Covering for category and combinatorics on $P_{\kappa}(\lambda)$

By Pierre Matet

(Received Jun. 30, 2003)
(Revised Feb. 9, 2005)

Abstract

We study combinatorics on $P_{\kappa}(\lambda)$ under the assumption that $\operatorname{cov}\left(\mathbf{M}_{\kappa, \lambda<\kappa}\right)>\lambda^{<\kappa}$.

0. Introduction.

Galvin (see [3]) established that if Martin's axiom holds and λ is an uncountable cardinal $<2^{\aleph_{0}}$, then $I_{\omega, \lambda}^{+} \rightarrow\left(I_{\omega, \lambda}^{+}\right)^{2}$. Jech and Shelah [12] observed that the conclusion can be strengthened to " $I_{\omega, \lambda}^{+} \rightarrow\left(I_{\omega, \lambda}^{+}\right)^{n}$ whenever $0<n<\omega$ ". Moreover, they proved that $I_{\omega, \omega_{1}}^{+} \rightarrow\left(I_{\omega, \omega_{1}}^{+}\right)^{n}$ for all n with $0<n<\omega$ in the Cohen model for $2^{\aleph_{0}}=\aleph_{2}$.

Johnson [14] asked the following question: if κ is mildly λ-ineffable, where κ is a regular uncountable cardinal and λ a cardinal $>\kappa$, is it the case that $I_{\kappa, \lambda}$ is $(\lambda, 2)$ distributive? Abe [2] answered the question in the negative by showing that if κ is an uncountable strongly compact cardinal and λ a strong limit cardinal $>\kappa$ of cofinality $<\kappa$, then (a) $I_{\kappa, \lambda}$ is not $(\lambda, 2)$-distributive, and (b) $I_{\kappa, \lambda}^{+} \nrightarrow\left(I_{\kappa, \lambda}^{+}\right)^{2}$. This led him to ask whether the following are theorems in ZFC: (1) $I_{\kappa, \lambda}$ is not $(\lambda, 2)$-distributive for any regular uncountable cardinal κ and cardinal $\lambda>\kappa$. (2) $I_{\kappa, \lambda}^{+} \nrightarrow\left(I_{\kappa, \lambda}^{+}\right)^{2}$ for any κ and λ as in (1). Shioya [32] provided a negative answer to Abe's questions by establishing the consistency, relative to a supercompact cardinal, of "there is a regular uncountable cardinal κ such that $I_{\kappa, \kappa^{+}}^{+} \rightarrow\left(I_{\kappa, \kappa^{+}}^{+}\right)^{n}$ for all n with $0<n<\omega$ (and therefore $I_{\kappa, \kappa^{+}}$is ($\kappa^{+}, 2$)-distributive)".

Concerning another combinatorial aspect of $P_{\kappa}(\lambda)$, let $S_{\kappa}(\lambda)$ assert the following: For every function $g: P_{\kappa}(\lambda) \rightarrow P_{\kappa}(\lambda)$, there is $A \in I_{\kappa, \lambda}^{+}$such that for every $B \subseteq A$ with B in $I_{\kappa, \lambda}, g$ " B is in $I_{\kappa, \lambda}$. Strengthening a result of Galvin (see [38]), Fleissner (see [38]) established that if $D(\omega)^{\lambda}$ is not the union of λ nowhere dense sets, where λ is an uncountable cardinal and $D(\omega)$ denotes the discrete topological space of cardinality \aleph_{0}, then $S_{\omega}(\lambda)$ holds. Zwicker [38] wondered whether these results of Galvin and Fleissner could be extended to show $S_{\kappa}(\lambda)$ consistent for regular uncountable κ.

The results of Galvin and Jech-Shelah were revisited in [25] where it was shown that if λ is an uncountable cardinal such that $\lambda<\boldsymbol{\operatorname { c o v }}\left(\mathbf{M}_{\omega, \lambda}\right)$, then $\mathfrak{p}_{\omega, \lambda} \geq \lambda^{+}$and $I_{\omega, \lambda}$ is weakly selective (and hence $I_{\omega, \lambda}^{+} \rightarrow\left(I_{\omega, \lambda}^{+}\right)^{n}$ whenever $0<n<\omega$). The present paper is a continuation of [25]. Its purpose is to generalize results of [25] to the case of an uncountable κ. Specifically we prove the following (focusing for simplicity on the case $\left.\lambda=\kappa^{+}\right):$

[^0]Proposition 1. Suppose that κ is a regular infinite cardinal and $\operatorname{cov}\left(\mathbf{M}_{\kappa, \kappa^{+}}\right)>$ κ^{+}. Then:
(i) $I_{\kappa, \kappa^{+}}$is weakly selective.
(ii) $\mathfrak{p}_{\kappa, \kappa^{+}}>\kappa^{+}$.
(iii) For every infinite cardinal $\theta \leq \kappa, \kappa \rightarrow(\kappa, \theta)^{2}$ if and only if $I_{\kappa, \kappa^{+}}^{+} \rightarrow\left(I_{\kappa, \kappa^{+}}^{+}, \theta\right)^{2}$.
(iv) κ is κ^{+}-mildly ineffable if and only if $I_{\kappa, \kappa^{+}}^{+} \rightarrow\left(I_{\kappa, \kappa^{+}}^{+}\right)^{n}$ for all n with $0<n<\omega$.
(v) If $\tau^{\aleph_{0}}<\kappa$ for every cardinal τ with $2 \leq \tau<\kappa$, then

$$
\left(N S_{\kappa, \kappa^{+}} \mid A\right)^{+} \rightarrow\left(I_{\kappa, \kappa^{+}}^{+}, \omega \oplus 1\right)^{2}
$$

where

$$
A=\left\{a \in P_{\kappa}\left(\kappa^{+}\right): c f(\cup(a \cap \kappa))=c f(\cup a)=\omega\right\} .
$$

(vi) Any two cofinal subsets of $P_{\kappa}\left(\kappa^{+}\right)$have isomorphic cofinal subsets.
(vii) $S_{\kappa}\left(\kappa^{+}\right)$holds. In fact, given $g: P_{\kappa}\left(\kappa^{+}\right) \rightarrow P_{\kappa}\left(\kappa^{+}\right)$and $A \in I_{\kappa, \kappa^{+}}^{+}$, there is $D \in I_{\kappa, \kappa^{+}}^{+} \cap P(A)$ such that g " $B \in I_{\kappa, \lambda}$ for all $B \in I_{\kappa, \lambda} \cap P(D)$.

Proposition 2. It is consistent, relative to a supercompact cardinal, that for the least uncountable measurable cardinal κ, $I_{\kappa, \kappa^{+}}^{+} \rightarrow\left(I_{\kappa, \kappa^{+}}^{+}\right)^{n}$ for all n with $0<n<\omega$.

We also prove the following:
Proposition 3. Suppose that κ is a regular uncountable cardinal and $\mathfrak{d}_{\kappa}=\kappa^{+}$. Then:
(i) $\left\{A: \mathfrak{p}_{I_{\kappa, \lambda} \mid A} \geq \kappa^{+}\right\}$is not dense in $\left(I_{\kappa, \kappa^{+}}^{+}, \subseteq\right)$.
(ii) $I_{\kappa, \kappa^{+}}^{+} \nrightarrow\left(I_{\kappa, \kappa^{+}}^{+}, \omega_{1}\right)^{2}$.
(iii) $\left(I_{\kappa, \kappa^{+}} \mid C\right)^{+} \rightarrow\left(I_{\kappa, \kappa^{+}}^{+}, \omega+1\right)^{2}$ for some $C \in I_{\kappa, \kappa^{+}}^{+}$.

We mention that Galvin (see [38]) showed that if κ is a regular infinite cardinal such that $\mathfrak{d}_{\kappa}=\kappa^{+}$, then $S_{\kappa}\left(\kappa^{+}\right)$fails.

The structure of this paper is as follows. Section 1 contains standard definitions concerning ideals on $P_{\kappa}(\lambda)$. Section 2 is devoted to the notion of a cofinal Kurepa family on $P_{\kappa}(\lambda)$ (the existence of such a family is hypothesized in many results of the paper). Section 3 reviews a number of facts concerning the covering number $\boldsymbol{\operatorname { c o v }}\left(\mathbf{M}_{\kappa, \lambda}\right)$ and the uniformity number non $\left(\mathbf{M}_{\kappa, \lambda}\right)$. In Section 4 we give sufficient conditions for an ideal H on $P_{\kappa}(\lambda)$ to be weakly selective and verify $\mathfrak{p}_{H}>\lambda^{<\kappa}$. Section 5 deals with the partition property $H^{+} \rightarrow\left(H^{+}, \theta\right)^{2}$, Section 6 with a $P_{\kappa}(\lambda)$ version of the topological partition relation $\kappa \rightarrow(\kappa \text {, top } \omega+1)^{2}$, and Section 7 with $H^{+} \rightarrow\left(H^{+}\right)^{n}$. Section 8 investigates the assertion $S_{\kappa}(\lambda)$ and the existence of isomorphisms between cofinal sets.

We do not know whether the two assumptions (namely that $\boldsymbol{\operatorname { c o v }}\left(\mathbf{M}_{\kappa, \lambda<\kappa}\right)>\lambda^{<\kappa}$ and there exists a cofinal Kurepa family on $\left.P_{\kappa}(\lambda)\right)$ made in Sections $4-7$ to derive properties of $I_{\kappa, \lambda}$ are necessary. Some negative results are presented in the final section of the paper.

1. Ideals.

Throughout the paper κ and λ will denote, respectively, a regular infinite cardinal and a cardinal $>\kappa$.

In this section we review various definitions concerning ideals on $P_{\kappa}(\lambda)$.
For a set A and a cardinal $\mu, P_{\mu}(A)=\{a \subseteq A:|a|<\mu\}$.
An ideal on a set S is a collection H of subsets of S such that: (i) $S \notin H$, (ii) $P(A) \subseteq H$ for all $A \in H$, (iii) $A \cup B \in H$ for all $A \in H$, and (iv) $\{s\} \in H$ for every $s \in S$.
$\operatorname{cof}(H)$ is the least cardinality of any $X \subseteq H$ such that $H=\bigcup_{A \in X} P(A)$.
Let $H^{+}=P(S)-H$ and $H^{*}=\{A \subseteq S: S-A \in H\}$.
For $A \in H^{+}, H \mid A=\{B \subseteq S: B \cap A \in H\}$. It is readily seen that $H \mid A$ is an ideal on S and $\operatorname{cof}(H \mid A) \leq \operatorname{cof}(H)$.

For $A \in H^{+}, H \mid A=\{B \subseteq S: B \cap A \in H\}$. It is readily seen that $H \mid A$ is an ideal on S and $\operatorname{cof}(H \mid A) \leq \operatorname{cof}(H)$.
H is κ-complete if $\cup Y \in H$ for every $Y \in P_{\kappa}(H)$.
If H is κ-complete, $\overline{\operatorname{cof}}(H)$ is the least cardinality of any $X \subseteq H$ such that for every $A \in H$, there is $x \in P_{\kappa}(X)$ with $A \subseteq \cup x$.
$N S_{\kappa}$ (respectively, $N S_{\kappa, \lambda}$) denotes the nonstationary ideal on κ (respectively, $P_{\kappa}(\lambda)$). That is, $N S_{\kappa}$ (respectively, $N S_{\kappa, \lambda}$) is the collection of all subsets B of κ (respectively, $\left.P_{\kappa}(\lambda)\right)$ such that $\{\gamma \in B: \forall \alpha<\gamma(f(\alpha)<\gamma)\} \subseteq\{0\}$ (respectively, $\{a \in B: \forall \alpha, \beta \in a(f(\alpha, \beta) \subseteq a)\} \subseteq\{\phi\})$ for some $f: \kappa \rightarrow \kappa$ (respectively, $\left.f: \lambda \times \lambda \rightarrow P_{\kappa}(\lambda)\right)$.

Given two cardinals ρ and μ with $\omega \leq \rho \leq \mu, I_{\rho, \mu}$ is the set of all $A \subseteq P_{\rho}(\mu)$ such that $\{b \in A: a \subseteq b\}=\phi$ for some $a \in P_{\rho}(\mu)$. It is simple to see that $I_{\rho, \mu}$ is an ideal on $P_{\rho}(\mu) . u(\rho, \mu)$ denotes the least cardinality of any $A \in I_{\rho, \mu}^{+}$.

The following lists some elementary properties (see e.g. [10] and [23]):
Proposition 1.1.
(i) $u(\kappa, \lambda) \geq \lambda$.
(ii) $c f(u(\kappa, \lambda)) \geq \kappa$.
(iii) $\lambda^{<\kappa}=\max \left\{2^{<\kappa}, u(\kappa, \lambda)\right\}=u\left(\kappa, \lambda^{<\kappa}\right)$.
(iv) $u\left(\kappa, \kappa^{+n}\right)=\kappa^{+n}$ whenever $0<n<\omega$.
(v) $u(\kappa, \lambda) \leq u\left(\kappa^{+}, \lambda\right)$.
(vi) $u(\kappa, \lambda)=\operatorname{cof}\left(I_{\kappa, \lambda} \mid A\right)$ for every $A \in I_{\kappa, \lambda}^{+}$.

An ideal H on $P_{\kappa}(\lambda)$ is fine if $I_{\kappa, \lambda} \subseteq H$.
We adopt the convention that the phrase "ideal on $P_{\kappa}(\lambda)$ " means " κ complete fine ideal on $P_{\kappa}(\lambda)$ ".

For $A \subseteq P_{\kappa}(\lambda)$ and an ordinal $\delta \leq \kappa,[A]^{\delta}$ denotes the set of all $B \subseteq A$ such that (B, \subsetneq) has ordertype δ. Abusing notation, we write

$$
[A]^{\delta}=\left\{\left(a_{\alpha}: \alpha<\delta\right): a_{0}, a_{1}, \ldots \in A \text { and } a_{0} \subsetneq a_{1} \subsetneq \ldots\right\} .
$$

2. Cofinal Kurepa families.

This section is concerned with existence of cofinal Kurepa families. For more on the subject, see [34], [35] and [36].

Definition. $\quad \mathfrak{K}_{\kappa, \lambda}$ is the set of all $A \in I_{\kappa, \lambda}^{+}$such that $|A \cap P(a)|<\kappa$ for every $a \in A$.

First let us establish two easy facts concerning members of $\mathfrak{K}_{\kappa, \lambda}$.
Lemma 2.1. Suppose $A \in \mathfrak{K}_{\kappa, \lambda}$. Then $|A \cap P(b)|<\kappa$ for every $b \in P_{\kappa}(\lambda)$.
Proof. Given $b \in P_{\kappa}(\lambda)$, pick $a \in A$ with $b \subseteq a$. Then $A \cap P(b) \subseteq A \cap P(a)$.
Proposition 2.2. Suppose $A \in \mathfrak{K}_{\kappa, \lambda}$. Then $|A|=u(\kappa, \lambda)$.
Proof. Pick $B \in I_{\kappa, \lambda}^{+}$with $|B|=u(\kappa, \lambda)$. Then $A=\bigcup_{b \in B}(A \cap P(b))$ and therefore by Lemma $2.1|A| \leq \kappa \cdot|B|=u(\kappa, \lambda)$.

If $\mathfrak{K}_{\kappa, \lambda}$ is not empty, then it is a large (i.e. dense) subset of $I_{\kappa, \lambda}^{+}$.
Proposition 2.3. Suppose $\mathfrak{K}_{\kappa, \lambda} \neq \phi$, and let J be an ideal on $P_{\kappa}(\lambda)$ with $\operatorname{cof}(J)=$ $u(\kappa, \lambda)$. Then $J^{+} \cap \mathfrak{K}_{\kappa, \lambda}$ is dense in $\left(J^{+}, \subseteq\right)$.

Proof. Fix $A \in \mathfrak{K}_{\kappa, \lambda}$ and $B \in J^{+}$. Select $C_{a} \in J$ for $a \in A$ so that $J=$ $\bigcup_{a \in A} P\left(C_{a}\right)$. Define $f: A \rightarrow B$ so that $a \subseteq f(a)$ and $f(a) \notin C_{a}$ for every $a \in A$. Obviously, $\operatorname{ran}(f) \in J^{+} \cap P(B)$. For $a \in A$,

$$
\{c \in A: f(c) \subseteq f(a)\} \subseteq A \cap P(f(a))
$$

and consequently by Lemma 2.1, $|\operatorname{ran}(f) \cap P(f(a))|<\kappa$.
Corollary 2.4.
i) Suppose $\mathfrak{K}_{\kappa, \lambda} \neq \phi$. Then $\mathfrak{K}_{\kappa, \lambda}$ is dense in $\left(I_{\kappa, \lambda}^{+}, \subseteq\right)$.
ii) Suppose $\mathfrak{K}_{\kappa, \lambda} \neq \phi$ and λ is a strong limit cardinal of cofinality less than κ. Then $N S_{\kappa, \lambda}^{+} \cap \mathfrak{K}_{\kappa, \lambda}$ is dense in $\left(N S_{\kappa, \lambda}^{+}, \subseteq\right)$.

Let us now turn to the question whether $\mathfrak{K}_{\kappa, \lambda} \neq \phi$. The following observation is immediate.

Proposition 2.5. If κ is inaccessible, then $\mathfrak{K}_{\kappa, \lambda}=I_{\kappa, \lambda}^{+}$.
Proposition 2.6 ([24]). The following are equivalent:
(i) $\mathfrak{K}_{\kappa, \lambda} \neq \phi$.
(ii) There is $D \in I_{\kappa, u(\kappa, \lambda)}^{+}$such that $\overline{\operatorname{cof}}\left(I_{\kappa, u(\kappa, \lambda)} \mid D\right) \leq \lambda$.
(iii) There is $A \subseteq P_{\kappa}(\lambda)$ such that $|A|=u(\kappa, \lambda)$ and $|A \cap P(b)|<\kappa$ for every $b \in P_{\kappa}(\lambda)$.

