
Japan J. Indust. Appl. Math., 26 (2009), 337–363 Area 〈2〉

On Verified Numerical Computations

in Convex Programming

Christian Jansson

Institute for Reliable Computing, Hamburg University of Technology
Schwarzenbergstraße 95, Hamburg 21071, Germany
E-mail: jansson@tu-harburg.de

Received March 31, 2008

Revised November 21, 2008

This survey contains recent developments for computing verified results of convex
constrained optimization problems, with emphasis on applications. Especially, we consider
the computation of verified error bounds for non-smooth convex conic optimization
in the framework of functional analysis, for linear programming, and for semidefinite
programming. A discussion of important problem transformations to special types of
convex problems and convex relaxations is included. The latter are important for handling
and for reliability issues in global robust and combinatorial optimization. Some remarks
on numerical experiences, including also large-scale and ill-posed problems, and software
for verified computations concludes this survey.

Key words: linear programming, semidefinite programming, conic programming, convex
programming, combinatorial optimization, rounding errors, ill-posed problems, interval
arithmetic, branch-bound-and-cut

1. Introduction

Mathematical models of real world problems are incomplete in many cases and
therefore are flexible to some extent. Frequently, this flexibility can be used to build
a tractable model. In contrast to traditional optimization which did not pay much
attention to complexity, and which focused on asymptotical convergence results by
assuming certain smoothness properties, it turned out that convexity plays a crucial
role from the point of view of applications and tractability.

During the last decade, major developments in convex optimization were
focusing on conic programming, a natural non-smooth extension of linear program-
ming. There, the problem is to minimize a linear function over a feasible set given
as the intersection of an affine subspace and a convex cone. Conic programming is
in fact a universal form of convex programming, since each convex set is the inter-
section of a hyperplane with an appropriate cone in a higher-dimensional space.
The advantage of the conic form is that nearly all convex problems with interesting
applications can be reformulated as conic problems solvable in polynomial time, al-
though they are non-smooth in many cases (see Nesterov and Nemirovski [47]).
Most of the applications are covered by linear programming and semidefinite
programming (SDP).

In practice, we have to live with the fact that for almost all nonlinear problems
we never have an exactly representable optimal solution. The current optimization
solvers simply implement algorithms valid in exact arithmetic, but do not care about

338 C. Jansson

roundoff errors due to floating-point arithmetic. Even for combinatorial problems
with a finite number of integral solutions roundoff errors may yield nonsensical
results. Indeed, Neumaier and Shcherbina [53] have shown that for a small innocent-
looking linear integer problem many well-known state-of-the-art solvers comprising
CPLEX 8.0 did not find the optimal solution and declared the problem infeasible,
because intermediate computations for solving ill-conditioned linear relaxations lead
to erroneous decisions.

Forward and backward error analysis together with a detailed discussion
of roundoff errors and condition numbers for matrix problems were first de-
scribed in the outstanding papers published sixty years ago by von Neumann
and Goldstine [54] and Turing [71]. Today, in this context frequently the notion
verified or rigorous error bounds is used, and these two papers can be viewed
as the pioneering work in the field of verification methods, a part of numerical
analysis. Rigorous forward error bounds are propagated in interval arithmetic, too;
see the books Alefeld and Herzberger [1], Hansen [21], Kearfott [36], Moore [44],
and Neumaier [50], [51].

This survey wants to present the fundamental concepts of conic programming,
duality, and a part of the large variety of its applications. Special attention is
payed to verified results for conic optimization problems including a discussion
of ill-conditioned and ill-posed problems up to large scale. The basic results are
formulated in the framework of functional analysis; that is, the underlying vector
spaces are in general infinite-dimensional.

Non-convex optimization is much more difficult than convex programming,
since many local minimizers may occur which are not global. Frequently these
problems are solved by using relaxations in a sequential manner. Most important
are branch-bound-and-cut algorithms that solve relaxations at the nodes of the
branch-and-bound tree. A relaxation is a tractable auxiliary modification of the
original problem such that each optimal solution of the original problem is feasible
for the modification. Nearly all relaxations used in practice are conic problems,
or can be reformulated in this form. One consequence is that verified results for
conic optimization problems yield verified results for non-convex global optimiza-
tion problems. An excellent survey by Neumaier [52] covers the state of the art
of techniques for solving constrained global optimization problems and combina-
torial problems, the use of relaxations, important problem transformations, and
also a discussion of roundoff errors for bounded linear programming problems. The
reader is referred to this survey and the literature cited there for verified results in
non-convex optimization.

The paper is organized as follows. After introducing some notation and
basic definitions in Section 2, we consider in the next section conic optimization
problems, duality, and sensitivity analysis. Then in Section 4 we will focus on
verified error bounds for the exact optimal value, verified error bounds for optimal
and almost optimal solutions, verifying strong duality, and verified certificates for
proving infeasibility. In Section 5 several applications are presented. Moreover, a

On Verified Numerical Computations in Convex Programming 339

rigorous calculus of conic representable sets and functions is described, evidencing
the abilities to reformulate many applications as conic programming problems.
Then in Section 6 we list some codes for solving conic programs approximately
and rigorously. Furthermore, some remarks or numerical results for well-known
benchmark problems are given. We end this survey with some conclusions.

2. Notation and preliminaries

Let X be a real vector space equipped with a norm ‖ · ‖, and let K ⊆ X be a
convex cone, i.e., K + K ⊆ K, αK ⊆ K for α ∈ R+, where R+ denotes the set of
nonnegative real numbers. A convex cone K induces a partial ordering x ≤ y iff
y − x ∈ K, which is a transitive and reflexive binary relation on X compatible with
addition and scalar multiplication. Conversely, each partial ordering determines
a convex cone, namely the positive cone K := {x ∈ X : x ≥ 0}. A vector space X
equipped with a partial ordering is called a partially ordered vector space. Given a
partial ordering the set [x, x] := {x ∈ X : x ≤ x ≤ x} = (x +K) ∩ (x−K) is called
an interval. For a subset M of a partially ordered vector space X a vector x is
called a lower bound of M, if x ≤ m for all m ∈ M, and in this case we write
x ≤ M. The lower bound x is called infimum of M if every other lower bound y of
M satisfies y ≤ x. Analogously, upper bounds and supremum are defined. X is said
to be a vector lattice for the partial ordering ≤ if for all x, y ∈ X the supremum
sup{x, y} and the infimum inf{x, y} exists and is contained in X , respectively. In a
vector lattice the operations x+ := sup{x, 0}, x− := inf{x, 0} and |x| := sup{x,−x}
are defined, and the properties |x| = x+ − x−, x = x+ + x−, |x| = 0 iff x = 0,
|λx| = |λ| |x| for real λ, and |x + y| ≤ |x| + |y| are satisfied.

Let X ∗ denote the dual space of X , that is the space of continuous linear
functionals endowed with the operator norm. The set K∗ of all positive linear
functionals, i.e.,

K∗ = {y ∈ X ∗ : 〈y, x〉 := y(x) ≥ 0 for all x ∈ K}, (2.1)

is a convex cone in X ∗ defining a partial ordering in the dual space.
The basic properties and relations for vector lattices as well as examples can

be found in Birkhoff [10] and Bourbaki [13]; see also Peressini [58] and Schaefer [67].
We use the same notation ‖ · ‖ and ≤ for all norms and partial orderings. It will
always be clear from the context which norm and which cone is referred to. Hence, if
x ∈ X then x ≥ 0 means x ∈ K, and if y ∈ X ∗ then y ≥ 0 denotes y ∈ K∗. Observe
that we do not write y∗ for a continuous linear functional in X ∗ because from the
position in 〈y, x〉 the meaning is clear, and we can omit the star. This notion is
closely related to Hilbert spaces and the Theorem of Riesz which states that the
continuous linear functions can be represented by the inner product 〈y, x〉, where y

is a vector in the Hilbert space.

340 C. Jansson

In the following a few illustrative and well-known examples of normed vec-
tor lattices are shown. The real finite dimensional space X = Rn equipped with
the Euclidean inner product and the Euclidean norm ‖ · ‖ can be ordered by the
positive orthant

K := Rn
+ = {x ∈ Rn : xi ≥ 0 for i = 1, . . . , n}. (2.2)

This cone is self-dual (i.e., K = K∗) and implies the lattice operations

x+
i = max{0, xi}, x−

i = min{0, xi}, |xi| = x+
i − x−

i (2.3)

for i = 1, . . . , n. This vector lattice is used in linear programming (LP).
In second order cone programming (SOCP) the same normed space X = Rn is

equipped with the partial ordering defined by the convex ice-cream or Lorenz cone

K :=
{

x =
(

x:

xn

)
∈ Rn : xn ≥ ‖x:‖

}
, (2.4)

where x: := (x1, . . . , xn−1)T. This cone is also self-dual, and further properties, like
the lattice vector operations, are described in [31].

