

172

 \Box

173

PROOF. By Lemma 7.2 it suffices to establish that H is weakly selective and $(\lambda^{<\kappa}, 2)$ -distributive. Weak selectivity is direct from Proposition 4.3. To show $(\lambda^{<\kappa}, 2)$ -distributivity, let $A \in H^+$ and $B_{\delta} \subseteq A$ for $\delta \in \lambda^{<\kappa}$. By Lemma 7.3 one can find $h \in \prod_{\delta \in \lambda^{<\kappa}} \{B_{\delta}, A - B_{\delta}\}$ so that $\bigcap_{\delta \in c} h(\delta) \in H^+$ for every $c \in P_{\kappa}(\lambda^{<\kappa}) - \{\phi\}$. By Proposition 4.3 $\mathfrak{p}_H > \lambda^{<\kappa}$, so there must be $C \in H^+$ such that $C - h(\delta) \in H$ for all $\delta < \lambda^{<\kappa}$.

COROLLARY 7.5. Suppose κ is mildly $\lambda^{<\kappa}$ -ineffable and $\operatorname{cov}(\mathbf{M}_{\kappa,\lambda^{<\kappa}}) > \lambda^{<\kappa}$. Then $I^+_{\kappa,\lambda} \to (I^+_{\kappa,\lambda})^n$ for all n with $0 < n < \omega$.

The following generalization is immediate from Proposition 2.21:

COROLLARY 7.6. Suppose that κ is mildly $\lambda^{<\kappa}$ -ineffable, $\operatorname{cov}(\mathbf{M}_{\kappa,\lambda^{<\kappa}}) > \lambda^{<\kappa}$ and (Q,<) is a κ -directed partially ordered set such that $\lambda \leq |Q| \leq \lambda^{<\kappa}$ and $|\{r \in Q : r < q\}| < \kappa$ for all $q \in Q$. Then given $f : Q^n \to 2$, where $0 < n < \omega$, there is a cofinal subset T of Q such that f is constant on

$$\{(q_1, \ldots, q_n) \in T^n : q_1 < \cdots < q_n\}.$$

Note that Corollary 5.6 and Corollary 5.9 can be extended in the same way.

8. Isomorphisms.

We will now prove that if $\lambda^{<\kappa} < \mathbf{cov}(\mathbf{M}_{\kappa,\lambda^{<\kappa}})$ and $\mathfrak{K}_{\kappa,\lambda} \neq \phi$, then any two cofinal subsets of $P_{\kappa}(\lambda)$ have isomorphic cofinal subsets.

LEMMA 8.1. Suppose that (Q, <) is a κ -directed partially ordered set with no maximal element and H is an ideal on $P_{\kappa}(\lambda)$ with $\operatorname{cof}(H) < \operatorname{cov}(\mathbf{M}_{\kappa,\lambda^{<\kappa}})$. Suppose further that $A \in H^+$ and $h: A \to Q$ are such that $h^{(*)}(A \cap R)$ is cofinal in Q for every $R \in H^*$. Then:

(i) If $|\{a \in A : h(a) < h(b)\}| < \kappa$ for every $b \in A$, then there is $C \in H^+ \cap P(A)$ such that for all $a, b \in C$,

$$h(a) < h(b) \to a \subsetneq b.$$

(ii) If $H^* \cap \mathfrak{K}_{\kappa,\lambda} \neq \phi$, then there is $D \in H^+ \cap P(A)$ such that for all $a, b \in D$,

$$a \subsetneq b \to h(a) < h(b).$$

Proof.

- (i) Assume that $|\{a \in A : h(a) < h(b)\}| < \kappa$ for all $b \in A$. Pick $X \subseteq H$ so that $|X| = \operatorname{cof}(H)$ and $H = \bigcup_{B \in X} P(B)$. For $B \in X$, let \mathscr{D}_B be the set of all $p \in Fn(A, 2, \kappa)$ such that there is $b \in \operatorname{dom}(p)$ with the following properties:
 - (0) $b \notin B$. (1) dom $(p) = \{b\} \cup \{a \in A : h(a) < h(b)\}.$

(2) p(b) = 1. (3) $a \subsetneq b$ for every $a \in \text{dom}(p)$ such that $a \neq b$ and p(a) = 1.

Let us establish that \mathscr{D}_B is dense. Thus fix $s \in Fn(A, 2, \kappa)$. Pick $q \in Q$ so that h(a) < q for every $a \in \text{dom}(s)$. There is

$$b \in \{c \in A - B : \forall a \in s^{-1}(\{1\})(a \subsetneq c)\}$$

such that $q \leq h(b)$. Define

$$p: \{b\} \cup \{a \in A: h(a) < h(b)\} \rightarrow 2$$

by:

(α) p(b) = 1. (β) $p \upharpoonright \text{dom}(s) = s$. (γ) p(c) = 0 for every $c \in \text{dom}(p)$ such that $c \neq b$ and $c \notin \text{dom}(s)$.