Corollary 2.7. If $u(\kappa, \lambda)=\lambda$, then $\mathfrak{K}_{\kappa, \lambda} \neq \phi$.
It follows that $\mathfrak{K}_{\kappa, \lambda<\kappa} \neq \phi$, since $\left(\lambda^{<\kappa}\right)^{<\kappa}=\lambda^{<\kappa}$.

Corollary 2.8. Suppose $\mathfrak{K}_{\kappa, \lambda} \neq \phi$. Then $\mathfrak{K}_{\kappa, \nu} \neq \phi$ for every cardinal ν with $\lambda \leq \nu \leq u(\kappa, \lambda)$.

Proof. If $\mathfrak{K}_{\kappa, \lambda} \neq \phi$, then $u(\kappa, u(\kappa, \lambda))=u(\kappa, \lambda)$ by Proposition 2.6 , and so

$$
u(\kappa, \lambda) \leq u(\kappa, \nu) \leq u(\kappa, u(\kappa, \lambda)) \leq u(\kappa, \lambda)
$$

for every cardinal ν with $\lambda \leq \nu \leq u(\kappa, \lambda)$.
Proposition $2.9([\mathbf{2 4}]) . \quad$ Suppose that $\kappa<\lambda, u(\kappa, \lambda)=u\left(\kappa^{+}, \lambda\right)$ and $\mathfrak{K}_{\kappa, \lambda} \neq \phi$. Then $\mathfrak{K}_{\kappa^{+}, \lambda} \neq \phi$.

Proposition 2.10 ([24]). Suppose that $c f(\lambda)<\kappa, \tau^{c f(\lambda)}<\kappa$ for every infinite cardinal $\tau<\kappa$, and $u(\kappa, \lambda) \leq \lambda^{c f(\lambda)}$. Then $\mathfrak{K}_{\kappa, \lambda} \neq \phi$.

Note that if $c f(\lambda)<\kappa$ and $u(\kappa, \mu)<\lambda$ for every cardinal μ with $\kappa<\mu<\lambda$, then $u(\kappa, \lambda) \leq \lambda^{c f(\lambda)}$.

Proposition 2.11 ([24]). If μ is a cardinal with $c f(\mu)<\kappa<\mu$, and $\kappa \rightarrow$ $[\kappa]_{c f(\mu),<c f(\mu)}^{2}$, then $\mathfrak{K}_{\kappa, 2<\mu} \neq \phi$.

Hence, by a result of Solovay [33], if κ bears an ω_{1}-saturated κ-complete ideal, then $\mathfrak{K}_{\kappa, 2<\mu} \neq \phi$ for every cardinal μ with $c f(\mu)<\kappa<\mu$.

Definition. $\operatorname{cov}(\lambda, \lambda, \kappa, 2)$ is the least cardinality of any $X \subseteq P_{\lambda}(\lambda)$ such that for every $a \in P_{\kappa}(\lambda)$, there is $b \in X$ with $a \subseteq b$.

It is readily checked that

$$
\lambda^{<\kappa}=\max \left\{2^{<\kappa}, \operatorname{cov}(\lambda, \lambda, \kappa, 2), \bigcup_{\kappa \leq \nu<\lambda} u(\kappa, \nu)\right\} .
$$

The following is due to Shelah (see [24]).
Proposition 2.12. Suppose that $c f(\lambda)<\kappa$ and $u\left(\lambda^{+}, u(\kappa, \lambda)\right)<\operatorname{cov}(\lambda, \lambda, \kappa, 2)$. Then $\mathfrak{K}_{\kappa, \lambda} \neq \phi$.

The following is due to Todorcevic [37] and Cummings, Foreman and Magidor [8].
Proposition 2.13. Suppose $c f(\lambda)<\kappa, u(\kappa, \lambda)=\lambda^{+}$and either \square_{λ}^{*} holds or there is a very good scale on λ. Then $\mathfrak{K}_{\kappa, \lambda} \neq \phi$.

Todorcevic (see [24]) established that $\omega_{\omega+1} \rightarrow\left[\omega_{1}\right]_{\omega_{\omega},<\omega_{1}}^{2}$ implies that $\mathfrak{K}_{\omega_{1}, \omega_{\omega+1}}=\phi$. Now we prove two generalizations of this result. The following key lemma is due to Todorcevic (see [24]).

Lemma 2.14. Suppose ρ and χ are two cardinals such that $\kappa \leq \rho \leq \chi$ and $\chi \rightarrow$ $[\kappa]_{\rho,<\kappa}^{2}$, and let $B \subseteq P(\rho)$ with $|B|=\chi$. Then there is $z \in P_{\kappa}(\rho)$ such that $\mid\{b \cap z: b \in$ $B\} \mid \geq \kappa$.

Lemma 2.15. Suppose $A \in \mathfrak{K}_{\kappa, \lambda}, T \subseteq P_{\kappa}(\lambda)$, and τ is an infinite cardinal with $\tau<\kappa$. Suppose further there is $\varphi: A \rightarrow\{x \subseteq T:|x|=\tau\}$ such that $a \subseteq \cup y$ for each $a \in A$ and each $y \subseteq \varphi(a)$ with $|y|=\tau$. Then there is $B \subseteq P_{\tau^{+}}(T)$ such that $|B|=u(\kappa, \lambda)$ and $|\{b \in B:|b \cap z|=\tau\}|<\kappa$ for every $z \in P_{\kappa}(T)$.

Proof. Set $B=\operatorname{ran}(\varphi)$. Then $u(\kappa, \lambda) \leq|B|$ since $\{\cup x: x \in B\} \in I_{\kappa, \lambda}^{+}$. Conversely, $|B| \leq u(\kappa, \lambda)$ by Proposition 2.2. It remains to observe that for every $z \in P_{\kappa}(T)$,

$$
\{a \in A:|\varphi(a) \cap z|=\tau\} \subseteq\{a \in A: a \subseteq \cup z\}
$$

Lemma 2.16. Suppose $c f(\lambda)<\kappa$ and $\mathfrak{K}_{\kappa, \lambda} \neq \phi$. Then setting $\rho=\bigcup_{\kappa<\sigma<\lambda} u(\kappa, \sigma)$ and $\tau=c f(\lambda)$, there is $B \subseteq P_{\tau^{+}}(\rho)$ such that $|B|=u(\kappa, \lambda)$ and $|\{b \in B:|b \cap z|=\tau\}|<\kappa$ for every $z \in P_{\kappa}(\rho)$.

Proof. Select a strictly increasing sequence $<\lambda_{\xi}: \xi<\tau>$ of cardinals greater than κ so that $\lambda=\bigcup_{\xi<\tau} \lambda_{\xi}$. For $\xi<\tau$, choose $T_{\xi} \in I_{\kappa, \lambda_{\xi}}^{+}$with $\left|T_{\xi}\right|=u\left(\kappa, \lambda_{\xi}\right)$. Set $T=\bigcup_{\xi<\tau} T_{\xi}$. Note that $|T|=\rho$. Fix $A \in \mathfrak{K}_{\kappa, \lambda}$ with $A \subseteq\left\{a \in P_{\kappa}(\lambda): \cup a=\lambda\right\}$. For $a \in A$ and $\xi<c f(\lambda)$, pick $a_{\xi} \in T_{\xi}$ so that $a \cap \lambda_{\xi} \subseteq a_{\xi}$. Define $\varphi: A \rightarrow P(T)$ by $\varphi(a)=\left\{a_{\xi}: \xi<\tau\right\}$. Now apply Lemma 2.15.

Proposition 2.17. Suppose $c f(\lambda)<\kappa, u(\kappa, \lambda) \rightarrow[\kappa]_{\rho,<\kappa}^{2}$, where $\rho=$ $\bigcup_{\kappa<\sigma<\lambda} u(\kappa, \sigma)$, and $\mu^{<c f(\lambda)}<\kappa$ for every cardinal $\mu<\kappa$. Then $\mathfrak{K}_{\kappa, \lambda}=\phi$.

Proof. By Lemmas 2.14 and 2.16.
In particular, if $\lambda=\kappa^{+\omega}$ and $u(\kappa, \lambda) \rightarrow[\kappa]_{\lambda,<\kappa}^{2}$, then $\mathfrak{K}_{\kappa, \lambda}=\phi$.
Lemma 2.18. Suppose $\kappa=\nu^{+}$and $\mathfrak{K}_{\kappa, \lambda} \neq \phi$. Then setting $\rho=u(\nu, \lambda)$ and $\tau=c f(\nu)$, there is $B \subseteq P_{\tau^{+}}(\rho)$ such that $|B|=u(\kappa, \lambda)$ and $|\{b \in B:|b \cap z|=\tau\}|<\kappa$ for every $z \in P_{\kappa}(\rho)$.

Proof. Fix $T \in I_{\nu, \lambda}^{+}$with $|T|=\rho$, and $A \in \mathfrak{K}_{\kappa, \lambda}$ with $A \subseteq\left\{a \in P_{\kappa}(\lambda):|a|=\nu\right\}$. Pick a strictly increasing sequence $<\nu_{\xi}: \xi<\tau>$ of nonzero ordinals so that $\nu=\bigcup_{\xi<\tau} \nu_{\xi}$. For $a \in A$, choose a bijection $i_{a}: \nu \rightarrow a$ and select $a_{\xi} \in T$ for $\xi<\tau$ so that $i_{a}^{"} \nu_{\xi} \subseteq a_{\xi}$. Define $\varphi: A \rightarrow P(T)$ by $\varphi(a)=\left\{a_{\xi}: \xi<\tau\right\}$. Now apply Lemma 2.15.

Proposition 2.19. Suppose $\kappa=\nu^{+}, u(\kappa, \lambda) \rightarrow[\kappa]_{u(\nu, \lambda),<\kappa}^{2}$ and $\nu^{<c f(\nu)}=\nu$. Then $\mathfrak{K}_{\kappa, \lambda}=\phi$.

Proof. By Lemmas 2.14 and 2.18.
In particular, if $\kappa=\omega_{1}$ and $u(\kappa, \lambda) \rightarrow[\kappa]_{\lambda,<\kappa}^{2}$, then $\mathfrak{K}_{\kappa, \lambda}=\phi$.
To conclude this section, we establish two consequences of " $\mathfrak{K}_{\kappa, \lambda} \neq \phi$ ". The proof uses ideas from [36].

Proposition 2.20. Suppose κ is a successor cardinal and $\mathfrak{K}_{\kappa, \lambda} \neq \phi$, and let H be any ideal on $P_{\kappa}(\lambda)$. Then every $D \in H^{+}$can be partitioned into $u(\kappa, \lambda)$ disjoint members of H^{+}.

Proof. Set $\kappa=\nu^{+}$and fix $A \in \mathfrak{K}_{\kappa, \lambda}$ and $D \in H^{+}$. For $b \in P_{\kappa}(\lambda)$ pick a one-to-one
$f_{b}: A \cap P(b) \rightarrow \nu$. Put

$$
D_{a}^{\alpha}=\left\{b \in D: a \subseteq b \text { and } f_{b}(a)=\alpha\right\}
$$

for $a \in A$ and $\alpha \in \nu$. Now define $g \in{ }^{A} \nu$ so that $D_{a}^{g(a)} \in H^{+}$for each $a \in A$. Select $B \in I_{\kappa, \lambda}^{+} \cap P(A)$ and $\beta \in \nu$ so that g takes the constant value β on B. Then $<D_{a}^{\beta}: a \in B>$ is a sequence of disjoint members of $H^{+} \cap P(D)$.

Definition. A partially ordered set $(Q,<)$ is κ-directed if for every $x \in P_{\kappa}(Q)$, there is $r \in Q$ such that $q \leq r$ for all $q \in x$.

Proposition 2.21. Suppose that $(Q,<)$ is a κ-directed partially ordered set such that $|Q|=\lambda$ and $|\{r \in Q: r<q\}|<\kappa$ for all $q \in Q$. Then there is $A \in \mathfrak{K}_{\kappa, \lambda}$ such that $(Q,<)$ and (A, \subsetneq) are isomorphic.

Proof. Set $Q=\left\{q_{\alpha}: \alpha<\lambda\right\}$ and define a one-to-one $g: Q \rightarrow P_{\kappa}(\lambda)$ by $g\left(q_{\alpha}\right)=\left\{\beta \in \lambda: q_{\beta} \leq q_{\alpha}\right\}$. It is simple to check that $\operatorname{ran}(g) \in I_{\kappa, \lambda}^{+}$and

$$
q_{\alpha}<q_{\gamma} \leftrightarrow g\left(q_{\alpha}\right) \subsetneq g\left(q_{\gamma}\right)
$$

for all $\alpha, \gamma<\lambda$.
Thus, if $\mathfrak{K}_{\kappa, \lambda} \neq \phi$ and $B \in I_{\kappa, \lambda}^{+}$, then there are $C \in I_{\kappa, \lambda}^{+} \cap P(B)$ and $A \in \mathfrak{K}_{\kappa, u(\kappa, \lambda)}$ such that (C, \subsetneq) and (A, \subsetneq) are isomorphic.

3. Covering for category.

Definition. For a set A,

$$
F n(A, 2, \kappa)=\cup\left\{{ }^{a} 2: a \in P_{\kappa}(A)\right\}
$$

$F n(A, 2, \kappa)$ is ordered by : $p \leq q$ if and only if $q \subseteq p$.
Definition. Suppose ρ is a cardinal $\geq \kappa$.
${ }^{\rho} 2$ is endowed with the topology obtained by taking as basic open sets ϕ and O_{s}^{ρ} for $s \in F n(\rho, 2, \kappa)$, where $O_{s}^{\rho}=\left\{f \in{ }^{\rho} 2: s \subsetneq f\right\}$.
$\mathbf{M}_{\kappa, \rho}$ is the set of all $W \subseteq{ }^{\rho} 2$ such that $W \cap(\cap X)=\phi$ for some collection X of dense open subsets of ${ }^{\rho} 2$ with $0<|X| \leq \kappa$.
$\operatorname{cov}\left(\mathbf{M}_{\kappa, \rho}\right)$ is the least cardinality of any $Y \subseteq \mathbf{M}_{\kappa, \rho}$ with ${ }^{\rho} 2=\cup Y$.
$\operatorname{non}\left(\mathbf{M}_{\kappa, \rho}\right)$ is the least cardinality of any $W \subseteq{ }^{\rho} 2$ with $W \notin \mathbf{M}_{\kappa, \rho}$.
In this section we review some well-known facts concerning the cardinal coefficients $\boldsymbol{\operatorname { c o v }}\left(\mathrm{M}_{\kappa, \rho}\right)$ and $\operatorname{non}\left(\mathrm{M}_{\kappa, \rho}\right)$.

Definition. For a set $A, \mathscr{A}_{\kappa}^{A}$ is the collection of all maximal antichains in $F n(A, 2, \kappa)$.

Proposition 3.1 ([17], [28]). Let ρ be a cardinal $\geq \kappa$. Then:
(i) $\boldsymbol{\operatorname { c o v }}\left(\mathbf{M}_{\kappa, \rho}\right)$ is the least cardinality of any nonempty family of dense open subsets of ${ }^{\rho} 2$ with empty intersection.
(ii) $\boldsymbol{\operatorname { c o v }}\left(\mathbf{M}_{\kappa, \rho}\right)$ is the least cardinality of any collection Z of dense subsets of $F n(\rho, 2, \kappa)$ (or of members of $\mathscr{A}_{\kappa}^{\rho}$) such that for every filter $G \subseteq F n(\rho, 2, \kappa)$, there is $D \in Z$ with $D \cap G=\phi$.

Proposition 3.2 ([17], $[\mathbf{2 8}]$). Suppose that ρ and μ are two cardinals such that $\kappa \leq \mu \leq \rho$. Then $\operatorname{cov}\left(\mathbf{M}_{\kappa, \mu}\right) \geq \operatorname{cov}\left(\mathbf{M}_{\kappa, \rho}\right)$ and $\operatorname{non}\left(\mathbf{M}_{\kappa, \mu}\right) \leq \operatorname{non}\left(\mathbf{M}_{\kappa, \rho}\right)$.

Definition. $\quad \mathfrak{b}_{\kappa}$ (respectively, \mathfrak{d}_{κ}) is the least cardinality of any $F \subseteq{ }^{\kappa} \kappa$ such that for every $g \in{ }^{\kappa} \kappa$, there is $f \in F$ with $|\{\alpha \in \kappa: f(\alpha) \geq g(\alpha)\}|=\kappa$ (respectively, $|\{\alpha \in \kappa: g(\alpha)>f(\alpha)\}|<\kappa)$.

Proposition 3.3 ([30]). $\quad \operatorname{non}\left(\mathbf{M}_{\kappa, \kappa}\right) \geq \mathfrak{b}_{\kappa}$.
Proof. Fix $W \subseteq{ }^{\kappa} 2$ with $W \notin \mathbf{M}_{\kappa, \kappa}$. For $t \in \bigcup_{\delta \leq \kappa}{ }^{\delta} 2$, define a partial function \tilde{t} from κ to κ by: $\widetilde{t}(\alpha)=\gamma$ if and only if γ is the least $\xi \in \operatorname{dom}(t)$ such that $(t \upharpoonright \xi)^{-1}(\{1\})$ has ordertype α.

