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We consider modulated Poisson–Voronoi tessellations, intended as models for tele-
communication networks on a nationwide scale. By introducing an algorithm for the
simulation of the typical cell of the latter tessellation, we lay the mathematical foundation
for such a global analysis. A modulated Poisson–Voronoi tessellation has an intensity
which is spatially variable and, hence, is able to provide a broad spectrum of model
scenarios. Nevertheless, the considered tessellation model is stationary and we consider
the case where the modulation is generated by a Boolean germ-grain model with circular
grains. These circular grains may either have a deterministic or random but bounded
radius. Furthermore, based on the introduced simulation algorithm for the typical
cell and on Neveu’s exchange formula for Palm probability measures, we show how to
estimate the mean distance from a randomly chosen location to its nearest Voronoi cell
nucleus. The latter distance is interpreted as an important basic cost characteristic
in telecommunication networks, especially for the computation of more sophisticated
functionals later on. Said location is chosen at random among the points of another
modulated Poisson process where the modulation is generated by the same Boolean model
as for the nuclei. The case of a completely random placement for the considered location
is thereby included as a special case. The estimation of the cost functional is performed in
a way such that a simulation of the location placement is not necessary. Test methods for
the correctness of the algorithm based on tests for random software are briefly discussed.
Numerical examples are provided for characteristics of the typical cell as well as for the
cost functional. We conclude with some remarks about extensions and modifications of
the model regarded in this paper, like modulated Poisson–Delaunay tessellations.

Key words: stochastic geometry, telecommunication network modelling, Neveu’s exchange
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1. Introduction

During the last years spatial stochastic modelling of telecommunication
networks has become an established alternative to more traditional economic ap-
proaches for cost measurement and strategic planning of telecommunication net-
works. While the geometric structure of such a model allows a more realistic view to
location dependent network characteristics than conventional models, the random
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setting can reflect the network variability in time and space.
Among the examples where stochastic-geometric models have been consid-

ered recently are mobile telecommunication systems, multi-cast networks and
switching networks all based on tools from stochastic geometry like modulated
Poisson–Voronoi tessellations (see B�laszczyszyn and Schott [7], [8]), Poisson–
Voronoi aggregated tessellations (see Bacelli, Klein, Lebourges and Zuyev [3] and
Thoumatchenko and Zuyev [19]), superpositions of Poisson–Voronoi tessellations
(see Bacelli, Gloaguen and Zuyev [2]), spanning trees (see Bacelli, Kofman and
Rougier [5] and Bacelli and Zuyev [6]), and coverage processes (see Bacelli and
B�laszczyszyn [1]). The Stochastic Subscriber Line Model (SSLM), cf. [10] for ex-
ample, is a particular example of a random-geometric approach to model networks
with an explicit description of the underlying road system.

However, a key issue in modelling communication networks, especially from a
global perspective, is the consideration of instationarities, in particular with respect
to the underlying geometry of the network. If we regard Fig. 1 for example, we
observe that the displayed network devices of two regions in France are scattered
spatially with a varying intensity. More precisely the devices are scattered denser
in urban areas than in the rural landscape, due to the fact that subscribers are
located much denser in metropolitan regions; cf. Fig. 1 (a). In contrast, Fig. 1 (b)
shows a second scenario where network devices of an agglomeration of different
metropolitan regions overlap and thus are scattered with varying density.

(a) Different metropolitan regions (b) Overlapping metropolitan regions

Fig. 1. Urban and rural locations of real network devices in a region of France

While the infrastructure along which some network devices are placed can be
modelled by nationwide versions of the SSLM, there remains the crucial part to
have at hand a flexible model for the geometry layer, i.e., a model that is able to
appropriately display the spatial structure of the network geometry. Accurate esti-
mations of the characteristics of the service zones associated to the network devices
could then be easily obtained and used as components of cost or traffic models.
Adopting classical stationary approaches is often too naive since spatial fluctu-
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ations are completely ignored. Truly instationary approaches like nonstationary
Poissonian models with parametric intensity shapes can be used to obtain interest-
ing results in the shape of integral formulations. But such approaches are limited
and will quickly become complicated when closeness or overlapping of dense areas
are to be taken into account. A possible way out of this dilemma is offered by a
general framework including stationary cases that provide good approximations for
instationary ones. Such a framework is, for example, given by modulated Poisson–
Voronoi tessellations (see Fig. 2) that, although being stationary models, are able
to reflect instationary scenarios quite well. Hence, our proposed model can address
real situations of nationwide networks as in Fig. 1 (a) or cases of overlapping dense
areas like in Fig. 1 (b).

Fig. 2. Realization of a modulated Poisson–Voronoi tessellations

In this paper we analyze a special case of modulated Poisson–Voronoi tessel-
lations where the modulation is generated by a Boolean germ-grain model with
circular grains. Such a model can, for example, be used to model population densi-
ties or densities of network devices on nationwide scales. It is able to cover a wide
variety of different scenarios due to the fact that the underlying point process is
very flexible. The possible randomness of the radius of the grains allows to mimic
the observed features of the towns lying in a given area and thus to achieve a proper
analysis of a given region. Especially we are interested in the characteristics of so-
called typical cells of these tessellations. In the stationary case, the typical cell can
be regarded as a cell that is chosen at random out of the pool of all cells available.
For ergodic tessellation models this means that we can study characteristics of the
typical cell instead of averaging over very large sampling windows since the analysis
of large sampling windows has some grave practical disadvantages like memory and
runtime problems as well as problems occurring from edge-effects. Characteristics
we are exploring in this context are area, perimeter and number of vertices of the
typical cell, where one should notice that all these characteristics are random vari-



308 F. Fleischer, C. Gloaguen, H. Schmidt, V. Schmidt and F. Schweiggert

ables in this setting. Apart from that, natural characteristics of interest are basic
cost functionals like the mean distance from a randomly chosen location within the
cell to its corresponding cell nucleus (centre). Such an easy-to-handle cost func-
tional often serves as a surrogate for more sophisticated cost functionals used in
practice like the subscriber line length. All these characteristics are useful tools in
the cost analysis of telecommunication networks. In particular they serve as com-
ponents for more sophisticated functionals which can be obtained by combining
these basic functionals. Notice that often not only first moments (means) are of
interest but also second or even higher moments in order to allow for an efficient
risk analysis, for example. It is also important to notice that by looking at the func-
tionals of the typical cell automatically functionals for the model on a global view
are obtained due to ergodicity. This means that, e.g., by estimating the mean area
of the typical cell, the mean area for the cells in a (very large) region is estimated.

After an introduction of the model of stationary modulated Poisson–Voronoi
tessellations and the notion of its typical cell (Section 2), in Section 3 a simulation
algorithm for the typical cell of modulated Poisson–Voronoi tessellations is given
that is based on Palm calculus. Modifications for random radii of the circular grains
of the underlying Boolean model are also discussed. In Section 4 the functional
representing the mean distance from a random location to the corresponding cell
nucleus is introduced and it is shown via usage of Neveu’s exchange formula for
Palm probability measures how to estimate the cost functional by simulating the
typical cell of the modulated Poisson–Voronoi tessellation. Afterwards in Section 5
numerical examples are provided, dealing with some special cases like the Swiss
cheese model introduced in Section 2.2.

Additionally, possibilities for statistical software testing of an implementation
of the introduced algorithm are discussed here. Finally in Section 6 an outlook to
possible extensions and to other modulated Poisson-type models is provided.