Clearly, $s \subseteq p$ and $p \in \mathscr{D}_B$.

Let $G \subseteq Fn(A, 2, \kappa)$ be a filter such that $G \cap \mathscr{D}_B \neq \phi$ for every $B \in X$. Pick $\varphi \in \prod_{B \in X} (G \cap \mathscr{D}_B)$ and let $\langle b_B : B \in X \rangle$ be such that

$$\operatorname{dom}(\varphi(B)) = \{b_B\} \cup \{a \in A : h(a) < h(b_B)\}.$$

Stipulate that $C = \{b_B : B \in X\}$. Obviously, $C \in H^+ \cap P(A)$. Now suppose $B_0, B_1 \in X$ are such that $h(b_{B_0}) < h(b_{B_1})$. Select $r \in G$ so that $\varphi(B_0) \cup \varphi(B_1) \subseteq r$. Then

$$(\varphi(B_1)(b_{B_0})) = r(b_{B_0}) = (\varphi(B_0))(b_{B_0}) = 1$$

and hence $b_{B_0} \subsetneq b_{B_1}$. Thus C is as desired.

(ii) Assume $H^* \cap \mathfrak{K}_{\kappa,\lambda} \neq \phi$. Set $S_a = \{b \in A : h(b) > h(a)\}$ for $a \in A$. Then $\bigcap_{a \in x} S_a \in H^+$ for every $x \in P_{\kappa}(A) - \{\phi\}$. Hence by Lemma 4.1 and Proposition 4.3 there is $D \in H^+ \cap P(A)$ such that $b \in S_a$ whenever $(a, b) \in [D]^2$. \Box

PROPOSITION 8.2. Suppose that (Q, <) is a κ -directed partially ordered set such that (a) $|\{r \in Q : r < q\}| < \kappa$ for all $q \in Q$, and (b) $\lambda^{<\kappa}$ is the least cardinality of any cofinal subset of (Q, <). Suppose further that H is an ideal on $P_{\kappa}(\lambda)$ such that $H^* \cap \mathfrak{K}_{\kappa,\lambda} \neq \phi$ and $\operatorname{cof}(H) < \operatorname{cov}(\mathbf{M}_{\kappa,\lambda^{<\kappa}})$. Then for every $A \in H^+$, there exist $D \in H^+ \cap P(A)$ and a cofinal subset T of Q such that (D, \subsetneq) and (T, <) are isomorphic.

PROOF. Fix $A \in H^+$. Pick $Z \in H^* \cap \mathfrak{K}_{\kappa,\lambda}$ and a cofinal subset R of Q of size $\lambda^{<\kappa}$. Set $A \cap Z = \{a_{\delta} : \delta < \lambda^{<\kappa}\}$ and $R = \{e_d : d \in Z\}$. Define a one-to-one $h : A \cap Z \to Q$ as follows: suppose $h(a_{\xi})$ has already been defined for each $\xi < \delta$. There is $q \in Q$ such that $q \notin h(a_{\xi})$ for all $\xi < \delta$. Select $r \in Q$ so that $q \leq r$ and $e_d \leq r$ for every $d \in Z \cap P(a_{\delta})$. Now stipulate that $h(a_{\delta}) = r$.

Note that $h^{"}B$ is a cofinal subset of Q for every $B \in I^{+}_{\kappa,\lambda} \cap P(A \cap Z)$. It is readily

seen that Q has no maximal element. Hence by Lemma 8.1 there is $C\in H^+\cap P(A\cap Z)$ such that

$$h(a) < h(b) \to a \subsetneq b$$

for all $a, b \in C$, and $D \in H^+ \cap P(C)$ such that

$$a \subsetneq b \to h(a) < h(b)$$

for all $a, b \in D$. Obviously, (D, \subsetneq) and $(h^{*}D, <)$ are isomorphic.

COROLLARY 8.3. Suppose that ν is a cardinal with $\lambda \leq \nu \leq \lambda^{<\kappa}$ and H is an ideal on $P_{\kappa}(\lambda)$ such that $H^* \cap \mathfrak{K}_{\kappa,\lambda} \neq \phi$ and $\operatorname{cof}(H) < \operatorname{cov}(\mathbf{M}_{\kappa,\lambda^{<\kappa}})$. Then for all $A \in H^+$ and $B \in I^+_{\kappa,\nu}$, there are $D \in H^+ \cap P(A)$ and $T \in I^+_{\kappa,\nu} \cap P(B)$ such that (D, \subsetneq) and (T, \subsetneq) are isomorphic.