Let $g \in{ }^{\kappa} \kappa$. For $\beta<\kappa$, stipulate that S_{β} is the set of all $s \in \bigcup_{\gamma \in \kappa}{ }^{\gamma} 2$ such that there is $\alpha \geq \beta$ with $\alpha \in \operatorname{dom}(\widetilde{s})$ and $\widetilde{s}(\alpha) \geq g(\alpha)$. It is simple to check that $U_{\beta}=\bigcup_{s \in S_{\beta}} O_{s}^{\kappa}$ is dense. Hence there is $f \in W$ such that $f \in \bigcup_{\beta<\kappa} U_{\beta}$. Obviously, $|\{\alpha \in \kappa: \widetilde{f}(\alpha) \geq g(\alpha)\}|=\kappa$.

It is straightforward to check that $\operatorname{cov}\left(\mathbf{M}_{\kappa, \kappa}\right) \leq \mathfrak{d}_{\kappa}$.
Proposition $3.4([\mathbf{1 7}],[\mathbf{2 8}]) . \quad \operatorname{cov}\left(\mathbf{M}_{\kappa, \rho}\right) \geq \kappa^{+}$for every cardinal $\rho \geq \kappa$.
Proposition 3.5 ([17]). Suppose $2^{<\kappa}>\kappa$. Then $\boldsymbol{\operatorname { c o v }}\left(\mathbf{M}_{\kappa, \rho}\right)=\kappa^{+}$for every $\rho \geq \kappa$.

Proof. By Propositions 3.2 and 3.4 it suffices to show that $\operatorname{cov}\left(\mathbf{M}_{\kappa, \kappa}\right) \leq \kappa^{+}$. Fix a cardinal $\tau<\kappa$ with $2^{\tau}>\kappa$. Let $\varphi: \kappa \times \tau \rightarrow \kappa$ be a bijection. For $y \in{ }^{\tau} 2$, define an open subset W_{y} of ${ }^{\kappa} 2$ by: $f \in W_{y}$ if and only if there is $\gamma<\kappa$ such that $f(\varphi(\gamma, \xi))=y(\xi)$ for all $\xi<\tau$. Then $\bigcap_{y \in Y} W_{y}=\phi$ for any $Y \subseteq{ }^{\tau} 2$ with $|Y|>\kappa$.

Corollary 3.6. Suppose that $\operatorname{cov}\left(\mathbf{M}_{\kappa, \rho}\right)>\kappa^{+}$for some cardinal $\rho \geq \kappa$. Then $u(\kappa, \mu)=\mu^{<\kappa}$ for every cardinal $\mu \geq \kappa$.

Proof. By Propositions 1.1 and 3.5.
Lemma 3.7. Suppose ρ is a cardinal $\geq \kappa$. Then:
(i) $|A| \leq 2^{<\kappa}$ for every $A \in \mathscr{A}_{\kappa}^{\rho}$.
(ii) If $X \subseteq \mathscr{A}_{\kappa}^{\rho}$ is such that $2^{<\kappa} \leq|X|<\rho$, then $X \subseteq \mathscr{A}_{\kappa}^{B}$ for some $B \subseteq \rho$ with $|B|=|X|$.

Proof.
(i) See Lemma VII.6.10 in [15].
(ii) Use (i).

Proposition $3.8([\mathbf{1 7}]) . \quad \operatorname{cov}\left(\mathbf{M}_{\kappa, \rho}\right)=\boldsymbol{\operatorname { c o v }}\left(\mathbf{M}_{\kappa, 2^{\kappa}}\right)$ for every cardinal $\rho \geq$ $\operatorname{cov}\left(\mathrm{M}_{\kappa, 2^{\kappa}}\right)$.

Proof. Argue as for Proposition 6.4 of [25].
Note that by Proposition 3.8, $\lambda^{<\kappa}<\boldsymbol{\operatorname { c o v }}\left(\mathbf{M}_{\kappa, \lambda<\kappa}\right)$ if and only if $\lambda^{<\kappa}<\boldsymbol{\operatorname { c o v }}\left(\mathbf{M}_{\kappa, 2^{\kappa}}\right)$.
Definition. Given a cardinal $\rho \geq \kappa, \theta_{\kappa, \rho}$ is the least cardinality of any $X \subseteq\{A \subseteq$ $\rho:|A|=\kappa\}$ such that for every $B \subseteq \rho$ with $|B|=\rho$, there is $A \in X$ with $A \subseteq B$.

Proposition 3.9 ([28]). $\quad \boldsymbol{\operatorname { c o v }}\left(\mathbf{M}_{\kappa, \rho}\right) \leq \theta_{\kappa, \rho}$ for every cardinal $\rho \geq \kappa$.
Proposition 3.10. Suppose that ρ is a cardinal $>\kappa$ and $V \vDash 2^{<\kappa}=\kappa$. Then setting $P=F n(\rho, 2, \kappa)$:
(i) $\left(2^{\mu}\right)^{V^{P}} \leq\left(\rho^{\mu}\right)^{V}$ for every cardinal $\mu \geq \kappa$.
(ii) $V^{P} \vDash \operatorname{non}\left(\mathbf{M}_{\kappa, \rho}\right)=\kappa^{+}$.
(iii) $([\mathbf{1 7}],[\mathbf{2 8}]) V^{P} \vDash \boldsymbol{\operatorname { c o v }}\left(\mathbf{M}_{\kappa, \rho}\right) \geq \rho$.
(iv) $([\mathbf{1 7}],[\mathbf{2 8}])$ If $c f(\rho)=\kappa$ and $V \vDash " \nu^{\kappa^{+}}<\rho$ for every cardinal ν with $2 \leq \nu<\rho "$, then $V^{P} \vDash \theta_{\kappa, \kappa^{+}}=\rho$.
(v) ([17]) If $c f(\rho)<\kappa$ and $V \vDash \mathrm{GCH}$, then $V^{P} \vDash \boldsymbol{\operatorname { c o v }}\left(\mathbf{M}_{\kappa, \rho}\right)=\rho^{+}$.

Proof.
(i) See Theorem 3.15 in [5].
(ii) In V, select a bijection $j: \kappa^{+} \times \rho \rightarrow \rho$. Now let G be $F n(\rho, 2, \kappa)$-generic over V. For $\alpha<\kappa^{+}$, define $g_{\alpha} \in{ }^{\rho} 2$ by $g_{\alpha}(\beta)=(\cup G)(j(\alpha, \beta))$. It is readily seen that $\left\{g_{\alpha}: \alpha<\kappa^{+}\right\} \notin \mathbf{M}_{\kappa, \rho}$.

The following two results provide models for $\operatorname{cov}\left(\mathbf{M}_{\kappa, \kappa^{+}}\right)>\kappa^{+}$at a large cardinal. The first one is due to Silver (see Exercise VIII.I. 10 in [15]).

Proposition 3.11. Suppose that $V \vDash$ " $\mathrm{GCH}+\kappa$ is weakly compact". Then there is a partially ordered set P in V such that $V^{P} \vDash " \kappa$ is weakly compact and $\operatorname{cov}\left(\mathbf{M}_{\kappa, \kappa^{+}}\right)>$ $\kappa^{+"}$.

Proposition 2 will follow from Corollary 7.5 and the following result.
Proposition 3.12 ([4]). Suppose that $V \vDash " \kappa$ is supercompact". Then there is a generic extension W of V such that for every cardinal $\rho \geq \kappa$ in W,
$W^{P} \vDash " \kappa$ is both strongly compact and the least uncountable measurable cardinal",
where $P=F n(\rho, 2, \kappa)$.

4. Selectivity and pseudointersections.

Definition. An ideal H on $P_{\kappa}(\lambda)$ is weakly selective if given $A \in H^{+}$and $B_{a} \in H$ for $a \in A$, there is $C \in H^{+} \cap P(A)$ such that $b \notin B_{a}$ for every $(a, b) \in[C]^{2}$.

Definition. For an ideal H on $P_{\kappa}(\lambda), \mathscr{Z}_{H}$ is the set of all $\mathscr{F} \subseteq H^{+}$such that (a) $\cap X \in H^{+}$for every $X \subseteq \mathscr{F}$ with $0<|X|<\kappa$, and (b) for every $C \in H^{+}$, there is $A \in \mathscr{F}$ with $C-A \in H^{+}$.
\mathfrak{p}_{H} is defined by: $\mathfrak{p}_{H}=$ the least cardinality of any member of \mathscr{Z}_{H} if $\mathscr{Z}_{H} \neq \phi$, and $\mathfrak{p}_{H}=\left(2^{\lambda^{<\kappa}}\right)^{+}$otherwise.

For $H=I_{\kappa, \lambda}$, we set $\mathfrak{p}_{H}=\mathfrak{p}_{\kappa, \lambda}$.
Note that $\mathfrak{p}_{H \mid E} \geq \mathfrak{p}_{H}$ for every $E \in H^{+}$.
Lemma 4.1. Suppose H is an ideal on $P_{\kappa}(\lambda)$ such that $H^{*} \cap \mathfrak{K}_{\kappa, \lambda} \neq \phi$. Then the following are equivalent:
(i) H is weakly selective and $\mathfrak{p}_{H}>u(\kappa, \lambda)$.
(ii) Given $A \in H^{+}$and $S_{a} \subseteq A$ for $a \in A$ such that $\bigcap_{a \in x} S_{a} \in H^{+}$for every $x \in$ $P_{\kappa}(A)-\{\phi\}$, there is $C \in H^{+} \cap P(A)$ such that $b \in S_{a}$ for every $(a, b) \in[C]^{2}$.

Proof. (i) \rightarrow (ii): Suppose (i) holds and $A \in H^{+}$and $S_{a} \subseteq a$ for $a \in A$ are such that $\bigcap_{a \in x} S_{a} \in H^{+}$for every $x \in P_{\kappa}(A)-\{\phi\}$. Fix $B \in H^{*} \cap \mathfrak{K}_{\kappa, \lambda}$. By Proposition 2.2 $\mathfrak{p}_{H}>|A \cap B|$, so there is $C \in H^{+}$such that $C-S_{a} \in H$ for every $a \in A \cap B$. Select $D \in H^{+} \cap(A \cap B \cap C)$ so that $b \notin C-S_{a}$ for each $(a, b) \in[D]^{2}$. Then $b \in S_{a}$ whenever $(a, b) \in[D]^{2}$.
(ii) \rightarrow (i): Suppose (ii) holds. Then given $A \in H^{+}$and $B_{a} \in H$ for $a \in A$, there is $C \in H^{+} \cap P(A)$ such that $b \in A-B_{a}$ for every $(a, b) \in[C]^{2}$. Hence H is weakly selective. To show that $\mathfrak{p}_{H}>u(\kappa, \lambda)$, let $\mathscr{F} \subseteq H^{+}$be such that $|\mathscr{F}| \leq u(\kappa, \lambda)$ and $\cap X \in H^{+}$for every $X \subseteq \mathscr{F}$ with $0<|X|<\kappa$. Fix $D \in H^{*} \cap \mathfrak{K}_{\kappa, \lambda}$. By Proposition 2.2, there is an onto $j: D \rightarrow \mathscr{F}$. Set $S_{a}=D \cap\left(\bigcap_{c \in D \cap P(a)} j(c)\right)$ for $a \in D$. Select $T \in H^{+} \cap P(D)$ so that $b \in S_{a}$ for every $(a, b) \in[T]^{2}$. It is easy to see that $T-W \in H$ for every $W \in \mathscr{F}$.

For $H=I_{\kappa, \lambda}$, (ii) of Lemma 4.1 can be reformulated as follows:
Proposition 4.2. The following are equivalent:
(i) Given $A \in I_{\kappa, \lambda}^{+}$and $S_{a} \subseteq A$ for $a \in A$ such that $\bigcap_{a \in x} S_{a} \in I_{\kappa, \lambda}^{+}$for every $x \in P_{\kappa}(A)-\{\phi\}$, there is $C \in I_{\kappa, \lambda}^{+} \cap P(A)$ such that $b \in S_{a}$ for every $(a, b) \in[C]^{2}$.
(ii) Given a cardinal $\mu \geq \lambda$ and $B \in I_{\kappa, \mu}^{+}$, there is $C \in I_{\kappa, \lambda}^{+}$such that $[C]^{2} \subseteq\{(c \cap$ $\left.\lambda, d \cap \lambda):(c, d) \in[B]^{2}\right\}$.

Proof. (i) \rightarrow (ii): Suppose that (i) holds and let $B \in I_{\kappa, \mu}^{+}$, where μ is a cardinal with $\mu \geq \lambda$. Set $A=\{d \cap \lambda: d \in B\}$. Note that $A \in I_{\kappa, \lambda}^{+}$. Pick $g: A \rightarrow B$ so that $a=\lambda \cap g(a)$ for every $a \in A$. For $a \in A$, let S_{a} be the set of all $b \in A$ with the property that there is $d \in B$ such that $g(a) \subsetneq d$ and $b=d \cap \lambda$. It is simple to see that $\bigcap_{a \in x} S_{a} \in I_{\kappa, \lambda}^{+}$for every $x \in P_{\kappa}(A)-\{\phi\}$. By our assumption there is $C \in I_{\kappa, \lambda}^{+} \cap P(A)$ such that $b \in S_{a}$ for every $(a, b) \in[C]^{2}$. Then for every $(a, b) \in[C]^{2}$, there is d such that $(g(a), d) \in[B]^{2}$ and $b=d \cap \lambda$.
(ii) \rightarrow (i): Suppose that (ii) holds, and fix $A \in I_{\kappa, \lambda}^{+}$and $S_{a} \subseteq A$ for $a \in A$ with $\left\{\bigcap_{a \in x} S_{a}: x \in P_{\kappa}(A)-\{\phi\}\right\} \subseteq I_{\kappa, \lambda}^{+}$. Now fix a cardinal μ with $\mu>\lambda$ and $\mu \geq|A|$. Select a one-to-one $j: A \rightarrow \mu-\lambda$. Let B be the set of all $d \in P_{\kappa}(\mu)$ such that (a) $d \cap \lambda \in A$, (b) $j(d \cap \lambda) \in d$, and (c) $d \cap \lambda \in S_{a}$ for all $a \in A$ such that $a \subsetneq d \cap \lambda$ and $j(a) \in d$.

Let us show that $B \in I_{\kappa, \mu}^{+}$. Fix $e \in P_{\kappa}(\mu)$. Pick $c \in A$ so that $e \cap \lambda \subsetneq c$ and $c \in S_{a}$ for all $a \in A$ such that $j(a) \in e$. Then setting $d=c \cup e \cup\{j(c)\}$, we have $d \in B$. By our assumption there is $C \in I_{\kappa, \lambda}^{+}$with the property that for every $(a, b) \in[C]^{2}$, one can find $(c, d) \in[B]^{2}$ such that $a=c \cap \lambda$ and $b=d \cap \lambda$. Clearly, $C \subseteq A$. Moreover, $b \in S_{a}$ whenever $(a, b) \in[C]^{2}$.

Proposition 4.3. Suppose H is an ideal on $P_{\kappa}(\lambda)$ such that $H^{*} \cap \mathfrak{K}_{\kappa, \lambda} \neq \phi$ and $\operatorname{cof}(H)<\operatorname{cov}\left(\mathbf{M}_{\kappa, \lambda<\kappa}\right)$. Then H is weakly selective and $\mathfrak{p}_{H}>\lambda^{<\kappa}$.

Proof. By Corollary 3.6, $\lambda^{<\kappa}=u(\kappa, \lambda)$ since $\operatorname{cov}\left(\mathbf{M}_{\kappa, \lambda<\kappa}\right)>\operatorname{cof}(H)>\kappa$. So it suffices to show that (ii) of Lemma 4.1 holds. Thus let $A \in H^{+}$and $S_{a} \subseteq A$ for $a \in A$ with the property that $\bigcap_{a \in x} S_{a} \in H^{+}$for every $x \in P_{\kappa}(A)-\{\phi\}$. Fix $Z \in H^{*} \cap \mathfrak{K}_{\kappa, \lambda}$ and $Y \subseteq H$ such that $|Y|=\operatorname{cof}(H)$ and $H=\bigcup_{B \in Y} P(B)$. For $B \in Y$, let \mathscr{D}_{B} be the set of all $p \in F n(A \cap Z, 2, \kappa)$ such that there is $b \in \operatorname{dom}(p)$ with the following properties:
(0) $b \notin B$.
(1) $\operatorname{dom}(p)=(A \cap Z) \cap P(b)$.
(2) $p(b)=1$.
(3) $b \in S_{a}$ for every $a \in \operatorname{dom}(p)$ such that $a \neq b$ and $p(a)=1$.

Let us show that \mathscr{D}_{B} is dense. Thus fix $q \in F n(A \cap Z, 2, \kappa)$. Pick $b \in(A \cap Z)-B$ so that (i) $a \subsetneq b$ for all $a \in \operatorname{dom}(q)$, and (ii) $b \in S_{a}$ for each $a \in \operatorname{dom}(q)$ with $q(a)=1$. Define $p:(A \cap Z) \cap P(b) \rightarrow 2$ by:
$(\alpha) p(b)=1$.
(β) $p \upharpoonright \operatorname{dom}(q)=q$.
$(\gamma) p(c)=0$ for every $c \in(A \cap Z) \cap P(b)$ such that $c \neq b$ and $c \notin \operatorname{dom}(q)$.
Obviously, $q \subseteq p$ and $p \in \mathscr{D}_{B}$.
Let $G \subseteq F n(A \cap Z, 2, \kappa)$ be a filter such that $G \cap \mathscr{D}_{B} \neq \phi$ for every $B \in Y$. Pick $\varphi \in \prod_{B \in Y}\left(G \cap \mathscr{D}_{B}\right)$. For $B \in Y$, let $b_{B} \in A \cap Z$ be such that $\operatorname{dom}(\varphi(B))=P\left(b_{B}\right)$. Set $C=\left\{b_{B}: B \in Y\right\}$. Then clearly $C \in H^{+} \cap P(A)$. Now suppose $B_{0}, B_{1} \in Y$ are such that $b_{B_{0}} \subsetneq b_{B_{1}}$. There is $r \in G$ such that $\varphi\left(B_{0}\right) \cup \varphi\left(B_{1}\right) \subseteq r$. Then

$$
\left(\varphi\left(B_{1}\right)\right)\left(b_{B_{0}}\right)=r\left(b_{B_{0}}\right)=\left(\varphi\left(B_{0}\right)\right)\left(b_{B_{0}}\right)=1
$$

and consequently $b_{B_{1}} \in S_{b_{B_{0}}}$. Thus $d \in S_{a}$ whenever $(a, d) \in[C]^{2}$.
Corollary 4.4. Suppose $\mathfrak{K}_{\kappa, \lambda} \neq \phi$ and $\boldsymbol{\operatorname { c o v }}\left(\mathbf{M}_{\kappa, \lambda<\kappa}\right)>\lambda^{<\kappa}$. Then $I_{\kappa, \lambda}$ is weakly selective and $\left\{C: \mathfrak{p}_{I_{\kappa, \lambda} \mid C}>\lambda^{<\kappa}\right\}$ is dense in $\left(I_{\kappa, \lambda}^{+}, \subseteq\right)$.