All implementations that have been done for the computation and the simu-
lation of the typical cell of modulated Poisson–Voronoi tessellations and the corre-
sponding cost functionals are integrated in the GeoStoch library. This JAVA-based
library was developed by the Departments of Stochastics and Applied Information
Processing of the University of Ulm in order to offer software tools designed for
the analysis of spatial data with methods from stochastic geometry; see Mayer,
Schmidt and Schweiggert [15] and http://www.geostoch.de/.

2. Stationary modulated Poisson–Voronoi tessellations and their typi-
cal cells

This section introduces the mathematical model of a stationary modulated
Poisson–Voronoi tessellation that is generated by a Boolean germ-grain model. For
further details see appendices A.1–A.5. After the discussion of some special cases
for such modulated Poisson–Voronoi tesssellations, a Palm representation for the
corresponding typical cell is provided that is used in Section 3 to derive a simulation
algorithm.
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2.1. Stationary modulated Poisson–Voronoi tessellations
In the following let Ψ =

⋃
n≥1 (Yn +Mn) be a Boolean germ-grain model (see

(A.12)) where {Yn} is a stationary Poisson point process with intensity β > 0 and
where the Mn are circular grains with a fixed radius r. In Fig. 3 realizations of {Yn}
and Ψ are displayed. Furthermore let X = {Xn}n≥1 be a planar doubly-stochastic
Poisson point process (also called Cox point process; see (A.4)) that has a random
driving measure Λ generated by Ψ which is defined as

Λ(dx) =

{
λ1 dx if x ∈ Ψ ,

λ2 dx if x /∈ Ψ ,
(2.1)

where 0 ≤ λ1, λ2 < ∞ and max {λ1, λ2} > 0. Then the Voronoi tessellation τX
induced by the Cox point process X is called a modulated Poisson–Voronoi tes-
sellation (see (A.14)). Analoguously, X is referred to as a modulated Poisson pro-
cess. We often call Ψ the Boolean model corresponding to X and τX . In Fig. 2 a
realization of a modulated Poisson–Voronoi tessellation is displayed.

(a) Realization of a Poisson process (b) Realization of a Boolean model

Fig. 3. Boolean germ-grain model

Due to the stationarity of Ψ and the definition of Λ given in (2.1), it is obvious
that both X and τX are stationary. Also, since the Boolean model Ψ is an ergodic
random closed set, both processes X and τX are ergodic.

The intensity λ of the modulated Poisson process X can be computed as

λ =
EX(B)
|B| = pλ1 + (1 − p)λ2, (2.2)

where p = P(o ∈ Ψ) denotes the coverage probability of the (stationary) Boolean
model Ψ , X(B) = #{n : Xn ∈ B}, and B ∈ B(R2) is an arbitrary Borel set with
positive and finite Lebesgue measure |B|.
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2.2. Special cases of modulated Poisson–Voronoi tessellations
The modulated Poisson–Voronoi tessellation introduced in Section 2.1 covers a

wide variety of different models due to the fact that the underlying point process is
very variable. The basic case is the ordinary stationary Poisson–Voronoi tessellation
(PVT), where λ1 = λ2 (Fig. 4 (a)). Notice that for this case the Poisson point
process X becomes independent from the Boolean model Ψ . Another interesting
special case is the Swiss cheese model, where λ1 = 0 (Fig. 4 (b)). This model might
be of interest first of all as a limiting case. Secondly there exist cases when there
are “forbidden zones,” e.g., for antennas in densely populated regions. We will
regard a numerical example for the Swiss cheese model type in Section 5.2 since
interesting effects can be observed there. A further special case that is interesting
for applications is the inner-city model, where λ2 = 0 (Fig. 4 (c)). The underlying
point process X in such a case should not be confused with so-called Matern cluster
processes since the intensity at a location covered by Ψ is given as the constant
value λ1 no matter how many circles of Ψ are covering a specific location.

(a) Ordinary PVT (b) Swiss cheese model (c) Inner-city model

Fig. 4. Special cases of modulated Poisson–Voronoi tessellations

2.3. Representation of the typical cell
Using Palm calculus (see Sections A.3 and A.5), the typical cell of the modu-

lated Poisson–Voronoi tessellation τX can be described as follows. Let the modu-
lated Poisson process X of nuclei have random driving measure Λ given in (2.1) and
let Ψ be the corresponding Boolean model. Let Q∗ denote the Palm distribution of
the stationary random measure Λ (see for example Stoyan, Kendall and Mecke [18],
p. 229) and let X∗ be a Cox point process with random driving measure Λ∗ having
the distribution Q∗, where

Q∗( · ) =
λ1

λ
P(Λ ∈ · , o ∈ Ψ) +

λ2

λ
P(Λ ∈ · , o /∈ Ψ). (2.3)

Then, under its Palm probability measure P
∗
X (see (A.10)), the Cox point pro-

cess X has the same distribution as δo + X∗ has under the original probability
measure P, i.e.,

P
∗
X(X ∈ · ) = P(δo +X∗ ∈ · ), (2.4)
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where δo is the (deterministic) point process that consists solely of one single point
at the origin o. Thus, the typical cell of τX has the same distribution as the Voronoi
cell with nucleus at o which is induced by the point process δo + X∗. Notice that
the Palm distribution Q∗ given in (2.3) can be written as

Q∗( · ) = pcP(Λ ∈ · | o ∈ Ψ) + (1 − pc)P(Λ ∈ · | o /∈ Ψ), (2.5)

where

pc =
pλ1

λ
(2.6)

is the conditional coverage probability pc = P
∗
X(o ∈ Ψ) of the origin o by the

Boolean model Ψ under the Palm probability measure P
∗
X , i.e., conditional to

the event that o belongs to the point process X, whereas p = P(o ∈ Ψ) represents
the (unconditional) coverage probability of o by Ψ and λ is the intensity of X.
By (2.5) it becomes clear that the Cox point process X∗ is a mixture of two Cox
point processes with random driving measure whose conditional distributions are
given by P(Λ ∈ · | o ∈ Ψ) and P(Λ ∈ · | o /∈ Ψ), respectively.

3. Simulation algorithm

In this section we introduce a simulation algorithm for the typical cell of mod-
ulated Poisson–Voronoi tessellations that are generated by the Boolean model with
circular grains having fixed radius r > 0. This algorithm is based on the Palm
representation of the typical cell derived in Section 2.3. Finally, in Section 3.5, the
case of random radii is also considered.