PROOF. Fix $A \in H^+$ and $B \in I^+_{\kappa,\nu}$. By Proposition 2.3 and Corollary 2.8, there is $C \in \mathfrak{K}_{\kappa,\nu} \cap P(B)$. Using Corollary 3.6, $u(\kappa,\nu) = \nu^{<\kappa} = \lambda^{<\kappa}$, so by Proposition 8.2, there exist $D \in H^+ \cap P(A)$ and a cofinal subset T of (C, \subsetneq) such that (D, \subsetneq) and (T, \subsetneq) are isomorphic. Obviously, $T \in I^+_{\kappa,\nu} \cap P(B)$.

It easily follows that if $\mathfrak{K}_{\kappa,\lambda} \neq \phi$, $\operatorname{cov}(\mathbf{M}_{\kappa,\lambda^{<\kappa}}) > \lambda^{<\kappa}$, $A \in I^+_{\kappa,\lambda}$ and $B \in I^+_{\kappa,\nu}$, where $\lambda \leq \nu \leq \lambda^{<\kappa}$, then A and B have isomorphic cofinal subsets. Note that if $P_{\kappa}(\lambda)$ and $P_{\kappa}(\lambda^{<\kappa})$ have isomorphic subsets, then we must have $u(\kappa,\lambda) = \lambda^{<\kappa}$ and $\mathfrak{K}_{\kappa,\lambda} \neq \phi$.

Next we deal with the problem whether $S_{\kappa}(\lambda)$ holds. (Recall that $S_{\kappa}(\lambda)$ asserts that for any $g: P_{\kappa}(\lambda) \to P_{\kappa}(\lambda)$, there is a cofinal subset D of $P_{\kappa}(\lambda)$ such that the image under f of every noncofinal subset of D is noncofinal.)

PROPOSITION 8.4. Suppose (Q, <) and H are as in the statement of Proposition 8.2, $A \in H^+$ and $f : A \to Q$. Then there is $D \in H^+ \cap P(A)$ such that for every $B \in I_{\kappa,\lambda} \cap P(D), f$ "B is not cofinal in (Q, <).

PROOF. Fix $Z \in H^* \cap \mathfrak{K}_{\kappa,\lambda}$. A slight modification of the proof of Proposition 8.2 yields the existence of (a) a one-to-one $h : A \cap Z \to Q$ such that $f(a) \leq h(a)$ for all $a \in A \cap Z$, and (b) $D \in H^+ \cap P(A \cap Z)$ such that

$$h(a) < h(b) \to a \subsetneq b$$

for all $a, b \in D$. Given $B \in I_{\kappa,\lambda} \cap P(D)$, there is $a \in D$ such that

$$B \cap \{b \in P_{\kappa}(\lambda) : a \subseteq b\} = \phi.$$

Then

$$h"B \cap \{q \in Q : h(a) \le q\} = \phi$$

and hence

 \Box

P. MATET

$$f"B \cap \{q \in Q : h(a) \le q\} = \phi.$$

COROLLARY 8.5. Suppose $\lambda^{<\kappa} < \mathbf{cov}(\mathbf{M}_{\kappa,\lambda^{<\kappa}}), \ \mathfrak{K}_{\kappa,\lambda} \neq \phi \ and \ g: P_{\kappa}(\lambda) \to P_{\kappa}(\lambda).$ Then given $E \in I^+_{\kappa,\lambda}$, there is $D \in I^+_{\kappa,\lambda} \cap P(E)$ such that $g^{``}B \in I_{\kappa,\lambda}$ for any $B \in I_{\kappa,\lambda} \cap P(D).$

PROOF. Using Proposition 2.3, pick $A \in \mathfrak{K}_{\kappa,\lambda} \cap P(E)$. Define $f: A \to A$ so that $g(a) \subseteq f(a)$ for all $a \in A$. By Proposition 8.4, there is $D \in (I_{\kappa,\lambda}|A)^+ \cap P(A)$ such that for every $B \in I_{\kappa,\lambda} \cap P(D)$, f^*B is not cofinal in (A, \subsetneq) . It is simple to see that D is as desired.

To conclude the section, let us show that the two statements " $S_{\kappa}(\lambda)$ holds" and " $\mathfrak{p}_{\kappa,\lambda} > u(\kappa,\lambda)$ " are closely related.

PROPOSITION 8.6. Suppose that $\mathfrak{K}_{\kappa,\lambda} \neq \phi$ and $S_{\kappa}(\lambda)$ holds. Then $\mathfrak{p}_{\kappa,\lambda} > u(\kappa,\lambda)$.