Proof. Use the following observation: Let $A \in I_{\kappa, \lambda}^{+}$. Then by Proposition 2.3 there is $C \in \mathfrak{K}_{\kappa, \lambda} \cap P(A)$. Now setting $H=I_{\kappa, \lambda} \mid C, H^{*} \cap \mathfrak{K}_{\kappa, \lambda} \neq \phi$ and $\operatorname{cof}(H)<\boldsymbol{\operatorname { c o v }}\left(\mathbf{M}_{\kappa, \lambda<\kappa}\right)$.

It is immediate from Proposition 4.3 that if κ is inaccessible and $\operatorname{cov}\left(\mathbf{M}_{\kappa, \lambda<\kappa}\right)>\lambda^{<\kappa}$, then $\mathfrak{p}_{\kappa, \lambda}>\lambda^{<\kappa}$. More generally, Corollary 8.5 and Proposition 8.6 below yield that if $\mathfrak{K}_{\kappa, \lambda} \neq \phi$ and $\operatorname{cov}\left(\mathbf{M}_{\kappa, \lambda<\kappa}\right)>\lambda^{<\kappa}$, then $\mathfrak{p}_{\kappa, \lambda}>\lambda^{<\kappa}$.

5. $\quad I_{\kappa, \lambda}^{+} \rightarrow\left(I_{\kappa, \lambda}^{+}, \theta\right)^{2}$.

Definition. Given $X, Y \subseteq P\left(P_{\kappa}(\lambda)\right)$ and an ordinal $\eta \leq \kappa, X \rightarrow(Y, \eta)^{2}$ means that for all $A \in X$ and $F: P_{\kappa}(\lambda) \times P_{\kappa}(\lambda) \rightarrow 2$, there is $B \subseteq A$ such that either $B \in Y$ and F is constantly 0 on $[B]^{2}$, or $B \in\left[P_{\kappa}(\lambda)\right]^{\eta}$ and F is constantly 1 on $[B]^{2}$.

The negation of this and other partition relations is indicated by crossing the arrow.
In this section we investigate the problem of getting $I_{\kappa, \lambda}^{+} \rightarrow\left(I_{\kappa, \lambda}^{+}, \theta\right)^{2}$ for a given infinite cardinal $\theta \leq \kappa$. First, a simple observation:

Proposition 5.1. Suppose η is an ordinal $\leq \kappa$ such that $\left\{P_{\kappa}(\lambda)\right\} \rightarrow\left(I_{\kappa, \lambda}^{+}, \eta\right)^{2}$. Then $\kappa \rightarrow(\kappa, \eta)^{2}$.

Proof. Given $f: \kappa \times \kappa \rightarrow 2$, consider $F: P_{\kappa}(\lambda) \times P_{\kappa}(\lambda) \rightarrow 2$ defined by: $F(a, b)=1$ if and only if $\cup(a \cap \kappa)<\cup(b \cap \kappa)$ and $f(\cup(a \cap \kappa), \cup(b \cap \kappa))=1$.

Lemma 5.2. Suppose $\kappa \rightarrow(\kappa, \theta)^{2}$, where θ is an infinite cardinal $<\kappa$, and μ, τ are two cardinals such that $\theta \leq \mu<\kappa$ and $\omega \leq \tau<\theta$. Then $\mu^{\tau}<\kappa$.

Proof. By Corollary 19.7 in [11], $\mu^{\tau} \nrightarrow\left(\mu^{+}, \tau^{+}\right)^{2}$.
Definition. Given an ideal H on $P_{\kappa}(\lambda), A \in H^{+}$and $F: P_{\kappa}(\lambda) \times P_{\kappa}(\lambda) \rightarrow$ $2,(H, A, F)$ is 0 -nice if there is $C \in H^{+} \cap P(A)$ such that

$$
\{b \in C: \forall a \in x(F(a, b)=0)\} \in H^{+}
$$

for every $x \in P_{\kappa}(C)-\{\phi\}$.
Lemma 5.3. \quad Suppose $H^{*} \cap \mathfrak{K}_{\kappa, \lambda} \neq \phi, \operatorname{cof}(H)<\operatorname{cov}\left(\mathbf{M}_{\kappa, \lambda<\kappa}\right)$ and (H, A, F) is 0 -nice, where H is an ideal on $P_{\kappa}(\lambda), A \in H^{+}$and $F: P_{\kappa}(\lambda) \times P_{\kappa}(\lambda) \rightarrow 2$. Then there is $D \in H^{+} \cap P(A)$ such that F is constantly 0 on $[D]^{2}$.

Proof. By Proposition 4.3.
Definition. For an ideal H on $P_{\kappa}(\lambda)$ and $C \in H^{+}, M_{H, C}^{\mathrm{d}}$ is the set of all $Q \subseteq$ $H^{+} \cap P(C)$ such that (a) any two distinct members of Q are disjoint, and (b) for every $A \in H^{+} \cap P(C)$, there is $B \in Q$ with $A \cap B \in H^{+}$.

Lemma 5.4. Suppose $\kappa \rightarrow(\kappa, \theta)^{2}$, where θ is an infinite cardinal $<\kappa$, and (H, A, F) is not 0-nice, where H is an ideal on $P_{\kappa}(\lambda), A \in H^{+}$and $F: P_{\kappa}(\lambda) \times P_{\kappa}(\lambda) \rightarrow 2$. Then there is $D \in[A]^{\theta+1}$ such that F is constantly 1 on $[D]^{2}$.

Proof. First, we define two functions φ and ψ so that for each $C \in H^{+} \cap P(A)$,
(a) $\varphi(C) \in M_{H, C}^{\mathrm{d}}$ and $|\varphi(C)|<\kappa$,
(b) $\psi(C)$ is a one-to-one function from $\varphi(C)$ to C,
(c) If $b \in B \in \varphi(C)$, then $(\psi(C))(B) \subsetneq b$ and $F((\psi(C))(B), b)=1$.

Given $C \in H^{+} \cap P(A)$, pick $x \in P_{\kappa}(C)-\{\phi\}$ so that

$$
\{b \in C: \forall a \in x(F(a, b)=0)\} \in H .
$$

Select a bijection $j:|x| \rightarrow x$. For $\delta<|x|$, let B_{δ} be the set of all $b \in C$ such that $\cup x \subsetneq b$ and $\delta=$ the least $\gamma<|x|$ such that $F(j(\gamma), b)=1$. Now set $\varphi(C)=H^{+} \cap\left\{B_{\delta}: \delta<|x|\right\}$ and $(\psi(C))\left(B_{\delta}\right)=j(\delta)$ for every $\delta<|x|$ such that $B_{\delta} \in \varphi(C)$.

Recalling Lemma 5.2, define $R_{\beta}, Q_{\beta} \in\left\{W \in M_{H, A}^{\mathrm{d}}:|W|<\kappa\right\}$ and $\psi_{\beta}: Q_{\beta} \rightarrow A$ for $\beta<\theta$ by:
(0) $R_{0}=\{A\}$.
(1) $Q_{\beta}=\bigcup_{C \in R_{\beta}} \varphi(C)$.
(2) $R_{\beta+1}=Q_{\beta}$.
(3) $R_{\beta}=H^{+} \cap\left\{\bigcap_{\alpha<\beta} h(\alpha): h \in \prod_{\alpha<\beta} Q_{\alpha}\right\}$ if β is a limit ordinal >0.
(4) $\psi_{\beta}=\bigcup_{C \in R_{\beta}} \psi(C)$.

Finally, select $b \in \bigcap_{\beta<\theta}\left(\cup Q_{\beta}\right)$. There is $k \in \prod_{\beta<\theta} Q_{\beta}$ such that $b \in \bigcap_{\beta<\theta} k(\beta)$. Then

$$
D=\left\{\psi_{\beta}(k(\beta)): \beta<\theta\right\} \cup\{b\}
$$

is as desired.
Proposition 5.5. Suppose $\kappa \rightarrow(\kappa, \theta)^{2}$, where θ is an infinite cardinal $<\kappa$, and H is an ideal on $P_{\kappa}(\lambda)$ such that $H^{*} \cap \mathfrak{K}_{\kappa, \lambda} \neq \phi$ and $\operatorname{cof}(H)<\operatorname{cov}\left(\mathbf{M}_{\kappa, \lambda<\kappa}\right)$. Then $H^{+} \rightarrow\left(H^{+}, \theta+1\right)^{2}$.

Proof. By Lemmas 5.3 and 5.4.
Corollary 5.6. Suppose $\mathfrak{K}_{\kappa, \lambda} \neq \phi$ and $\operatorname{cov}\left(\mathbf{M}_{\kappa, \lambda<\kappa}\right)>\lambda^{<\kappa}$. Then for every infinite cardinal $\theta<\kappa$, the following are equivalent:
(i) $\kappa \rightarrow(\kappa, \theta)^{2}$.
(ii) $I_{\kappa, \lambda}^{+} \rightarrow\left(I_{\kappa, \lambda}^{+}, \theta+1\right)^{2}$.
(iii) $I_{\kappa, \lambda}^{+} \rightarrow\left(I_{\kappa, \lambda}^{+}, \theta\right)^{2}$.

Proof.
(i) \rightarrow (ii) follows from Propositions 2.3 and 5.5.
(ii) \rightarrow (iii) is immediate.
(iii) \rightarrow (i) is immediate by Proposition 5.1.

It remains to handle the case $\theta=\kappa$.
Lemma 5.7. Suppose κ is weakly compact and (H, A, F) is not 0 -nice, where H is an ideal on $P_{\kappa}(\lambda), A \in H^{+}$and $F: P_{\kappa}(\lambda) \times P_{\kappa}(\lambda) \rightarrow 2$. Then there is $D \in[A]^{\kappa}$ such that F is constantly 1 on $[D]^{2}$.

Proof. Proceed as in the proof of Lemma 5.4, but this time define R_{β}, Q_{β} and ψ_{β} for every $\beta<\kappa$. Since κ has the tree property, there is $k \in \prod_{\beta<\kappa} Q_{\beta}$ such that $\bigcap_{\beta \leq \gamma} k(\beta) \neq \phi$ for every $\gamma<\kappa$. Then $D=\left\{\psi_{\beta}(k(\beta)): \beta<\kappa\right\}$ is as desired.

Proposition 5.8. Suppose κ is weakly compact and H is an ideal on $P_{\kappa}(\lambda)$ such that $\operatorname{cof}(H)<\boldsymbol{\operatorname { c o v }}\left(\mathbf{M}_{\kappa, \lambda<\kappa}\right)$. Then $H^{+} \rightarrow\left(H^{+}, \kappa\right)^{2}$.

Proof. By Proposition 2.5 and Lemmas 5.3 and 5.7.

Corollary 5.9. Suppose $\operatorname{cov}\left(\mathbf{M}_{\kappa, \lambda<\kappa}\right)>\lambda^{<\kappa}$. Then the following are equivalent:
(i) κ is weakly compact.
(ii) $I_{\kappa, \lambda}^{+} \rightarrow\left(I_{\kappa, \lambda}^{+}, \kappa\right)^{2}$.

Proof. By Propositions 5.1 and 5.8.

6. $H^{+} \rightarrow\left(I_{\kappa, \lambda}^{+}, \theta \oplus 1\right)^{2}$.

Throughout this section κ is assumed to be uncountable.
Definition. Given $X, Y \subseteq P\left(P_{\kappa}(\lambda)\right)$ and an infinite cardinal $\theta<\kappa, X \rightarrow(Y, \theta \oplus$ $1)^{2}$ means that for all $A \in X$ and $F: P_{\kappa}(\lambda) \times P_{\kappa}(\lambda) \rightarrow 2$, there is either $B \in Y \cap P(A)$ such that F is constantly 0 on $[B]^{2}$, or $\left(a_{0}, a_{1}, \ldots, a_{\theta}\right) \in[A]^{\theta+1}$ such that $a_{\theta}=\bigcup_{\alpha<\theta} a_{\alpha}$ and F is constantly 1 on $\left[\left\{a_{\beta}: \beta \leq \theta\right\}\right]^{2}$.

If θ is an infinite cardinal $<\kappa$, then $I_{\kappa, \lambda}^{+} \nrightarrow\left(I_{\kappa, \lambda}^{+}, \theta \oplus 1\right)^{2}$. (Set

$$
A=\left\{a \in P_{\kappa}(\lambda): \exists \alpha<\kappa(a \cap \kappa=\alpha+1)\right\}
$$

and consider $F:[A]^{2} \rightarrow 2$ defined by: $F(a, b)=0$ if and only if $a \cap \kappa=b \cap \kappa$.) Our goal is to produce an ideal H on $P_{\kappa}(\lambda)$ such that $H^{+} \rightarrow\left(I_{\kappa, \lambda}^{+}, \theta \oplus 1\right)^{2}$. We start by reviewing a few facts.

Definition. Suppose H is an ideal on $P_{\kappa}(\lambda)$ and δ is an ordinal with $\kappa \leq \delta \leq \lambda$. Then H is δ-normal if given $A \in H^{+}$and $f: A \rightarrow \delta$ such that $f(a) \in a$ for all $a \in A$, there is $B \in H^{+} \cap P(A)$ such that f is constant on B.
$N S_{\kappa, \lambda}^{\delta}$ denotes the smallest δ-normal ideal on $P_{\kappa}(\lambda)$.
Note that being λ-normal is the same as being normal, so that $N S_{\kappa, \lambda}^{\lambda}=N S_{\kappa, \lambda}$.
Definition. Suppose H is an ideal on $P_{\kappa}(\lambda), \nu$ is a cardinal with $\kappa \leq \nu \leq \lambda$ and θ is an infinite cardinal $\leq \kappa$. Then H is $[\nu]^{<\theta}$-normal if given $A \in H^{+}$and $f: A \rightarrow P(\nu)$ such that $f(a) \in P_{|a \cap \theta|}(a)$ for all $a \in A$, there is $B \in H^{+} \cap P(A)$ such that f is constant on B.

The following is easy.
Lemma 6.1. Suppose H is an ideal on $P_{\kappa}(\lambda)$ and ν is a cardinal with $\kappa \leq \nu \leq \lambda$. Then H is $[\nu]^{<\omega}$-normal if and only if it is ν-normal.

Lemma $6.2([\mathbf{7}],[\mathbf{2 3}])$.
(i) Suppose ν is a cardinal with $\kappa \leq \nu \leq \lambda$ and θ is an uncountable cardinal $<\kappa$. Then there exists a $[\nu]^{<\theta}$-normal ideal on $P_{\kappa}(\lambda)$ if and only if $\tau^{<\theta}<\kappa$ for every cardinal τ with $\theta \leq \tau<\kappa$.
(ii) Suppose κ is a limit cardinal and ν is a cardinal with $\kappa \leq \nu \leq \lambda$. Then there exists $a[\nu]^{<\kappa}$-normal ideal on $P_{\kappa}(\lambda)$ if and only if κ is Mahlo.

Definition. Suppose there exists a $[\nu]^{<\theta}$-normal ideal on $P_{\kappa}(\lambda)$, where ν, θ are two cardinals such that $\kappa \leq \nu \leq \lambda$ and $\omega \leq \theta \leq \kappa$. Then $N S_{\kappa, \lambda}^{[\nu]^{<\theta}}$ denotes the smallest such ideal.

Note that by Lemma 6.1 $N S_{\kappa, \lambda}^{[\lambda]<\omega}=N S_{\kappa, \lambda}$.
Lemma 6.3 ([23]). Suppose θ is an uncountable cardinal $<\kappa$ and ν is a cardinal with $\kappa \leq \nu \leq \lambda$. Then the set of all $a \in P_{\kappa}(\lambda)$ such that $c f(\cup(a \cap \tau))<\theta$ for some regular cardinal τ with $\kappa \leq \tau \leq \nu$ lies in $N S_{\kappa, \lambda}^{[\nu]<\theta}$.

As will now be shown, $[\nu]^{<\theta}$-normality can be seen as the combination of ν-normality with a distributivity property.

Definition. For an ideal H on $P_{\kappa}(\lambda)$ and $A \in H^{+}, M_{H, A}$ is the set of all $Q \subseteq$ $H^{+} \cap P(A)$ such that (a) the intersection of any two distinct members of Q lies in H, and (b) for every $C \in H^{+} \cap P(A)$, there is $B \in Q$ with $B \cap C \in H^{+}$.

Definition. Suppose H is an ideal on $P_{\kappa}(\lambda)$ and μ, ρ are two cardinals ≥ 1. Then H is (μ, ρ)-distributive (respectively, disjointly (μ, ρ)-distributive) if given $A \in H^{+}$and $Q_{\alpha} \in M_{H, A}$ (respectively, $Q_{\alpha} \in M_{H, A}^{\mathrm{d}}$) for $\alpha<\mu$ with $\left|Q_{\alpha}\right| \leq \rho$, there are $C \in H^{+} \cap P(A)$ and $h \in \prod_{\alpha<\mu} Q_{\alpha}$ such that $C-h(\alpha) \in H$ for all $\alpha<\mu$.