3.1. Radial simulation of Poisson point processes
The simulation algorithm used later on utilizes radial simulation of Poisson

processes in R
2, where radial in this context means that the simulated points

have an increasing distance to the origin. For a more general description of ra-
dial generation of Poisson processes see Quine and Watson [16]. Recall that a
point x = (x1, x2) ∈ R

2 can be represented in polar coordinates as x = (r, z), where
x1 = r cos z and x2 = r sin z. Consider a sequence of random variables {Ri}i≥1 with
R0 <R1 < · · · such that {Ri} is a (linear) stationary Poisson point process in (0,∞)
with parameter γ. Furthermore, consider another sequence {Zi} of independent and
U(0, 2π]-distributed random variables, which is independent of {Ri}. Then the se-
quence {((Ri/π)1/2, Zi)} is a (two-dimensional) stationary Poisson point process in
R

2 with (planar) intensity γ.
In practice this means that a stationary Poisson point process in R

2 can be
generated radially by simulating independent random variables Tj ∼ Exp(γ), and
Vi ∼ U(0, 2π) and by putting

Ri =
i∑

j=0

log Tj , i ≥ 1 (3.1)

and

Zi = Vi, i ≥ 1. (3.2)
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3.2. Conditional simulation of modulated Poisson processes
Equations (2.3)–(2.6) provide a theoretical basis for the simulation of the typ-

ical cell of the modulated Poisson–Voronoi tessellation τX that corresponds to the
modulated Poisson process X. Recall that the typical cell of τX has the same dis-
tribution as the Voronoi cell with nucleus at o which is induced by the point process
δo + X∗ given in (2.4). Hence the modulated Poisson process X∗ = {X∗

n}n≥1 has
to be simulated, whose random driving measure has distribution Q∗ given in (2.5).
Note that due to (2.5) a simulation of X∗ requires a simulation of the Boolean
model Ψ∗, conditional to the events that the origin is covered by Ψ or not. In
other words Ψ∗ has to be simulated conditional to the event that o ∈ X. The
simulation of X∗ and Ψ∗ is performed radially, i.e., with increasing distance to
the origin, and in an alternating fashion between the points of X∗ and the germs
of Ψ∗. As an initial step a point X∗

0 is placed in the origin (Fig. 5 (a)), thereby
representing the (degenerate) point process δo in (2.4). Then, it is determined by a
Bernoulli experiment with success probability pc given in (2.6) if X∗

0 = o is covered
by Ψ or not. If o ∈ Ψ then the distance of Y ∗

1 , the germ of Ψ∗ which is nearest
to X∗

0 , to the origin has to be less than or equal to r, otherwise, i.e., if o /∈ Ψ it
has to be bigger than r. Therefore the distance of the first germ Y ∗

1 to the origin
has to be simulated conditional to o ∈ Ψ or o /∈ Ψ , respectively (Fig. 5 (b)). In
practice this means that a proposal distance R1 of the first germ Y ∗

1 to the origin
is generated according to (3.1) with γ = β, where β represents the intensity of the
germs as defined in Section 2.1. This proposal distance is accepted or rejected based
on R1 ≤ r or R1 > r, respectively. In case of a rejection another proposal distance
R1 of Y ∗

1 to the origin is generated. Afterwards further points Xi = (Ri, Zi) are
simulated radially according to (3.1) and (3.2) with intensity γ = max{λ1, λ2}. For
each such point it is checked whether it is covered by Ψ∗ or not (Fig. 5 (c)). This
check is performed by simulating further germs Y ∗

j of Ψ∗ until either the distance
of a germ to Xi becomes smaller than or equal to r or if the distance of Y ∗

j to the
origin becomes greater than |Xi| + r, where |Xi| denotes the distance of Xi to the
origin. In the first case Xi is covered by Ψ∗, in the second, it is clear that it is
not covered. Notice that it is important to retain all germs simulated for further
checks, e.g., of the point Xi+1. After we have checked whether Xi is covered by the
conditional Boolean model Ψ∗ or not, in one of the two cases a thinning procedure
has to be performed. So, if without loss of generality λ1 < λ2 and Xi ∈ Ψ∗ then
the probability of discarding Xi is given by 1 − λ1/λ2. Once more it is important
to retain the distance of Xi to the origin as a starting value for the simulation of
Xi+1, even if Xi is discarded in the thinning procedure in order to obtain correct
results. Altogether, this method leads to a simulation of X∗ = {X∗

n}n≥1 by an
alternating simulation of a stationary Poisson point process Xmax with intensity
γ = max{λ1, λ2} and a conditional Boolean model Ψ∗ and by applying the thin-
ning procedure described above (Fig. 5 (d)). Notice that unconditional simulation
of a (stationary) modulated Poisson process in the plane can be performed in a
similar way by an alternating radial simulation of Xmax and the (unconditional)
Boolean model Ψ .



Simulation of Typical Modulated Poisson–Voronoi Cells 313

(a) Point X∗
0 at the origin (b) First grain with midpoint Y ∗

1

(c) For X1 all necessary information about

Ψ∗ is given since |Y ∗
2 | > |X1| + r.

For X2 more information about Ψ∗ is

needed.

(d) Further alternating simulation of X∗

and Ψ∗

Fig. 5. Algorithm, initial steps and alternating simulation

3.3. Construction of initial cell
Based on the radial simulation of the modulated Poisson process X∗ as it

was explained in Section 3.2 an initial cell for the typical cell is constructed next.
This means that if for each point X∗

n of X∗ = {X∗
n}n≥1 the perpendicular bisector

(X∗
0 ,X

∗
n) is regarded we are interested in a minimal integer n ≥ 3 such that X∗

0

is for the first time surrounded by a convex polygon formed by these bisectors. In
Fig. 6 a procedure for the construction of such an initial cell is visualized (see also
Quine and Watson [16] and Wendel [20]). The lines X∗

1X
∗
0 and X∗

2X
∗
0 form a cone

S2 with respect to the opposite side of X∗
0 . If the (next nearest) point X∗

3 lies
inside of this cone the algorithm stops and an initial cell can be constructed using
the bisectors (X∗

0 ,X
∗
1 ), (X∗

0 ,X
∗
2 ) and (X∗

0 ,X
∗
3 ). Otherwise the cone S3 is taken as

the maximal cone formed by two of the three lines X∗
1X

∗
0 , X∗

2X
∗
0 and X∗

3X
∗
0 on the

opposite side of X∗
0 . Afterwards the point X∗

4 is taken into account with respect
to S3 (Fig. 6 (a)). This procedure is repeated until X∗

i+1 ∈ Si. With probability 1
this algorithm stops after a finite number of steps (see Wendel [20] for the case of
stationary Poisson processes) and an initial cell can be constructed by using the
corresponding bisectors (Fig. 6 (b)).
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(a) Stopping criterion for initial cell (b) Construction of initial cell using

bisectors

Fig. 6. Stopping criterion for initial cell and its construction

3.4. Simulation of the typical cell
After the creation of an initial cell a stopping criterion for the simulation of

the typical cell can be provided (see Quine and Watson [16]). If dmax denotes the
maximal distance of the vertices of the initial cell to the the origin o (= X∗

0 ) then
the simulation of the points X∗

i ∈ X∗ has to be continued until the distance of
X∗

i to o is bigger than 2dmax (Fig. 7). Notice that dmax might be reduced during
alterations of the cell (Fig. 7 (b) and Fig. 7 (c)) and therefore the stopping criterion
has to be adapted accordingly in order to ensure faster runtimes. The final result
after fulfilling the stopping criterion is a realization of the typical cell. (Fig. 7 (d)).