PROOF. Select $A \in I_{\kappa,\lambda}^+$ so that $|A \cap P(e)| < \kappa$ for all $e \in P_{\kappa}(\lambda)$. Let $S_a \subseteq P_{\kappa}(\lambda)$ for $a \in A$ be such that $\bigcap_{a \in x} S_a \in I_{\kappa,\lambda}^+$ for every $x \in P_{\kappa}(A) - \{\phi\}$. Define $g : P_{\kappa}(\lambda) \to P_{\kappa}(\lambda)$ so that for every $d \in P_{\kappa}(\lambda)$, (a) $d \subseteq g(d)$, and (b) $g(d) \in S_a$ for every $a \in A \cap P(d)$. Pick $D \in I_{\kappa,\lambda}^+$ so that $g^{``}B \in I_{\kappa,\lambda}$ for all $B \in I_{\kappa,\lambda} \cap P(D)$. Now set $C = g^{``}D$. Clearly, $C \in I_{\kappa,\lambda}^+$. Moreover for every $a \in A$, $C - S_a \in I_{\kappa,\lambda}$ since $C - S_a \subseteq g^{``}B_a$, where $B_a = \{d \in D : a \notin d\}$.

Conservely, $\mathfrak{p}_{\kappa,\lambda} > u(\kappa,\lambda)$ implies that $S_{\kappa}(\lambda)$ holds.

PROPOSITION 8.7. Let $E \in I_{\kappa,\lambda}^+$ be such that $\mathfrak{p}_{I_{\kappa,\lambda}|E} > u(\kappa,\lambda)$. Then for every $g: P_{\kappa}(\lambda) \to P_{\kappa}(\lambda)$, there is $D \in I_{\kappa,\lambda}^+ \cap P(E)$ such that $g^{*}B \in I_{\kappa,\lambda}$ for any $B \in I_{\kappa,\lambda} \cap P(D)$.

PROOF. Select $A \in I_{\kappa,\lambda}^+ \cap P(E)$ so that $|A| = u(\kappa, \lambda)$. Set $A = \{a_\alpha : \alpha < u(\kappa, \lambda)\}$. Fix $g : P_\kappa(\lambda) \to P_\kappa(\lambda)$. Define $f : A \to A$ so that for every $\alpha < u(\kappa, \lambda)$, (i) $a_\alpha \cup g(a_\alpha) \subseteq f(a_\alpha)$, and (ii) $f(a_\alpha) \subseteq f(a_\beta)$ for all $\beta < \alpha$. For $a \in A$, set $Z_a = \{f(b) : b \in A$ and $a \subseteq b\}$. It is readily checked that $\bigcap_{a \in x} Z_a \in I_{\kappa,\lambda}^+$ for every $x \in P_\kappa(A) - \{\phi\}$. It follows that there is $C \in I_{\kappa,\lambda}^+ \cap P(A)$ such that $C - Z_a \in I_{\kappa,\lambda}$ for every $a \in A$. Now set $D = f^{-1}(C)$. Then $D \in I_{\kappa,\lambda}^+$ since $f^{-1}(C \cap Z_a) \subseteq \{b \in D : a \subseteq b\}$ for all $a \in A$. Given $B \in I_{\kappa,\lambda} \cap P(D)$, select $a \in A$ so that $\{b \in B : a \subseteq b\} = \phi$, and $w \in P_\kappa(\lambda)$ so that $\{c \in C - Z_a : w \subseteq c\} = \phi$. Then $\{z \in g^{\circ}B : w \subseteq z\} = \phi$ since for every $b \in B$, $g(b) \subseteq f(b) \in C - Z_a$. Thus, $g^{\circ}B \in I_{\kappa,\lambda}$.

9. Negative results.

This section presents some negative results concerning combinatorial properties of $P_{\kappa}(\lambda)$ considered above. Several of these results rely on the fact that restrictions of $I_{\kappa,\lambda}$ may have some degree of normality. It is straightforward to check the following:

LEMMA 9.1. Suppose $C \in I^+_{\kappa,\lambda}$ and θ, ν are two cardinals such that $\omega \leq \theta \leq \kappa \leq \nu \leq \lambda$. Then the following are equivalent:

(i) $I_{\kappa,\lambda}|C$ is $[\nu]^{<\theta}$ -normal.

(ii) $I_{\kappa,\lambda}|C = NS_{\kappa,\lambda}^{[\nu]^{<\theta}}|C.$

Let us first describe a situation when $\{A : \mathfrak{p}_{I_{\kappa,\lambda}|A} > \kappa\}$ is not dense in $(I_{\kappa,\lambda}^+, \subseteq)$.

PROPOSITION 9.2. Suppose $C \in I^+_{\kappa,\lambda}$ is such that $I_{\kappa,\lambda}|C$ is κ -normal. Then $\mathfrak{p}_{I_{\kappa,\lambda}|A} = \kappa$ for every $A \in I^+_{\kappa,\lambda} \cap P(C)$.

PROOF. Let $B \in (NS_{\kappa,\lambda}^{\kappa})^+$ and set $H = NS_{\kappa,\lambda}^{\kappa}|B$. Then $\mathfrak{p}_H = \kappa$ by Corollary 3.3 and Proposition 3.4 of [27].

