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Voronoi diagrams for a set of geometric objects is a partition of the plane (or space in
higher dimensions) into disjoint regions each dominated by some given object under a
predetermined criterion. In this paper we are interested in various measures associated
with criteria on goodness of an input line segment with respect to each point in the plane
as the “point of view.” These measures basically show how well a segment or information
displayed on the segment can be seen from the point. Mathematically, the measures are
defined in terms of the shapes of the triangle determined by the point and the line segment.
We study the combinatorial and algorithmic complexities of those Voronoi diagrams. We
also study an associated optimization problem: find a point that maximizes the smallest
measure value over the measures with respect to all the given line segments. We give
sufficient conditions for an optimal point to lie on a Voronoi edge and present a heuristic
optimization algorithm for those measures having this property.

Key words: algorithms, computational geometry, measure on triangles, optimization,
triangle, visual angle, aspect ratio, minimal height, Voronoi diagram

1. Introduction

Given a set of points in the plane, we can partition the plane into regions in
such a way that any point in a region associated with some given point is closer to
the point than to any other point in the set. The resulting partition of the plane
is called a Voronoi diagram for the point set. Replacing the relation “closer to”
with some other criteria we could define a number of variations of the diagram (see
e.g. [4, 11]).

In this paper we propose a yet another abstraction of those Voronoi diagrams
for a set of non-intersecting line segments possibly forming a polygon. We consider
a measure associated with a criterion on how an input segment can be seen from a
point in the plane as a point of view. There are several possible criteria. Naturally,
the distances from the segments and the lengths of segments are important factors.
If two segments are of the same length, one may conclude that the nearer one should
be seen better; however, it is not always the case, since if we see a blackboard from
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the leftmost seat in the first row of a classroom, we have difficulty to read letters
written on the blackboard. Also, liquid-crystal display of a laptop computer can be
only seen from points in a limited region. Basically, the visual quality of information
given on a line segment s seen from a point p depends on the shape of triangle
�(p, s) defined by s and p such that �(p, s) has s as an edge and p as its opposite
vertex. We consider μ(p, s) to measure the quality of the visual information on
s obtained at p. Each measure μ may be a goodness measure, with larger values
meaning better quality, or a badness measure, with larger values meaning poorer
quality. For example, in usual situations, the distance between p and s is a badness
measure, while the visual angle of s at p, defined to be the internal angle of vertex
p of the triangle �(p, s), is a goodness measure. Note, however, that the same
measure may serve as both goodness and badness measures in different situations.

Suppose we are given a set S = {si} of line segments and a measure μ. For
each point p in the plane, we are concerned with the segment si for which the
value μ(p, si) is the worst of μ(p, sj) over all sj , since that segment may present
a bottleneck in processing the visual information from all the segments. If μ is a
goodness measure, this naturally gives rise to the Voronoi diagram for which μ(p, s)
is regarded as the distance between p and s: the Voronoi region of si consists of
those points p for which μ(p, si) < μ(p, sj) for each sj ∈ S distinct from si. If μ is
a badness measure, for the same reason, we are instead interested in the farthest-
point Voronoi diagram, for which the direction of the inequality is flipped. In
the following, we call Voronoi diagrams of the first type minimum-measure Voronoi
diagrams and those of the second type maximum-measure Voronoi diagrams. When
it is clear from the context whether measure μ is a goodness measure or a badness
measure, we omit the minimum-measure/maximum-measure distinction and simply
say the Voronoi diagram associated with μ.

The Voronoi diagram associated with a goodness or badness measure is a rich
source of information regarding questions with respect to the measure and the point
set. In particular, it can be used to solve a certain type of optimization problems.
For a goodness measure μ, we are interested in the max-min optimization: find
a point p that maximizes the minimum of μ(p, si) over all si ∈ S. In the visual
information setting, we look for a point from which we best see the worst-seen
object. For a badness measure, we are interested in the min-max optimization
defined similarly. We give some sufficient condition on the measure in order for
such an optimal point to always lie on some Voronoi edge.