In semidefinite programming (SDP) the real linear space is X = Rn(n+1)/2,
which is identified with the set of real symmetric n × n matrices X. The inner
product of two matrices X, Y is defined by 〈X,Y 〉 := trace XTY =

∑
ij XijYij ,

and the induced norm ‖X‖ := (trace XTX)1/2 is the Frobenius norm. This space is
a Hilbert space, thus self-dual, and it is equipped with the self-dual cone of positive
semidefinite matrices

K := Sn
+ = {X ∈ X : X is positive semidefinite}. (2.5)

Using the eigenvalue decomposition X = QTΛQ of a real symmetric matrix, it
follows that the lattice operations are

X− = QTΛ−Q, X+ = QTΛ+Q, |X| = QT|Λ|Q, (2.6)

where Λ−, Λ+, and |Λ| denote the diagonal matrices with nonpositive, nonnegative,
and modulus of the eigenvalues of X on the diagonal, respectively.

For any compact Hausdorff space Ω , the vector space X := C(Ω) of real-valued
functions is a normed vector lattice with norm and ordering cone

‖f‖C(Ω) := sup
x∈Ω

{|f(x)|}, K := {f ∈ C(Ω) : f(x) ≥ 0 for all x ∈ Ω}.

On Verified Numerical Computations in Convex Programming 341

3. Conic programming

In this section we present a brief overview of important concepts in conic
optimization. Most of these well-known results are described using the frame-
work of functional analysis. For more detailed expositions refer to Ben-Tal and
Nemirovski [7], Nemirovski and Nesterov [47], Renegar [59] and [60], and the
literature cited there.

3.1. The standard form
The conic optimization problem in standard form is defined as

minimize 〈c, x〉 s.t. Ax = b, x ∈ K, (3.1)

where X is a real normed vector space, K ⊆ X is a convex cone, c ∈ X ∗, Y is a
real normed vector space, A denotes a continuous linear operator from X to Y,
and b ∈ Y. A vector x that satisfies the constraints Ax = b, x ∈ K is called primal
feasible. With f̂p we denote the primal optimal value, where f̂p := +∞ if the
problem is infeasible. Many interesting examples of optimization problems can be
formulated in this framework. In the following some familiar facts are described.
The Lagrangian function of problem (3.1) has the form

L(x, y) := 〈c, x〉 + 〈y, b − Ax〉, (3.2)

where y ∈ Y∗. The optimization problem

inf
x∈K

sup
y∈Y∗

L(x, y) (3.3)

is equivalent to (3.1). Indeed, if b − Ax = 0 then 〈y, b − Ax〉 = 0 for each y ∈ Y∗,
and the supremum of L(x, y) is equal to 〈c, x〉. In the case where b − Ax �= 0 there
is some y with 〈y, b − Ax〉 > 0, and hence the supremum is infinite. The adjoint
operator of A is the linear operator A∗ : Y∗ → X ∗ defined by the condition

〈y,Ax〉 = 〈A∗y, x〉 for all x ∈ X , y ∈ Y∗. (3.4)

Hence, the Lagrangian satisfies L(x, y) = 〈y, b〉 + 〈−A∗y + c, x〉. By exchanging
infimum and supremum in (3.3) we obtain the dual problem

sup
y∈X∗

inf
x∈K

L(x, y) (3.5)

with optimal value f̂d. Since exchanging inf and sup always produces a lower
bound, weak duality holds, that is f̂d ≤ f̂p. Because infx∈K L(x, y) = −∞ whenever
−A∗y + c /∈ K∗, the dual problem can be written equivalently in the form

maximize 〈y, b〉 s.t. −A∗y + c ∈ K∗, y ∈ Y∗. (3.6)

342 C. Jansson

A vector y that satisfies the constraints −A∗y + c ∈ K∗, y ∈ Y∗ is called dual fea-
sible. Hence, the set of dual feasible solutions is the inverse image of the cone K∗

under an affine mapping. We set f̂d := −∞, if the dual problem is infeasible.
Let x be primal feasible, and let y be dual feasible, then

〈c, x〉 = 〈c, x〉 + 〈y, b − Ax〉 = 〈−A∗y + c, x〉 + 〈y, b〉 ≥ 〈y, b〉, (3.7)

and using s := −A∗y + c it follows that 〈c, x〉 − 〈y, b〉 = 〈s, x〉 ≥ 0. Hence, equality
holds iff the complementarity condition

〈−A∗y + c, x〉 = 〈s, x〉 = 0 (3.8)

is fulfilled. This condition implies that strong duality holds, i.e., the duality gap
f̂p − f̂d is zero. Both problems have optimal solutions iff there exists a primal
and a dual feasible solution fulfilling the complementarity condition. Obviously, a
primal-dual optimal pair of solutions can be found by solving the following nonlinear
system of equations

Ax = b, A∗y + s = c, 〈s, x〉 = 0, x ∈ K, s ∈ K∗ (3.9)

which are called the optimality conditions.
In other cases, where such primal-dual optimal pairs do not exist, strong duality

may be not fulfilled. But there are other sufficient conditions guaranteeing strong
duality (see for example [7]):

Theorem 3.1 (Duality theorem).
a) If the primal problem is strictly feasible (i.e., there exists a primal feasible

point x in the interior of K) and f̂p is finite, then f̂p = f̂d and the dual
supremum is attained.

b) If the dual problem is strictly feasible (i.e., there exists some y ∈ Y∗ such that
−A∗y + c is in the interior of K∗) and f̂d is finite, then f̂p = f̂d and the
primal supremum is attained.

An immediate consequence is that if both, the primal and the dual problem,
admit strictly feasible points then the duality gap is zero and there exists a primal-
dual pair of optimal solutions. In general, one problem may have optimal solutions
and its dual is infeasible, or the duality gap may be positive at optimality. The strict
feasibility assumptions in Theorem 3.1 are called Slater’s constraint qualifications.

Conic duality is symmetric, and the dual of the dual is the primal. Moreover,
conic duality is completely similar to LP duality, with the only exception that in
the LP case strong duality is ensured by mere feasibility and not strict feasibil-
ity. Duality theory is central to the study of optimization. First, algorithms are
frequently based on duality (like primal-dual interior point methods), secondly they
enable one to check whether or not a given feasible point is optimal, and thirdly it
allows one to compute verified results.

On Verified Numerical Computations in Convex Programming 343

3.2. Three generic conic problems
The linear programming problem in standard form

minimize cTx s.t. Ax = b, x ≥ 0 (3.10)

is the special case of the conic optimization problem where X = X ∗ = Rn, K =
K∗ = Rn

+ and Y = Y∗ = Rm. It follows that the dual problem is defined as

maximize bTy s.t. −ATy + c ≥ 0, y ∈ Rm. (3.11)

In SOCP the partial ordering is defined by the ice-cream cones (2.4). Let
K be the Cartesian product of the cones Lnj ⊆ Rnj for j = 1, . . . , n. This is a
convex, self-dual cone (see Alizadeh, Goldfarb [2]). The standard SOCP problem
has the form

minimize
n∑

j=1

cT
j xj s.t.

n∑
j=1

Ajxj = b, xj ∈ Lnj for j = 1, . . . , n, (3.12)

where Aj ∈ Rm×nj , cj , xj ∈ Rnj and b ∈ Rm. If we merge these quantities

A := (A1; . . . ;An),

c := (c1; . . . ; cn),

x := (x1; . . . ;xn),

(3.13)

then the standard SOCP problem has the form (3.1), and it follows that the dual
problem (3.6) can be written as

maximize bTy s.t. −AT
j y + cj ∈ Lnj for j = 1, . . . , n. (3.14)

Here we have chosen the finite-dimensional spaces X := Rn̄, n̄ =
∑

j nj and Y :=
Rm equipped with the Euclidean inner products.

The standard primal semidefinite programming problem is

minimize 〈C,X〉 s.t. 〈Ai,X〉 = bi, i = 1, . . . ,m, X ∈ Ss
+, (3.15)

where C, X and Ai are real symmetric s × s matrices, b ∈ Rm, and 〈 · 〉 denotes
the inner product in the linear space of symmetric matrices. It follows immediately
that the dual problem has the form

maximize bTy s.t. −
m∑

i=1

yiAi + C ∈ Ss
+. (3.16)

344 C. Jansson

3.3. Block structured variables
Frequently conic optimization problems have block structured variables, that

is, the variables are in the Cartesian product of different cones. More precisely, there
are n real normed vector spaces X1, . . . ,Xn, convex cones K1 ⊆ X1, . . . , Kn ⊆ Xn, a
real normed vector space Y, and n continuous linear operators Aj : Xj → Y. Let X
and K denote the Cartesian products of the spaces Xj and the cones Kj , respectively.
The vectors x and c and the linear operator A are partitioned as follows:

x = (x1; . . . ;xn), where xj ∈ Xj ,

c = (c1; . . . ; cn), where cj ∈ X ∗
j ,

A = (A1; . . . ;An).