3.5. Modifications for random radii
In order to simulate the typical cell for modulated Poisson–Voronoi tessellations

in the case where the radius R of the circles of the corresponding Boolean model Ψ
is random but bounded (e.g., R ∼ U [r− δ, r+ δ] with 0 < δ < r) two modifications
to the algorithm introduced above for deterministic radius r have to be applied.
It is important to notice that, with respect to the simulation of the modulated
Poisson process X∗, in the case that the origin is covered by the conditional Boolean
model Ψ∗, the grain generated by the first germ Y ∗

1 of Ψ∗ with random radius R∗
1

does not necessarily cover the origin o. However it is possible that another grain
covers o. Therefore, after determining whether X∗

0 = o is covered, the conditional
radial simulation of the distances of the germs of Ψ∗ to the origin together with
the radii of the corresponding grains has to be performed in a way such that in
the case o ∈ Ψ∗ at least one grain Y ∗

i +M∗
i covers X∗

0 . On the other hand, if
o /∈ Ψ∗ one has to simulate grains Y ∗

i +M∗
i that do not cover X∗

0 until the distance
of their corresponding germs to X∗

0 is bigger than the maximal possible radius
rmax (in the example of uniform distribution above rmax = r + δ). In practice
this means that given o ∈ Ψ∗ or o /∈ Ψ∗ a proposal sequence of germs {Yi +Mi}
is radially generated for i = 0, . . . , Imax, where |YImax | > rmax. Afterwards it is
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(a) Initial cell (b) First alteration of initial cell by X∗
4

(c) Further alteration of initial cell by X∗
6 (d) Realization of the typical cell

Fig. 7. Alterations of initial cell and final realization of the typical cell

checked whether this sequence fulfills the given condition or not. In the first case the
sequence is accepted and the simulation of the grains is continued radially with the
grain YImax+1 +MImax+1, otherwise a new proposal sequence is radially generated
by starting at the origin again. This procedure is repeated until a sequence is found
that can be accepted. An analogous modification has to be performed with respect
to the necessary amount of grains that have to be simulated in order to know if a
point Xi is covered by Ψ∗ or not. In the case of a deterministic radius r of the
grains it is sufficient to simulate until the distance of the germs of Ψ∗ to the origin
is bigger than |Xi| + r. Now for random radii, the necessary distance to the origin
has to be bigger than |Xi| + rmax, where again rmax is the maximal possible radius
(r + δ in the example).

4. Functionals built on the typical cell

As a basic example of functionals that can be built on the typical cell, we
consider here the average distance from a randomly chosen location to the nearest
nucleus of the modulated Poisson–Voronoi tessellation. The choice of this location
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might take place purely random, in other words following the distribution of a
stationary Poisson point process, or again might be taken from a modulated Poisson
process connected to the same Boolean model that the modulated Poisson process
of nuclei uses.

4.1. Definition via Palm probability measure
Suppose that λ1, λ2, λ̃1, λ̃2 ≥ 0 are non-negative numbers such that

max{λ1, λ2} > 0 and max{λ̃1, λ̃2} > 0. Let X = {Xn}n≥1 be a modulated Poisson
process connected to a Boolean model Ψ via the random driving measure

Λ(dx) =

{
λ1 dx if x ∈ Ψ ,

λ2 dx if x /∈ Ψ ,
(4.1)

and let {X̃n}n≥1 be another modulated Poisson process connected to the same
Boolean model Ψ via the random driving measure

Λ̃(dx) =

{
λ̃1 dx if x ∈ Ψ ,

λ̃2 dx if x /∈ Ψ .
(4.2)

Assume that the modulated Poisson processes {Xn} and {X̃n} are conditionally
independent, given Ψ . Furthermore, if N(X̃n) denotes the location of the nearest
(in the Euclidean sense) point of X with respect to X̃n consider the marked point
process X̃ = {X̃n, |X̃n −N(X̃n)|}n≥1, where | · | denotes the Euclidean norm. The
intensities of X and X̃ are given by λ = pλ1 + (1 − p)λ2 and λ̃ = pλ̃1 + (1 − p)λ̃2,
respectively, where p = P(o ∈ Ψ). The functional we are especially interested in is
the average distance c from the typical point of X̃ to its nearest point of X. Using
the Palm probability measure P

∗
X̃

for X̃ (see (A.10)) we can express c as

c = EX̃ |N(o)|, (4.3)

where EX̃ denotes expectation with respect to P
∗
X̃

. Notice that due to the ergodicity

of X̃ it is possible to express the expectation c as the limit of spatial averages with
respect to an averaging sequence {Wi}i≥1 of unboundedly increasing sampling
windows Wi. This means that with probability 1 (see for example Daley and
Vere-Jones [9])

c = lim
i→∞

1
#{n : Xn ∈Wi}

∑
n≥1

�Wi
(X̃n)|X̃n −N(X̃n)|. (4.4)

4.2. Application of Neveu’s formula
The following theorem allows for a practically more feasible representation

of the functional c = EX̃ |N(o)| given in (4.3). Thereby a more efficient way of
computing an approximation for c is derived.
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Theorem 4.1. Consider the modulated Poisson process X = {Xn}n≥1 and
the (marked) modulated Poisson process X̃ = {X̃n, |X̃n −N(X̃n)|}n≥1 whose (ran-
dom) driving measures Λ and Λ̃ are generated by the same Boolean model Ψ ac-
cording to (4.1) and (4.2), respectively. Then,

EX̃ |N(o)| =
λ

λ̃
EX

(
λ̃1

∫
ΞX∩Ψ

|u| du+ λ̃2

∫
ΞX∩Ψc

|u| du
)

, (4.5)

where ΞX denotes the Voronoi cell induced by X, which contains the origin, and
EX is the expectation taken with respect to P

∗
X .

Proof. The proof of Theorem 4.1 is based on Neveu’s exchange formula (see
(A.11)) for jointly stationary point processes, which are defined on a common prob-
ability space (Ω ,A,P) equipped with some flow {θx : x ∈ R

2}. We use (A.11) with
XD and X̃D̃ being equal to X and X̃, respectively. Thus, the mark space D will
be omitted and D̃ = [0,∞). Consider the function f : R

2 × [0,∞) × Ω → [0,∞)
given by

f(x, g̃, ω) =

{
g̃ if X

(
θ−xω,B

�=
|x|(x)

)
= 0,

0 otherwise
(4.6)

for any x ∈ R
2, g̃ ≥ 0, and ω ∈ Ω , where B �=

|x|(x) = {y ∈ R
2 : |y − x| < |x|}. Notice

that if x ∈ R
2 is an atom of the counting measure X(ω, · ), then f(−x, g̃, ω) = g̃

only if there are no other atoms of X(ω, · ) which have a distance of less than
|x| to the origin. Thus, applying Neveu’s exchange formula (Theorem A.1), we
obtain that

EX̃ |N(o)| =
∫
Ω×D̃

∫
R2
f(−x, g̃, ω)X(ω, dx)PX̃(d(ω, g̃))

=
λ

λ̃

∫
Ω

∫
R2×D̃

f(x, g̃, θxω)X̃(ω, d(x, g̃))PX(dω).
(4.7)

Given the Boolean model Ψ the inner integral on the right hand side of (4.7)
can be expressed as∫

R2×D̃

f(x, g̃, θxω)X̃(ω, d(x, g̃)) =
∫

(R2∩Ψ)×D̃

f(x, g̃, θxω)X̃(ω, d(x, g̃))

+
∫

(R2∩Ψc)×D̃

f(x, g̃, θxω)X̃(ω, d(x, g̃)). (4.8)

Furthermore, given Ψ and the Voronoi cell ΞX of X that contains the origin, the
random number of points of X̃ in ΞX ∩ Ψ is Poisson distributed with expectation
η1 = λ̃1|ΞX ∩ Ψ |, while the random number of points of X̃ in ΞX ∩ Ψ c is Poisson
distributed with expectation η2 = λ̃2|ΞX ∩ Ψ c|. Thus, by the definition of the
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function f given in (4.6), the first integral on the right side of (4.8) can be written
in the form ∫

(R2∩Ψ)×D̃

f(x, g̃, θxω)X̃(ω, d(x, g̃))

=
∫

(ΞX∩Ψ)×D̃

f(x, g̃, θxω)X̃(ω, d(x, g̃))

=
∞∑

k=1

e−η1
ηk
1

k!