The next results are about the unbalanced partition relation $I^+_{\kappa,\lambda} \to (I^+_{\kappa,\lambda},\theta)^2$. The following technical observation is crucial:

LEMMA 9.3. Suppose H is a ν -normal ideal on $P_{\kappa}(\lambda)$ such that $H^+ \to (H^+, \theta^+)^2$, where θ, ν are two infinite cardinals with $\theta < \kappa \leq \nu \leq \lambda$. Then H is $[\nu]^{<\theta^+}$ -normal.

PROOF. By Proposition 5.9 of [18] and Lemma 6.4.

PROPOSITION 9.4. Suppose H is a κ -normal ideal on $P_{\kappa}(\lambda)$ such that $H^+ \to (H^+, \theta^+)^2$, where θ is an infinite cardinal $< \kappa$. Then

$$\{a \in P_{\kappa}(\lambda) : cf(\cup(a \cap \kappa)) \leq \theta\} \in H.$$

PROOF. By Lemmas 6.3 and 9.3.

COROLLARY 9.5. Suppose $I_{\kappa,\lambda}|C$ is κ -normal for some $C \in (NS_{\kappa,\lambda}^{[\lambda]^{\leq \theta}})^*$, where θ is a regular infinite cardinal $< \kappa$. Then $I_{\kappa,\lambda}^+ \not\longrightarrow (I_{\kappa,\lambda}^+, \theta^+)^2$.

PROOF. Setting $A = \{a \in P_{\kappa}(\lambda) : cf(\cup(a \cap \kappa)) = \theta\}$, it is simple to check that $A \in (NS_{\kappa,\lambda}^{[\lambda]^{\leq \theta}})^+$. It follows that $A \cap C \in I_{\kappa,\lambda}^+$. Now by Proposition 9.4,

$$(I_{\kappa,\lambda}|(A\cap C))^+ \not\longrightarrow (I_{\kappa,\lambda}^+,\theta^+)^2.$$

In particular, if $I_{\kappa,\lambda}|C$ is κ -normal for some $C \in NS^*_{\kappa,\lambda}$, then $I^+_{\kappa,\lambda} \not\longrightarrow (I^+_{\kappa,\lambda}, \omega_1)^2$. A convenient reformulation of the hypothesis of Corollary 9.5 is supplied by the following:

LEMMA 9.6 ([24]). Suppose θ is a regular infinite cardinal $\leq \kappa$ and ν is a cardinal with $\kappa \leq \nu \leq \lambda$. Then the following are equivalent:

(i) $I_{\kappa,\lambda}|C$ is ν -normal for some $C \in (NS_{\kappa,\lambda}^{[\lambda]^{<\theta}})^*$. (ii) $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{\nu}|A) \leq \lambda$ for some $A \in (NS_{\kappa,\lambda}^{[\lambda]^{<\theta}})^*$.

In particular, $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{\kappa}) \leq \lambda$ implies that $I_{\kappa,\lambda}|C$ is κ -normal for some $C \in NS_{\kappa,\lambda}^{*}$.

DEFINITION. $\operatorname{cov}(\lambda, \kappa^+, \kappa^+, \kappa)$ is the least size of any $X \subseteq P_{\kappa^+}(\lambda)$ such that $P_{\kappa^+}(\lambda) = \bigcup_{x \in P_{\kappa}(X)} P(\cup x)$.

LEMMA 9.7 ([26]). $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{\kappa}) = \max\{\overline{\operatorname{cof}}(NS_{\kappa}), \operatorname{cov}(\lambda, \kappa^+, \kappa^+, \kappa)\}.$

P. Matet

By a result of [24], it follows that if $\overline{\operatorname{cof}}(NS_{\kappa}) \leq \lambda < \kappa^{+\kappa}$, then $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{\kappa}) = \lambda$. If $cf(\lambda) = \kappa$, then for every $C \in NS_{\kappa,\lambda}^{*}$, $I_{\kappa,\lambda}|C$ is not κ -normal:

PROPOSITION 9.8 ([24]). Suppose that $cf(\lambda) = \kappa$ and θ is an infinite cardinal $< \kappa$ such that $\tau^{<\theta} < \lambda$ for every cardinal τ with $\kappa \leq \tau < \lambda$. Then for every $C \in (NS_{\kappa,\lambda}^{[\lambda]^{<\theta}})^*$, $I_{\kappa,\lambda}|C$ is not κ -normal.

PROPOSITION 9.9. Suppose $\mathfrak{d}_{\kappa} \leq \lambda$ and $u(\kappa^+, \mu) \leq \lambda$ for every cardinal μ with $\kappa < \mu < \lambda$. Then $I^+_{\kappa,\lambda} \not\longrightarrow (I^+_{\kappa,\lambda})^2$.