With a different criterion we can define a similar but different Voronoi diagram.
Voronoi edges are characterized in a different manner. The purpose of this paper
is to find combinatorial and structural properties common to all those Voronoi dia-
grams associated with measures μ defined for a pair of point and line segment. We
describe basic properties to be satisfied by the measures to possess those common
properties. It is important for practical use. There may be a number of problems
falling into the class which can be solved using our framework of Voronoi diagrams.
Although it is impossible to enumerate all possible optimization criteria, it is pos-



Voronoi Diagrams on Vision Information 151

sible to investigate basic conditions to be satisfied by those criteria in order to have
their corresponding Voronoi diagrams bear the same combinatorial properties.

An original motivation of this Voronoi diagram comes from applications to
mesh improvement and robotics. Mesh generation/improvement [5, 6, 10, 12, 13]
is an important process for many purposes including Finite Element Method. In a
simple setting, a given simple polygon is partitioned into many small triangles after
inserting an appropriate number of points in its interior as vertices of triangular
meshes. Several different criteria have been considered to evaluate the quality of
such a triangular mesh. One of them is to maximize the smallest internal angle (or
to minimize the largest internal angle). Since polygon vertices are fixed, the only
way to improve the quality of triangular mesh is either to move internal points or
to insert new internal points (or even delete existing internal points). In robotics,
we are interested in locating a robot in the amidst of many polygonal obstacles by
computing its relative position to the most outstanding polygon or line segment in
a criterion on visual information.

The Voronoi diagram is also given as the lower (or upper) envelope of terrains,
where a terrain for a line segment si is defined using μ(p, si) as height at the
point p. A general theory on terrains by Halperin and Sharir [7] yields an upper
bound O(n2+ε) on the complexity of the lower envelope of those terrains that is
Voronoi diagram, where ε is an arbitrarily small positive constant. In other words,
the Voronoi diagram has O(n2+ε) Voronoi edges, and vertices. Despite the high
complexity in the worst case, actual complexity seems to be low by our experiments
for a number of polygons.

This paper is organized as follows. In Section 2 we define a Voronoi diagram
associated with an abstract measure μ on a triangle. In Section 3 a list of possible
measures is given together with algebraic expressions for those measures. In Sec-
tion 4, we study the complexity of the Voronoi diagrams under those measures. In
Section 5, we study the associated optimization problems. Finally, Section 6 gives
some concluding remarks together with some open problems and future works.

2. Voronoi diagrams for various criteria on triangles

In the following definitions, we deal with minimum-measure Voronoi diagrams.
The definitions for maximum measure Voronoi diagrams are obtained by flipping
the directions of the inequalities.

Suppose we are given a set S = {si} of line segments on the plane and a
measure μ on R× S. A point p is said to be dominated by a line segment si ∈ S if

μ(p, si) = min{μ(p, sj) | sj ∈ S}. (1)

For each si ∈ S, the Voronoi region V (si) is defined to be the set of points singly
dominated by si, i.e.,

V (si) = {p ∈ R
2 | μ(p, si) < μ(p, sj) for any j �= i}. (2)
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Voronoi edges are defined by curves which are dominated by exactly two ele-
ments of S. Formally, the Voronoi edge E(si, sj) is defined by

E(si, sj) = {p ∈ R
2 | μ(p, si) = μ(p, sj) < μ(p, sk) for any k �= i, j}. (3)

Two Voronoi edges may meet at one point, that is a Voronoi vertex. It is
defined by

v(si, sj , sk) = {p ∈ R
2 | μ(p, si) = μ(p, sj) = μ(p, sk) ≤ μ(p, sl) for any l �= i, j, k},

(4)
which is a set of points dominated by three or more elements of S.

As in the usual definition of generalized Voronoi diagrams, we require that
the Voronoi regions form a tessellation of the entire plane: V (si) ∩ V (Sj) = ∅ for
si �= sj and

⋃
si∈S V (si) = R2, where V (si) denotes the closure of the Voronoi

region V (si).
For some measures, this requirement is violated by some degenerate configura-

tions of line segments. For example, consider a measure μ(p, si) defined to be the
distance from point p to the line including line segment si. If two line segments si

and sj lie on a line l, μ(p, si) = μ(p, sj) for any point p. Thus, if the set S contains
such co-linear pair of line segments, the resulting Voronoi regions may not form a
tessellation. We exclude those degenerate configurations from our considerations.
In practice, we may avoid them by small perturbations.