∫
ΞX∩Ψ

· · ·
∫
ΞX∩Ψ

k∑
i=1

|ui|
|ΞX ∩ Ψ |k du1 · · · duk,

due to the conditional independence and uniform distribution of the points of X̃ in
ΞX ∩ Ψ . Hence,∫

(R2∩Ψ)×D̃

f(x, g̃, θxω)X̃(ω, d(x, g̃)) =
∞∑

k=1

e−η1
ηk
1

k!
k

|ΞX ∩ Ψ |

∫
ΞX∩Ψ

|u| du

= λ̃1

∫
ΞX∩Ψ

|u| du.

Analogously, it can be shown that∫
(R2∩Ψc)×D̃

f(x, g̃, θxω)X̃(ω, d(x, g̃)) =
∞∑

k=1

e−η2
ηk
2

k!
k

|ΞX ∩ Ψ c|

∫
ΞX∩Ψc

|u| du

= λ̃2

∫
ΞX∩Ψc

|u| du.

Altogether we get that

EX̃ |N(o)| =
λ

λ̃
EX

(
λ̃1

∫
ΞX∩Ψ

|u| du+ λ̃2

∫
ΞX∩Ψc

|u| du
)
,

which completes the proof of the theorem. �

In the special case that λ̃1 = λ̃2, i.e., {X̃n} is an ordinary Poisson process (in
the sense of (A.3)) Theorem 4.1 can be restated as follows.

Corollary 4.2. Suppose that λ̃1 = λ̃2, i.e., {X̃n} is a stationary Poisson
point process with intensity λ̃. Then

EX̃ |N(o)| = λEX

∫
ΞX

|u| du. (4.9)

Note that (4.9) shows in particular that EX̃ |N(o)| does not depend on λ̃. In
the Poisson case, i.e., if λ1 = λ2 and λ̃1 = λ̃2, the cost functional c = EX̃ |N(o)| can
be analytically computed as (see also Bacelli, Klein, Lebourges and Zuyev [4] and
B�laszczyszyn and Schott [7])

EX̃ |N(o)| = λEX

∫
ΞX

|u| du = λ

∫
R2
|u| exp (−λπ|u|2) du =

1
2
√
λ
. (4.10)
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4.3. Estimation by Monte Carlo simulation
Theorem 4.1 provides a useful approach for the construction of an estimator

for the cost functional c = EX̃ |N(o)| which is based on Monte Carlo simulation.
Let (Ξ ∗

1 ,Ψ
∗
1 ), . . . , (Ξ ∗

n ,Ψ
∗
n) be a sequence of independent copies of (ΞX ,Ψ) under

the Palm probability measure P ∗
X . Then an unbiased and consistent estimator for

c is given by

ĉ =
λ

λ̃

1
n

n∑
i=1

∫
Ξ∗

i

|u|Λ̃i(du), (4.11)

where

Λ̃i(du) =

{
λ̃1 du if x ∈ Ψ∗

i ,

λ̃2 du if x /∈ Ψ∗
i .

(4.12)

The estimator ĉ will be used in Section 5.2 in order to obtain numerical results
for some example scenarios. Notice that if λ̃1 = λ̃2 then the integral

∫
Ξ∗

i
|u|Λ̃i(du)

appearing in (4.11) is computed analytically, otherwise it is computed via numerical
approximation. This is due to the fact that in the first case, by applying (4.9), we are
able to rewrite the integral as an integral with respect to the Lebesgue measure. If
λ̃1 
= λ̃2 integration must be performed with respect to the measure Λ̃i and therefore
the shape of Ψ∗

i has to be taken into account. This makes an analytical solution of
the integral difficult to achieve.

Another important fact concerning a numerical evaluation is that it is not
necessary to simulate any points of X̃ in order to apply the estimator given in (4.11).

5. Implementation and numerical examples

In this section we look at possible testing approaches for implementations of the
algorithm introduced in Section 3. In a second part numerical results for different
scenarios are regarded.

5.1. Tests of implemented algorithm
In our context, apart from traditional testing methods for software tests, in

particular methods for testing of software with random output are of interest. In the
following we want to mention some examples for such tests, where a more detailed
discussion of random software testing can, for example, be found in Gloaguen,
Fleischer, Schmidt and Schmidt [11] and Mayer and Guderlei [14]. Basically two
different testing methods have been applied to the implemented algorithm.

A first testing method was constructed by using known theoretical formulae
like the equality between the intensity λτ of the tessellation model τX and the
reciprocal of the mean area E(|Ξ ∗|) of the corresponding typical cell; see (A.13).
In particular we tested if the algorithm provides correct estimates for the mean
area 1/λτ of Ξ ∗. This was achieved by constructing an asymptotically Gaussian
distributed test statistic. Another example for a known theoretical formula that
we used to construct tests for our software was the cost functional in the case of
ordinary stationary Poisson processes; see (4.10).
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A different testing technique is to obtain tests by utilizing certain scaling prop-
erties of the underlying tessellation model, meaning that for different model param-
eter sets there is the same underlying random structure, only on a different length
scale. In our specific model we get that for the three parameters c1 = p, c2 = λ1/β

and c3 = λ2/β such a scaling invariance can be realized. Hence if for two models
with parameter vectors

(
p(1), β(1), λ

(1)
1 , λ

(1)
2

)
and

(
p(2), β(2), λ

(2)
1 , λ

(2)
2

)
the relation-

ship
(
c
(1)
1 , c

(1)
2 , c

(1)
3

)
=

(
c
(2)
1 , c

(2)
2 , c

(2)
3

)
holds then they represent the same random

structure but on a different scale. This fact can be used to construct tests similar to
the tests for known theoretical formulae. For example, in such a case we have that
β(1)

E|Ξ ∗(1)| = β(2)
E|Ξ ∗(2)| which can be used as a theoretical formula in order to

develop an asymptotic Gaussian test.
With consideration to the test results we obtained for our implementations

it suffices here to say that they showed the expected behavior. Hence we may
assume that the implemented algorithms for the simulation of the typical cell and
the computation of the cost functional work correctly.

5.2. Some numerical results
With regard to numerical evaluations of the modulated Poisson–Voronoi tes-

sellations considered in this paper it can be stated that due to the relatively large
number of parameters involved, a complete analysis is almost impossible to achieve.
Therefore we only concentrate on a specific scenario to show some of the interesting
effects that appear. The scenario we want to consider consists of few large grains,
where p = 0.6 and β = 0.2 that leads to a fixed radius r = 1.20761. We assume
a fixed total intensity λ = 12 such that the mean area of the typical Voronoi cell
remains constant as E|Ξ ∗| = λ−1 = 0.8333. Such a scenario is realized in Fig. 4 (b)
for λ1 = 0.