PROOF. For the case $\kappa = \omega = cf(\lambda)$ (respectively, $\kappa = \omega < cf(\lambda)$, $\omega < \kappa = cf(\lambda)$), see [19] (respectively, [22], [21]). Assuming now $\omega < \kappa$ and $cf(\lambda) \neq \kappa$, we have $\operatorname{cov}(\lambda, \kappa^+, \kappa^+, \kappa) = \lambda$ since by results of [31], (1) if λ is a successor cardinal, say $\lambda = \tau^+$, then $\operatorname{cov}(\lambda, \kappa^+, \kappa^+, \kappa) = \lambda \cdot \operatorname{cov}(\tau, \kappa^+, \kappa^+, \kappa)$, and (2) if λ is a limit cardinal, then $\operatorname{cov}(\lambda, \kappa^+, \kappa^+, \kappa) = \bigcup_{\kappa < \mu < \lambda} \operatorname{cov}(\mu, \kappa^+, \kappa^+, \kappa)$. It follows from Landver's result [16] that $\operatorname{cof}(NS_{\kappa}) = \mathfrak{d}_{\kappa}$ and Lemma 9.7 that $\overline{\operatorname{cof}}(NS_{\kappa,\lambda}^{\kappa}) = \lambda$. Hence by Corollary 9.5 and Lemma 9.6, $I_{\kappa,\lambda}^+ \to (I_{\kappa,\lambda}^+, \omega_1)^2$.

The results above do not settle the problem whether $I^+_{\kappa,\lambda} \to (I^+_{\kappa,\lambda},\omega)^2$. The partition relation $H^+ \to (H^+,\omega)^2$ has the following interesting consequence:

PROPOSITION 9.10. Suppose H is an ideal on $P_{\kappa}(\lambda)$ such that $H^+ \to (H^+, \omega)^2$ and $A \in H^+$. Then there exists $B \in H^+ \cap P(A)$ with the property that there is no infinite strictly decreasing sequence

$$a_0 \supsetneq a_1 \supsetneq a_2 \supsetneq \ldots$$

of elements of B.

PROOF. Let $j : A \to |A|$ be a bijection. Since $H^+ \to (H^+, \omega)^2$, there is $B \in H^+ \cap P(A)$ such that j(a) < j(b) for every $(a, b) \in [B]^2$. Clearly B is as desired. \Box

Johnson established the existence of a $C \in I^+_{\kappa,\lambda}$ such that $(I_{\kappa,\lambda}|C)^+ \to (I^+_{\kappa,\lambda},\omega)^2$ subject to some cardinality assumptions:

PROPOSITION 9.11. Suppose λ is regular and $\operatorname{cof}(N_{\kappa,\lambda}^{\mu}) \leq \lambda$ for every cardinal μ with $\kappa \leq \mu < \lambda$. Then setting $H = \bigcup_{\kappa \leq \delta < \lambda} NS_{\kappa,\lambda}^{\delta}$, (a) H is weakly selective, (b) $H^+ \to (H^+, \omega + 1)^2$ and (c) For every $A \in H^+$, there is $C \in H^+ \cap P(A)$ such that $H|C = I_{\kappa,\lambda}|C$.

PROOF. By Theorems 1.7, 1.9 and 1.12 of [13] and 1.6 of [14].

Baumgartner, Carr and Di Prisco have independently shown that $\{P_{\kappa}(\lambda)\} \to (I_{\kappa,\lambda}^+)^3$ implies that κ is mildly λ -ineffable (see [6], page 183). This result can be slightly improved:

PROPOSITION 9.12. Suppose $\{P_{\kappa}(\lambda)\} \to (I_{\kappa\lambda}^+)^3$. Then κ is mildly $\lambda^{<\kappa}$ -ineffable.

PROOF. Note that κ must be weakly compact and hence inaccessible. Now let $t_x \in {}^x2$ for $x \in P_{\kappa}(P_{\kappa}(\lambda))$. Define $F : [P_{\kappa}(\lambda)]^3 \to 2$ by stipulating that F(a, b, c) = 0 if and only if $t_{P(b)} \upharpoonright P(a) = t_{P(c)} \upharpoonright P(a)$. Pick $A \in I^+_{\kappa,\lambda}$ so that F is constant on $[A]^3$. Then clearly F is identically 0 on $[A]^3$. If $(a, b), (a', b') \in [A]^2$, then

$$t_{P(b)} \upharpoonright \left(P(a) \cap P(a') \right) = t_{P(c)} \upharpoonright \left(P(a) \cap P(a') \right) = t_{P(b')} \upharpoonright \left(P(a) \cap P(a') \right),$$

where c is any member of A such that $b \subsetneq c$ and $b' \subsetneq c$. So we can define $g: P_{\kappa}(\lambda) \to 2$ by $g = \bigcup_{(a,b)\in [A]^2} (t_{P(b)} \upharpoonright P(a))$. Now fix $x \in P_{\kappa}(P_{\kappa}(\lambda))$. Given $y \in P_{\kappa}(P_{\kappa}(\lambda))$, select $(a,b) \in [A]^2$ so that $x \cup y \subseteq P(a)$. Then $y \subseteq P(b)$ and

$$g \upharpoonright x = (t_{P(b)} \upharpoonright P(a)) \upharpoonright x = t_{P(b)} \upharpoonright x.$$

As was pointed out by the referee, Proposition 9.12 can also be obtained by using Abe's result (see [1], Corollary 4.5 (1)) that $\{P_{\kappa}(\lambda)\} \to (I^+_{\kappa,\lambda})^3$ implies $\{P_{\kappa}(\lambda^{<\kappa})\} \to (I^+_{\kappa,\lambda^{<\kappa}})^3$.