For yet some other measures, however, the above tessellation requirement is
more severely violated, in the sense that small perturbations may not resolve the
problem. This may happen when, for example, the measure with respect to a line
segment takes a constant value for all points in some region. We will later see an
example of well-motivated measures in this category. When those measures are
used, we need some extra care outside of the framework presented in this paper.

For the sake of the analysis of the complexity of the Voronoi diagrams and
their constructions, we will impose the standard assumption that the measure is
described by a constant number of algebraic functions. We give more details in
Section 4.

For our application on visual information, it may make more sense to include
visibility considerations in the definition of the Voronoi diagram: a point p belongs
to the Voronoi region of si if si is entirely visible from p (without being hidden
by other line segments) and μ(p, si) < μ(p, sj) for every sj �= si that is entirely
visible from p. This modification would make the Voronoi diagrams more difficult
to analyze: we need at least to deals with the possibilitye of some points not
dominated by any segment. In this paper, we are mainly concerned with the basic
Voronoi diagrams without visibility considerations.
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3. A list of possible measures

We say that measure μ is symmetric if for each triangle pqr we have μ(p, qr) =
μ(q, rp) = μ(r, pq). For any measure μ, there are symmetric versions μmax and
μmin, defined by

μmax(p, qr) = max{μ(p, qr), μ(q, rp), μ(r, pq)},

and

μmin(p, qr) = min{μ(p, qr), μ(q, rp), μ(r, pq)}.

We first list a few asymmetric measures. All of them can be used as both
goodness and badness measures depending on the situations.
visual angle Define μ1(p, si) = θp(si) which is defined to be the visual angle of

si from p.
height Define μ2(p, si) as the distance from p to the line containing si.
aspect-ratio Define μ3(p, si) = μ2(p, si)/‖si‖, where ‖si‖ denotes the length of

segment si.
These asymmetric measures are natural for visual information applications,

while their symmetric versions are more appropriate for mesh optimization ap-
plications: μmin

1 , μmin
2 , and μmin

3 are all goodness measures and μmax
1 , μmax

2 , and
μmax

3 are all badness measures. The following are inherently symmetric badness
measures.
circumcircle Define μ4(p, si) to be the radius of the circumcircle of a triangle

defined by (p, si).
eccentricity Define μ5(p, si) as follows: it is 0 if the center of the circumcircle

of a triangle �(p, si) lies in the interior of the triangle. Otherwise, it is the
distance from the center to the closest edge of the triangle.

Fig. 1 illustrates some of the listed measures: μ1, μmin
2 , μmin

3 , μ4, and μ5.

Fig. 1. A list of measures on triangles.

Note that the last measure eccentricity may violate the tessellation requirement
discussed in Section 2, due to the constant value 0 for (p, si) forming an acute
triangle.
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3.1. Corresponding Voronoi diagrams
Fig. 2 shows Voronoi diagrams for some of the measures listed above. The last

one shown in (f) takes visibility constraints into account, as described in Section 2.
The authors implemented a C program using LEDA [8] to obtain those figures. For
simplicity those diagrams are drawn pixel by pixel instead of drawing Voronoi edges
following equations of corresponding planar curves. In the figures line segments
(polygon edges) have different colors (darkness). Regions associated with a line
segment are painted by the colors (darkness) associated with it.

(a) (b) (c)

(d) (e) (f)

Fig. 2. Voronoi diagrams for various measures: (a) visual angle (µ1) as a goodness
measure, (b) minimum height (µmin

2 ), (c) minimum aspect ratio (µmin
3 ),

(d) circumcircle (µ4), (e) eccentricity (µ5), and (f) visual angle as a goodness

measure, with visibility constraint.

Although eccentricity may violate the tessellation requirement in general, the
line segment configuration in the example does not cause this problem.