The following generalizes a result of Johnson [14].
Lemma 6.4. Suppose ν is a cardinal with $\kappa \leq \nu \leq \lambda$, H is a ν-normal ideal on $P_{\kappa}(\lambda)$, and θ is a regular uncountable cardinal which is $\leq \kappa$ if κ is a limit cardinal, and $<\kappa$ otherwise. Then the following are equivalent:
(i) H is $[\nu]^{<\theta}$-normal.
(ii) H is $\left(\mu, \nu^{<\theta}\right)$-distributive for every infinite cardinal $\mu<\theta$.
(iii) H is disjointly (μ, ν)-distributive for every infinite cardinal $\mu<\theta$.

Proof. (i) \rightarrow (ii): Assume (i) holds, and let μ be an infinite cardinal $<\theta$. Fix $A \in H^{+}$and $Q_{\alpha} \in M_{H, A}$ for $\alpha<\mu$ with $\left|Q_{\alpha}\right| \leq \nu^{<\theta}$. Select a one-to-one $j: \mu \times \nu \rightarrow \nu$. Given $\alpha<\mu$, pick a one-to-one $f_{\alpha}: Q_{\alpha} \rightarrow P_{\theta}\left(j^{\prime \prime}(\{\alpha\} \times \nu)\right)$ and define $k_{\alpha}: Q_{\alpha} \rightarrow P_{\theta}(\nu)$ by: $k_{\alpha}(B)=f_{\alpha}(B) \cup\left\{\left|f_{\alpha}(B)\right|\right\}$ if $\theta=\kappa$, and $k_{\alpha}(B)=f_{\alpha}(B)$ otherwise. Next, define $\ell_{\alpha}: Q_{\alpha} \rightarrow P\left(P_{\kappa}(\lambda)\right)$ by $\ell_{\alpha}(B)=\left\{a \in B: k_{\alpha}(b) \subseteq a\right\}$, and put $R_{\alpha}=\operatorname{ran}\left(\ell_{\alpha}\right)$ and $W_{\alpha}=A-\left(\cup R_{\alpha}\right)$. Clearly $R_{\alpha} \in M_{H, A}$, consequently $W_{\alpha} \in H$.

Define C as follows: If $\theta<\kappa, C$ is the set of all $a \in A-\left(\bigcup_{\alpha<\mu} W_{\alpha}\right)$ such that $\theta \subseteq a$. If $\theta=\kappa, C$ is the set of all $a \in A-\left(\bigcup_{\alpha<\mu} W_{\alpha}\right)$ such that $a \cap \kappa$ is an infinite cardinal of cofinality $>\mu$. Then $C \in H^{+}$by Lemma 6.3. For $a \in C$, pick $t_{a} \in \prod_{\alpha<\mu} Q_{\alpha}$ so that $a \in t_{a}(\alpha)$ and $k_{\alpha}\left(t_{a}(\alpha)\right) \subseteq a$ for all $\alpha<\mu$. Now define $g: C \rightarrow P(\nu)$ by $g(a)=\bigcup_{\alpha<\mu} f_{\alpha}\left(t_{a}(\alpha)\right)$. Since $g(a) \in P_{|a \cap \theta|}(a)$ for all $a \in C$, there is $D \in H^{+} \cap P(C)$ such that g is constant on D. Pick $a \in D$. Then $D \subseteq \bigcap_{\alpha<\mu} t_{a}(\alpha)$.
(ii) \rightarrow (iii) is immediate.
(iii) \rightarrow (i): Suppose (iii) holds and fix $A \in H^{+}$and $f: A \rightarrow P(\nu)$ such that $f(a) \in P_{|a \cap \theta|}(a)$ for all $a \in A$. Define B by: $B=\{a \in A: \theta \subseteq a\}$ if $\theta<\kappa$, else

$$
B=\{a \in A: a \cap \kappa \text { is an infinite ordinal }\}
$$

Then $B \in H^{+}$, so by ν-normality there are $C \in H^{+} \cap P(B)$ and $\mu<\theta$ such that $|f(a)|=\mu$ for all $a \in C$. If μ is finite, then f is constant on some $D \in H^{+} \cap P(C)$ by Lemma 6.1. Now suppose μ is infinite. Select a bijection $j_{a}: \mu \rightarrow f(a)$ for each $a \in C$. Now for $\alpha<\mu$, set

$$
Q_{\alpha}=H^{+} \cap\left\{\left\{a \in C: j_{a}(\alpha)=\beta\right\}: \beta<\nu\right\} .
$$

It is simple to check that $Q_{\alpha} \in M_{H, C}^{\mathrm{d}}$. Hence there is $h \in \prod_{\alpha<\mu} Q_{\alpha}$ such that $\bigcap_{\alpha<\mu} h(\alpha) \in H^{+}$. Obviously, f is constant on $\bigcap_{\alpha<\mu} h(\alpha)$.

Definition. Given $h: \lambda \rightarrow P_{\kappa}(\lambda)$ and a regular infinite cardinal $\theta<\kappa, U_{h}^{\theta}$ is the set of all $a \in P_{\kappa}(\lambda)$ such that $a=\bigcup_{\alpha \in e} h(\alpha)$ for some $e \subseteq a$ with $|e|=\theta$.

We are looking for pairs (h, θ) such that $U_{h}^{\theta} \in\left(N S_{\kappa, \lambda}^{\left[\lambda<^{<\theta}\right.}\right)^{+}$.
Definition. Given a regular infinite cardinal $\theta<\kappa, \mathscr{H}_{\kappa, \lambda}^{\theta}$ is the set all $h: \lambda \rightarrow$ $P_{\kappa}(\lambda)$ such that for each $a \in P_{\kappa}(\lambda)$, there is $e \in P_{\theta^{+}}(\lambda)$ with $a \subseteq \bigcup_{\alpha \in e} h(\alpha)$.

The easy proof of the following is left to the reader.
Lemma 6.5. Suppose θ is a regular infinite cardinal $<\kappa$. Then

$$
\mathscr{H}_{\kappa, \lambda}^{\theta}=\left\{h: \lambda \rightarrow P_{\kappa}(\lambda): U_{h}^{\theta} \in I_{\kappa, \lambda}^{+}\right\} .
$$

Lemma 6.6. Suppose $h, k \in \mathscr{H}_{\kappa, \lambda}^{\theta}$, where θ is a regular infinite cardinal $<\kappa$. Then $U_{h}^{\theta} \Delta U_{k}^{\theta} \in N S_{\kappa, \lambda}$.

Proof. Define $f: \lambda \rightarrow P_{\theta^{+}}(\lambda)$ and $g: \lambda \rightarrow P_{\theta^{+}}(\lambda)$ so that for every $\alpha \in \lambda$, $h(\alpha) \subseteq \bigcup_{\beta \in f(\alpha)} k(\beta)$ and $k(\alpha) \subseteq \bigcup_{\beta \in g(\alpha)} h(\beta)$. Let D be the set of all $a \in P_{\kappa}(\lambda)$ such that $\theta \subseteq a$ and

$$
h(\alpha) \cup k(\alpha) \cup f(\alpha) \cup g(\alpha) \subseteq a
$$

for all $\alpha \in a$. Then $D \in N S_{\kappa, \lambda}^{*}$ and $U_{h}^{\theta} \cap D=U_{k}^{\theta} \cap D$.
Lemma 6.7. Suppose $\kappa \rightarrow(\kappa, \theta)^{2}$ and $h \in \mathscr{H}_{\kappa, \lambda}^{\theta}$, where θ is a regular infinite cardinal $<\kappa$. Then $U_{h}^{\theta} \in\left(N S_{\kappa, \lambda}^{[\lambda]^{<\theta}}\right)^{+}$.

Proof. The existence of a $[\lambda]^{<\theta}$-normal ideal on $P_{\kappa}(\lambda)$ follows from Lemmas 5.2 and 6.2 (i). To establish that $U_{h}^{\theta} \notin N S_{\kappa, \lambda}^{[\lambda]^{<\theta}}$, it suffices to show that for every $f: P_{\theta}(\lambda) \rightarrow P_{\kappa}(\lambda)$, there is $a \in U_{h}^{\theta}$ such that $\theta \subseteq a$ and $f(z) \subseteq a$ for every $z \in P_{\theta}(a)$. Given f, define $a_{\beta}, b_{\beta} \in P_{\kappa}(\lambda)$ and $e_{\beta} \in P_{\theta^{+}}(\lambda)$ for $\beta<\theta$ by:
(0) $a_{0}=\theta \cup\left(\bigcup_{\alpha \in \theta} h(\alpha)\right)$.
(1) $a_{\beta} \subseteq b_{\beta}$.
(2) $b_{\beta}=\bigcup_{\alpha \in e_{\beta}} h(\alpha)$.
(3) $a_{\beta+1}=b_{\beta} \cup\left(\cup\left\{f(z): z \in P_{\theta}\left(b_{\beta}\right)\right\}\right)$.
(4) $a_{\beta}=\bigcup_{\gamma<\beta} a_{\gamma}$ if β is a limit ordinal >0.
(5) $\psi_{\alpha}=\bigcup_{C \in T_{\alpha}} \psi(C)$.

Now set $a=\bigcup_{\beta<\theta} b_{\beta}$. Obviously, $\theta \subseteq a$. Moreover, $a \in U_{h}^{\theta}$ since

$$
a=\bigcup\left\{h(\alpha): \alpha \in \theta \bigcup\left(\bigcup_{\beta<\theta} e_{\beta}\right)\right\}
$$

Finally, given $z \in P_{\theta}(a)$, there is $\beta<\theta$ such that $z \subseteq b_{\beta}$, and then $f(z) \subseteq a_{\beta+1} \subseteq a$.
It remains to discuss whether $\mathscr{H}_{\kappa, \lambda}^{\theta} \neq \phi$.
Lemma 6.8. Suppose that θ is a regular infinite cardinal $<\kappa$ and either $c f(\lambda) \geq \kappa$ and $u(\kappa, \lambda)=\lambda$, or $c f(\lambda) \leq \theta$ and $u(\kappa, \mu) \leq \lambda$ for every cardinal μ with $\kappa<\mu<\lambda$. Then $\mathscr{H}_{\kappa, \lambda}^{\theta} \neq \phi$.

Proof. Select $h: \lambda \rightarrow \bigcup_{\kappa \leq \xi<\lambda} P_{\kappa}(\xi)$ so that

$$
\bigcup_{\kappa \leq \xi<\lambda} P_{\kappa}(\xi)=\bigcup_{\alpha<\lambda} P(h(\alpha)) .
$$

Then it is simple to see that $h \in \mathscr{H}_{\kappa, \lambda}^{\theta}$.
Definition. Given a regular infinite cardinal $\theta<\kappa, T_{\kappa, \lambda}^{\theta}$ (respectively, $T_{\kappa, \lambda}^{\leq \theta}$) is the set of all $a \in P_{\kappa}(\lambda)$ such that $\cup(a \cap \tau)$ is a limit ordinal of cofinality θ (respectively, $\leq \theta$) for every regular cardinal τ with $\kappa \leq \tau \leq \lambda$.

Lemma 6.9. Suppose $h: \lambda \rightarrow P_{\kappa}(\lambda)$ and θ is a regular infinite cardinal $<\kappa$. Then $U_{h}^{\theta}-T_{\kappa, \lambda}^{\leq \theta} \in N S_{\kappa, \lambda}$.

Proof. Set $\widetilde{\beta}=\max \left\{\kappa,|\beta|^{+}\right\}$for every $\beta<\lambda$. Let A be the set of all $a \in P_{\kappa}(\lambda)$ such that

$$
\cup(h(\alpha) \cap \widetilde{\beta})<\cup(a \cap \widetilde{\beta})
$$

for all $\alpha, \beta \in a$, and $\gamma+1 \in a$ for all $\gamma \in a$. Then $A \in N S_{\kappa, \lambda}^{*}$ and $A \cap U_{h}^{\theta} \subseteq T_{\kappa, \lambda}^{\leq \theta}$.
Lemma 6.10. Suppose $h: \lambda \rightarrow P_{\kappa}(\lambda)$ and θ is a regular infinite cardinal $<\kappa$. Then $U_{h}^{\theta}-T_{\kappa, \lambda}^{\theta} \in N S_{\kappa, \lambda}^{[\lambda]<\theta}$.

Proof. By Lemmas 6.3 and 6.9.
Lemma 6.11. Suppose that θ is a regular infinite cardinal $<\kappa$ and either $\kappa=\theta^{+}$ or $\lambda<\kappa^{+\theta^{+}}$. Then $T_{\kappa, \lambda}^{\leq \theta}-U_{h}^{\theta} \in N S_{\kappa, \lambda}$ for some $h: \lambda \rightarrow P_{\kappa}(\lambda)$.

Proof. If $\kappa=\theta^{+}$and $h: \lambda \rightarrow P_{\kappa}(\lambda)$ is defined by $h(\alpha)=\{\alpha\}$, then

$$
\left\{a \in P_{\kappa}(\lambda): \theta \subseteq a\right\} \subseteq U_{h}^{\theta} .
$$

For the other case, see Proposition 5.6 in [10].
We are now in a position to prove the main result of this section.
Proposition 6.12. Suppose that $\mathbf{\operatorname { c o v }}\left(\mathbf{M}_{\kappa, \lambda<\kappa}\right)>\lambda^{<\kappa}, \theta$ is a regular infinite cardinal $<\kappa$ such that $\kappa \rightarrow(\kappa, \theta)^{2}, h: \lambda \rightarrow P_{\kappa}(\lambda)$ and $Z \in \mathfrak{K}_{\kappa, \lambda} \cap P\left(U_{h}^{\theta}\right) \cap\left(N S_{\kappa, \lambda}^{[\lambda]<\theta}\right)^{+}$. Then $\left(N S_{\kappa, \lambda}^{[\lambda]<\theta} \mid Z\right)^{+} \rightarrow\left(I_{\kappa, \lambda}^{+}, \theta \oplus 1\right)^{2}$.

Proof. Set $H=N S_{\kappa, \lambda}^{[\lambda]^{<\theta}} \mid Z$. Fix $B \in H^{+}$and $F: P_{\kappa}(\lambda) \times P_{\kappa}(\lambda) \rightarrow 2$. Set $A=B \cap Z$.

If (H, A, F) is 0 -nice, then clearly so is $\left(I_{\kappa, \lambda} \mid A, A, F\right)$ and therefore by Lemma 5.3 F is constantly 0 on $[D]^{2}$ for some $D \in I_{\kappa, \lambda}^{+} \cap P(A)$.

Next, suppose (H, A, F) is not 0-nice. Pick $g: \theta \times A \rightarrow \lambda$ so that $\{g(\alpha, b): \alpha<\theta\} \subseteq b$ and $b=\bigcup_{\alpha<\theta} h(g(\alpha, b))$ for every $b \in A$. For $\alpha<\theta$, define a function χ_{α} on $H^{+} \cap P(A)$ by

$$
\chi_{\alpha}(C)=H^{+} \cap\{\{b \in C: g(\alpha, b)=\xi\}: \xi<\lambda\} .
$$

It is simple to check that $\chi_{\alpha}(C) \in M_{H, C}^{\mathrm{d}}$. Let φ, ψ be as in the proof of Lemma 5.4. Now appealing to Lemma 6.4, define

$$
R_{\alpha}, T_{\alpha}, Q_{\alpha} \in\left\{W \in M_{H, A}^{\mathrm{d}}:|W| \leq \lambda^{|1+\alpha|}\right\}
$$

and $\psi_{\alpha}: Q_{\alpha} \rightarrow A$ for $\alpha<\theta$ by:
(0) $R_{0}=\{A\}$.
(1) $T_{\alpha}=\bigcup_{C \in R_{\alpha}} \chi_{\alpha}(C)$.
(2) $Q_{\alpha}=\bigcup_{C \in T_{\alpha}} \varphi(C)$.
(3) $R_{\alpha+1}=Q_{\alpha}$.
(4) $R_{\alpha}=H^{+} \cap\left\{\bigcap_{\beta<\alpha} q(\beta): q \in \prod_{\beta<\alpha} Q_{\beta}\right\}$ if α is a limit ordinal >0.
(5) $\psi_{\alpha}=\bigcup_{C \in T_{\alpha}} \psi(C)$.

Finally, select $b \in \bigcap_{\alpha<\theta}\left(\cup Q_{\alpha}\right)$. Let $k \in \prod_{\alpha<\theta} Q_{\alpha}$ be such that $b \in \bigcap_{\alpha<\theta} k(\alpha)$. Stipulate that $a_{\alpha}=\psi_{\alpha}(k(\alpha))$ for $\alpha<\theta$, and $a_{\theta}=b$. Then clearly $\left(a_{0}, a_{1}, \ldots, a_{\theta}\right) \in[A]^{\theta+1}$ and F takes the constant value 1 on $\left[\left\{a_{\delta}: \delta \leq \theta\right\}\right]^{2}$. Moreover, $g\left(\alpha, a_{\alpha}\right)=g\left(\alpha, a_{\delta}\right)$ whenever $\alpha<\delta \leq \theta$. It follows that

$$
a_{\theta}=\bigcup_{\alpha<\theta} h\left(g\left(\alpha, a_{\theta}\right)\right) \subseteq \bigcup_{\alpha<\theta} a_{\alpha} .
$$

Corollary 6.13. Suppose that (a) $\boldsymbol{\operatorname { c o v }}\left(\mathbf{M}_{\kappa, \lambda<\kappa}\right)>\lambda^{<\kappa}$, (b) θ is a regular infinite cardinal $<\kappa$ such that $\kappa \rightarrow(\kappa, \theta)^{2}$, (c) $\tau^{\theta}<\kappa$ for every infinite cardinal $\tau<\kappa$, and (d) either $c f(\lambda) \geq \kappa$ and $\lambda^{<\kappa}=\lambda$, or $c f(\lambda) \leq \theta$ and $\mu^{<\kappa} \leq \lambda$ for every cardinal μ with $\kappa<\mu<\lambda$. Then $\left(N S_{\kappa, \lambda}^{[\lambda]^{<\theta}} \mid Z\right)^{+} \rightarrow\left(I_{\kappa, \lambda}^{+}, \theta \oplus 1\right)^{2}$ for some $Z \in\left(N S_{\kappa, \lambda}^{[\lambda]^{<\theta}}\right)^{+}$.