Our last observation concerns the failure of $S_{\kappa}(\lambda)$. The following is a straightforward generalization of a result of Galvin (see [38], Theorem 5.1, and also Theorem 5.2, Corollary 5.4 and Theorem 5.9.).

PROPOSITION 9.13. Suppose $\mathfrak{K}_{\kappa,\lambda} \neq \phi$ and $\mathfrak{d}_{\kappa} \leq u(\kappa,\lambda) = u(\kappa^+,\lambda)$. Then $S_{\kappa}(\lambda)$ fails.

PROOF. Fix $Z \in \mathfrak{K}_{\kappa,\lambda}$. Note that $|Z| = u(\kappa,\lambda)$ by Proposition 2.2. Let $Y \in I_{\kappa^+,\lambda}^+$ be such that $Y \subseteq \{y \in P_{\kappa^+}(\lambda) : |y| = \kappa\}$ and $|Y| = u(\kappa,\lambda)$. For $y \in Y$, select a bijection $i_y : \kappa \to y$. Let $F \subseteq {}^{\kappa}\kappa$ be such that $|F| = \mathfrak{d}_{\kappa}$ and for every $s \in {}^{\kappa}\kappa$, there is $t \in F$ with the property that $s(\alpha) \leq t(\alpha)$ for all $\alpha < \kappa$. Pick a bijection $j : Y \times F \to Z$. For $z \in Z$, define $h_z : \kappa \to P_{\kappa}(\lambda)$ by $h_z(\alpha) = \{i_y(\xi) : \xi < t(\alpha)\}$, where y and t are such that j(y,t) = z. It is simple to check that for every $f : \kappa \to P_{\kappa}(\lambda)$, there is $z \in Z$ such that $f(\delta) \subseteq h_z(\delta)$ for all $\delta \in \kappa$. Define $g : P_{\kappa}(\lambda) \to P_{\kappa}(\lambda)$ by

$$g(a) = \bigcup_{z \in Z \cap P(a)} h_z \big(\big(\cup (a \cap \kappa) \big) + 1 \big).$$

Now fix $A \in I_{\kappa,\lambda}^+$. For $\delta \in \kappa$, set $B_{\delta} = \{a \in A : \delta \notin a\}$. Suppose that $g^{*}B_{\delta} \in I_{\kappa,\lambda}$ for all $\delta \in \kappa$. Then there is $z \in Z$ such that

$$g^{*}B_{\delta} \cap \{b \in P_{\kappa}(\lambda) : h_{z}(\delta) \subseteq b\} = \phi$$

for every $\delta \in \kappa$. Select $a \in A$ so that $z \subseteq a$, and stipulate that $\delta = (\cup (a \cap \kappa)) + 1$. Then clearly $g(a) \in g^{*}B_{\delta}$ and $h_{z}(\delta) \subseteq g(a)$. Contradiction.