Defining

Ax :=
n∑

j=1

Ajxj and 〈c, x〉 :=
n∑

j=1

〈cj , xj〉, (3.17)

it follows that A : X → Y is a continuous linear operator, and c ∈ X ∗. The primal
conic optimization problem with block structured variables has the form

minimize
n∑

j=1

〈cj , xj〉 s.t.
n∑

j=1

Ajxj = b, xj ∈ Kj for j = 1, . . . , n, (3.18)

and hence the dual problem is

minimize 〈y, b〉 s.t. (−A∗
1y; . . . ;−A∗

ny) + (c1; . . . ; cn) ∈ K∗
1 × · · · × K∗

n, y ∈ Y∗.
(3.19)

3.4. Interior point methods
Interior point methods are the most efficient algorithms for solving convex op-

timization problems, including linear, second order cone and semidefinite problems.
The main idea of these methods is based on the common wisdom in optimization
that the simplest convex program is to minimize a three times continuously dif-
ferentiable convex function when the Hessian is positive definite and the level sets
are compact. Then, in the unconstrained case, Newton’s method is the method of
choice. In order to obtain such a simple convex program, a so-called self-concordant
barrier function is constructed and added to the objective of the conic problem.
The bulk of the work in each iteration step lies in the evaluation of the first and
second derivatives and the solution of the linear system of optimality conditions
solved by Newton’s method. The most efficient interior point methods use bar-
rier functions for both the primal and the dual problem. For details we refer the
reader to Nesterov [46], Nesterov and Nemirovski [47], Nesterov and Todd [48],
and Tuncel [70].

On Verified Numerical Computations in Convex Programming 345

3.5. The condition number
The purpose of sensitivity analysis is to determine how the solution of a prob-

lem changes when the data are perturbed. In the case of inverting a linear con-
tinuous regular operator A : X → X , the condition number of A is (see also von
Neumann and Goldstine [54] and Turing [71]) defined to be the quantity

cond(A) := lim
‖ΔA‖→0

sup
‖(A + ΔA)−1 − A−1‖/‖A−1‖

‖ΔA‖/‖A‖ = ‖A‖ ‖A−1‖. (3.20)

The condition number quantifies the sensitivity of A−1 to perturbations in A, and
roughly spoken, for each additional significant digit of accuracy in the inverse, it is
necessary to use log(cond(A)) additional significant digits of accuracy in computing
A−1. It is well-known that

cond(A) =
1
�
, where � = inf

{‖ΔA‖
‖A‖ : A + ΔA is singular

}
. (3.21)

The quantity � is the relative distance to the next singular operator. Renegar [59]
generalized this condition number to conic programs with data d = (A, b, c). Similar
to the quantity �, the distance to primal infeasibility is defined as

�P(d) := inf
{‖Δd‖

‖d‖ : problem d + Δd is primal infeasible
}

, (3.22)

and the distance to dual infeasibility is

�D(d) := inf
{‖Δd‖

‖d‖ : problem d + Δd is dual infeasible
}

. (3.23)

Here, ‖ · ‖ denotes a suitable norm in the set of data. The condition number of the
problem instance d is

cond(d) :=
1

min{�P(d), �D(d)} , (3.24)

that is, the scale-invariant reciprocal of the smallest data perturbation that will
render the perturbed data instance either primal or dual infeasible. The problem
is called ill-posed if �P(d) or �D(d) is zero, or equivalently cond(d) = ∞.

As in the case of linear operators the condition number (3.24) describes the
sensitivity of a conic program, and in [59] it is proved that the sensitivity of the
optimal solutions and the optimal value can be bounded by the condition number.
Crucial is that the bounds for the optimal value depend cubically on the inverses of
the relative distances to primal and dual infeasibility.

For a very ill-conditioned or even ill-posed problem it follows that there may
be arbitrarily small perturbed data instances such that the difference between
the optimal value of the original problem and the perturbed problem is almost

346 C. Jansson

arbitrarily large, but the optimality conditions for the perturbed problem almost
coincide with the optimality conditions for the original problem. Since conic solvers
are terminated if the optimality conditions are satisfied approximately, it cannot be
distinguished between the optimal values of the original and the perturbed problem
in the case of ill-conditioned or ill-posed problems. A consequence is that the noise
introduced by floating point arithmetic may occasionally yield to wrong termination
and nonsensical computational results. Hence, for such problems reliable results
cannot be obtained without further assumptions. In the next section we show that
only rough bounds for the norm of an optimal solution are completely sufficient for
computing efficiently rather sharp bounds for the exact optimal value.

The distance to primal and dual feasibility, and hence the condition number,
can be computed (see Ordóñez and Freund [57], and Freund, Ordóñez and Toh
2006 [20]), but it is rather expensive. For example in semidefinite programming,
computing �P(d) requires solving 2m SDP-instances of comparable size and struc-
ture as the original problem instance. There it is also shown that ill-conditioned and
ill-posed problems are not rare in practice, they occur even in linear programming.
In [57] it is stated that 71 % of the lp-instances in the NETLIB linear programming
library [49] are ill-posed. This library contains many industrial problems. In [20]
it is shown that 32 out of 85 problems of the SDPLIB are ill-posed.

3.6. Certificates of infeasibility
Identifying infeasibility in conic optimization is of key importance. An in-

feasible model usually does not yield valuable information. Either it will have to
be corrected and resolved, or discarded in branch-and-bound algorithms. Thus,
early identification of infeasibility saves time. Certificates of infeasibility are based
on alternative theorems. A theorem of alternatives states that for two systems of
equations or inequalities, one or the other system has a solution, but not both. A so-
lution of one of the systems is called a certificate of infeasibility for the other which
has no solution, since in principle this allows an easy check to prove infeasibility.

Proposition 3.1. If there is a ỹ ∈ Y ∗ that satisfies A∗ỹ ∈ K∗, 〈ỹ, b〉 < 0,
then the system of primal constraints Ax = b, x ∈ K has no solution.

Proof. If the system Ax = b, x ∈ K has a solution x, then 0 ≤ 〈A∗ỹ, x〉 =
〈ỹ, Ax〉 = 〈ỹ, b〉 contradicting our assumption 〈ỹ, b〉 < 0. �

The linear functional ỹ is called a certificate of primal infeasibility, and
represents a dual unbounded ray.

Proposition 3.2. If there is a x̃ ∈ X that satisfies Ax̃ = 0, x̃ ∈ K, 〈c, x̃〉 <

0, then the system of dual constraints −A∗y + c ∈ K∗, y ∈ Y ∗ has no solution.

Proof. If the system −A∗y + c ∈ K∗, y ∈ Y ∗ has a solution y ∈ Y ∗, then
0 ≤ 〈−A∗y + c, x̃〉 = −〈y,Ax̃〉 + 〈c, x̃〉 = 〈c, x̃〉 < 0 contradicting our assumption.

�

On Verified Numerical Computations in Convex Programming 347

The vector x̃ is called a certificate of dual infeasibility and represents a primal
unbounded ray.

Approximate certificates of infeasibility are frequently computed by optimiza-
tion algorithms if no feasible solutions of the primal or dual constraints exist. When
equality constraints are present, certificates cannot be represented exactly in float-
ing point arithmetic, and approximate certificates can satisfy the constraints only
within certain tolerances. This effect is amplified by roundoff errors during the cal-
culations for computing the approximate certificate. However, it turns out (see the
next section) that in order to prove infeasibility by using floating-point arithmetic
it is sufficient if an interval of small diameter can be computed which guarantees
to contain a certificate. We call such an interval a rigorous or verified certificate
of infeasibility.

4. Verified results for conic programming

In this section we give an overview of concepts related to verified numerical
computations in conic optimization. Many results of this section can be found
in [31]. They can be viewed as an extension of results for linear programming
(cf. [28], and Neumaier and Shcherbina [53]), and for smooth convex programming
(see [27]) to conic problems using the framework of functional analysis. Particular
attention is payed to ill-conditioned and ill-posed problems.

4.1. Bounds for the optimal value
This section is elementary but important for understanding both the basic

ideas behind rigorous forward error bounds and implementations. It turns out that
for computing error bounds for the optimal value only approximate primal and
dual solutions x̃, ỹ as well as rough bounds for the norm of ε-optimal solutions are
required. Further assumptions about the accuracy of the approximations are not
necessary; they need to be neither primal nor dual feasible. If the accuracy is poor,
however, then the error bounds cause overestimation.