Proof. By Lemma 6.8 , there is $h \in \mathscr{H}_{\kappa, \lambda}^{\theta}$. Set $Z=U_{h}^{\theta}$. Then $Z \in\left(N S_{\kappa, \lambda}^{[\lambda]^{<\theta}}\right)^{+}$by Lemma 6.7. That $Z \in \mathfrak{K}_{\kappa, \lambda}$ follows from (c).

Corollary 6.14. Suppose that (a) $\boldsymbol{\operatorname { c o v }}\left(\mathbf{M}_{\kappa, \lambda<\kappa}\right)>\lambda^{<\kappa}$, (b) θ is a regular infinite cardinal $<\kappa$ such that $\kappa \rightarrow(\kappa, \theta)^{2}$, (c) $\tau^{\theta}<\kappa$ for every infinite cardinal $\tau<\kappa$, and (d) either $\kappa=\theta^{+}$or $\lambda<\kappa^{+\theta^{+}}$. Then $\left(N S_{\kappa, \lambda}^{[\lambda]^{<\theta}} \mid T_{\kappa, \lambda}^{\theta}\right)^{+} \rightarrow\left(I_{\kappa, \lambda}^{+}, \theta \oplus 1\right)^{2}$.

Proof. By Lemma 6.11, there is $h: \lambda \rightarrow P_{\kappa}(\lambda)$ such that $T_{\kappa, \lambda}^{\leq \theta}-U_{h}^{\theta} \in N S_{\kappa, \lambda}$. It can be checked that $T_{\kappa, \lambda}^{\leq \theta} \in N S_{\kappa, \lambda}^{+}$, so $h \in \mathscr{H}_{\kappa, \lambda}^{\theta}$. Set $Z=U_{h}^{\theta} \cap T_{\kappa, \lambda}^{\theta}$. Then $Z \in\left(N S_{\kappa, \lambda}^{[\lambda]<\theta}\right)^{+}$ by Lemmas 6.7 and 6.10, and $Z \in \mathfrak{K}_{\kappa, \lambda}$ because of (c). Moreover,

$$
N S_{\kappa, \lambda}^{[\lambda]<\theta}\left|Z=N S_{\kappa, \lambda}^{[\lambda]^{<\theta}}\right| T_{\kappa, \lambda}^{\theta}
$$

by Lemma 6.10.
Thus for example if CH holds and $\boldsymbol{\operatorname { c o v }}\left(\mathbf{M}_{\omega_{2}, \omega_{3}}\right)>\omega_{3}$, then

$$
\left(N S_{\omega_{3}, \omega_{3}} \mid T_{\omega_{2}, \omega_{3}}^{\omega}\right)^{+} \rightarrow\left(I_{\omega_{2}, \omega_{3}}^{+}, \omega \oplus 1\right)^{2}
$$

Left unanswered is whether it is possible that $N S_{\omega_{1}, \omega_{2}}^{+} \rightarrow\left(I_{\omega_{1}, \omega_{2}}^{+}, \omega \oplus 1\right)^{2}$. Note that by the results above if $N S_{\omega_{1}, \omega_{2}}^{+} \cap \mathfrak{K}_{\omega_{1}, \omega_{2}} \neq \phi$ and $\operatorname{cov}\left(\mathbf{M}_{\omega_{1}, \omega_{2}}\right)>\omega_{2}$, then

$$
\left(N S_{\omega_{1}, \omega_{2}} \mid Z\right)^{+} \rightarrow\left(I_{\omega_{1}, \omega_{2}}^{+}, \omega \oplus 1\right)^{2}
$$

for some $Z \in N S_{\omega_{1}, \omega_{2}}^{+}$. We do not know whether it is consistent that $N S_{\omega_{1}, \omega_{2}}^{+} \cap \mathfrak{K}_{\omega_{1}, \omega_{2}} \neq$ ϕ.
7. $\quad I_{\kappa, \lambda}^{+} \rightarrow\left(I_{\kappa, \lambda}^{+}\right)^{3}$.

Definition. Given $X, Y \subseteq P\left(P_{\kappa}(\lambda)\right)$ and $n<\omega, X \rightarrow(Y)^{n}$ means that for all $A \in X$ and $F:\left[P_{\kappa}(\lambda)\right]^{n} \rightarrow 2$, there is $B \in Y \cap P(A)$ such that F is constant on $[B]^{n}$.

The main purpose of this section is to discuss the partition relation $I_{\kappa, \lambda}^{+} \rightarrow\left(I_{\kappa, \lambda}^{+}\right)^{n}$. To start, let us show that $I_{\kappa, \lambda}^{+} \rightarrow\left(I_{\kappa, \lambda}^{+}\right)^{3}$ implies that $I_{\kappa, \lambda}^{+} \rightarrow\left(I_{\kappa, \lambda}^{+}\right)^{n}$ for all $n \geq 1$.

Lemma $7.1([\mathbf{1 8}])$. Suppose H is $(\nu, 2)$-distributive, where H is an ideal on $P_{\kappa}(\lambda)$ and ν an infinite cardinal $<\kappa$. Then $2^{\nu}<\kappa$.

The following is essentially due to Johnson (see Theorem 6.2 in [14]).
Lemma 7.2. Given an ideal H on $P_{\kappa}(\lambda)$, the following are equivalent:
(i) H is $\left(\lambda^{<\kappa}, 2\right)$-distributive and weakly selective.
(ii) $H^{+} \rightarrow\left(H^{+}\right)^{n}$ for all n with $0<n<\omega$.
(iii) $H^{+} \rightarrow\left(H^{+}\right)^{3}$.

Proof. (i) \rightarrow (ii): Assume (i) holds. To prove (ii), we proceed by induction on n. It is immediate that $H^{+} \rightarrow\left(H^{+}\right)^{1}$. Now suppose $H^{+} \rightarrow\left(H^{+}\right)^{n}$ for some n with $0<n<\omega$. Fix $A \in H^{+}$and $F:[A]^{n+1} \rightarrow 2$. Since H is $\left(\lambda^{<\kappa}, 2\right)$-distributive, there are $B \in H^{+} \cap P(A)$ and $f:[A]^{n} \rightarrow 2$ such that

$$
\left\{b \in B: a_{n} \subsetneq b \text { and } F\left(a_{1}, \ldots, a_{n}, b\right) \neq f\left(a_{1}, \ldots, a_{n}\right)\right\} \in H
$$

for every $\left(a_{1}, \ldots, a_{n}\right) \in[A]^{n}$. Because κ is inaccessible by Lemma 7.1 and H is weakly selective, there is $C \in H^{+} \cap P(B)$ such that $F\left(a_{1}, \ldots, a_{n}, b\right)=f\left(a_{1}, \ldots, a_{n}\right)$ whenever $\left(a_{1}, \ldots, a_{n}, b\right) \in[C]^{n+1}$. Finally, by inductive hypothesis there is $D \in H^{+} \cap P(C)$ such that f is constant on $[D]^{n}$. Clearly, F is constant on $[D]^{n+1}$.
(ii) \rightarrow (iii) is trivial.
(iii) \rightarrow (i): Assume (iii) holds. To show that H is weakly selective, let $A \in H^{+}$and $B_{a} \in H$ for $a \in A$. Define $F:[A]^{2} \rightarrow 2$ by $F(a, b)=0$ if and only if $b \in B_{a}$. Then F is constant on $[C]^{2}$ for some $C \in H^{+} \cap P(A)$. It is simple to check that $b \notin B_{a}$ for all $(a, b) \in[C]^{2}$. Next, let us establish that H is $\left(\lambda^{<\kappa}, 2\right)$-distributive. Thus let $A \in H^{+}$ and $B_{a} \subseteq P_{\kappa}(\lambda)$ for $a \in P_{\kappa}(\lambda)$. Define $F:[A]^{3} \rightarrow 2$ by:

$$
F(a, b, c)=0 \text { iff } \forall e \subseteq a\left(b \in B_{e} \leftrightarrow c \in B_{e}\right) .
$$

Pick $C \in H^{+} \cap P(A)$ so that F is constant on $[C]^{3}$. Since κ is clearly weakly compact and hence inaccessible, F must be identically 0 on $[C]^{3}$. Now define $h \in \prod_{e \in P_{\kappa}(\lambda)}\left\{B_{e}, P_{\kappa}(\lambda)-\right.$ $\left.B_{e}\right\}$ as follows. Given $e \in P_{\kappa}(\lambda)$, pick $(a, b) \in[C]^{2}$ with $e \subseteq a$, and let $h(e)=B_{e}$ if and only if $b \in B_{e}$. If $d \in C$ and $a \subsetneq d$, then $d \subsetneq c$ for some $c \in C$ with $b \subsetneq c$, so that

$$
d \in B_{e} \leftrightarrow c \in B_{e} \leftrightarrow b \in B_{e}
$$

and consequently $d \in B_{e}$. Thus $C-B_{e} \in I_{\kappa, \lambda}$.
Definition. For a cardinal $\mu \geq \kappa, \kappa$ is mildly μ-ineffable if given $t_{a} \in{ }^{a} 2$ for $a \in P_{\kappa}(\mu)$, there is $g \in{ }^{\mu} 2$ such that for every $a \in P_{\kappa}(\mu)$,

$$
\left\{b \in P_{\kappa}(\mu): a \subseteq b \text { and } t_{b} \upharpoonright a=g \upharpoonright a\right\} \in I_{\kappa, \mu}^{+} .
$$

It is simple to see that if κ is μ-compact, then κ is mildly μ-ineffable. An immediate consequence is the result of Rado [29] that ω is mildly μ-ineffable for every infinite cardinal μ.

The following refines a result of Di Prisco and Zwicker [9].
Lemma 7.3. Suppose κ is mildly $\lambda^{<\kappa}$-ineffable, H is an ideal on $P_{\kappa}(\lambda)$ and $B_{\delta} \subseteq$ $P_{\kappa}(\lambda)$ for $\delta \in \lambda^{<\kappa}$. Then there is $h \in \prod_{\delta \in \lambda<\kappa}\left\{B_{\delta}, P_{\kappa}(\lambda)-B_{\delta}\right\}$ such that $\bigcap_{\delta \in c} h(\delta) \in H^{+}$ for every $c \in P_{\kappa}\left(\lambda^{<\kappa}\right)-\{\phi\}$.

Proof. For $\delta \in \lambda^{<\kappa}$, set $B_{\delta}^{0}=B_{\delta}$ and $B_{\delta}^{1}=P_{\kappa}(\lambda)-B_{\delta}$. Now for each $d \in$ $P_{\kappa}\left(\lambda^{<\kappa}\right)-\{\phi\}$ pick $t_{d} \in{ }^{d} 2$ so that $\bigcap_{\delta \in d} B_{\delta}^{t_{d}(\delta)} \in H^{+}$. Select $g: \lambda^{<\kappa} \rightarrow 2$ so that for every $c \in P_{\kappa}\left(\lambda^{<\kappa}\right)-\{\phi\}$, there is $d \in P_{\kappa}\left(\lambda^{<\kappa}\right)$ with $c \subseteq d$ and $t_{d} \upharpoonright c=g \upharpoonright c$. Then obviously $\bigcap_{\delta \in c} B_{\delta}^{g(\delta)} \in H^{+}$for any $c \in P_{\kappa}\left(\lambda^{<\kappa}\right)-\{\phi\}$.

Proposition 7.4. Suppose κ is mildly $\lambda^{<\kappa}$-ineffable and H is an ideal on $P_{\kappa}(\lambda)$ such that $\operatorname{cof}(H)<\operatorname{cov}\left(\mathbf{M}_{\kappa, \lambda<\kappa}\right)$. Then $H^{+} \rightarrow\left(H^{+}\right)^{n}$ for all n with $0<n<\omega$.

Proof. By Lemma 7.2 it suffices to establish that H is weakly selective and $\left(\lambda^{<\kappa}, 2\right)$-distributive. Weak selectivity is direct from Proposition 4.3. To show $\left(\lambda^{<\kappa}, 2\right)$ distributivity, let $A \in H^{+}$and $B_{\delta} \subseteq A$ for $\delta \in \lambda^{<\kappa}$. By Lemma 7.3 one can find $h \in \prod_{\delta \in \lambda<\kappa}\left\{B_{\delta}, A-B_{\delta}\right\}$ so that $\bigcap_{\delta \in c} h(\delta) \in H^{+}$for every $c \in P_{\kappa}\left(\lambda^{<\kappa}\right)-\{\phi\}$. By Proposition $4.3 \mathfrak{p}_{H}>\lambda^{<\kappa}$, so there must be $C \in H^{+}$such that $C-h(\delta) \in H$ for all $\delta<\lambda^{<\kappa}$.

Corollary 7.5. Suppose κ is mildly $\lambda^{<\kappa}$-ineffable and $\operatorname{cov}\left(\mathbf{M}_{\kappa, \lambda<\kappa}\right)>\lambda^{<\kappa}$. Then $I_{\kappa, \lambda}^{+} \rightarrow\left(I_{\kappa, \lambda}^{+}\right)^{n}$ for all n with $0<n<\omega$.

The following generalization is immediate from Proposition 2.21:
Corollary 7.6. Suppose that κ is mildly $\lambda^{<\kappa}$-ineffable, $\boldsymbol{\operatorname { c o v }}\left(\mathbf{M}_{\kappa, \lambda<\kappa}\right)>\lambda^{<\kappa}$ and $(Q,<)$ is a κ-directed partially ordered set such that $\lambda \leq|Q| \leq \lambda^{<\kappa}$ and $\mid\{r \in Q: r<$ $q\} \mid<\kappa$ for all $q \in Q$. Then given $f: Q^{n} \rightarrow 2$, where $0<n<\omega$, there is a cofinal subset T of Q such that f is constant on

$$
\left\{\left(q_{1}, \ldots, q_{n}\right) \in T^{n}: q_{1}<\cdots<q_{n}\right\} .
$$

Note that Corollary 5.6 and Corollary 5.9 can be extended in the same way.

8. Isomorphisms.

We will now prove that if $\lambda^{<\kappa}<\boldsymbol{\operatorname { c o v }}\left(\mathbf{M}_{\kappa, \lambda<\kappa}\right)$ and $\mathfrak{K}_{\kappa, \lambda} \neq \phi$, then any two cofinal subsets of $P_{\kappa}(\lambda)$ have isomorphic cofinal subsets.

Lemma 8.1. Suppose that $(Q,<)$ is a κ-directed partially ordered set with no maximal element and H is an ideal on $P_{\kappa}(\lambda)$ with $\operatorname{cof}(H)<\boldsymbol{\operatorname { c o v }}\left(\mathbf{M}_{\kappa, \lambda<\kappa}\right)$. Suppose further that $A \in H^{+}$and $h: A \rightarrow Q$ are such that $h^{\prime \prime}(A \cap R)$ is cofinal in Q for every $R \in H^{*}$. Then:
(i) If $|\{a \in A: h(a)<h(b)\}|<\kappa$ for every $b \in A$, then there is $C \in H^{+} \cap P(A)$ such that for all $a, b \in C$,

$$
h(a)<h(b) \rightarrow a \subsetneq b .
$$

(ii) If $H^{*} \cap \mathfrak{K}_{\kappa, \lambda} \neq \phi$, then there is $D \in H^{+} \cap P(A)$ such that for all $a, b \in D$,

$$
a \subsetneq b \rightarrow h(a)<h(b) .
$$

Proof.

(i) Assume that $|\{a \in A: h(a)<h(b)\}|<\kappa$ for all $b \in A$. Pick $X \subseteq H$ so that $|X|=\operatorname{cof}(H)$ and $H=\bigcup_{B \in X} P(B)$. For $B \in X$, let \mathscr{D}_{B} be the set of all $p \in F n(A, 2, \kappa)$ such that there is $b \in \operatorname{dom}(p)$ with the following properties:
(0) $b \notin B$.
(1) $\operatorname{dom}(p)=\{b\} \cup\{a \in A: h(a)<h(b)\}$.
(2) $p(b)=1$.
(3) $a \subsetneq b$ for every $a \in \operatorname{dom}(p)$ such that $a \neq b$ and $p(a)=1$.