Fig. 3 shows another pair of examples. The measure used for the diagrams is
the distance of the point to the line segment. The visibility condition is considered
in the right figure (b), but not in the left one (a). This is known as a Voronoi
diagram for a set of line segments. Although the line segments appear to form
a polygon, they are slightly perturbed so that no endpoints of two line segments
coincide. If two line segments have a common endpoint, there will be a region of
points equidistant to those two line segments, violating the tessellation requirement.
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(a) (b)

Fig. 3. Voronoi diagrams for the usual distance measure. Visibility constraint is taken

into consideration in the right diagram (b) but not in the left one (a).

3.2. Algebraic expressions
Below we list explicit algebraic expressions for the measures listed earlier. They

are needed in the algorithms for construction, and for the analysis of the complexity
of associated Voronoi diagrams.
visual angle Although the visual angle itself cannot be expressed as an algebraic

function, its cosine value μ′
1(p, si) = cos θp(si) can, which is sufficient for our

purpose of constructing the Voronoi diagram and doing optimization. Exactly,
we have

cos θp(si) =
‖pa‖2 + ‖pb‖2 − ‖ab‖2

2‖pa‖ · ‖pb‖ ,

where a and b are two endpoints of si and ‖pq‖ denotes the length of the
segment pq. Assuming p = (x, y), a = (ax, ay), and b = (bx, by), we have

cos θp(si)

=
(x − ax)2 + (y − ay)2 + (x − bx)2 + (y − by)2 − (ax − bx)2 − (ay − by)2

2
√

(x − ax)2 + (y − ay)2
√

(x − bx)2 + (y − by)2
.

height Letting A be the area of the triangle �(p, si) and L be the length of si,
the height μ2(p, si) of p with respect to si is given by:

μ2(p, si) = 2A/L

=
|(ay − by)x + (bx − ax)y + axby − bxay|√

(ax − bx)2 + (ay − by)2
.

aspect-ratio With the same notation as above, we have:

μ3(p, si) = μ2(p, si)/L

= 2A/L2

=
|(ay − by)x + (bx − ax)y + axby − bxay|

(ax − bx)2 + (ay − by)2
.
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circumcircle It is known that the radius of a triangle pab with area A is given by

μ4(p, si)

=
‖pa‖ · ‖pb‖ · ‖ab‖

4A

=

√
(x− ax)2 + (y− ay)2

√
(x− bx)2 + (y− by)2

√
(ax − bx)2 + (ay − by)2

2|(ay − by)x+ (bx − ax)y + axby − bxay| .

eccentricity Let r be the radius of the circumcircle of a triangle �pab. If the
center of the circumcircle lies in the interior of the triangle, μ5(p, si) = 0.
Otherwise, μ5(p, si) is the smallest of the distances from the center to the
segment pa, pb, and si. Thus, μ5(p, si) is expressed as a combination of
six algebraic functions, three for the distance from the center to the lines
containing the sides of the triangle and three for the distance from the center
to the vertices of the triangle. We omit the exact expression here.

4. Complexity of Voronoi diagrams

The purpose of this section is to study the combinatorial and algorithmic com-
plexities of our Voronoi diagrams. We first note that the Voronoi region V (si)
for each si may not be connected. For example, let us take the visual angle as
the measure and consider minimum-measure Voronoi diagrams. Fig. 4 shows an
example with three line segments in which Voronoi regions are indeed disconnected.

Fig. 5 illustrates a configuration for which the complexity of the diagram is
quadratic.

To get an upper bound on the complexity of our Voronoi diagrams, we apply
the result of Halperin and Sharir [7] on the complexity of the lower envelope of
terrains defined by algebraic functions.

Let fi, 1 ≤ i ≤ n, be bivariate algebraic function of a constant degree, possibly
partially defined. Assume that, when fi is partially defined, the domain of the func-
tion is bounded by an algebraic curve of a constant degree. Then their result says
that the complexity of the lower envelope of the terrains defined by z = fi(x, y),
1 ≤ i ≤ n, is O(n2+ε) for any positive constant ε. It is also known that the envelope
can be computed in O(n2+ε) time [1] using a divide and conquer strategy.