As a first example we let the parameter λ1 tend to 0 and regard the behavior
of the distribution for the perimeter of the typical cell (Fig. 8). In other words we
observe the behavior with regard to a transition to the Swiss cheese model. Notice
that for each pair (λ1, λ2) the sample size is given as n = 2 000 000, while each
bar of the histogram has a width of 0.05. For the case of an ordinary stationary
Poisson–Voronoi tessellation (Fig. 8 (a)) a symmetrical look of the histogram for
the perimeter of the typical cell can be observed. This changes as λ1 tends to
0, resulting in a shape that is skewed to the left. Another interesting effect that
can be observed is the existence of a second local maximum for the histogram,
especially for very small values of λ1. This is mainly caused by the cells that cover
the grains of the corresponding Boolean model since inside of the Boolean model
there are now almost no more points located. In particular this result means that
for such a scenario basically two types of cells can be differed, “normal ones” like
for the ordinary modulated Voronoi tessellation and slim ones that are covering
the zones where no points are allowed. With regard to the estimated values for
the cost functional defined in Section 4 the observation is that they increase as λ1

tends to 0 (Fig. 9 (a)) for a fixed intensity λ (here λ = 12). Notice that for this
example the intensities of the process X̃ are assumed to be equal, i.e., λ̃1 = λ̃2. The
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(a) λ1 = 12, λ2 = 12 (b) λ1 = 6, λ2 = 21

(c) λ1 = 0.05, λ2 = 29.95 (d) λ1 = 0, λ2 = 30

Fig. 8. Perimeter of the typical cell
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sample size is again n = 2 000 000 for each pair of parameters (λ1, λ2). The effect
of rising values for the cost functional if λ1 tends to 0 can possibly be explained by
the appearance of cells that have a relatively large ratio of perimeter to area. This
causes a relatively large mean distance to the cell nuclei for points located in such
cells. Notice that in the case of an ordinary Poisson–Voronoi tessellation (λ1 = λ2)
the estimated value for the mean distance to the cell nuclei of 0.14437 coincides
well with the theoretical value of (2

√
λ)−1 = 0.14434.

(a) λ1 variable and λ̃1 = λ̃2 (b) λ1 = 4, λ̃ = 1 and λ̃1 variable

Fig. 9. Estimated cost functionals for λ = 12 fixed

As a final numerical example we have a look at a scenario where λ̃1 
= λ̃2. For
this scenario we take the same values for β, p and r as before and additionally
keep λ1 = 4 and λ2 = 24 fixed. The values for λ̃1 and λ̃2 vary under the condi-
tion that λ̃ = 1. The results shown in Fig. 9 (b) display the linear relationship
between the value of λ̃1 and the estimated cost functional ĉ which is a consequence
of (4.5). Due to this linear relationship it suffices to estimate the two expectations
EX

(∫
ΞX∩Ψ

|u| du
)

and EX

(∫
ΞX∩Ψc |u| du

)
only for one specific pair of parameters

λ̃1 and λ̃2 in order to obtain estimates of c for all pairs of parameters λ̃1 and λ̃2

based on (4.5).
Notice that numerical evaluations of examples where λ̃1 
= λ̃2 are more time

consuming due to the numerical computation of the estimator ĉ introduced in (4.11)
as opposed to the case where λ̃1 = λ̃2 since here ĉ is computed analytically, given
realizations of the typical cell (Section 4.2). Therefore, for cases where ĉ had to be
computed numerically we took n = 100 000.
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6. Discussion and outlook

Big telecommunication operators need cost models and tools for strategic plan-
ning and pricing purposes. In order to be useful, these models must be able to
reproduce the observed regional variability and to address relevant features from a
telecommunication point of view. A detailed analysis of real data is often hard to
achieve since it relies on huge databases and is sometimes confronted with the lack
of data. Moreover such an analysis is in most cases only able to deliver observations
but no explanations. Stochastic modeling is an alternative approach that directly
provides a global view of the network together with clear assumptions on equip-
ment locations and connections. In this context, the typical cell is a particularly
important object since by its definition any result computed over repeated simu-
lations of this cell can be compared to what is the result of measuring the whole
tessellation that covers the area under study. The typical cell is thus representative
for the global network behavior. For example, the area of the serving zone, i.e.,
the area of the typical cell of the tessellation, can be connected to the incoming
demand for traffic via the number of customers. Various cost functionals and hence
various components for pricing studies can be associated to the typical cell. It is
then important to derive rapid and reliable algorithms for the simulation of the
typical cell, allowing further integration of any functional depending on the geo-
metric characteristics of the involved random processes and the typical cell. This
paper focused on a basic example for such a functional which is the mean distance
from a randomly chosen location within the cell to its corresponding cell nucleus
(centre). All these characteristics and functionals can subsequently be combined
and serve as components for more sophisticated cost models.

In this paper we presented an algorithm for the simulation of the typical cell
for specific modulated Poisson–Voronoi tessellations, where the grains are generated
by a Boolean model with circular grains of a fixed or random but bounded radius.
Based on this algorithm we have shown how to efficiently estimate a basic functional,
namely the mean distance from a random location to its Voronoi cell nucleus.

Extensions of the model can also be regarded. A natural way to achieve such an
extended model would be, for example, to generate the modulation not by a single
Boolean model Ψ but by a sequence of Boolean models Ψ1, . . . ,Ψn with possibly
different parameters with respect to the corresponding intensities and grain dis-
tribution. Another interesting extension would be to find a connection between
the modulated Poisson–Voronoi tessellations that can be mainly used for modelling
on a nationwide scale and models for urban access networks like the models pro-
vided by the Stochastic Subscriber Line Model (see Gloaguen, Coupé, Maier and
Schmidt [10] and Gloaguen, Fleischer, Schmidt and Schmidt [11], [12]). This might
enable an efficient analysis of other cost functionals like shortest path lengths along
street systems or similar characteristics.

Apart from estimating the mean distance it is of a fundamental interest to esti-
mate the distribution of the distance from a random location to its nearest Voronoi
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cell nucleus. In particular, such estimated distributions lead to the performance of
risk analysis by looking at occurring tail probabilities.

Additionally other modulated Poisson-type tessellations like the modulated
Poisson–Delaunay tessellation (Fig. 10) might be of interest. The modulated
Poisson–Delaunay tessellation equipped with a realistic set of corresponding pa-
rameters might, for example, serve as a model for the connection between different
towns. In general, not only for the case of modelling by modulated Poisson type
tessellations, the question of determining realistic parameter values is a very com-
plicated but also very rewardful one. Such a problem can of course only be solved
by analyzing real data.

Fig. 10. A realization of a modulated Poisson–Delaunay tessellation

Appendix A. Mathematical background

In this appendix random (marked) point processes, Boolean models and ran-
dom tessellations are defined and briefly explained. For a more detailed description
and discussion of the topics mentioned the reader is referred to Schneider and
Weil [17], and Stoyan, Kendall and Mecke [18], for example.

A.1. Basic notations
Let R and N be the set of real numbers and the set of positive integers,

respectively; N0 = N ∪ {0}. The abbreviations intB, ∂B, and Bc are used to de-
note the interior, the boundary, and the complement of a set B ⊂ R

2, respectively,
where R

2 denotes the 2-dimensional Euclidean space. For x ∈ R
2 let |x| denote

the Euclidean norm of x. Furthermore, Br(x) and B �=
r (x) denote, respectively,

the 2-dimensional closed and open ball centered at x ∈ R
2 with radius r > 0, i.e.,

Br(x) = {y ∈ R
2 : |x− y| ≤ r} and B �=

r (x) = {y ∈ R
2 : |x− y| < r}. By B(R2)

the Borel σ-algebra on R
2 is denoted. B0(R2) is the family of bounded Borel

sets in R
2.
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On R
2 we now define two topological groups, namely the group of all transla-

tions tx : y → y + x for x ∈ R
2 and the group of all rotations ϑR : y → Ry around

the origin, where R denotes a 2 × 2 matrix, orthogonal and with detR = 1. This
allows us to introduce the following operations on sets B ⊂ R

2, the translation
txB = {y + x : y ∈ B} for x ∈ R

2 and the rotation ϑRB = {ϑRx : x ∈ B} around
the origin o, respectively.