P. Matet

References

- [1] Y. Abe, Saturation of fundamental ideals on $\mathscr{P}_{\kappa}\lambda$, J. Math. Soc. Japan, **48** (1996), 511–524.
- [2] Y. Abe, Combinatorics for small ideals on $P_{\kappa}\lambda$, Mathematical Logic Quarterly, **43** (1997), 541–549.
- [3] C. Alves, Partitions of Finite Substructures, Ph. D. Thesis, Pennsylvania State Univ., 1985.
- [4] A. W. Apter and M. Gitik, The least measurable can be strongly compact and indestructible, J. Symbolic Logic, 63 (1998), 1404–1412.
- [5] J. P. Burgess, Forcing, In: Handbook of Mathematical Logic, (ed. J. Barwise), North-Holland, Amsterdam, 1977, pp. 403–452.
- [6] D. M. Carr, $P_{\kappa}\lambda$ partition relations, Fund. Math., **128** (1987), 181–195.
- [7] D. M. Carr, J. P. Levinski and D. H. Pelletier, On the existence of strongly normal ideals over P_κλ, Arch. Math. Logic, **30** (1990), 59–72.
- [8] J. Cummings, M. Foreman and M. Magidor, Squares, scales and stationary reflection, J. Math. Log., 1 (2001), 35–98.
- [9] C. A. Di Prisco and W. S. Zwicker, Flipping properties and supercompactness, Fund. Math., 109 (1980), 31–36.
- [10] H. D. Donder and P. Matet, Two cardinal versions of diamond, Israel J. Math., 83 (1993), 1–43.
- [11] P. Erdös, A. Hajnal, A. Máté and R. Rado, Combinatorial Set Theory: Partition Relations for Cardinals, Stud. Logic Found. Math., 106, North-Holland, Amsterdam, 1984.
- [12] T. Jech and S. Shelah, A partition theorem for pairs of finite sets, J. Amer. Math. Soc., 4 (1991), 647–656.
- [13] C. A. Johnson, Seminormal λ -generated ideals on $P_{\kappa}\lambda$, J. Symbolic Logic, **53** (1988), 92–102.
- [14] C. A. Johnson, Some partition relations for ideals on $P_{\kappa}\lambda$, Acta Math. Hungar., 56 (1990), 269–282.
- [15] K. Kunen, Set Theory, North-Holland, Amsterdam, 1980.
- [16] A. Landver, Singular Baire numbers and related topics, Ph.D. Thesis, Univ. of Wisconsin-Madison, 1990.
- [17] A. Landver, Baire numbers, uncountable Cohen sets and perfect-set forcing, J. Symbolic Logic, 57 (1992), 1086–1107.
- [18] P. Matet, Partition relations for strongly normal ideals on $P_{\kappa}(\lambda)$, Mathematical Logic Quarterly, 46 (2000), 87–103.
- [19] P. Matet, Negative partition relations for uncountable cardinals of cofinality ω, Studia Sci. Math. Hungar., 37 (2001), 233–236.
- [20] P. Matet, Partition relations for κ -normal ideals on $P_{\kappa}(\lambda)$, Ann. Pure Appl. Logic, **121** (2003), 89–111.
- [21] P. Matet, Weak square bracket relations for $P_{\kappa}(\lambda)$, preprint.
- [22] P. Matet and C. Péan, Distributivity properties on $P_{\omega}(\lambda)$, Discrete Math., **291** (2005), 143–154.
- [23] P. Matet, C. Péan and S. Shelah, Cofinality of normal ideals on $P_{\kappa}(\lambda)$ I, preprint.
- [24] P. Matet, C. Péan and S. Shelah, Cofinality of normal ideals on $P_{\kappa}(\lambda)$ II, Israel J. Math., to appear.
- [25] P. Matet, C. Péan and S. Todorcevic, Prime ideals on P_ω(λ) with the partition property, Arch. Math. Logic, 41 (2002), 743–764.
- [26] P. Matet, A. Rosłanowski and S. Shelah, Cofinality of the nonstationary ideal, Trans. Amer. Math. Soc., to appear.
- [27] P. Matet and S. Shelah, Positive partition relations for $P_{\kappa}(\lambda)$, preprint.
- [28] A. W. Miller, The Baire category theorem and cardinals of countable cofinality, J. Symbolic Logic, 47 (1982), 275–288.
- [29] R. Rado, Axiomatic treatment of rank in infinite sets, Canad. J. Math., 1 (1949), 337–343.
- [30] F. Rothberger, Sur les familles indénombrables de suites de nombres naturels et les problèmes concernant la propriété C, Math. Proc. Cambridge Philos. Soc., 37 (1941), 109–126.
- [31] S. Shelah, Cardinal Arithmetic, Oxford Logic Guides, 29, Oxford Univ. Press, Oxford, 1994.
- [32] M. Shioya, Partition properties of subsets of $P_{\kappa}\lambda$, Fund. Math., **161** (1999), 325–329.
- [33] R. M. Solovay, Real-valued measurable cardinals, In: Axiomatic Set Theory, (ed. D. S. Scott), Proc. Sympos. Pure Math., 13, part 1, Amer. Math. Soc., Providence, 1971, pp. 397–428.

- [34] S. Todorcevic, Kurepa families and cofinal similarities, handwritten notes 1989.
- [35] S. Todorcevic, Cofinal Kurepa families, handwritten notes, 1990.
- [36] S. Todorcevic, Partitioning pairs of countable sets, Proc. Amer. Math. Soc., 111 (1991), 841-844.
- [37] S. Todorcevic, Coherent sequences, In: Handbook of Set Theory, (eds. M. Foreman, A. Kanamori and M. Magidor), Kluwer, Dordrecht, to appear.
- [38] W. Zwicker, A beginning for structural properties of ideals on P_κλ, In: Set Theory and its Applications (eds. J. Steprāns and S. Watson), Lecture Notes in Math., **1401**, Springer, Berlin, 1989, pp. 201–217.

Pierre MATET Université de Caen -CNRS Laboratoire de Mathématiques BP5186 14032 CAEN CEDEX France E-mail: matet@math.unicaen.fr