Let us establish that \mathscr{D}_{B} is dense. Thus fix $s \in F n(A, 2, \kappa)$. Pick $q \in Q$ so that $h(a)<q$ for every $a \in \operatorname{dom}(s)$. There is

$$
b \in\left\{c \in A-B: \forall a \in s^{-1}(\{1\})(a \subsetneq c)\right\}
$$

such that $q \leq h(b)$. Define

$$
p:\{b\} \cup\{a \in A: h(a)<h(b)\} \rightarrow 2
$$

by:
$(\alpha) p(b)=1$.
$(\beta) p \upharpoonright \operatorname{dom}(s)=s$.
$(\gamma) p(c)=0$ for every $c \in \operatorname{dom}(p)$ such that $c \neq b$ and $c \notin \operatorname{dom}(s)$.
Clearly, $s \subseteq p$ and $p \in \mathscr{D}_{B}$.
Let $G \subseteq F n(A, 2, \kappa)$ be a filter such that $G \cap \mathscr{D}_{B} \neq \phi$ for every $B \in X$. Pick $\varphi \in \prod_{B \in X}\left(G \cap \mathscr{D}_{B}\right)$ and let $<b_{B}: B \in X>$ be such that

$$
\operatorname{dom}(\varphi(B))=\left\{b_{B}\right\} \cup\left\{a \in A: h(a)<h\left(b_{B}\right)\right\} .
$$

Stipulate that $C=\left\{b_{B}: B \in X\right\}$. Obviously, $C \in H^{+} \cap P(A)$. Now suppose $B_{0}, B_{1} \in X$ are such that $h\left(b_{B_{0}}\right)<h\left(b_{B_{1}}\right)$. Select $r \in G$ so that $\varphi\left(B_{0}\right) \cup \varphi\left(B_{1}\right) \subseteq r$. Then

$$
\left(\varphi\left(B_{1}\right)\left(b_{B_{0}}\right)\right)=r\left(b_{B_{0}}\right)=\left(\varphi\left(B_{0}\right)\right)\left(b_{B_{0}}\right)=1
$$

and hence $b_{B_{0}} \subsetneq b_{B_{1}}$. Thus C is as desired.
(ii) Assume $H^{*} \cap \mathfrak{K}_{\kappa, \lambda} \neq \phi$. Set $S_{a}=\{b \in A: h(b)>h(a)\}$ for $a \in A$. Then $\bigcap_{a \in x} S_{a} \in H^{+}$for every $x \in P_{\kappa}(A)-\{\phi\}$. Hence by Lemma 4.1 and Proposition 4.3 there is $D \in H^{+} \cap P(A)$ such that $b \in S_{a}$ whenever $(a, b) \in[D]^{2}$.

Proposition 8.2. Suppose that $(Q,<)$ is a κ-directed partially ordered set such that (a) $|\{r \in Q: r<q\}|<\kappa$ for all $q \in Q$, and (b) $\lambda^{<\kappa}$ is the least cardinality of any cofinal subset of $(Q,<)$. Suppose further that H is an ideal on $P_{\kappa}(\lambda)$ such that $H^{*} \cap \mathfrak{K}_{\kappa, \lambda} \neq \phi$ and $\operatorname{cof}(H)<\operatorname{cov}\left(\mathbf{M}_{\kappa, \lambda<\kappa}\right)$. Then for every $A \in H^{+}$, there exist $D \in H^{+} \cap P(A)$ and a cofinal subset T of Q such that (D, \subsetneq) and $(T,<)$ are isomorphic.

Proof. Fix $A \in H^{+}$. Pick $Z \in H^{*} \cap \mathfrak{K}_{\kappa, \lambda}$ and a cofinal subset R of Q of size $\lambda^{<\kappa}$. Set $A \cap Z=\left\{a_{\delta}: \delta<\lambda^{<\kappa}\right\}$ and $R=\left\{e_{d}: d \in Z\right\}$. Define a one-to-one $h: A \cap Z \rightarrow Q$ as follows: suppose $h\left(a_{\xi}\right)$ has already been defined for each $\xi<\delta$. There is $q \in Q$ such that $q \nless h\left(a_{\xi}\right)$ for all $\xi<\delta$. Select $r \in Q$ so that $q \leq r$ and $e_{d} \leq r$ for every $d \in Z \cap P\left(a_{\delta}\right)$. Now stipulate that $h\left(a_{\delta}\right)=r$.

Note that h " B is a cofinal subset of Q for every $B \in I_{\kappa, \lambda}^{+} \cap P(A \cap Z)$. It is readily
seen that Q has no maximal element. Hence by Lemma 8.1 there is $C \in H^{+} \cap P(A \cap Z)$ such that

$$
h(a)<h(b) \rightarrow a \subsetneq b
$$

for all $a, b \in C$, and $D \in H^{+} \cap P(C)$ such that

$$
a \subsetneq b \rightarrow h(a)<h(b)
$$

for all $a, b \in D$. Obviously, (D, \subsetneq) and (h " $D,<$) are isomorphic.
Corollary 8.3. Suppose that ν is a cardinal with $\lambda \leq \nu \leq \lambda^{<\kappa}$ and H is an ideal on $P_{\kappa}(\lambda)$ such that $H^{*} \cap \mathfrak{K}_{\kappa, \lambda} \neq \phi$ and $\operatorname{cof}(H)<\operatorname{cov}\left(\mathbf{M}_{\kappa, \lambda<\kappa}\right)$. Then for all $A \in H^{+}$ and $B \in I_{\kappa, \nu}^{+}$, there are $D \in H^{+} \cap P(A)$ and $T \in I_{\kappa, \nu}^{+} \cap P(B)$ such that (D, \subsetneq) and (T, \subsetneq) are isomorphic.

Proof. Fix $A \in H^{+}$and $B \in I_{\kappa, \nu}^{+}$. By Proposition 2.3 and Corollary 2.8, there is $C \in \mathfrak{K}_{\kappa, \nu} \cap P(B)$. Using Corollary 3.6, $u(\kappa, \nu)=\nu^{<\kappa}=\lambda^{<\kappa}$, so by Proposition 8.2, there exist $D \in H^{+} \cap P(A)$ and a cofinal subset T of (C, \subsetneq) such that (D, \subsetneq) and (T, \subsetneq) are isomorphic. Obviously, $T \in I_{\kappa, \nu}^{+} \cap P(B)$.

It easily follows that if $\mathfrak{K}_{\kappa, \lambda} \neq \phi, \operatorname{cov}\left(\mathbf{M}_{\kappa, \lambda<\kappa}\right)>\lambda^{<\kappa}, A \in I_{\kappa, \lambda}^{+}$and $B \in I_{\kappa, \nu}^{+}$, where $\lambda \leq \nu \leq \lambda^{<\kappa}$, then A and B have isomorphic cofinal subsets. Note that if $P_{\kappa}(\lambda)$ and $P_{\kappa}\left(\lambda^{<\kappa}\right)$ have isomorphic subsets, then we must have $u(\kappa, \lambda)=\lambda^{<\kappa}$ and $\mathfrak{K}_{\kappa, \lambda} \neq \phi$.

Next we deal with the problem whether $S_{\kappa}(\lambda)$ holds. (Recall that $S_{\kappa}(\lambda)$ asserts that for any $g: P_{\kappa}(\lambda) \rightarrow P_{\kappa}(\lambda)$, there is a cofinal subset D of $P_{\kappa}(\lambda)$ such that the image under f of every noncofinal subset of D is noncofinal.)

Proposition 8.4. Suppose $(Q,<)$ and H are as in the statement of Proposition 8.2, $A \in H^{+}$and $f: A \rightarrow Q$. Then there is $D \in H^{+} \cap P(A)$ such that for every $B \in I_{\kappa, \lambda} \cap P(D), f^{\prime \prime} B$ is not cofinal in $(Q,<)$.

Proof. Fix $Z \in H^{*} \cap \mathfrak{K}_{\kappa, \lambda}$. A slight modification of the proof of Proposition 8.2 yields the existence of (a) a one-to-one $h: A \cap Z \rightarrow Q$ such that $f(a) \leq h(a)$ for all $a \in A \cap Z$, and (b) $D \in H^{+} \cap P(A \cap Z)$ such that

$$
h(a)<h(b) \rightarrow a \subsetneq b
$$

for all $a, b \in D$. Given $B \in I_{\kappa, \lambda} \cap P(D)$, there is $a \in D$ such that

$$
B \cap\left\{b \in P_{\kappa}(\lambda): a \subseteq b\right\}=\phi
$$

Then

$$
h^{"} B \cap\{q \in Q: h(a) \leq q\}=\phi
$$

and hence

$$
f " B \cap\{q \in Q: h(a) \leq q\}=\phi
$$

Corollary 8.5. Suppose $\lambda^{<\kappa}<\operatorname{cov}\left(\mathbf{M}_{\kappa, \lambda<\kappa}\right), \mathfrak{K}_{\kappa, \lambda} \neq \phi$ and $g: P_{\kappa}(\lambda) \rightarrow P_{\kappa}(\lambda)$. Then given $E \in I_{\kappa, \lambda}^{+}$, there is $D \in I_{\kappa, \lambda}^{+} \cap P(E)$ such that g " $B \in I_{\kappa, \lambda}$ for any $B \in$ $I_{\kappa, \lambda} \cap P(D)$.

Proof. Using Proposition 2.3, pick $A \in \mathfrak{K}_{\kappa, \lambda} \cap P(E)$. Define $f: A \rightarrow A$ so that $g(a) \subseteq f(a)$ for all $a \in A$. By Proposition 8.4, there is $D \in\left(I_{\kappa, \lambda} \mid A\right)^{+} \cap P(A)$ such that for every $B \in I_{\kappa, \lambda} \cap P(D), f$ " B is not cofinal in (A, \subsetneq). It is simple to see that D is as desired.

To conclude the section, let us show that the two statements " $S_{\kappa}(\lambda)$ holds" and " $\mathfrak{p}_{\kappa, \lambda}>u(\kappa, \lambda)$ " are closely related.

Proposition 8.6. Suppose that $\mathfrak{K}_{\kappa, \lambda} \neq \phi$ and $S_{\kappa}(\lambda)$ holds. Then $\mathfrak{p}_{\kappa, \lambda}>u(\kappa, \lambda)$.
Proof. Select $A \in I_{\kappa, \lambda}^{+}$so that $|A \cap P(e)|<\kappa$ for all $e \in P_{\kappa}(\lambda)$. Let $S_{a} \subseteq P_{\kappa}(\lambda)$ for $a \in A$ be such that $\bigcap_{a \in x} S_{a} \in I_{\kappa, \lambda}^{+}$for every $x \in P_{\kappa}(A)-\{\phi\}$. Define $g: P_{\kappa}(\lambda) \rightarrow P_{\kappa}(\lambda)$ so that for every $d \in P_{\kappa}(\lambda)$, (a) $d \subseteq g(d)$, and (b) $g(d) \in S_{a}$ for every $a \in A \cap P(d)$. Pick $D \in I_{\kappa, \lambda}^{+}$so that g " $B \in I_{\kappa, \lambda}$ for all $B \in I_{\kappa, \lambda} \cap P(D)$. Now set $C=g$ " D. Clearly, $C \in I_{\kappa, \lambda}^{+}$. Moreover for every $a \in A, C-S_{a} \in I_{\kappa, \lambda}$ since $C-S_{a} \subseteq g^{\text {" }} B_{a}$, where $B_{a}=\{d \in D: a \nsubseteq d\}$.

Conservely, $\mathfrak{p}_{\kappa, \lambda}>u(\kappa, \lambda)$ implies that $S_{\kappa}(\lambda)$ holds.
Proposition 8.7. Let $E \in I_{\kappa, \lambda}^{+}$be such that $\mathfrak{p}_{I_{\kappa, \lambda} \mid E}>u(\kappa, \lambda)$. Then for every $g: P_{\kappa}(\lambda) \rightarrow P_{\kappa}(\lambda)$, there is $D \in I_{\kappa, \lambda}^{+} \cap P(E)$ such that g " $B \in I_{\kappa, \lambda}$ for any $B \in I_{\kappa, \lambda} \cap P(D)$.

Proof. Select $A \in I_{\kappa, \lambda}^{+} \cap P(E)$ so that $|A|=u(\kappa, \lambda)$. Set $A=\left\{a_{\alpha}: \alpha<u(\kappa, \lambda)\right\}$. Fix $g: P_{\kappa}(\lambda) \rightarrow P_{\kappa}(\lambda)$. Define $f: A \rightarrow A$ so that for every $\alpha<u(\kappa, \lambda)$, (i) $a_{\alpha} \cup g\left(a_{\alpha}\right) \subseteq$ $f\left(a_{\alpha}\right)$, and (ii) $f\left(a_{\alpha}\right) \subseteq f\left(a_{\beta}\right)$ for all $\beta<\alpha$. For $a \in A$, set $Z_{a}=\{f(b): b \in A$ and $a \subseteq b\}$. It is readily checked that $\bigcap_{a \in x} Z_{a} \in I_{\kappa, \lambda}^{+}$for every $x \in P_{\kappa}(A)-\{\phi\}$. It follows that there is $C \in I_{\kappa, \lambda}^{+} \cap P(A)$ such that $C-Z_{a} \in I_{\kappa, \lambda}$ for every $a \in A$. Now set $D=f^{-1}(C)$. Then $D \in I_{\kappa, \lambda}^{+}$since $f^{-1}\left(C \cap Z_{a}\right) \subseteq\{b \in D: a \subseteq b\}$ for all $a \in A$. Given $B \in I_{\kappa, \lambda} \cap P(D)$, select $a \in A$ so that $\{b \in B: a \subseteq b\}=\phi$, and $w \in P_{\kappa}(\lambda)$ so that $\left\{c \in C-Z_{a}: w \subseteq c\right\}=\phi$. Then $\{z \in g " B: w \subseteq z\}=\phi$ since for every $b \in B$, $g(b) \subseteq f(b) \in C-Z_{a}$. Thus, g " $B \in I_{\kappa, \lambda}$.

9. Negative results.

This section presents some negative results concerning combinatorial properties of $P_{\kappa}(\lambda)$ considered above. Several of these results rely on the fact that restrictions of $I_{\kappa, \lambda}$ may have some degree of normality. It is straightforward to check the following:

Lemma 9.1. Suppose $C \in I_{\kappa, \lambda}^{+}$and θ, ν are two cardinals such that $\omega \leq \theta \leq \kappa \leq$ $\nu \leq \lambda$. Then the following are equivalent:
(i) $I_{\kappa, \lambda} \mid C$ is $[\nu]^{<\theta}$-normal.
(ii) $I_{\kappa, \lambda}\left|C=N S_{\kappa, \lambda}^{[\nu]<\theta}\right| C$.

Let us first describe a situation when $\left\{A: \mathfrak{p}_{I_{\kappa, \lambda} \mid A}>\kappa\right\}$ is not dense in $\left(I_{\kappa, \lambda}^{+}, \subseteq\right)$.
Proposition 9.2. Suppose $C \in I_{\kappa, \lambda}^{+}$is such that $I_{\kappa, \lambda} \mid C$ is κ-normal. Then $\mathfrak{p}_{I_{\kappa, \lambda} \mid A}=\kappa$ for every $A \in I_{\kappa, \lambda}^{+} \cap P(C)$.

Proof. Let $B \in\left(N S_{\kappa, \lambda}^{\kappa}\right)^{+}$and set $H=N S_{\kappa, \lambda}^{\kappa} \mid B$. Then $\mathfrak{p}_{H}=\kappa$ by Corollary 3.3 and Proposition 3.4 of [27].

The next results are about the unbalanced partition relation $I_{\kappa, \lambda}^{+} \rightarrow\left(I_{\kappa, \lambda}^{+}, \theta\right)^{2}$. The following technical observation is crucial:

Lemma 9.3. Suppose H is a ν-normal ideal on $P_{\kappa}(\lambda)$ such that $H^{+} \rightarrow\left(H^{+}, \theta^{+}\right)^{2}$, where θ, ν are two infinite cardinals with $\theta<\kappa \leq \nu \leq \lambda$. Then H is $[\nu]^{<\theta^{+}}$-normal.

Proof. By Proposition 5.9 of [18] and Lemma 6.4.
Proposition 9.4. Suppose H is a κ-normal ideal on $P_{\kappa}(\lambda)$ such that $H^{+} \rightarrow$ $\left(H^{+}, \theta^{+}\right)^{2}$, where θ is an infinite cardinal $<\kappa$. Then

$$
\left\{a \in P_{\kappa}(\lambda): c f(\cup(a \cap \kappa)) \leq \theta\right\} \in H .
$$

Proof. By Lemmas 6.3 and 9.3.
Corollary 9.5. Suppose $I_{\kappa, \lambda} \mid C$ is κ-normal for some $C \in\left(N S_{\kappa, \lambda}^{\left[\lambda<^{<\theta}\right.}\right)^{*}$, where θ is a regular infinite cardinal $<\kappa$. Then $I_{\kappa, \lambda}^{+} \nrightarrow\left(I_{\kappa, \lambda}^{+}, \theta^{+}\right)^{2}$.

Proof. Setting $A=\left\{a \in P_{\kappa}(\lambda): c f(\cup(a \cap \kappa))=\theta\right\}$, it is simple to check that $A \in\left(N S_{\kappa, \lambda}^{[\lambda]<\theta}\right)^{+}$. It follows that $A \cap C \in I_{\kappa, \lambda}^{+}$. Now by Proposition 9.4,

$$
\left(I_{\kappa, \lambda} \mid(A \cap C)\right)^{+} \nrightarrow\left(I_{\kappa, \lambda}^{+}, \theta^{+}\right)^{2} .
$$

In particular, if $I_{\kappa, \lambda} \mid C$ is κ-normal for some $C \in N S_{\kappa, \lambda}^{*}$, then $I_{\kappa, \lambda}^{+} \nrightarrow\left(I_{\kappa, \lambda}^{+}, \omega_{1}\right)^{2}$. A convenient reformulation of the hypothesis of Corollary 9.5 is supplied by the following:

Lemma $9.6([\mathbf{2 4}])$. Suppose θ is a regular infinite cardinal $\leq \kappa$ and ν is a cardinal with $\kappa \leq \nu \leq \lambda$. Then the following are equivalent:
(i) $I_{\kappa, \lambda} \mid C$ is ν-normal for some $C \in\left(N S_{\kappa, \lambda}^{[\lambda]<^{\theta}}\right)^{*}$.
(ii) $\overline{\operatorname{cof}}\left(N S_{\kappa, \lambda}^{\nu} \mid A\right) \leq \lambda$ for some $A \in\left(N S_{\kappa, \lambda}^{[\lambda]^{<\theta}}\right)^{*}$.