The cones K and K∗ create partial orderings for the vector spaces X and X ∗,
respectively. We assume that these spaces are vector lattices. However, many of the
following results remain valid if the underlying spaces are partially ordered topolog-
ical vector spaces where only lower and upper bounds of {x, y} exist. For rigorously
bounding the optimal value, we assume that the conic optimization problem satis-
fies the following condition which we call primal boundedness qualification (PBQ):
(i) Either the primal problem is infeasible,
(ii) or f̂p is finite, and there is a simple bound x ∈ K such that for every ε > 0 there

exists a primal feasible solution x(ε) satisfying x(ε) ≤ x and 〈c, x(ε)〉− f̂p ≤ ε.
Observe that PBQ implies that the primal problem is bounded from below,

but the existence of an optimal solution is not required, only simple bounds x

for ε-optimal solutions are required. This qualification and even more restric-
tive assumptions, like certain smoothness properties, are fulfilled in allmost all
applications, and they are customary when solving ill-posed or very ill-conditioned

348 C. Jansson

problems with regularization methods. Notice that we do not assume that Slater’s
constraint qualifications are fulfilled.

The following theorem provides a finite lower bound f
p

on the exact primal
optimal value.

Theorem 4.1. Assume that PBQ holds. Let ỹ ∈ Y∗ and let d := −A∗ỹ + c.
Suppose further that d− ≤ inf{d, 0}. Then
(a) The primal optimal value is bounded from below by

f̂p ≥ 〈ỹ, b〉 + 〈d−, x〉 =: f
p
. (4.1)

(b) If d− = 0, then ỹ is dual feasible and f̂d ≥ f
p

= 〈ỹ, b〉. Moreover, if ỹ is

optimal, then f̂d = f
p
.

Sketch of Proof. (a) If the primal problem is infeasible, then f̂p = +∞, and
each finite value is a lower bound. Hence, assume that PBQ (ii) is satisfied with
x := x(ε) and ε > 0. Then

〈c, x〉 = 〈d, x〉 + 〈A∗ỹ, x〉
= 〈ỹ, b〉 + 〈ỹ, Ax − b〉 + 〈d, x〉.

Since x is primal feasible, Ax− b = 0 and 〈c, x〉 = 〈ỹ, b〉+ 〈d, x〉. It is easy to prove
the inequality 〈d, x〉 ≥ 〈d−, x〉. Hence, 〈c, x〉 ≥ 〈ỹ, b〉+ 〈d−, x〉. Because of PBQ (ii)

f̂p ≥ 〈c, x〉 − ε ≥ 〈ỹ, b〉 + 〈d−, x〉 − ε.

For ε → 0 the assertion (a) follows.
(b) If d− = 0 then d ∈ K∗, implying that ỹ is dual feasible, and the assertion

follows. �

The lower bound uses the approximate optimal value 〈ỹ, b〉, and a correction
is added which takes into account the violation of dual feasibility d− evaluated at
the upper bound x. Since an approximate solution ỹ which is close to an optimal
solution is almost feasible, it follows that d is close to K∗. Hence, each lower bound
d− sufficiently close to d− is almost zero implying that 〈d−, x〉 ≈ 0 provided x is
not too large. In this case f

p
≈ 〈ỹ, b〉 is reasonable; that is, the overestimation is

not very much larger than necessary.
We illustrate the bound for linear programming problems in standard form

(3.10). Linear programming problems have always zero duality gap implying a
unique optimal value f̂ . Theorem 4.1 and (2.3) yield immediately the lower bound

f̂ ≥ bTỹ + (d−)Tx =: f
p
, (4.2)

where d−j ≤ min{0, (−ATỹ + c)j} for j = 1, . . . , n. It is straightforward to control
all effects of rounding errors for computing f

p
by using directed rounding or interval

On Verified Numerical Computations in Convex Programming 349

arithmetic. The MATLAB toolbox INTLAB [65] provides the directed rounding
modes, and the following short INTLAB program produces a rigorous lower bound:

setround(-1);

dlminus = min(0,A’*(-yt)+c);

flow = b’*yt + dlminus’*xup;

setround(0);

If interval arithmetic is used, then the input data A, b, c may be intervals,
and we obtain a lower bound for each instance within the interval data. Verified
error bounds for general linear programming problems also with free variables can
be found in [28], and for formula (4.2) see Corollary 6.1 in [28].

For semidefinite programming problems in standard form it follows from
Theorem 4.1 and (2.6) that the primal optimal value is bounded from below by

f̂p ≥ bTỹ + l · d− · x =: f
p
, (4.3)

where d− ≤ min{λmin(D), 0}, D is the defect matrix D = C−∑m
i=1 ỹiAi describing

the violations of dual feasibility, λmin(D) is the smallest eigenvalue of D, and l is
an upper bound of the number of negative eigenvalues of D. For controlling all
rounding errors and computing a verified lower bound f

p
see [31].

In the following we consider the computation of a rigorous upper bound for
the optimal value. We assume that the conic optimization problem satisfies the
following condition, which we call the dual boundedness qualification (DBQ):
(i) either the dual problem is infeasible,
(ii) or f̂d is finite, and there is a simple bound y such that for every ε > 0 there

exists a dual feasible solution y(ε) satisfying |y(ε)| ≤ y and f̂d − 〈y(ε), b〉 ≤ ε.

Theorem 4.2. Assume that DBQ holds. Let x̃ ∈ K, and suppose further
that |Ax̃ − b| ≤ r. Then
(a) The dual optimal value is bounded from above by

f̂d ≤ 〈c, x̃〉 + 〈y, r〉 =: fd. (4.4)

(b) If r = 0, then x̃ is primal feasible and f̂p ≤ fd = 〈c, x̃〉, and if moreover x̃ is
optimal, then f̂p = fd.

For a proof see [31].
Conic solvers compute in general only approximations x̃ /∈ K. But a reasonable

approximation must be close to K. In order to satisfy the assumption that the
approximation is in K, we replace x̃ by the supremum x̃+ = sup{x̃, 0} or a close
upper bound of x̃+.

In the special case of linear programming we can take the exact supremum
x̃+ ∈ Rn

+ defined by (2.3), obtaining the upper bound

f̂ ≤ cTx̃+ + yTr = fd, (4.5)

350 C. Jansson

where r := |Ax̃+ − b|. The following short INTLAB program produces this upper
bound:

xtplus = max(0,xt)

setround(-1);

rn = abs(A*xtplus -b);

setround(+1);

rp = abs(A*xtplus -b);

r = max(rn,rp);

fu = c’*xtplus + yup’*r;

setround(0);

As well as for the lower bound the input data A, b, c may be intervals, and using
interval arithmetic we obtain a lower bound for each instance within the interval
data. The computational costs for computing the lower or the upper bound in
the case of linear programming are O(mn), and thus negligible compared with the
costs for computing the approximate solutions. In other words, the boundedness
qualifications imply safety almost for free, and this is also true in the case of SOCP
and SDP. Similar formulas for lower and upper bounds on the optimal value in the
case of SOCP as well as for problems with structured variables are given in [31].
In our experience, if the conic solver produces suitable approximations, then the
bounds are quite accurate, while in other cases, the lower and upper bound differ so
much that it warns the user that something went wrong or needs special attention.
This observation applies also to ill-conditioned and ill-posed problems.

4.2. Bounds for the optimal solution
A more difficult task is the computation of rigorous error bounds for optimal

solutions. Krawzcyk [40] was the first who solved rigorously non-degenerate linear
programming problems in standard form. In his approach first an approximate
primal and dual basic solution together with the corresponding set of basic indices
B are computed by any LP solver. The basic indices split the matrix A into two
parts A = (AB , AN), where AB is a square matrix and N denotes the set of indices
that are not in B. Similarly, the variables x = (xB ;xN) and s = (sB ; sN) are split.
Then the optimality conditions (3.9) for the standard LP, are

Ax = b, x ≥ 0,

ATy + s = c, s ≥ 0,

sTx = 0.

(4.6)

These conditions are split as follows:

ABxB = b, xB ≥ 0, xN := 0,

AT
By = cB , sB := 0, sN = cN − AT

Ny ≥ 0,

sTx = 0.

(4.7)

In other words, the nonbasic variables xN and sB are fixed to zero, and the other
variables xB and y are the solutions of two quadratic linear systems of equations.

On Verified Numerical Computations in Convex Programming 351

Krawzcyk computes rigorous error bounds (i.e., enclosures) [xB] = [xB , xB] and
[y] = [y, y] for the solutions of these square m × m linear systems by using a
verification method for linear systems of equations. He sets

[x] := ([xB], xN), [sN] := cN − AT
N [y], [s] := (sB , [sN]), xN := 0, sB := 0,

(4.8)
where [sN] is computed with interval arithmetic. Since xN = 0 and sB = 0, the
nonlinear equation sTx = 0 is fulfilled for all vectors x ∈ [x] and s ∈ [s]. Hence, if
additionally the sign conditions [xB] ≥ 0 and [sN] ≥ 0 are fulfilled, then existence of
an optimal solution within the error bounds [x], [y] and [s] is verified. This method
can also be applied to linear programming problems with interval data yielding
enclosures of the optimal solutions for all point problems within the interval data.
For modifications see also Beeck [4] and Rump [61].