Furthermore, introduce F , K, and C as the families of all closed sets, compact
sets, and convex bodies (compact and convex sets) in R

2, respectively. Recall that
a random closed set Ξ in R

2 is a measurable mapping Ξ : Ω → F from some prob-
ability space (Ω ,A,P) into the measurable space (F ,B(F)), where B(F) denotes
the smallest σ-algebra of subsets of F that contains all sets {F ∈ F : F ∩K 
= ∅}
for any K ∈ K. Particularly, the random closed set Ξ is called a random compact
set or a random convex body if P(Ξ ∈ K) = 1 or P(Ξ ∈ C) = 1, respectively.

Let M be the set of simple and locally finite counting measures and let
M be the smallest σ-algebra of subsets of M that contains all sets of the form
{ϕ ∈ M : ϕ(B) = j}, where j ∈ N0 and B ∈ B(R2). We introduce the shift oper-
ator tx : M → M defined by txϕ(B) = ϕ(t−1

x B) = ϕ(t−xB) for x ∈ R
2 as well as

the rotation operator ϑR : M → M by ϑRϕ(B) = ϕ(ϑ−1
R B) = ϕ(ϑR−1B) for any

rotation R around the origin.

A.2. Planar point processes
A random point process X in R

2 is a measurable mapping X : Ω → M from
some probability space (Ω ,A,P) into the measurable space (M,M). Therefore, a
(simple) point process X can be regarded as a counting measure

∑
x∈supp(X) δx and

X(B) =
∑

x∈supp(X) δx(B) as the (random) number of points of X in B ∈ B(R2). A
point process X can on the other hand be identified as a (planar) random closed set.
In this case it is convenient to write X = {Xn}n≥1, which expresses X as a sequence
X1,X2, . . . of random vectors Xn : Ω → R

2 for n ≥ 1 such that #{n : |Xn| < r} <
∞ for any r > 0.

The distribution of X is given as PX(A) = P(X ∈ A) for A ∈ M. The point
process X is called stationary if PX = PtxX for any x ∈ R

2. It is called isotropic if
PX = PϑRX for any rotation ϑR around the origin.

The intensity measure Λ : B(R2) → [0,∞] of a point process X is defined by

Λ(B) = EX(B), B ∈ B(R2). (A.1)

If X is stationary and Λ is not equal to the zero measure we get that

Λ(B) = λ|B|, (A.2)

where |B| denotes the Lebesgue measure of B, and where the constant λ > 0 is
called the intensity of X. A stationary point process X with distribution PX is
said to be ergodic if there are no other stationary point processes X ′ and X ′′ with
distributions PX′ and PX′′ , respectively, such that

PX = αPX′ + (1 − α)PX′′
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for an α ∈ (0, 1). A geometric interpretation of ergodicity is that if we regard
the set of distributions for stationary point processes as a simplex then the set of
distributions for ergodic stationary point processes consists of the vertices of this
simplex. Notice that analogous definitions of ergodicity exist for stationary random
closed sets and stationary random tessellations.

Let now Λ : B(R2) → [0,∞] be any diffuse and locally finite measure on B(R2).
A (simple) point process X in R2 that fulfills

P(X(B) = k) = e−Λ(B) Λ(B)k

k!
, B ∈ B0(R2), k ∈ N0, (A.3)

is called a Poisson point process with intensity measure Λ (see Fig. 3 (a) for a
realization of a stationary Poisson point process). A possible generalization of a
Poisson process is to take the measure Λ itself random. This leads to Cox processes.
If PΛ denotes the distribution of a Poisson process with intensity measure Λ, and Q
is the distribution of a random measure, then the point process X with distribution
PX : M → [0, 1] given by

PX(A) =
∫
PΛ(A)Q(dΛ), A ∈ M (A.4)

is called a Cox process. Hence we can think of a Cox process as a two-step random
mechanism. In a first step a measure Λ is determined according to a distribution
Q. Afterwards, in a second step, a Poisson process is generated according to the
intensity measure Λ.

A.3. Planar marked point processes
An extension of planar point processes can be achieved by additionally equip-

ping the points with a mark taken from a mark space D. Mathematically, one
assumes that D represents a Polish space and denotes by B(D) the σ-algebra of its
Borel sets. Regard MD = M(R2 ×D), the set of all measures ψ : B(R2)×B(D) →
N0 ∪{∞} that are simple and locally finite with respect to the first component.
Furthermore, let MD = M(R2 ×D) be the smallest σ-algebra of subsets of MD

containing all sets of the form {ψ ∈MD : ψ(B×G) = j} for B ∈ B0(R2), G ∈ B(D)
and j ∈ N0. Then a random marked point process XD is a mapping from (Ω ,A,P)
into (MD,MD) with mark space (D,B(D)).

The distribution PXD
of XD is given by PXD

(A) = P(XD ∈ A), A ∈ MD. As
for unmarked point processes an alternative representation of XD = {[Xn,Dn]}n≥1

as a collection of random marked points is often convenient. Then XD is said to be
independently marked if {Xn}n≥1 and {Dn}n≥1 are independent and if {Dn}n≥1

consists of independent and identically distributed random variables. Stationarity
and isotropy for marked point processes are defined with respect to the first com-
ponent, in other words the locations, of the marked point process.
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The intensity measure ΛD : B(R2) ⊗B(D) → [0,∞] of a marked point process
XD is defined by

ΛD(B ×G) = EXD(B ×G), B ∈ B(R2), G ∈ B(D). (A.5)

Hence, ΛD(B×G) is the expected number of points of XD in B with a mark in G.
If XD is stationary, the intensity measure ΛD can be decomposed as

ΛD(B ×G) = λ

∫
R2

∫
D

�B(x)�G(m)P (dm) dx, B ∈ B(R2), G ∈ B(D), (A.6)

where λ > 0 is called intensity and P : B(D) → [0, 1] is the Palm mark distribution
of XD, given by

P (G) =
1

λ|B|E
∑

[x,m]∈supp(XD)

�B(x)�G(m), G ∈ B(D), (A.7)

for any B ∈ B(R2) with 0 < |B| <∞.

A.4. Neveu’s exchange formula
In the following Neveu’s exchange formula for Palm distributions of (marked)

point process in R
2 is presented. This formula is useful in order to express the

relationship of expectations of functionals of two stationary point processes with
respect to their Palm distributions.