In particular, $\overline{\operatorname{cof}}\left(N S_{\kappa, \lambda}^{\kappa}\right) \leq \lambda$ implies that $I_{\kappa, \lambda} \mid C$ is κ-normal for some $C \in N S_{\kappa, \lambda}^{*}$.
Definition. $\operatorname{cov}\left(\lambda, \kappa^{+}, \kappa^{+}, \kappa\right)$ is the least size of any $X \subseteq P_{\kappa^{+}}(\lambda)$ such that $P_{\kappa}{ }^{+}(\lambda)=\bigcup_{x \in P_{\kappa}(X)} P(\cup x)$.

Lemma $9.7([\mathbf{2 6}]) . \overline{\operatorname{cof}}\left(N S_{\kappa, \lambda}^{\kappa}\right)=\max \left\{\overline{\operatorname{cof}}\left(N S_{\kappa}\right), \operatorname{cov}\left(\lambda, \kappa^{+}, \kappa^{+}, \kappa\right)\right\}$.

By a result of [24], it follows that if $\overline{\operatorname{cof}}\left(N S_{\kappa}\right) \leq \lambda<\kappa^{+\kappa}$, then $\overline{\operatorname{cof}}\left(N S_{\kappa, \lambda}^{\kappa}\right)=\lambda$.
If $c f(\lambda)=\kappa$, then for every $C \in N S_{\kappa, \lambda}^{*}, I_{\kappa, \lambda} \mid C$ is not κ-normal:
Proposition $9.8([\mathbf{2 4}])$. Suppose that $c f(\lambda)=\kappa$ and θ is an infinite cardinal $<\kappa$ such that $\tau^{<\theta}<\lambda$ for every cardinal τ with $\kappa \leq \tau<\lambda$. Then for every $C \in\left(N S_{\kappa, \lambda}^{[\lambda]^{<\theta}}\right)^{*}$, $I_{\kappa, \lambda} \mid C$ is not κ-normal.

Proposition 9.9. Suppose $\mathfrak{d}_{\kappa} \leq \lambda$ and $u\left(\kappa^{+}, \mu\right) \leq \lambda$ for every cardinal μ with $\kappa<\mu<\lambda$. Then $I_{\kappa, \lambda}^{+} \nrightarrow\left(I_{\kappa, \lambda}^{+}\right)^{2}$.

Proof. For the case $\kappa=\omega=c f(\lambda)$ (respectively, $\kappa=\omega<c f(\lambda), \omega<\kappa=$ $c f(\lambda)$), see [19] (respectively, [22], [21]). Assuming now $\omega<\kappa$ and $c f(\lambda) \neq \kappa$, we have $\operatorname{cov}\left(\lambda, \kappa^{+}, \kappa^{+}, \kappa\right)=\lambda$ since by results of [31], (1) if λ is a successor cardinal, say $\lambda=\tau^{+}$, then $\operatorname{cov}\left(\lambda, \kappa^{+}, \kappa^{+}, \kappa\right)=\lambda \cdot \operatorname{cov}\left(\tau, \kappa^{+}, \kappa^{+}, \kappa\right)$, and (2) if λ is a limit cardinal, then $\operatorname{cov}\left(\lambda, \kappa^{+}, \kappa^{+}, \kappa\right)=\bigcup_{\kappa<\mu<\lambda} \operatorname{cov}\left(\mu, \kappa^{+}, \kappa^{+}, \kappa\right)$. It follows from Landver's result [16] that $\operatorname{cof}\left(N S_{\kappa}\right)=\mathfrak{d}_{\kappa}$ and Lemma 9.7 that $\overline{\operatorname{cof}}\left(N S_{\kappa, \lambda}^{\kappa}\right)=\lambda$. Hence by Corollary 9.5 and Lemma 9.6, $I_{\kappa, \lambda}^{+} \nrightarrow\left(I_{\kappa, \lambda}^{+}, \omega_{1}\right)^{2}$.

The results above do not settle the problem whether $I_{\kappa, \lambda}^{+} \rightarrow\left(I_{\kappa, \lambda}^{+}, \omega\right)^{2}$. The partition relation $H^{+} \rightarrow\left(H^{+}, \omega\right)^{2}$ has the following interesting consequence:

Proposition 9.10. Suppose H is an ideal on $P_{\kappa}(\lambda)$ such that $H^{+} \rightarrow\left(H^{+}, \omega\right)^{2}$ and $A \in H^{+}$. Then there exists $B \in H^{+} \cap P(A)$ with the property that there is no infinite strictly decreasing sequence

$$
a_{0} \supsetneq a_{1} \supsetneq a_{2} \supsetneq \ldots
$$

of elements of B.
Proof. Let $j: A \rightarrow|A|$ be a bijection. Since $H^{+} \rightarrow\left(H^{+}, \omega\right)^{2}$, there is $B \in$ $H^{+} \cap P(A)$ such that $j(a)<j(b)$ for every $(a, b) \in[B]^{2}$. Clearly B is as desired.

Johnson established the existence of a $C \in I_{\kappa, \lambda}^{+}$such that $\left(I_{\kappa, \lambda} \mid C\right)^{+} \rightarrow\left(I_{\kappa, \lambda}^{+}, \omega\right)^{2}$ subject to some cardinality assumptions:

Proposition 9.11. Suppose λ is regular and $\operatorname{cof}\left(N S_{\kappa, \lambda}^{\mu}\right) \leq \lambda$ for every cardinal μ with $\kappa \leq \mu<\lambda$. Then setting $H=\bigcup_{\kappa \leq \delta<\lambda} N S_{\kappa, \lambda}^{\delta}$, (a) H is weakly selective, (b) $H^{+} \rightarrow\left(H^{+}, \omega+1\right)^{2}$ and (c) For every $A \in H^{+}$, there is $C \in H^{+} \cap P(A)$ such that $H\left|C=I_{\kappa, \lambda}\right| C$.

Proof. By Theorems 1.7, 1.9 and 1.12 of [13] and 1.6 of [14].
Baumgartner, Carr and Di Prisco have independently shown that $\left\{P_{\kappa}(\lambda)\right\} \rightarrow\left(I_{\kappa, \lambda}^{+}\right)^{3}$ implies that κ is mildly λ-ineffable (see [6], page 183). This result can be slightly improved:

Proposition 9.12. Suppose $\left\{P_{\kappa}(\lambda)\right\} \rightarrow\left(I_{\kappa, \lambda}^{+}\right)^{3}$. Then κ is mildly $\lambda^{<\kappa}$-ineffable.

Proof. Note that κ must be weakly compact and hence inaccessible. Now let $t_{x} \in{ }^{x} 2$ for $x \in P_{\kappa}\left(P_{\kappa}(\lambda)\right)$. Define $F:\left[P_{\kappa}(\lambda)\right]^{3} \rightarrow 2$ by stipulating that $F(a, b, c)=0$ if and only if $t_{P(b)} \upharpoonright P(a)=t_{P(c)} \upharpoonright P(a)$. Pick $A \in I_{\kappa, \lambda}^{+}$so that F is constant on $[A]^{3}$. Then clearly F is identically 0 on $[A]^{3}$. If $(a, b),\left(a^{\prime}, b^{\prime}\right) \in[A]^{2}$, then

$$
t_{P(b)} \upharpoonright\left(P(a) \cap P\left(a^{\prime}\right)\right)=t_{P(c)} \upharpoonright\left(P(a) \cap P\left(a^{\prime}\right)\right)=t_{P\left(b^{\prime}\right)} \upharpoonright\left(P(a) \cap P\left(a^{\prime}\right)\right)
$$

where c is any member of A such that $b \subsetneq c$ and $b^{\prime} \subsetneq c$. So we can define $g: P_{\kappa}(\lambda) \rightarrow 2$ by $g=\bigcup_{(a, b) \in[A]^{2}}\left(t_{P(b)} \upharpoonright P(a)\right)$. Now fix $x \in P_{\kappa}\left(P_{\kappa}(\lambda)\right)$. Given $y \in P_{\kappa}\left(P_{\kappa}(\lambda)\right)$, select $(a, b) \in[A]^{2}$ so that $x \cup y \subseteq P(a)$. Then $y \subseteq P(b)$ and

$$
g \upharpoonright x=\left(t_{P(b)} \upharpoonright P(a)\right) \upharpoonright x=t_{P(b)} \upharpoonright x
$$

As was pointed out by the referee, Proposition 9.12 can also be obtained by using Abe's result (see [1], Corollary $4.5(1))$ that $\left\{P_{\kappa}(\lambda)\right\} \rightarrow\left(I_{\kappa, \lambda}^{+}\right)^{3}$ implies $\left\{P_{\kappa}\left(\lambda^{<\kappa}\right)\right\} \rightarrow$ $\left(I_{\kappa, \lambda<\kappa}^{+}\right)^{3}$.

Our last observation concerns the failure of $S_{\kappa}(\lambda)$. The following is a straightforward generalization of a result of Galvin (see [38], Theorem 5.1, and also Theorem 5.2, Corollary 5.4 and Theorem 5.9.).

Proposition 9.13. Suppose $\mathfrak{K}_{\kappa, \lambda} \neq \phi$ and $\mathfrak{d}_{\kappa} \leq u(\kappa, \lambda)=u\left(\kappa^{+}, \lambda\right)$. Then $S_{\kappa}(\lambda)$ fails.

Proof. Fix $Z \in \mathfrak{K}_{\kappa, \lambda}$. Note that $|Z|=u(\kappa, \lambda)$ by Proposition 2.2. Let $Y \in I_{\kappa^{+}, \lambda}^{+}$ be such that $Y \subseteq\left\{y \in P_{\kappa^{+}}(\lambda):|y|=\kappa\right\}$ and $|Y|=u(\kappa, \lambda)$. For $y \in Y$, select a bijection $i_{y}: \kappa \rightarrow y$. Let $F \subseteq{ }^{\kappa} \kappa$ be such that $|F|=\mathfrak{d}_{\kappa}$ and for every $s \in{ }^{\kappa} \kappa$, there is $t \in F$ with the property that $s(\alpha) \leq t(\alpha)$ for all $\alpha<\kappa$. Pick a bijection $j: Y \times F \rightarrow Z$. For $z \in Z$, define $h_{z}: \kappa \rightarrow P_{\kappa}(\lambda)$ by $h_{z}(\alpha)=\left\{i_{y}(\xi): \xi<t(\alpha)\right\}$, where y and t are such that $j(y, t)=z$. It is simple to check that for every $f: \kappa \rightarrow P_{\kappa}(\lambda)$, there is $z \in Z$ such that $f(\delta) \subseteq h_{z}(\delta)$ for all $\delta \in \kappa$. Define $g: P_{\kappa}(\lambda) \rightarrow P_{\kappa}(\lambda)$ by

$$
g(a)=\bigcup_{z \in Z \cap P(a)} h_{z}((\cup(a \cap \kappa))+1) .
$$

Now fix $A \in I_{\kappa, \lambda}^{+}$. For $\delta \in \kappa$, set $B_{\delta}=\{a \in A: \delta \notin a\}$. Suppose that g " $B_{\delta} \in I_{\kappa, \lambda}$ for all $\delta \in \kappa$. Then there is $z \in Z$ such that

$$
g^{"} B_{\delta} \cap\left\{b \in P_{\kappa}(\lambda): h_{z}(\delta) \subseteq b\right\}=\phi
$$

for every $\delta \in \kappa$. Select $a \in A$ so that $z \subseteq a$, and stipulate that $\delta=(\cup(a \cap \kappa))+1$. Then clearly $g(a) \in g^{\text {" }} B_{\delta}$ and $h_{z}(\delta) \subseteq g(a)$. Contradiction.

References

[1] Y. Abe, Saturation of fundamental ideals on $\mathscr{P}_{\kappa} \lambda$, J. Math. Soc. Japan, 48 (1996), 511-524.
[2] Y. Abe, Combinatorics for small ideals on $P_{\kappa} \lambda$, Mathematical Logic Quarterly, 43 (1997), 541549.
[3] C. Alves, Partitions of Finite Substructures, Ph. D. Thesis, Pennsylvania State Univ., 1985.
[4] A. W. Apter and M. Gitik, The least measurable can be strongly compact and indestructible, J. Symbolic Logic, 63 (1998), 1404-1412.
[5] J. P. Burgess, Forcing, In: Handbook of Mathematical Logic, (ed. J. Barwise), North-Holland, Amsterdam, 1977, pp. 403-452.
[6] D. M. Carr, $P_{\kappa} \lambda$ partition relations, Fund. Math., 128 (1987), 181-195.
[7] D. M. Carr, J. P. Levinski and D. H. Pelletier, On the existence of strongly normal ideals over $P_{\kappa} \lambda$, Arch. Math. Logic, 30 (1990), 59-72.
[8] J. Cummings, M. Foreman and M. Magidor, Squares, scales and stationary reflection, J. Math. Log., 1 (2001), 35-98.
[9] C. A. Di Prisco and W. S. Zwicker, Flipping properties and supercompactness, Fund. Math., 109 (1980), 31-36.
[10] H. D. Donder and P. Matet, Two cardinal versions of diamond, Israel J. Math., 83 (1993), 1-43.
[11] P. Erdös, A. Hajnal, A. Máté and R. Rado, Combinatorial Set Theory: Partition Relations for Cardinals, Stud. Logic Found. Math., 106, North-Holland, Amsterdam, 1984.
[12] T. Jech and S. Shelah, A partition theorem for pairs of finite sets, J. Amer. Math. Soc., 4 (1991), 647-656.
[13] C. A. Johnson, Seminormal λ-generated ideals on $P_{\kappa} \lambda$, J. Symbolic Logic, 53 (1988), 92-102.
[14] C. A. Johnson, Some partition relations for ideals on $P_{\kappa} \lambda$, Acta Math. Hungar., 56 (1990), 269-282.
[15] K. Kunen, Set Theory, North-Holland, Amsterdam, 1980.
[16] A. Landver, Singular Baire numbers and related topics, Ph. D. Thesis, Univ. of WisconsinMadison, 1990.
[17] A. Landver, Baire numbers, uncountable Cohen sets and perfect-set forcing, J. Symbolic Logic, 57 (1992), 1086-1107.
[18] P. Matet, Partition relations for strongly normal ideals on $P_{\kappa}(\lambda)$, Mathematical Logic Quarterly, 46 (2000), 87-103.
[19] P. Matet, Negative partition relations for uncountable cardinals of cofinality ω, Studia Sci. Math. Hungar., 37 (2001), 233-236.
[20] P. Matet, Partition relations for κ-normal ideals on $P_{\kappa}(\lambda)$, Ann. Pure Appl. Logic, 121 (2003), 89-111.
[21] P. Matet, Weak square bracket relations for $P_{\kappa}(\lambda)$, preprint.
[22] P. Matet and C. Péan, Distributivity properties on $P_{\omega}(\lambda)$, Discrete Math., 291 (2005), 143-154.
[23] P. Matet, C. Péan and S. Shelah, Cofinality of normal ideals on $P_{\kappa}(\lambda)$ I, preprint.
[24] P. Matet, C. Péan and S. Shelah, Cofinality of normal ideals on $P_{\kappa}(\lambda)$ II, Israel J. Math., to appear.
[25] P. Matet, C. Péan and S. Todorcevic, Prime ideals on $P_{\omega}(\lambda)$ with the partition property, Arch. Math. Logic, 41 (2002), 743-764.
[26] P. Matet, A. Rosłanowski and S. Shelah, Cofinality of the nonstationary ideal, Trans. Amer. Math. Soc., to appear.
[27] P. Matet and S. Shelah, Positive partition relations for $P_{\kappa}(\lambda)$, preprint.
[28] A. W. Miller, The Baire category theorem and cardinals of countable cofinality, J. Symbolic Logic, 47 (1982), 275-288.
[29] R. Rado, Axiomatic treatment of rank in infinite sets, Canad. J. Math., 1 (1949), 337-343.
[30] F. Rothberger, Sur les familles indénombrables de suites de nombres naturels et les problèmes concernant la propriété C, Math. Proc. Cambridge Philos. Soc., 37 (1941), 109-126.
[31] S. Shelah, Cardinal Arithmetic, Oxford Logic Guides, 29, Oxford Univ. Press, Oxford, 1994.
[32] M. Shioya, Partition properties of subsets of $P_{\kappa} \lambda$, Fund. Math., 161 (1999), 325-329.
[33] R. M. Solovay, Real-valued measurable cardinals, In: Axiomatic Set Theory, (ed. D. S. Scott), Proc. Sympos. Pure Math., 13, part 1, Amer. Math. Soc., Providence, 1971, pp. 397-428.
[34] S. Todorcevic, Kurepa families and cofinal similarities, handwritten notes 1989.
[35] S. Todorcevic, Cofinal Kurepa families, handwritten notes, 1990.
[36] S. Todorcevic, Partitioning pairs of countable sets, Proc. Amer. Math. Soc., 111 (1991), 841-844.
[37] S. Todorcevic, Coherent sequences, In: Handbook of Set Theory, (eds. M. Foreman, A. Kanamori and M. Magidor), Kluwer, Dordrecht, to appear.
[38] W. Zwicker, A beginning for structural properties of ideals on $P_{\kappa} \lambda$, In: Set Theory and its Applications (eds. J. Steprāns and S. Watson), Lecture Notes in Math., 1401, Springer, Berlin, 1989, pp. 201-217.

Pierre Matet

Université de Caen -CNRS
Laboratoire de Mathématiques BP5186
14032 CAEN CEDEX
France
E-mail: matet@math.unicaen.fr

[^0]: 2000 Mathematics Subject Classification. 03E02, 03E55.
 Key Words and Phrases. $P_{\kappa}(\lambda)$, partition relation.