There are several verification methods for computing enclosures of solutions of
square linear and nonlinear systems in the finite dimensional case. A precise descrip-
tion of such methods, required assumptions and further properties can be found,
for example, in Neumaier [50]. The complexity is O(m3) operations for full m×m

matrices. Hence, the above error bounds require in addition to the computational
work of the linear programming solver max{O(m3), O(mn)} operations. For recent
developments and fast algorithms for linear systems of equations see Oishi and
Rump [55], and Rump and Ogita [66]. The computation of rigorous error bounds
for the exact solution of linear systems with arbitrarily large ill-conditioned matrices
is treated in Oishi et al. [56] and Rump [64]. For the computation of enclosures in
the case of large sparse linear systems the reader is referred to Rump [62].

One disadvantage of Krawzcyk’s approach is that only non-degenerate prob-
lems can be treated in this way, because the error bounds introduce a slight over-
estimation yielding in general a violation of the sign conditions in the degenerate
case. The degenerate case, however, occurs rather frequently in practice. In [26] a
method is described where degenerate problems and violations of the sign conditions
are allowed. There, it is shown that the graph corresponding to the basic index sets
of the optimal vertices is connected, and error bounds for all optimal vertices can
be computed by using a graph search method. In particular, for each basic index
set the two square linear systems are solved rigorously, yielding the computational
work k · max{O(m3), O(mn)}, where k is greater than or equal to the number of
(degenerate) optimal basic index sets. Of course, for larger dimensions this method
is applicable only for small degree k of degeneracy.

We mention that the technique of fixing appropriate variables (the nonbasic
variables) and solving a quadratic system of equations for the remaining basic
variables was later applied by Hansen [21] in order to prove existence of a feasible
point for nonlinear equations within a bounded box. It was further modified and
investigated numerically by Kearfott [34], [35], and is also described in his book [36].

For other conic problems, especially those with non-polyhedral cones, the
computation of rigorous error bounds for optimal solutions is an open problem.

352 C. Jansson

4.3. Bounds for ε-optimal solutions
For conic problems it is less complicated to compute rigorous error bounds

for primal and dual feasible solutions close to optimality, instead of computing
error bounds for optimal ones. The reason is that the nonlinear complementarity
condition 〈s, x〉 = 0 must not be fulfilled, and hence must not be verified. We
describe briefly this approach. The basic algorithm for computing error bounds of
a primal feasible solution that is close to optimality consists of the following steps:
(i) Perturb the primal constraints slightly such that the optimal solution of the

perturbed problem is an interior feasible solution of the original problem.
(ii) Solve the perturbed problem with any conic solver, yielding an approximate

optimal solution x̃.
(iii) Use this approximation to compute an enclosure containing a primal feasible

solution.
(iv) Evaluate the objective function for the enclosure.

The first and the second step deliver an interior approximation close to optimal-
ity, provided that the conic solver produces reasonable results. Step (iii) is especially
nontrivial, since the existence of feasible solutions must be proved rigorously. This
can be done in a manner similar to the method as in the previous section. In the
finite dimensional case, we have to find an exact solution of the linear equation
Ax = b for x ∈ K. As before, we fix nonbasic variables of the approximate solution;
that is, xN := x̃N . Then the other basic variables xB are the solution to the corre-
sponding square linear system of equations ABxB = b−ANxN , which is solved by
any verification method yielding the enclosure [x] := ([xB], xN). If [x] = [x, x] ⊆ K,
then there exists an ˜̃x ∈ [x] which is primal feasible and close to the approximation
x̃. The check [x] ⊆ K depends on the underlying cone. For LP we immediately
obtain the equivalent condition

x ≥ 0. (4.9)

The algorithm for computing error bounds of dual feasible solutions is very similar.
If in the primal and in the dual case error bounds for feasible solutions are available,
then we have obtained enclosures for ε-optimal solutions, where ε results as the
difference of the bounds for the primal and the dual optimal value.

Here, the boundedness qualifications PBQ and DBQ are not assumed. This
necessitates that the above method also has to prove existence of feasible solutions
and this is more expensive than the bounds of Section 4.1. Moreover, in general an
upper bound on the optimal value can be obtained only if �P(d) > 0, and a lower
bound of the optimal value can be computed only if �D(d) > 0.

A detailed description of the previous algorithms can be found in the case of
linear programming in [28], for convex programming problems with smooth con-
straint functions in [27], and for semidefinite programming problems and linear
matrix inequalities in [32].

On Verified Numerical Computations in Convex Programming 353

4.4. Verified certificates of infeasibility
As already mentioned, many conic solvers expose infeasibility by computing

approximate unbounded rays. It is easy to see that verified certificates of infeasibil-
ity can be computed with slight modification of the method for computing enclo-
sures of ε-optimal solutions. The only difference is to verify the conditions in the
propositions 3.1 and 3.2 instead of primal and dual feasibility. For details, see [31].

5. Applications

The interior point framework is especially well suited for solving efficiently and
rigorously conic optimization problems. The conic representation has tremendous
expressive abilities implying an extremely wide range of applications, including
those in combinatorial optimization, polynomial optimization, control and system
theory, design of statistical experiments, planning under uncertainty including
robust optimization, Physics and Operations Research. Applications of conic opti-
mization techniques in engineering are very exciting, for example in signal process-
ing and communication, circuit design, channel equalization, filter design, digital
beam forming, antennae design, truss topology design and many others.

Over the last decade, the spectrum of applications has been constantly growing,
and a similar development may continue in the future. SDP is the most important
class with a large variety of applications. The books by Ben-Tal and Nemirovskii [7]
and Boyd and Vandenberghe [14] discuss several applications in science and engi-
neering. Other references include the SDP handbook edited by Wolkowicz et al. [75],
the monograph by De Klerk [18], the habilitation thesis of Helmberg [23], and the
bibliography [74]. A recent survey of SDP based approaches in combinatorial op-
timization can be found in Krishnan and Terlaky [32]. Next, we present a few
applications in more detail.

5.1. Conic representable sets and functions
We start with a brief description of a calculus which is suited for modelling

conic programming problems. For a detailed description see Nemirovski [45]. A
consequence of this calculus is that a large variety of problems and applications
can be modelled as conic programs without any overestimation or wrapping effects,
the latter being very likely in interval arithmetic. Specifically, we investigate how
an optimization problem can be reformulated as a LP, SOCP or SDP problem. It
turns out that there are some simple symbolic manipulations and transformations
with so-called conic representable sets and functions that allow identification of
convex conic programs. The conic form is favorable compared to the customary
original form, because (i) it is much better suited to algorithmic processing with
interior point methods, and (ii) the computed results can be verified efficiently, as
shown before.

Usually, the original formulation of an optimization problem is in (or can be
immediately converted to) the form that a linear objective function is minimized
over a set X of feasible solutions. The feasible set X is defined as the intersection of

354 C. Jansson

some sets Xi = {x : gi(x) ≤ 0}, where gi denotes the i-th constraint function. In this
formulation we have in mind that always linearity of the objective can be assumed,
since nonlinear objectives can be attached to the constraints by introducing one
auxiliary variable and taking its level sets.

The idea for finding the desired conic reformulation is to describe the set X

as a projection of the set of feasible solutions of a convex conic problem. Then,
minimizing a linear objective 〈c, x〉 over the set X is equivalent to minimizing the
same objective over the corresponding projection. More precisely, given a convex
cone K, and having in mind the dual formulation (3.6) of the conic problem, a
set X is called K-representable iff there exist additional variables u and an affine
mapping A such that

x ∈ X ⇐⇒ ∃u such that A(x, u) ∈ K. (5.1)

In other words, X is the projection of the inverse image of K under an appropriate
affine mapping A. It follows immediately that

inf{〈c, x〉 : x ∈ X} = inf{〈c, x〉 : ∃u such that A(x, u) ∈ K}, (5.2)

where the optimization problem on the right hand side is the convex conic problem
in dual form.

For the purpose of illustration, let B be a m × n matrix, and U = [u, u] be a
n-dimensional interval vector. Then the linear image X = BU can be described as

X =

⎧⎪⎪⎨
⎪⎪⎩

x ∈ Rn :

⎛
⎜⎜⎝

u − u ≥ 0
−u + u ≥ 0
x − Bu ≥ 0
−x + Bu ≥ 0

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭

.

Obviously, this set is K-representable with the affine mapping

A(x, u) :=

⎛
⎜⎜⎝

u − u

−u + u

x − Bu

−x + Bu

⎞
⎟⎟⎠,

that maps into the positive orthant K = Rn
+. Notice that this conic representa-

tion avoids the wrapping effect and the resulting overestimation which would be
introduced if interval arithmetic is used for computing BU . Obviously, closed half
spaces X = {x : aTx ≤ b} are K-representable, where K = Rn

+. Moreover, it is easy
to see that closed half spaces are also Lorentz cone representable, since

x ∈ X ⇐⇒ A(x) ∈ L, where A(x) := (0; b − aTx).