Our minimum-measure Voronoi diagram is obtained by projecting the lower en-
velope of the terrains defined by z = gi(x, y) = μ((x, y), si), si ∈ S, to the xy-plane.
If μ is defined by a single algebraic function, then we can immediately apply the
above results. For more general cases where μ is defined by a combination of a
constant number of algebraic functions, we need to guarantee that the domain of
each constituent function is bounded by an algebraic curve of a constant degree.
To do so, it suffices to assume that μ(p, si) for fixed si is continuous except on si.
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Fig. 4. A Voronoi diagram for a set S of three line segments (shown by bold lines)

under the measure of max-min visual angle. A point belongs to a Voronoi region

dominated by a line segment giving the smallest visual angle.

Fig. 5. A visual angle Voronoi diagram for a set S of horizontal and vertical line

segments (shown by bold lines) having quadratic number of Voronoi edges and

vertices. Dotted lines in the figure are extensions of given line segments. Segment

endpoints are shown by dots in the figure.
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Theorem 1. Let μ be a measure such that, for each fixed line segment s,
μ(p, s) is a piecewise algebraic function on p of a constant degree consisting of a
constant number of pieces and is continuous except on s. Assume further that for
some set S of n line segments, the pair (μ, S) satisfies the tessellation requirement.
Then, the Voronoi diagram of S under μ consists of O(n2+ε) cells, edges, and
vertices, where ε is an arbitrarily small positive constant, and it can be computed
in O(n2+ε) time.

It is straightforward to verify that all the measures listed above (except for
visual angle μ1 which should be replaced by the cosine version μ′

1) satisfy the
assumption of this theorem.

5. Optimization

Given a goodness measure μ(p, s) and a set of line segments S = {si}, our
Voronoi diagram gives us a means for computing min{μ(p, si) | si ∈ S} for each p.
As discussed in the introduction, we are interested in finding a point p that max-
imizes this function. For badness measures, we are interested in minimizing the
max{μ(p, si) | si ∈ S}. In the following, we deal with goodness measures and asso-
ciated max-min optimization problems. Badness measures and associated min-max
optimization problems can be similarly dealt with.

We first give simple sufficient conditions for an optimal point to lie on a Voronoi
edge. Given a measure μ and a fixed line segment s, a point p∗ is a peak of μ with
respect to s, if it gives a local optimum of μ(p, s) as a function on p: for any p in
the neighborhood of p∗, μ(p∗, s) ≥ μ(p, s). It is clear that if a measure does not
have any peak then optimal points of the max-min optimization problem must lie
on Voronoi edges.

We say that measure μ satisfies the single peak value property, if there is some
universal constant c such that for every line segment s we have:
1. μ(p, s) ≤ c for every point p, and
2. every local optimum of μ(p, s) takes the value c.

Theorem 2. Let μ be a goodness measure satisfying the single peak value
property and let S be some set of line segments. Then, each optimal point of the
associated max-min optimization problem lies on a Voronoi edge of the Voronoi
diagram for S under μ.

Proof. Let p∗ be a local optimum point for some si ∈ S. From the definition
of the single peak value property, we have μ(p∗, sj) ≤ μ(p∗, si) for every sj ∈ S,
which prohibits p∗ from lying in the Voronoi region of si. Therefore, each optimal
point must lie on some Voronoi edge. �

Let us consider whether the concrete measures listed earlier satisfy the above
sufficient conditions. The visual angle measure μ1, together with its symmetric
versions μmin

1 and μmax
1 , satisfies the single peak value property as both goodness

and badness measures. The aspect ratio μ3 as a badness measure, together with its



Voronoi Diagrams on Vision Information 159

symmetric version μmin
3 , satisfies the single peak value property. The height μ2 as

a goodness measure, together with its symmetric version μmin
2 does not have peaks.

However, the radius of circumcircle μ4 as a badness measure does have peaks (local
minima) but does not satisfy the single peak value property. The peak value for
si is just the half of the length of the line segment since the circle with si as its
diameter is the smallest circle passing through the two endpoints of si. Thus, two
line segments having different lengths have different peak values. Thus, μ4 does not
satisfy the single peak value property. In fact, in the Voronoi diagram associated
with the measure shown in Fig. 6 an optimal point is not located on Voronoi edges.