We consider a flow {θx : x ∈ R
2} on the space Ω , i.e., a family of bijective

shift operators θx : Ω → Ω such that θx ◦ θy = θx+y, where ◦ denotes the concate-
nation operator. Let us furthermore assume that the mapping f : R

2×Ω → Ω with
f(x, ω) = θxω is measurable. For x ∈ R

2 we assume that θx is compatible with our
shift operator tx as defined in Section A.1, which means that

XD(θxω,B ×G) = txXD(ω,B ×G) = XD(ω, t−xB ×G), (A.8)

for any marked point process XD : Ω →MD and all B ∈ B(R2), G ∈ B(D). Notice
that then we can get the stationarity of XD by assuming that

P(θxA) = P(θ−1
x A) = P(A), A ∈ A and x ∈ R

2, (A.9)

where θxA = {θxω : ω ∈ A}.
Suppose that (A.9) holds. Then, we are able to introduce the Palm probability

measure P
∗
XD

for a stationary marked point process XD as the probability measure
P
∗
XD

on A⊗ B(D) by

P
∗
XD

(A×G) =
1

λ|B|

∫
Ω

∫
R2×G

�B(x)�A(θxω)X(ω, d(x, g))P(dω) (A.10)

for any B ∈ B(R2) with 0 < |B| <∞.
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Theorem A.1 (Neveu’s exchange formula). Let XD and X̃D̃ be arbitrary
stationary marked point processes on (Ω ,A,P) with mark spaces D and D̃ and
intensities λ and λ̃, respectively. Then, for any measurable function f : R

2 ×D ×
D̃ × Ω → [0,∞),

λ

∫
Ω×D

∫
R2×D̃

f(x, g, g̃, θxω)X̃D̃(ω, d(x, g̃))P∗
XD

(d(ω, g))

= λ̃

∫
Ω×D̃

∫
R2×D

f(−x, g, g̃, ω)XD(ω, d(x, g))P∗
X̃D̃

(d(ω, g̃)). (A.11)

A.5. Boolean germ-grain model
Consider a stationary Poisson point process Y = {Yn} with intensity β > 0.

Let M1,M2, . . . be a sequence of independent and identically distributed random
closed sets in R

2 with E|M0|2 < ∞, where M0 is a generic representant of the
sequence {Mn}n≥1. Furthermore, let {Yn} and {Mn} be independent. Then we
call the random closed set

Ψ =
⋃
n≥1

(Yn +Mn) (A.12)

a Boolean germ-grain model. In Fig. 3 (b) a realization of a Boolean model is
displayed. The point process {Yn} is called the germ process of Ψ with germs
Yn, whereas the process {Mn} is called the grain process of Ψ with grains Mn.
Throughout this paper only Boolean models with circular grains centered at the
origin are regarded, where the radius of the circle can be either deterministic or
random but bounded.

A.6. Random tessellations
A tessellation in R

2 is a countable family τ = {Cn}n≥1 of convex bodies Cn ∈ C
such that intCn 
= ∅ for all n, intCn ∩ intCm = ∅ for all n 
= m,

⋃
n≥1 Cn = R

2,
and #{n : Cn ∩K 
= ∅} < ∞ for any K ∈ K. Notice that the sets Cn, called the
cells of τ , are polygons in R

2. The family of all tessellations in R
2 is denoted by T .

A random tessellation τ = {Ξn}n≥1 in R
2 is a sequence of random convex bodies

Ξn such that P(τ ∈ T ) = 1. Notice that a random tessellation τ = {Ξn}n≥1 can
also be considered as a marked point process

∑
n≥1 δ[α(Ξn),Ξo

n], where α : C′ → R
2,

C′ = C \{∅}, is a measurable mapping such that α(C) ∈ C and α(C+x) = α(C) +x

for any C ∈ C′ and x ∈ R
d, and where Ξ o

n = Ξn − α(Ξn) is the centered cell cor-
responding to Ξn which contains the origin. The point α(C) ∈ R

2 is called an
associated point of C and can be chosen, for example, to be the lexicographically
smallest point of C.

A.7. Typical cell of stationary tessellations
Suppose that the marked point process Xτ =

∑
n≥1 δ[α(Ξn),Ξo

n] is stationary
with positive and finite intensity λτ = E #{n : α(Ξn) ∈ [0, 1)2}. By Po we denote
the family of all convex polytopes with their associated point at the origin. Then,
the Palm mark distribution P of Xτ is given by P (B) = λ−1

τ E #{n : α(Ξn) ∈ [0, 1)2,
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Ξ o
n ∈ B} for any B ∈ B(F) ∩ Po. Notice that a random polytope Ξ ∗ : Ω → Po,

whose distribution coincides with P , is called the typical cell of Xτ . Furthermore,
it holds that

λ−1
τ =

∫
Po

|C|P (dC), (A.13)

i.e., the expected area E|Ξ ∗| =
∫
Po |C|P (dC) of the typical cell Ξ ∗ is equal to λ−1

τ .

A.8. Tessellations induced by point processes
Let S = {x1, x2, . . . } be a locally finite set of points in R

2. For xn, xm ∈ S

define the halfplane H(xn, xm) by

H(xn, xm) = {x ∈ R
2 : |x− xn| ≤ |x− xm|}.

Then we call the polygon Pn given by

P (xn) =
⋂

m �=n

H(pn, pm) = {x ∈ R
2 : |x− xn| ≤ |x− xn|, ∀m 
= n}. (A.14)

the Voronoi cell of the point xn. If we suppose that for each x ∈ S we have that P (x)
is bounded, the sequence τ = {P (xn) : xn ∈ B} is called the Voronoi tessellation
with respect to S. The point xn is often denoted as the nucleus of P (xn). The
Poisson–Voronoi tessellation can now be defined as the Voronoi tessellation τX that
is induced by a Poisson point process X = {X1,X2, . . . }.

Let S = {x1, x2, . . . } be a locally finite set of points R
2 that is not collinear, i.e.,

if xi, xj , xk are three pairwise different points in S it holds that there does not exist
a line with the property that xi, xj , xk are all located on that line. Furthermore, let
τ ′ = {P (xn)} be the Voronoi tessellation with respect to S. Let Q = {q1, q2, . . . }
be the set of vertices of τ ′ and xi1 , . . . , xiki

be the points in S whose Voronoi cells
share the vertex qi. Let

Ti =

{
x ∈ R

2 : x =
ki∑

j=1

λjxij
,

ki∑
j=1

λj = 1, λj ≥ 0

}

and let τ = {T1, . . . , Tm}. Then, the set τ is called the Delaunay tessellation of
S. Let X = {X1,X2, . . . } be a Poisson point process. The Delaunay tessellation
induced by X is called a Poisson–Delaunay tessellation.
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[10] C. Gloaguen, P. Coupé, R. Maier and V. Schmidt, Stochastic modelling of urban access
networks. Proc. 10th Internat. Telecommun. Network Strategy Planning Symp. (Munich,
June 2002), VDE, Berlin, 2002, 99–104.

[11] C. Gloaguen, F. Fleischer, H. Schmidt and V. Schmidt, Simulation of typical Cox–Voronoi
cells with a special regard to implementation tests. Mathematical Methods of Operations
Research, 62 (2005), 357–373.

[12] C. Gloaguen, F. Fleischer, H. Schmidt and V. Schmidt, Analysis of shortest paths and sub-
scriber line lengths in telecommunication access networks. Networks and Spatial Economics,
9 (2008), in print.

[13] R. Maier, J. Mayer and V. Schmidt, Distributional properties of the typical cell of stationary
iterated tessellations. Mathematical Methods of Operations Research, 59 (2004), 287–302.

[14] J. Mayer and R. Guderlei, Test oracles and randomness. Lecture Notes in Informatics, P-58,
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