Hence, the linear image X = BU is also L-representable.

On Verified Numerical Computations in Convex Programming 355

Sets are frequently described as level sets of functions. Therefore, a function f

is called K-representable if its epigraph is K-representable; that is, there exists an
affine mapping A and additional variables u such that

f(x) ≤ t ⇐⇒ ∃u such that A(x, t, u) ∈ K. (5.3)

For example, affine functions f(x) = aTx + b are L-representable, since

aTx + b ≤ t ⇐⇒ A(x, t) ∈ L, where A(x, t) := (0, t − aTx − b).

Also the squared Euclidean norm f(x) = xTx is L-representable. Indeed, since

t =
(t + 1)2

4
− (t − 1)2

4

if follows that

xTx ≤ t ⇐⇒ xTx +
(t − 1)2

4
≤ (t + 1)2

4
⇐⇒ A(x, t) ∈ L,

where A(x, t) :=
(
x; t−1

2 ; t+1
2

)
.

In order to recognize K-representable sets and functions we proceed similarly
to the case of proving continuity or differentiability: We know a number of simple
continuous functions and a number of basic continuity preserving operations, and if
we see that the function can be obtained from the simple functions by appropriate
operations, then continuity is proved. In the following we describe briefly a simple
calculus consisting of a list of operations preserving K-representability and a list of
simple K-representable sets and functions for some cones.

It can be proved that all basic convexity preserving operations with sets and
functions also preserve K-representability for the cones used in LP, SOCP and
SDP. For example polyhedral sets, finite intersections, arithmetic sums, image
and inverse image of affine mappings, and direct products of K-representable sets
are K-representable. For K-representable functions the maximum, nonnegative
linear combinations, the direct sums, the infimum, under certain assumptions the
composition, support function and the conjugate function are K-representable.

Equipped with this calculus, we have now to understand what can be expressed
by special cones like Rn

+, L, or Sn
+. In other words, we need to know the raw ma-

terial. The situation with K = Rn
+ is simple: Rn

+-representable sets are exactly
the polyhedral sets, and the Rn

+-representable functions are finite maxima of affine
functions. Elementary L-representable functions are convex quadratic functions,
fractional-quadratic functions, projective transformations of L-representable func-
tions, the convex increasing power function of rational degree, the even power func-
tion, concave monomials, convex monomials, p-norms and several other functions.
Their level sets provide a variety of L-representable sets.

Very important is the case K = Sn
+. It turns out that there is a large variety of

Sn
+-representable functions: every L-representable function, the largest eigenvalue

356 C. Jansson

λmax(X) as a function of a symmetric matrix X, the spectral norm of a symmetric
matrix X, the sum of the k largest eigenvalues of a symmetric matrix X, the
determinant of a symmetric positive semidefinite matrix X, negative powers of
the determinant (det(X))−q, and the sum of the k largest singular values of a
rectangular matrix X. Besides the level sets of these functions there are some
further interesting Sn

+-representable sets. For example the set of all nonnegative
(on the entire axis, or on a given ray, or on a given segment) polynomials of a given
degree is Sn

+-representable. This is also true for trigonometric polynomials which
are nonnegative on a segment.

5.2. Robust optimization
Frequently, a part of the data of optimization problems, or even all data,

are uncertain; that is, they are not known exactly when the problem is solved.
Uncertainties are mainly due to factors like prediction errors (using future data that
do not exist and hence are replaced with their forecasts), measurement errors, or
approximation errors (complex phenomena are described approximately by simple
models). Typically, a specific “uncertainty set” U in the space of data is known
or can be modeled. The data uncertainty can heavily affect the quality of the
nominal solution, and in these cases it is of particular importance to generate a
solution, which is immunized against uncertainty. Then we have to satisfy the actual
constraints, and if all we know about the data is U , then the only way is to restrict
to robust feasible solutions: these are solutions which satisfy all possible realizations
of the uncertain constraints. Hence, robustly feasible solutions remain feasible at
the expense of conservatism. The robust counterpart of an optimization problem is
to optimize the worst-case value of the objective among all robust solutions.

Although the notion of robustness is rather new in mathematical programming
and should not be confused with sensitivity analysis, it is quite classical in control
theory. Robust optimization models in mathematical programming have received
much attention, see [5], [6] and [19]. In the case of linear programming

minimize cTx s.t. Ax ≤ b (5.4)

the robust counterpart has the form

minimize t s.t. cTx ≤ t, Ax ≤ b, ∀(c,A, b) ∈ U . (5.5)

While improving significantly the reliability of the decision, the disadvantage is
that the robust counterpart is a semi-infinite problem, i.e., a problem with infinitely
many linear constraints. Fortunately, for several uncertainty sets this robust version
is computational tractable. If, for instance, we have uncertainty sets for the rows
of A and the objective in the form of ellipsoids, then the robust counterpart is

minimize t s.t. cTx ≤ t, aT
i x ≤ bi, i = 1, . . . ,m,

∀ai ∈ Ui = {âi + Piw : ‖w‖2 ≤ 1 and Pi � 0},
c ∈ Uc = {ĉi + Pcw : ‖w‖2 ≤ 1 and Pc � 0},

On Verified Numerical Computations in Convex Programming 357

where U is the Cartesian product of the uncertainty set Ui and Uc. Note, that
the inequality

max
ai∈Ui

aT
i x = max

‖w‖2≤1
âT

i x + wTPix = âT
i x + ‖Pix‖2 ≤ bi,

yields the robust formulation as the tractable SOCP problem

min
x∈Rn

cTx s.t. aT
i x + ‖Pix‖2 ≤ bi, i = 1, . . . ,m.

The robust counterpart depends on the structure of the uncertainty set and may be
much harder to solve than the original problem. In Table 5.1, the robust counter-
parts of LP and SOCP are displayed for some uncertainty sets. Hence, in several
cases the robust form of a conic problem is a conic problem that can be solved
rigorously with the previous methods.

Table 5.1. Robust counterparts

Uncertainty Problem Robust optimization
polytopic LP LP
ellipsoid SOCP
LMI SDP
polytopic SOCP SOCP
ellipsoid SDP
LMI NP-hard

5.3. Combinatorial optimization
Linear and semidefinite programs play a very useful role in global and

combinatorial optimization. Several methods are known for constructing linear
or semidefinite relaxations, which are used in branch-bound-and-cut algorithms
to eliminate regions that do not contain global minimizers. Neumaier and
Shcherbina [53] have pointed out that backward error analysis has no relevance
for combinatorial programs, since slightly perturbed coefficients no longer produce
problems of the same class. There, one can also find an innocent-looking linear in-
teger problem for which the commercial high quality solver CPLEX [25] and several
other state-of-the-art solvers fail. The reason is that the relaxations are not solved
with sufficient accuracy and global minimizers are truncated. Hence, in order to
obtain safe results, it is important to have reliable, good and cheaply computable
lower bounds on the optimal value for these relaxations.

Various problems like max-cut, partitioning, coloring and many others can
be formulated as linear integer problems, where the vector of decision variables
x ∈ {−1, 1}n. Sometimes, these relaxations are even ill-posed. An example is graph
partitioning problems with many applications such as VLSI design. Relaxing the
integer conditions to x ∈ [−1, 1]n yields a linear relaxation, which can be solved
rigorously with the previous methods. Improved tight semidefinite relaxations are

358 C. Jansson

obtained by lifting the vector x into the space of semidefinite matrices with the
operation

X = xxT. (5.6)

It follows immediately that

X � 0, diag(X) = e, and rank(X) = 1, (5.7)

where e is the vector of ones. Dropping the non-convex condition rank(X) = 1 we
obtain a semidefinite relaxation. Laurent and Poljak [41] have shown that for this
type of relaxation −1 ≤ Xij ≤ 1, and if Xij ∈ {−1, 1} then X = xxT where x ∈
{−1, 1}n. This property establishes the tightness of these relaxations. Moreover,
it follows that the primal boundedness qualification is fulfilled in the way that an
optimal solution exists with λmax(X) ≤ n, and thus a rigorous lower bound for the
optimal value can be computed.

6. Software and numerical results

In this section some software packages for computing approximate optimal
solutions and for computing verified results are listed.

6.1. Approximate conic solvers
There are several software packages solving approximately special conic prob-

lems. The first group is that of primal-dual interior point methods which use
second order derivative information. The codes SeDuMi [68], [69] and SDPT3 [72]
can handle handle all 3 types LP, SOCP and SDP, whereas the codes SDPA [76],
CSDP [11] and DSDP [8] are limited to SDP. MOSEK [3] is a code suited only for
SOCP problems. The codes BMPR [15], BMZ [16], BUNDLE [22], [24] are suited
for very large-scale SDP problems which do not make use of second order deriva-
tive information. All these computer codes were submitted to the Seventh DIMACS
Implementation Challenge on semidefinite and related optimization problems. The
codes were run on a standard platform and on all the benchmark problems provided
by the organizers of the challenge. Mittelmann [43] has described the benchmarking
results. In summary it can be said that all these codes proved to be valuable in
their own right.