Fig. 6. A Voronoi diagram associated with the circumcircle radius as a badness measure

for two line segments (drawn by bold lines). An optimal point that minimizes

the radius of the maximum circumcircles is depicted by a cross and connected

with four endpoints of the two line segments. The optimal point does not lie on

a Voronoi edge.

For those measures satisfying the condition of the theorem, a natural O(n2+ε)
time algorithm to solve the max-min optimization problem is to examine all Voronoi
edges and compute the optimal point on each of them. Unfortunately, the time
bound is rather large and indeed there is an algorithm with smaller running time.
Our optimization problem can be formulated as an LP-type problem [9] and can be
solved in almost linear time. Practical comparisons of these algorithms, however,
have yet to be done through experimental methods.

In the rest of this section, we seek a heuristic algorithm that makes use of
the Voronoi diagrams and their property that the optimal points are located on
Voronoi edges.
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Level region
Given a goodness measure μ, we define a level region by

R>t(si) = {p ∈ R
2 | μ(p, si) > t}.

That is, it consists of all points at which the measure is greater than some given
value t. R≥t(si) is similarly defined. Fig. 7 shows level regions for some measures
listed earlier (although there is another region symmetric with respect to a line
segment, only one of them is shown). For the measure μ1 on max-min visual angle,
the level region R≥θ(si) is the interior of a circle on which the circular angle is
exactly θ, as shown in Fig. 7 (a). For the measure μ2 on max-min height, R≥h(si)
above the line segment si is characterized by two lines each passing through an
endpoint of the line segment and the line parallel to si separated by h from si.
Thus, the region is an infinite region bounded by two rays and one line segment
(which may be degenerated to a point). The measure μ3 on max-min aspect ratio
has the level region R≥α(si) bounded by two circular arcs and one line segment
parallel to si. The gap between two parallel lines is α × ‖si‖ where ‖si‖ is the
length of si. The two circles determining the circular arcs have their center on
lines perpendicular to si and passing through the two endpoints of si. The level
region for the measure on min-max circumcircle is not convex. It is bounded by
two circular arcs of the same radius and both passing through the two endpoints
of si. As is easily seen, whenever a point p lies on the boundary, the circumcircle
of the triangle �(p, si) is given by the circle shown in the figure.

Fig. 7. Level regions R≥t(si) for four different measures: (a) visual angle as a goodness
measure, (b) minimum height, (c) minimum aspect-ratio, and (d) circumcircle as

a badness measure.

For a line segment si and a real value t > 0, the level region R≥t(si) appears
in both sides of the line segment. In Fig. 7 we only illustrate one of the two regions
since they are symmetric. Every boundary curve of the level region is described by
a polynomial equation of constant degrees in x and y.

Heuristic algorithm
The following is a heuristic algorithm for our optimization problem, guided by

a Voronoi diagram associated with a given measure. For simplicity, we assume that
the set of line segments form a convex or star-shaped polygon, but the algorithm
can be adapted to more general cases.
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Pixel method.

(1) Given a convex polygon or a star-shaped polygon P , first distribute k points
q1, q2, . . . , qk in its interior, where k is some small constant.

(2) Compute the measures at those points.
(3) Take the best value t among them.
(4) For each polygon edge si, compute the level region R>t(si).
(5) Take their intersection R by plane sweep (typically in O(n log n) time).
(6) Enumerate all the Voronoi edges intersecting R. Note that if two level regions

for si and sj intersect on the boundary of R, then it means that the Voronoi
edge E(si, sj) intersects the region R. In this way we can enumerate all the
relevant Voronoi edges.

(7) For each such Voronoi edge, find its peak within R. Then, take the best value
t among them.

(8) If the region R is small enough, stop the algorithm with the peak value t found.
Otherwise, go back to step (4).

Fig. 8 show how the feasible regions are computed for sets of points. In the
figure, Voronoi diagrams for the measure on max-min aspect-ratio are superimposed
with level regions for polygon edges. The boundaries of those level regions are
depicted by bold lines. It is seen that Voronoi edges appear at vertices of the
boundaries. It is also seen that given k points in the interior of a polygon at least
one point lies on the boundary and no point lies in its interior.