6.2. Rigorous conic solvers
There are three software packages, Lurupa [38], VSDP and verifiedSDP [17],

for rigorously solving special conic problems. Lurupa and verifiedSDP are C++
implementations of the presented rigorous bounds for the special case of linear pro-
gramming and semidefinite programming, respectively. They will be available soon.
Detailed numerical results of Lurupa for the NETLIB suite of linear programming
problems [49], a well-known collection of difficult to solve problems with up to 15695
variables and 16675 constraints originating from various applications, are presented
in [39]. In summary, with exception of two problems a rigorous finite lower bound

On Verified Numerical Computations in Convex Programming 359

(upper bound) of the optimal value could be computed iff the distance to dual
infeasibility (primal infeasibility) is greater than zero. The median guaranteed ac-
curacy was about 10−8, which is almost equal to the approximate accuracy of the
LP solver used. In other words, the overestimation for this test set is negligible.

VSDP [30] is a MATLAB software package for computing verified results of
semidefinite programming problems. VSDP is completely written in MATLAB and
uses the MATLAB-toolbox INTLAB [63]. This package computes verified lower
and upper bounds on the optimal value for semidefinite programs, proves existence
of feasible and optimal solutions, also for LMI’s, provides rigorous certificates of
infeasibility, facilitates solving the problem approximately by using the solvers
SDPT3 and SDPA, and can handle full and sparse formats, as well as interval data.
Now, some routines of VSDP can also be used under YALMIP [42], a toolbox for
modelling and optimization in MATLAB.

Detailed numerical results of VSDP for the SDPLIB benchmark problems of
Borchers [12] (a library of problems up to thousands of constraints and millions of
variables) can be found in [29] and [32]. Freund, Ordóñez and Toh [20] pointed
out that 32 problems in the SDPLIB are ill-posed. VSDP could compute for all
problems a rigorous lower bound of the optimal value and could verify the existence
of strictly dual feasible solutions, which proves that all problems have a zero duality
gap. A finite rigorous upper bound could be computed for all well-posed problems
with one exception; this is hinf2. For all 32 ill-posed problems VSDP has computed
the upper bound fd = +∞, which expresses exactly the zero distance to primal
infeasibility. SDPT3 (with default values) has given 7 warnings, and 2 warnings
were given for well-posed problems. Hence, no warnings were given for 27 ill-posed
problems with zero distance to primal infeasibility. In other words, there is no
correlation between warnings and the difficulty of the problem. At least for this
test set our rigorous bounds reflect the difficulty of the problems much better, and
they provide safety, especially in the case where algorithms subsequently call other
algorithms, as is done for example in branch-and-bound methods.

6.3. Other rigorous solvers
There are some other software packages for computing rigorous results of global

optimization problems. COSY [9], GlobSol [33], and Numerica [73] are probably the
most widely known ones. These solvers can handle problems where the objective
and the constraints are defined by smooth nonlinear algebraic expressions. These
solvers have in common that the computations are done by enclosing all numbers in
intervals and working with interval arithmetic. The current versions seem not make
use of convex relaxations. A consequence is that these solvers are time-consuming
and can be applied only to problems of small size. Elaborate comparisons with
these packages and some others can be found in the forthcoming paper of Keil [37].

360 C. Jansson

7. Conclusions

The computation of rigorous error bounds for conic optimization problems can
be viewed as a careful postprocessing tool that uses only approximate solutions
computed by any conic solver. The numerical results show that such rigorous error
bounds can be computed even for problems of large size.

The computational costs for computing verified lower and upper bounds on the
optimal value are negligible compared with the costs for computing the approximate
solutions, provided certain boundedness qualifications are fulfilled. Then safety
comes almost for free. If the conic solver produces suitable approximations, then
usually the bounds for the optimal value are quite accurate, while in other cases,
lower and upper bounds differ and the user receives a warning that something went
wrong or needs special attention. This warning (see the numerical experiments
with the SDPLIB) seems to be very reliable in comparison to the warnings given
by conic solvers.

We end this survey by mentioning at least two challenges for the near future
that would improve the state of the art significantly. Firstly, it is not known
and it is not straightforward how to compute efficiently verified error bounds for
the optimal solution in the case of nonpolyhedral cones. The techniques used by
Krawzcyk essentially require that the cone is defined as a finite set of inequalities,
like the positive orthant. A second challenge are rigorous bounds for the large
variety of special infinite dimensional cones and infinite dimensional linear systems
that appear in applications.

References

[1] G. Alefeld and J. Herzberger, Introduction to Interval Computations. Academic Press, New
York, 1983.

[2] F. Alizadeh and D. Glodfarb, Second-order cone programming. Math. Program., 95 (2003),
3–51.

[3] E.D. Andersen, C. Roos and T. Terlaky, A primal-dual interior-point method for conic
quadratic optimization. Math. Programming, 95 (2003), 249–277.

[4] H. Beeck, Linear programming with inexact data. Technical Report 7830, Abteilung Mathe-
matik, TU München, 1978.

[5] A. Ben-Tal, L. El Ghaoui and A. Nemirovski, Robust semidefinite programming. Handbook
of Semidefinite Programming, H. Wolkowicz, R. Saigal and L. Vandenberghe (eds.), Kluwer
Academic Publishers, 2000.

[6] A. Ben-Tal and A. Nemirovski, Robust convex optimization. Math. Operations Res., 23
(1998), 769–805.

[7] A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimization: Analysis, Algo-
rithms, and Engineering Applications. MPS-SIAM Series on Optimization, SIAM, Philadel-
phia, PA, 2001.

[8] S.J. Benson and Y. Ye, DSDP3: Dual scaling algorithm for general positive semidefinite
programming. Technical Report Preprint ANL/MCS-P851-1000, Argonne National Labs,
2001.

[9] M. Berz et al., COSY Infinity. http://www.bt.pa.msu.edu/index files/cosy.htm.
[10] G.D. Birkhoff, Lattice Theory, revised edition. Am. Math. Soc. Colloquium Publications,

Vol. 25, Am. Math. Soc., New York, 1948.
[11] B. Borchers, CSDP, A C library for semidefinite programming. Optimization Methods and

Software, 11 (1999), 613–623.

On Verified Numerical Computations in Convex Programming 361

[12] B. Borchers, SDPLIB 1.2, a library of semidefinite programming test problems. Optimization
Methods and Software, 11 (1999), 683–690.

[13] N. Bourbaki, Éléments de mathématique. XIII. 1 part: Les structures fondamentales de
l’analyse, Livre VI: Intégration, Actualités scientifique et industrielles, 1952.

[14] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.
[15] S. Burer and R.D.C. Monteiro, A nonlinear programming algorithm for solving semidefinite

programs via low-rank factorization. Math. Programming, 95 (2003), 329–357.
[16] S. Burer, R.D.C. Monteiro and Y. Zhang, Solving a class of semidefinite programs via

nonlinear programming. Math. Programming, 93 (2002), 97–122.
[17] D. Chaykin, Verified Semidefinite Programming: Applications and the Software Package

verifiedSDP. Ph.D. thesis, Technische Universität Hamburg-Harburg, 2009.
[18] E. De Klerk, Aspects of Semidefinite Programming: Interior Point Algorithms and Selected

Applications. Dordrecht: Kluwer Academic Publishers, 2002.
[19] L. El Ghaoui, F. Oustry and H. Lebret, Robust Solutions to Uncertain Semidefinite Pro-

grams. SIAM J. Optim., 9 (1998), 33–52.
[20] R.M. Freund, F. Ordóñez and K. Toh, Behavioral measures and their correlation with IPM

iteration counts on semi-definite programming problems. Math. Programming, 109 (2007),
445–475.

[21] E.R. Hansen, Global Optimization Using Interval Analysis. Marcel Dekker, New York, 1992.
[22] C. Helmberg, SBmethoda C++ implementation of the spectral bundle method. Technical

Report, Konrad-Zuse-Zentrum für Informationstechnik Berlin, 2000, Manual to Version 1.1,
ZIB-Report ZR 00-35, http://www.mathematik.uni-kl.de/helmberg/SBmethod/.

[23] C. Helmberg, Semidefinite programming for combinatorial optimization (Habilitations-
schrift). Technical Report ZIB ZR-00-34, Konrad-Zuse-Zentrum Berlin, TU Berlin, 2000.

[24] C. Helmberg and K.C. Kiwiel, A spectral bundle method with bounds. Math. Programming,
93 (2002), 173–194.

[25] ILOG CPLEX 7.1, User’s Manual. ILOG, France, 2001.
[26] C. Jansson, A self-validating method for solving linear programming problems with interval

input data, Computing Suppl., 6 (1988), 33–45.
[27] C. Jansson, A rigorous lower bound for the optimal value of convex optimization problems.

J. Global Optimization, 28 (2004), 121–137.
[28] C. Jansson, Rigorous lower and upper bounds in linear programming. SIAM J. Optimization

(SIOPT), 14 (2004), 914–935.
[29] C. Jansson, VSDP: A MATLAB software package for verified semidefinite programming.

NOLTA, 2006, 327–330.
[30] C. Jansson, VSDP: Verified Semidefinite Programming, User’s Guide. 2006,

http://www.BetaVersion0.1.optimization-online.org/DB HTML/2006/12/1547.html.
[31] C. Jansson, Guaranteed accuracy for conic programming problems in vector lattices. 2007,

arXiv:0707.4366v1, http://arxiv.org/abs/0707.4366v1.
[32] C. Jansson, D. Chaykin and C. Keil, Rigorous error bounds for the optimal value in semi-

definite programming. SIAM Journal on Numerical Analysis, 46 (2007), 180–200,
http://link.aip.org/link/?SNA/46/180/1.

[33] R.B. Kearfott, GlobSol. http://interval.louisiana.edu.
[34] R.B. Kearfott, On proving existence of feasible points in equality constrained optimization

problems. Math. Program., 83 (1998), 89–100.
[35] R.B. Kearfott, On proving existence of feasible points in equality constrained optimization

problems. Preprint, Department of Mathematics, Univ. of Southwestern Louisiana, U.S.L.
Box 4-1010, Lafayette, La 70504, 1994.

[36] R.B. Kearfott, Rigorous Global Search: Continuous Problems. Kluwer Academic Publisher,
Dordrecht, 1996.

[37] C. Keil, Verified linear programming—a comparison. Submitted, 2008,
http://www.optimization-online.org/DB HTML/2008/06/2007.html.

[38] C. Keil, Lurupa—rigorous error bounds in linear programming. Algebraic and Numerical Al-
gorithms and Computer-Assisted Proofs, B. Buchberger, S. Oishi, M. Plum and S.M. Rump
(eds.), Dagstuhl Seminar Proceedings, No. 05391, Internationales Begegnungs- und Forschungs-

zentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2006,
http://drops.dagstuhl.de/opus/volltexte/2006/445.

362 C. Jansson

[39] C. Keil and C. Jansson, Computational experience with rigorous error bounds for the Netlib
linear programming library. Reliable Computing, 12 (2006), 303–321,
http://www.optimization-online.org/DB HTML/2004/12/1018.html.

[40] R. Krawczyk, Fehlerabschätzung bei linearer Optimierung, Interval Mathematics, K. Nickel
(ed.), Lecture Notes in Computer Science, Vol. 29, Springer-Verlag, Berlin, 1975, 215–222.

[41] M. Laurent and S. Poljak, On a positive semidefinite relaxation of the cut polytope. Linear
Algebra and Its Applications (LAA), 223/224 (1995), 439–461.

[42] J. Löfberg, YALMIP: A toolbox for modeling and optimization in MATLAB. Proceedings
of the CACSD Conference, Taipei, Taiwan, 2004.

[43] H.D. Mittelmann, An independent benchmarking of SDP and SOCP solvers. Math. Pro-
gramming Ser. B, 95 (2003), 407–430.

[44] R.E. Moore, Methods and Applications of Interval Analysis. SIAM, Philadelphia, 1979.
[45] A. Nemirovskii, Lectures on Modern Convex Optimization. 2003.
[46] Y. Nesterov, Long-step strategies in interior-point primal-dual methods. Math. Program-

ming, 76 (1997), 47–94.
[47] Y. Nesterov and A. Nemirovskii, Interior-Point Polynomial Algorithms in Convex Program-

ming. SIAM, Philadelphia, 1994.
[48] Y.E. Nesterov and M.J. Todd, Self-scaled barriers and interior-point methods for convex

programming. Math. Oper. Res., 22 (1997), 1–42.
[49] NETLIB Linear Programming Library. http://www.netlib.org/lp.
[50] A. Neumaier, Interval Methods for Systems of Equations. Encyclopedia of Mathematics and

Its Applications, Cambridge University Press, 1990.
[51] A. Neumaier, Introduction to Numerical Analysis. Cambridge University Press, 2001.
[52] A. Neumaier, Complete search in continuous global optimization and constraint satisfaction.

Acta Numerica, Vol. 13, A. Iserles (eds.), Cambridge University Press, 2004, 271–369.
[53] A. Neumaier and O. Shcherbina, Safe bounds in linear and mixed-integer programming.

Mathematical Programming, Ser. A, 99 (2004), 283–296.
[54] J. von Neumann and H.H. Goldstine, Numerical inverting of matrices of high order. Bull.

Amer. Math. Soc., 53 (1947), 1021–1099.
[55] S. Oishi and S.M. Rump, Fast verification of solutions of matrix equations. Numer. Math.,

90 (2002), 755–773.
[56] S. Oishi, K. Tanabe, T. Ogita and S.M. Rump, Convergence of Rump’s method for inverting

arbitrarily ill-conditioned matrices. J. Comput. Appl. Math., 205 (2007), 533–544.
[57] F. Ordóñez and R.M. Freund, Computational experience and the explanatory value of condi-

tion measures for linear optimization. SIAM J. Optimization (SIOPT), 14 (2003), 307–333.
[58] A.L. Peressini, Ordered Topological Vector Spaces. Harper and Row, 1967.
[59] J. Renegar, Some perturbation theory for linear programming. Mathematical Programming,

65 (1994), 79–91.
[60] J. Renegar, Linear programming, complexity theory, and elementary functional analysis. Math-

ematical Programming, 70 (1995), 279–351, citeseer.ist.psu.edu/renegar95linear.html.
[61] S.M. Rump, Solving algebraic problems with high accuracy (Habilitationsschrift), A New

Approach to Scientific Computation, U.W. Kulisch and W.L. Miranker (eds.), Academic
Press, New York, 1983, 51–120.

[62] S.M. Rump, Validated solution of large linear systems. Validation Numerics: Theory and
Applications, R. Albrecht, G. Alefeld and H.J. Stetter (eds.), Computing Supplementum,
Vol. 9, Springer, 1993, 191–212.

[63] S.M. Rump, INTLAB—interval laboratory, a Matlab toolbox for verified computations,
Version 5.1, 2005.

[64] S.M. Rump, Error bounds for extremely ill-conditioned problems. Proceedings of 2006 Inter-
national Symposium on Nonlinear Theory and Its Applications, Bologna, Italy, September
11–14, 2006.

[65] S.M. Rump, INTLAB—interval laboratory, the Matlab toolbox for verified computations,
Version 5.3, 2006.

[66] S.M. Rump and T. Ogita, Super-fast validated solution of linear systems. Special issue on
scientific computing, computer arithmetic, and validated numerics (SCAN 2004), Journal
of Computational and Applied Mathematics (JCAM), 199 (2006), 199–206.

[67] H.H. Schaefer, Banach lattices and positive operators. Springer, 1974.

On Verified Numerical Computations in Convex Programming 363

[68] J.F. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones.
Optimization Methods and Software, 11 (1999), 625–653.

[69] J.F. Sturm, Central region method. High Performance Optimization, J.B.G. Frenk, C. Roos,
T. Terlaky and S. Zhang (eds.), Kluwer Academic Publishers, 2000, 157–194.

[70] L. Tuncel, Generalization of primaldual interior-point methods to convex optimization prob-
lems in conic form. Found. Comput. Math., 1 (2001), 229–254.

[71] A.M. Turing, Rounding-off errors in matrix processes. Quarterly J. of Mechanics & App.
Maths., 1 (1948), 287–308.

[72] R.H. Tütüncü, K.C. Toh and M.J. Todd, Solving semidefinite-quadratic-linear programs
using SDPT3. Math. Program., 95 (2003), 189–217.

[73] P. Van Hentenryck, P. Michel and Y. Deville, Numerica: A Modelling Language for Global
Optimization. MIT Press Cambridge, 1997.

[74] H. Wolkowicz, Semidefinite and Cone Programming Bibliography, Comments.
http://orion.uwaterloo.ca/~hwolkowi/henry/book/fronthandbk.d/sdpbibliog.pdf.

[75] H. Wolkowicz, R. Saigal and L. Vandenberghe (eds.), Handbook of Semidefinite Program-
ming. International Series in Operations Research and Management Science, Vol. 27, Kluwer
Academic Publishers, Boston, MA, 2000.

[76] M. Yamashita, K. Fujisawa and M. Kojima, Implementation and evaluation of SDPA 6.0.
Optimization Methods and Software, 18 (2003), 491–505.