Fig. 8. Two sets of points (marked by crosses) distributed over a polygon and their

associated feasible regions computed by the heuristic algorithm.
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Given k points in the interior of a given polygon, we can compute the values
e(p1), . . . , e(pk) in O(kn) time. Then, compute intersection of n level regions for
the largest value among e(p1), . . . , e(pk).

The total time complexity depends on how many iterations we need as well as
on the time complexity of the plane sweep, which in turn depends on the complexity
of the level curves. There is no analysis on the running time.

Fig. 9 show a Voronoi diagram for the measure of max-min aspect ratio with
colors and without colors.

Fig. 9. Voronoi diagram for the measure of max-min aspect ratio with colors and without

colors.

Finding a peak on a Voronoi edge
Both in the exact O(n2+ε) time algorithm and in the heuristic algorithm, we

need to compute an optimal point on a single edge as a primitive operation. This
is purely a matter of algebraic calculations. We illustrate this process with an
example.

Take the minimum aspect ratio μmin
3 as our measure μ. We have:

μ(p,si)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

|(ay − by)x+(bx −ax)y +axby −aybx|
(x−ax)2 +(y−ay)2

, if pa is the longest side of �(p,si),

|(ay − by)x+(bx −ax)y +axby −aybx|
(x− bx)2 +(y− by)2

, if pb is the longest side of �(p,si),

|(ay − by)x+(bx −ax)y +axby −aybx|
(bx −ax)2 +(by −ay)2

, if ab is the longest side of �(p,si),

where p = (x, y) and (ax, ay) and (bx, by) are the starting and ending points of si.
We also have three different expressions for μ(p, sj). Thus, there are 9 different
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forms of equations for μ(p, si) = μ(p, sj). Letting (cx, cy) and (dx, dy) be two end-
points of sj , one of possible equations is

|(ay − by)x+(bx −ax)y +axby −aybx|
(x−ax)2 +(y−ay)2

=
|(cy −dy)x+(dx − cx)y + cxdy − cydx|

(x− cx)2 +(y− cy)2
,

from which we have an equation for the corresponding Voronoi edge. If we partially
differentiate the equations for μ(p, si) and μ(p, sj) by x and y and putting them
equal to 0, then we have 4 different equations. Solving the system of equations,
we have a constant number of points, which are candidates for peak positions.
Finally, we evaluate the measures at those points and find a point among them
that maximizes the measure. Fig. 10 illustrates terrains associated with polygons
with optimal points highlighted.

Fig. 10. Terrains on the minimum aspect-ratio Voronoi diagrams. Darker pixels have

lower heights. The peak is highlighted.

6. Concluding remarks

In this paper we have presented a new family of Voronoi diagrams for a set of
line segments or a polygon based on various measures on goodness of triangles. We
have succeeded in characterizing their common combinatorial and structural prop-
erties. We have also presented a generic scheme for finding an optimal point with
respect to a specified measure using the Voronoi diagram as guide. Unfortunately,
our complexity result of O(n2+ε) is not encouraging for practical applications, but
this is just an upper bound on the worst case complexity. Since the worst case is not
known, especially for the cases where the set of line segments form a convex or star-
shaped polygon, it may be possible to lower the complexity for those cases. More
experimental works are required to judge whether this idea is useful for practical
use, which is left for future work.
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It is known in [9] that the problem of finding a point in a star-shaped polygon
that maximizes the minimum visual angle when the point is connected to all the
vertices of the polygon by straight edges is formulated as an LP-type problem and
thus it can be solved by implementing O(n) basic operations in the framework.
So, it is more efficient than our approach based on the angular Voronoi diagram.
Although it is hard to describe in limited space, there is an application in which
we are required to find a point that maximizes the smallest visual angle in a star-
shaped polygon in some region bounded by some planar curves such as circular
arcs. In such cases the diagram is useful and expected to be efficient because we
do not need the whole diagram but just a part of it in the restricted area.
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